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We optimize three-dimensional snake kinematics for
locomotor efficiency. We assume a general space-curve
representation of the snake backbone with small-
to-moderate lifting off the ground and negligible
body inertia. The cost of locomotion includes work
against friction and internal viscous dissipation. When
restricted to planar kinematics, our population-based
optimization method finds the same types of optima
as a previous Newton-based method. With lifting, a
few types of optimal motions prevail. We have an
s-shaped body with alternating lifting of the middle
and ends at small-to-moderate transverse friction.
With large transverse friction, curling and sliding
motions are typical at small viscous dissipation,
replaced by large-amplitude bending at large viscous
dissipation. With small viscous dissipation, we find
local optima that resemble sidewinding motions
across friction coefficient space. They are always
suboptimal to alternating lifting motions, with
average input power 10-100% higher.

1. Introduction

Snakes have a relatively simple body geometry but
can perform a wide range of locomotor behaviours.
They are useful for understanding the mechanics of
locomotion in terrestrial and even aquatic [1] and aerial
[2] environments. Snakes are also an important source of
ideas for bioinspired robots [3-8], and their limblessness
has advantages for control, adaptability, and navigation
in complex and cluttered environments [9-11]. Although
a wide range of motions are possible, four major
modes of snake locomotion—serpentine, concertina,
sidewinding and rectilinear—have been described and
studied most often [12-15], though the true diversity of
motions is greater [4,16,17].

Many common biological snake motions such as
serpentine locomotion have been modelled successfully
by assuming planar motions with a simple (Coulomb)
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frictional model [18-26]. Serpentine and concertina-like motions were found to be optimally
efficient among general time-periodic kinematics of three-link [27] and smooth bodies [28,29].
For certain body geometries and frictional anisotropies, other motions, beyond those observed
biologically, were found to be optimal [30-32].

These models assume a resistive force law, local in the velocity, which is somewhat simpler
than many fluid locomotion models [33-36]. Nonetheless, even the simplest planar models with
Coulomb friction are too complicated to be solved theoretically with large-amplitude motions,
so the physics of many motions are not well understood, and computational models and
explorations of the types of efficient dynamics over parameter space play an important role.

Of the four major modes of locomotion, non-planar kinematics feature most strongly in
sidewinding [12,14,37]. References [8,37] demonstrated that sidewinding can be represented as
a pair of orthogonal body waves (vertical and horizontal) that can be independently modulated
to achieve high manoeuverability and ascend inclines. The other major modes are not perfectly
planar in real snakes or robots but can be approximated well by bodies that remain planar.
The serpentine mode often features lifting at the curvature peaks, termed ‘sinus-lifting” [3,4]
and modelled in [22,23] using planar shapes together with a weight distribution function. [38]
used planar shapes together with the weight distribution function approach of [22,23] to model
sidewinding and other three-dimensional motions. Using a travelling-wave weight distribution
function that is phase shifted from a travelling-wave body curvature they found a wide range of
turning, slithering and sidewinding motions. Rieser et al. [26] used similar techniques to model
sidewinding locomotion and found higher speeds with isotropic friction than with dominant
transverse friction.

Here, instead of a planar curve with a weight distribution function, we represent the snake
body as a time-dependent three-dimensional space curve. Given the space curve shape, the
regions of contact and lifting arise naturally from solving the dynamical equations. We prefer
this direct approach because it removes the question of which three-dimensional shape, if any,
would produce a prescribed weight distribution function. The weight distribution depends on
the equilibrium position of the space curve under gravity and may be sensitive to slight changes
in the curve’s shape.

Three-dimensionality opens up new possibilities for interesting mechanisms of locomotion.
Some three-dimensional motions may have higher efficiency than similar two-dimensional
motions, e.g. sinus-lifting versus lateral undulation, and three-dimensional motions may be
necessary for traversing uneven ground and obstacles. Some three-dimensional studies have
focused on modifications of sidewinding motions: [10] showed how sidewinding waveforms
can be modulated in biological and robotic snakes to move around peg obstacles and [39]
developed a geometric mechanics method to find optimal contact patterns for sidewinding
robotic snakes for maximum speed. Other types of three-dimensional motions have also
been studied: [11] studied experimentally how snakes use a combination of lateral and
vertical bending to traverse uneven terrain made up of blocks with vertical and horizontal
planar surfaces; [9] showed that body compliance can help snakes traverse obstacles
stably.

As in our previous planar locomotion studies [27-32], we study non-planar motions using
an optimization framework. It is not feasible to describe the full range of locomotor behaviours
across the space of geometrical and physical parameters. Focusing on those that are optimally
efficient is more manageable, even if they do not fully describe the possibilities. The optimal
solutions indicate the trade-offs between the objectives and constraints in the problem, and how
they depend on the parameters [40]. The optimal solutions can provide effective strategies and
suggest general mechanisms for robotic locomotion [5,39]. The relationship between the optima
and biological organisms is less clear, as the model omits many physiological aspects, and the
importance of mechanical efficiency to reproductive success varies widely among organisms [41].
Locomotor efficiency on sandy surfaces is often mentioned in explanations of the sidewinding
gait, but other benefits—avoiding predators, minimizing contact with hot surfaces and increasing
sensory perception—are also discussed [42]. Comparing the optimal solutions to biological
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locomotion indicates the relative importance of mechanical efficiency in determining the choice
of locomotor mode [40].

In [28,31], we used quasi-Newton optimization methods; in [28,29] we used theoretical
methods applicable to small body deflections; in [30] we used a commercial solver; and in [32],
we used a stochastic population-based optimization method. Here, we also use a stochastic
population-based method, because it is relatively simple and turns out to be effective and robust
for the problem at hand. Convergence is generically slower than for Newton-based optimization
methods, but those methods may have difficulties because the normal contact and tangential
Coulomb friction forces where the body meets the ground are singular (or nearly singular in the
regularized model we use), which also causes singularities in derivatives of the objective function.

Section 2 describes our model of a locomoting snake—a curve in three-dimensional space
with curvature and torsion that vary with arc length and time. The curve moves according to
Newton’s Laws, with forces due to friction and normal contact with a planar ground. Unlike
our previous optimization studies, here we include the body’s internal viscous dissipation in the
cost function. We use implicit time stepping to evolve the body’s motion. Section 3 describes our
optimization method. We compute the motions of a population of locomoting bodies, select a
top-performing subset, and use random perturbations of its members to form the population at
the next generation. After many generations, the population converges to the vicinity of a local
optimum.

Section 4 describes the computed optima and how they vary with key parameters such as
the numbers of modes describing the curvature and torsion (§4a). Section 4b shows how the
algorithm behaves in the special case of planar motions, with and without internal viscosity. In
the latter case, good agreement with [28] is found. Section 4c then shows how the optimal motions
change when lifting is allowed. With small-to-moderate lifting, the effects of frictional anisotropy
and damping are studied in §4d. A special class of optima that resemble sidewinding motions
are shown in §4e, and special types of analytical optima are presented in §5. Section 6 gives the
conclusion.

2. Model

In previous work, we assumed that the snake body was a curve in the two-dimensional plane,
with a prescribed shape given by its curvature «(s, t), where s is arc length and ¢ is time. Now,
we assume the body is a curve in three-dimensional space (figure 1), so the shape is given by its
curvature « (s, t) and torsion (s, t) [43]. We assume that « (s, t) and 7(s, ) are periodic in time with
period T. Given « and 7, we can integrate the Frenet-Serret formulae
% =kn; i—lsl = —k§+ 1b; i —7h 2.1)
to obtain the body tangent, normal and binormal vectors {(s, t), a(s, t),B(s, 1)}, if we know these
vectors at one s value, say s = 0 (the tail). The values of these vectors at the tail can be written as
the columns of a three-dimensional rotation matrix [$(0, ) A(0,#) b(0, £)] = R, (a®)Ry(B(H)Rx(y (1)),
where Rz, Ry and Ry are the matrices for counterclockwise rotations about the z-, y- and x-axes by
(Euler) angles «(t), (f) and y(t), respectively [43].
After integrating the Frenet-Serret formulas, we have §(s,t)=9;X(s,t), where X(s,t)=
[x(s, £), y(s, 1), z(s, N1 is the position of the body. Given the position of the body at the tail,
Xo(f) = X(0, t), we integrate § to obtain the position all along the body,

X(s, t) = Xo(t) + /()S 8(s/,t)ds’. (2.2)

To summarize, given the shape of the body (« and t), and the six unknowns {Xo(t), a(t), B(t), y (t)}
specifying its position and orientation at the tail, we can integrate to obtain X(s,t). At each ¢,
we solve for the six unknowns by enforcing six equations, the linear and angular momentum
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Figure 1. Schematic diagram of the three-dimensional space curve X(s, t) representing the snake backbone, together with the
tangent, normal and binormal vectors {5, fi, b} at one location. The curve rests on the plane z = 0, the ground, indicated by a
rectangle. The colour scale shows the magnitude of the ground contact force acting at each location. (Online version in colour.)

balances for the snake body as a whole

L L L L L
p/ X ds =/ fextds; 0 (p/ X x 9:X ds) = p/ X x oyXds =/ X x foxt ds. (2.3)
0 0 0 0 0

Here, L is the body’s length, p is its mass per unit length and fey; is the external force on the body
due to normal contact with the ground, gravity and friction

fext = feontact + fgravity + fhrictions  fcontact = pgez(H(z) e w4 (1-H@)(A - z/8w)) (2.4)

and
A Al Al
us(@:Xop - 82D)82D + (3 X2D - 85p)85p

foravity = —pg€z  ffriction = —l/fcontact||
V1185%p] 2 + 83

Here, g is gravitational acceleration and H is the Heaviside function. Instead of a hard or rigid
contact force that rises in magnitude from 0 to +o0o when the body penetrates the ground atz=0,
the contact force magnitude is very small when z > 8, and very large when z « —8;. We set
8w =1073L, approximating the hard contact limit. Making 6, much smaller than 10~3L does not
noticeably alter the body dynamics in our computations but can significantly increase the number
of iterations required by our iterative solver of the nonlinear ODE system (2.3).

The frictional force model is an extension of the two-dimensional version used in several
previous works [18-22,27]. Sliding friction opposes the component of velocity tangent to the
ground, written here as 9;Xop, the projection of the body velocity in the x-y plane. The frictional
force magnitude is proportional to the contact force magnitude and approximately independent
of the velocity magnitude, following the Coulomb friction model. We allow for anisotropic friction
that corresponds to easier sliding in certain directions. For example, snake scales allow for smaller
friction when the snake slides toward the head, in the § direction, instead of towards the tail or
perpendicular to the body axis [19,22]. Stronger anisotropies can occur in robotic snakes due to
wheels or active scales on the body surface [3,24,44]. In (2.5), the friction coefficients s and v, are
used for the components of velocity that are parallel to the ground and tangent to the backbone,
or perpendicular to the backbone, respectively. Here, §yp is the projection of § in the x-y plane,
so the frictional force acts tangentially to the ground, and its magnitude decreases as § becomes
more vertical at a contact. Typically, § & $;p at a contact on the body’s interior, because the body is
smooth and almost tangent to the ground at a contact (otherwise it would penetrate the ground).
At the ends of the body, § may be somewhat more vertical, though in the computations we will
limit the non-planarity of the snake body, so § ~ §p at the ends also. In (2.5), §2LD is Sop rotated 90°
counterclockwise about the e;-axis. Thus $3;, points in the x-y plane, in the direction transverse to
the body tangent, and y,, gives the coefficient of transverse friction. Note that $3, # i, as fi points
in the direction towards which the body curves, which could be vertical even when § lies in the
x-y plane.

(2.5)
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The parameter & in (2.5) is set to 1073L/T, and smoothes a discontinuity in the frictional force
that would occur when ||9;X|| =0, if §s were zero. Like &, 8 is used to make the iterative solver
more robust without noticeably altering the dynamics. In [27], we noted that there are certain
motions for which §s # 0 is required for a solution to exist, but these are somewhat uncommon.
The tangential friction coefficient s takes the values s or 15 when the tangential body motion
is in the forward or backward direction, respectively: s = ueH (3:Xop - $op) + wp((1 — H(3:Xop -
$2p)). Without loss of generality, we may assume pup > pf. Our focus here is on efficient body
kinematics, defined similarly to previous locomotion studies [28,33,34,45,46]: among the body
kinematics that result in a time-averaged centre-of-mass speed V, we find the one(s) that minimize
the time-averaged power consumption. The power consumption is the rate of work done by the
body against gravity, contact and frictional forces, and we also include the rate of internal viscous
dissipation, assuming a linear viscoelastic model that we now describe.

So far, we have only described the centreline of the body, as a space curve with torsion r and
curvature «. To quantify the internal viscous dissipation, we model the body as a rod of small
but non-zero thickness with a viscoelastic response given by the Kelvin—-Voigt model [47]. In §A
of the electronic supplementary material, we show that the viscous dissipation per unit length of
the rod is %77151 (9¢x)? with ng the extensional viscosity (a function of the bulk and shear viscosities
and the Poisson ratio [47]), E the Young’s modulus and I the area moment of inertia.

In this work, we limit the size of v and thus confine our attention to motions which are only
moderately perturbed from planar motions. If instead we were to allow arbitrary z(s, t), we would
have essentially arbitrary three-dimensional motions which could involve complex falling and
impact dynamics. Such motions are interesting but more challenging to compute accurately, and
we do not address them here. With small-to-moderate t, motions are relatively smooth in time,
and z(s, t) is close to time-periodic. Even with only moderately non-planar motions, it is difficult
to consider the full range of possible motions, so we focus on those that are optimally efficient.
If z(s, t) is time-periodic (or simply has a finite long-time average), the average rate of work done
against both the contact and gravity forces ((2.4) and (2.5)) is zero, because both correspond to
potential energies that oscillate in time with constant long-time averages. In the simulations,
we find that the rates of work done against gravity and contact forces are negligible. The time-
averaged power consumption is then the sum of that due to dry friction with the ground and
internal viscous dissipation

1 T rL 1 T rL
(Py == / / firiction - X dsdf + — / / nEI(atK)Z dsdt. (2.6)
T 0o Jo T 0 JO

We non-dimensionalize all quantities (e.g. in equations (2.3) and (2.6)) using T as the characteristic
time, L as the characteristic length and pgL as the characteristic force. Henceforth, the variables
are assumed to be dimensionless, but we keep their names the same. The dimensionless versions
of equations (2.3) are

1 1 1 1
Fr/ X ds :/ foxt ds; Fr/ X x 04X ds :/ X x fext ds, (2.7)
0 0 0 0

where Fr = L/gT? has been termed the Froude number [22]. As in many previous studies, we
assume that Fr is sufficiently small that it can be approximated as zero. Thus we neglect the effect
of body inertia, so we do not consider fast motions that involve significant body accelerations [31].
This simplifies the problem in two ways: it reduces the number of parameters under investigation,
and it makes the solutions behave simply under time reparametrization. Now Fr is set to zero, and
we can divide the equations (2.7) through by 14, so the dependence on friction coefficients is only
through the ratios n/uf and pp/pus. Having set Fr to zero, we have eliminated the acceleration
terms in (2.7). The result is that body motions are invariant under reparametrization of time,
if we assume that §s = 0. In particular, if X(s, t) is the body motion that corresponds to « (s, t)
and (s, t), then X(s, ct) is the body motion that corresponds to « (s, ct) and (s, ct), for any positive
constant c. The invariance under time reparametrization was shown in appendix B of [27] and also
occurs in many other locomotion models [48-50]. Here §; is sufficiently small that the rescaling
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property holds to a very good approximation. We use the property as follows. We wish to find the
kinematics that minimize the average power consumption among all those that achieve a given
time-averaged centre-of-mass speed V. With the rescaling property, any kinematics that give a
non-zero average speed can be rescaled in time so that the average speed is V. For a given motion
X(s, t), let the norm of the centre-of-mass displacement after a period be D (positive in general).
Then for this motion, we set T=D/V, so it has average speed V. The dimensionless average
power is (2.6) divided by pgL?/T, but is still denoted (P). We define P to be the dimensionless
average power divided by the optimal (i.e. minimal) value for a two-dimensional motion with
average speed V, which was shown in [27] to be pgityin VL (dimensional form) or pminD/L
(dimensionless form), where fip,ip, =min(uy, iy, tn). This is the power expended by a planar
body (i.e. |/fcontact|| = 1) sliding uniformly in the direction of minimal friction. Our scaled average
power is

= (P) (P) L / /‘ / /. ,
P= = = f X dsdt + ¢ 9k )~ dsdt. 2.8
(P>0pt.2D UminD/L ~ tminD friction * Ot v (9prc) (2.8)

where ¢, = nglV/ ng4umin is a dimensionless constant that measures the ratio of internal viscous
dissipation to external friction. The frictional and viscous power terms on the right side of (2.8)
involve a time derivative and a time derivative squared, respectively, so they have the factors D~
and D2 to reflect the fact that the period (and hence time t, in units of the period) is scaled by D
so that V= D/T is constant across motions.

Using the zero-Fr rescaling property, we have reduced the dependence on viscosity and on V
to the single parameter c,. We give an order-of-magnitude estimate of ¢, for a biological snake
(for example, a corn snake [22]). We take L =30cm, g~ 10ms=2, p=1 gcm*3 and ptpyin =0.1
[23,51]. To estimate I, we assume a cylindrical body with thickness h =3 cm, so I ~ 5 cm?. A typical
locomotion speed is V =10cms~!. We are not aware of measurements of the effective viscosity
of snake tissue (which would only approximate the true nonlinear viscoelastic behaviour), but an
approximation comes from human muscle measurements [52], applied to a similar viscoelastic
model of a saithe fish [53], with viscosity given as 10%-10° poise. The net result is ¢, ~ 10-3-1072.
Smaller viscosities of 10'-10? poise were reported for human muscle and other tissues in [54],
resulting in ¢, & 107°~107>. Therefore, we vary ¢, over a wide range, 107°~107!, to consider a
wide range of possibilities.

Next, we describe an algorithm to the determine the kinematics that minimize P among all
kinematics that give locomotion at a given speed.

3. Stochastic optimization

We now describe the optimization algorithm. We write ¥ and t as double Fourier-Chebyshev
series

Nf=1N.-1
k(s,H)= Y > (Ajcos2mjt + Bj sin 27jt) Ty(s) (3.1)
j=0 k=0
and
' Ni—=1N.-1
(s, t)=(1—e W) 3™ 3" (Cjx cos 2mjt + Dy sin 27 jt) T(s), (3.2)
j=0 k=0

where Tj(s) is the Chebyshev polynomial of first kind of degree k. We initialize a population of
50 body kinematics, each given by 2(2Ny — 1)N¢ coefficients {Aj, Bjx, Cjt, Djx} (excluding Byx) with
Ajx and Bj drawn from a Gaussian distribution with standard deviation Wy =1/jif j#0, and 1
otherwise. The 1/j weight corresponds to piecewise continuous functions of time, a minimal type
of regularity that we bias the solutions towards because we find empirically that it yields better
optima [32]. Cjx and Dj are drawn from uniform distributions on tamp Wix[—1,1], where tamp is
a non-negative parameter that limits the size of 7. We compute solutions to (2.7) from t=0 to
tfinal = 3, using the second-order BDF method with time step At = 0.005. At each time step, we
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Table 1. List of the main parameters and their values or ranges of values used in the present study.

fonal At 8, 0w, Fr Pop.Size  Ngens Pamp N¢ Ne Mn/if Mo/ 1Af

3 0005 001 1073 50 300-600 0.1-03 3-8 3-9 0.1-10 1-5 0-1 10610~

solve the six nonlinear equations (2.7) for {Xo(t), «(t), B(t), y (t)} using Newton’s method with the
solution at the previous time step as an initial guess. The integrals in (2.7) are discretized using
the trapezoidal rule with grid spacing As = 0.01. To obtain a good guess for the solution near the
initial time, and to decrease the chances of jumping to other branches of solutions at later times,
we use a non-zero (but small) Fr value, 1072 in (2.7), and solve the problem as an initial value
problem starting from zero tail position/angles and velocity. The initial condition is a good guess
for the solution just after the initial time. Fr is small enough to give a very good approximation to
the zero-Fr case, but provides a small amount of inertia that prevents the large accelerations that
would occur with jumps to other solution branches. The exponential-in-time factor on the right
side of (3.2) causes the body to ramp up from a planar shape over a short time given by t; = 0.2.
This improves convergence during the initial transient in which the body transitions from zero
tail velocity to O(1) tail velocity.

The algorithm runs for a number of generations Ngens =300-600. In §B of the electronic
supplementary material, we describe the method of selecting motions that achieve low P
simultaneously with negligible rotations about the z-axis—so the body’s path is a straight line
rather than a circle.

We list the values or ranges of values used here for the most important physical and numerical
parameters in table 1. Next, we present the optimal solutions computed by the model and how
they depend on the key parameters: Ny, Ne, fn/itf, 4p/ 14f, Tamp and cy. To keep the presentation
somewhat concise, we vary one or two parameters at a time, keeping the others fixed.

4. Computational results

(@) Numbers of modes

The numbers of Fourier and Chebyshev modes, (ZNf — 1) and N, are important parameters in the
optimization. Increasing them increases the range of possible kinematics, allowing for bending
and lifting patterns that vary more sharply in space and time. The dimension of the parameter
space (for « and 7 together) is 2(2Ny — 1)N. It grows rapidly with Ny and N, which generally
increases the number of local optima, and the chance of the population converging to a local
optimum that greatly underperforms the global optimum [32]. We study the effect of varying Ny
and N¢ in §C of the electronic supplementary material. Based on these results, our approach is to
gradually increase Ny and N, from 3-6 and 3-7, respectively, as the generation number 7 increases,
because this usually provides a lower P than other simple choices. We also include results with
Ny and N, fixed at 4 and 5, respectively, in a few cases where this choice gives lower P values.

(b) Planaroptima

Next, we study how the algorithm performs in the case of no lifting, zamp = 0, which corresponds
to the class of planar motions studied in many previous works [21,22,28,32]. The most similar is
[28], in which the same modal expansion of curvature was used, but with zero viscous damping
only. When ¢, is large, the friction term in P becomes insignificant compared to the viscous term,
but friction still plays a key role in setting the motion of the body through the dynamical evolution
equations. We investigate the planar case first to show the results of the algorithm in this more
familiar case. The planar case is also a benchmark against which the benefits of lifting can be
assessed.
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Figure 2. The dependence of P on c, for planar motions (Tamp = 0). Each panel shows data for a different 1¢,/ 117 value,
labelled at the top. Within each panel, three lines are given corresponding to 1, /4r =1 (solid line), 2 (dashed line) and 5
(dashed-dotted line). The dotted line shows the scaling P ~ ¢, . (Online version in colour.)

In figure 2, we plot D versus ¢, for five different Hn/pf (increasing from a to e), and three
different wp/uy (solid, dashed and dashed-dotted lines within each panel). For each curve, Pis
approximately independent of c, near ¢, = 10~°, where viscous dissipation is negligible, and p
grows linearly with ¢, near 1071, the large-c, regime. Other aspects of these plots are discussed
in §D of the electronic supplementary material.

Typical optimal planar motions are shown in figure 3. The minimal values of P are plotted in
friction coefficient space in a and b, with zero and large viscous damping respectively (c, = 0).
The magenta lines serve to divide friction coefficient space into six regions, each characterized
by a typical motion, labelled C-H and Cv-Hv in a and b, respectively. Below these panels,
each motion is shown as a set of 11 snapshots over a period of motion. The snapshots are
uniformly rotated so that the (arbitrary) direction of time-averaged centre-of-mass displacement
is up the page. The snapshots are shown twice, first in their true physical positions immediately
adjacent to the letter label, as an overlapping set of shapes that vary from light grey to black as
time increases. Then, extending rightward, the snapshots are spread out across the page with a
fictitious horizontal displacement that makes it possible to see each snapshot individually (the
true horizontal displacement over a period is zero).

In the two rightmost columns of a, u,/ pf=3 and 10, the optimal motions G and H
are retrograde travelling-wave motions, also seen in [28]. The snapshots of G and H follow
undulatory paths up the page. The more viscous optima Gv and Hv have larger deflection
amplitudes and smaller curvatures, which increase D and decrease d;« in the second term on the
right side of (2.8), decreasing the viscous dissipation. For 1,/ uf =1and smaller, there are different
types of optimal motions for up/jtf =1 and up/ps > 1. The isotropic case (E) is a type of concertina
motion [27]—the body curls up at the front and rear, forming ‘anchors’ that can push the rest of
the body forward. The viscous version (Ev) involves larger swinging motions and somewhat less
curling, as well as more self-intersecting (which is not prevented for simplicity). As before, the
curvatures are smaller while the net displacement is larger in the viscous case. Motions F and
Fv exemplify the region 1,/us =1 and pp/ps > 1—the body repeatedly flexes and unflexes as a
curvature wave travels slightly forward. For u,/us <1, the optima with zero viscosity (C and
D) are mostly perpendicular to the direction of locomotion, a low drag configuration. The large
viscosity optima (Cv and Dv) have much larger degrees of flexing with a swinging motion (Cv)
or a forward-propagating wave of curvature (Dv), giving a larger displacement than C and D,
which is preferable at large viscosity. Additional information about the planar optima is given in
§D of the electronic supplementary material.

(c) Lifting amplitude

We now consider how the optimal motions change when the body is allowed to lift off of the
plane, i.e. when tamp is increased from zero. To limit the number of cases under discussion, we
focus on just four choices of friction coefficient pairs (un /iy, 1o/1y): (0.1, 1), (1, 1), (10, 1), (1, 5),
listed along the left boundary of the colour plot at the top of figure 4. Along the bottom boundary,
Tamp varies from 0 to 1. The viscous damping constant ¢, is set to 0. Moving from left to right in
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the colour plot, we see that the optimal P drops with increasing Tamp (except for the very slight
increase just to the right of point G). It is reasonable that the optimal P decreases, because the set of
possible motions at a given tamp includes those at smaller tamp. Enlarging the set of possible states
could cause the algorithm to find a worse local optimum, but not here. To show how the optimal
motions change with lifting, we use A-L to label the subsets of cases with tamp =0,0.1, and 1 at
each of the four friction pairs, and show the body snapshots below.

Moving from the planar motion A to the non-planar motion B, the type of motion changes
completely, from a small amplitude deflection about a straight body, to a “‘walking’ type of motion.
The snapshots are coloured according to the contact force magnitude (green-black scale above
the snapshots), where lifted regions of the body are in green, and those strongly contacting the
ground are in black. The colour maps at the right show, for each set of snapshots, the distribution
of contact forces in the space of arc length s and time ¢, over one period. Motion B involves
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Figure 4. For zero internal viscosity (¢, = 0), minimum P and corresponding motions for different lifting amplitudes T,mp at
four different friction coefficient ratio pairs. At the top is a colour plot showing the minimum P found at each Tamp (horizontal
axis) and friction coefficient ratio pair (vertical axis). For the choices T,mp = 0,0.1and 1, the corresponding optimal motions
are shown below (labelled A-L), with snapshots displaced horizontally. To the right of each row of snapshots is a colour plot
showing the ground contact force density || fcontact || versus arclength s and time ¢, over one period of time. (Online version in
colour.)

small perturbations about an s-shaped curve. The contact map on the right shows that motion
B involves two phases. The first phase is shown by two crossing diagonal black bands. Thus
two contact regions move from the ends to the middle and back to the ends. In this phase, the
snapshots show that the ends are lifted and moved in the forward direction. In the second phase,
the black regions are confined to the ends. Here, the middle part of the body is lifted and moved
in the forward direction. From A to B, P is reduced by about a factor of five. Motion C, with
Tamp increased to 1, is similar to B, though the bands of lifting are sharper and P is reduced by
an additional factor of almost two. In principle, alternately lifting parts of the body and moving
them only when they are off the ground can reduce the power done against friction to very small
values. Motions D, E and F show the sequence of optima with increasing tamp when friction is
isotropic. The snapshots and contact maps of E and F are fairly similar to those of B and C. The
mean body configurations in E and F are more aligned with direction of motion than B and C,
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probably because of the increase in 1,/ f. The mean power P is reduced by about 25% from B/C
to E/F, perhaps due to slight differences in the relative amounts of tangential and normal motions.
Motions G, H and I correspond to y, /s = 10 and pp/14f = 1. The planar motion (G) is a basic
lateral undulation, a retrograde travelling wave. The lifted motions (H and I) have snapshots
that start with the body curled up. Then part of the body straightens and moves forward. It is
mostly lifted off the ground except at one end, its more forward point, that is in contact with the
ground, and slides forward along the ground. In the last few snapshots (in H and I), the forward
end curls up, drawing the rest of the body forward behind it. The overall motion is similar to a
concertina motion, with an anchor formed by the curled region, and the straight region extended
or retracted forward, mostly lifted, except at one end. From G to Hto I, P drops by 46% and then
by 17%, smaller reductions from lifting than at the other friction pairs. Motions H and I combine
lifting with sliding mainly in the tangential direction, in contrast to B/C and E/F, where the body
is oriented transverse to the direction of motion, so the normal friction coefficient applies more
strongly for the sliding that occurs. None of the optima computed with 1, /ps =10 and pup/pf =1
and non-zero Tamp resemble ‘sinus-lifting’—lateral undulation with lifting at the peaks of the
sinusoidal wave. We study this aspect further in §E of the electronic supplementary material.

Motions J, K and L apply with u,/ps =1 and pp/pf =5. Kand L are very similar to E and F,
both in the snapshots’ shapes and in the values of P (those for K/L are within a few percent of
those for E/F). There is little backward motion, so the difference in u;/14f is not very important.

In some cases (D, H and I), there is apparently self-intersection at certain times. This partly due
to the two-dimensional projection of the images, and in any case is not a major concern because
with slight modifications the motions avoid self-intersection.

In figure 5, we consider the same quantities but instead of zero viscosity, we have large
viscosity (c, =0.1). As with zero c,, there is a large change in motions and P values as Tamp
increases from 0 to 0.03 or 0.1, and a smaller change as 7amp increases further to 1. This is
particularly true for the friction coefficient pairs (0.1,1) and (1,1), and somewhat less so at (10,1)
and (1,5). As in figure 4, motions B and C mainly involve an alternating pattern of lifting and
moving of the outer regions and of the central region. Here, however, the body curves more and
obtains a larger displacement over one period. The main advantage probably is to increase D in
the ¢,-term in (2.8), thereby decreasing P. Motions E and F are fairly similar, though interestingly
E resembles C more than B, and F resembles B more than C, despite the different zamp values.
Motion H qualitatively resembles G even though G has no lifting. H has an alternating 2-2 contact
pattern as it flexes symmetrically to the left and to the right. The main contacts are at the head
and midbody when the tail swings forward, and at the tail and midbody when the head swings
forward. P is reduced by about 30% from G to H. Motion I is similar to H but less symmetrical, and
gives a further 14% reduction in P. With lifting, the friction coefficient pair (10,1) has the highest
power with zero ¢, (H-I at the top of figure 4) but the lowest power with large ¢, (figure 5).
Motions K and L are very different from each other, but have about the same P, about a factor
of three less than that of the non-lifting optimum J. K involves large bending to the left and
right, with some similarities to H and I. L has bending to one side only, with two almost-fixed
contact regions near the head and the midbody. It resembles J in that it is a repeated bending and
unbending motion, but to one side only. A combination of backward and normal friction acts at
each contact region at different times, pushing the body forward.

For the first three of the friction coefficient pairs, the smallest D is obtained at Tamp = 0.3, and
for the fourth, the smallest value occurs at Tamp = 1, but it is within 7% of the values at Tamp = 0.1
and 0.3. Because friction is negligible in P at large c,, a large degree of lifting is less important in
terms of avoiding frictional power dissipation. But a moderate degree of lifting is still much better
than small lifting, because it changes the correspondence between body bending and locomotion.
It allows for a smaller viscoelastic (bending) dissipation for a given average speed of locomotion.

To summarize, at both zero viscous damping and large viscous damping there are large
changes in the optimal motions and large improvements in P when Tamp increases from 0 to 1.
Most of the changes occur in the increase from 0 to 0.1, with smaller changes over the increase
from 0.1 to 1. The optimal motions in the latter range are characteristic of the regime of moderate
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Figure 5. For a relatively large internal viscosity (c, = 0.1), the same quantities as in figure 4. (Online version in colour.)

lifting, in which the body is mostly extended in the x-y plane with a z-extent that is much smaller,
but large enough to lift completely off the ground at most points. In some cases, a lower P is
obtained at Tamp = 0.3 than at 1. In most cases, the optimization routine is faster and more robust
at Tamp = 0.3 than at 1. At tamp = 1, the lifting may be large enough that the body tips over due to
gravity, and a tumbling motion occurs which is not resolved by the time-stepping algorithm. In
order to avoid such cases while examining the effects of the friction coefficients in more detail, we
therefore fix Tamp at 0.3, which gives a good representation of motions with a moderate amount
of lifting. We are not aware of biological or robotic motions that closely resemble the optima
presented here, but we discuss possible connections further in §5.

(d) Effects of frictional anisotropies and damping

We now consider the optimal motions and P values across the 5-by-3 grid of friction coefficient
ratios. We use 10 random initializations with each of the (3-6,3-7) and (3-6,3-7,) mode choices

2LS02207 8L ¥ 205 2014 edsi/feuinof BioBuiysiignd/iaposiefor



Downloaded from https://royalsocietypublishing.org/ on 12 October 2022

b
1.6 ( ) 85
5
My
06 5 -2 45 p
Hy 2 P
1
0.21 L 24
0.1 03 1 3 10
JIN/1R
‘ | fcomact| |
0 1 >2

B L L L LU U U

éumw&ﬂﬂ%guvv-
B -, o 0o ST )T e
N N NV RV RVARVARVARVAN

§ 0 0050t oo
WQOD

[
=]

hl%a =4

Fv

==
R e

Figure 6. Values of input power P for optimal motions with lifting amplitude Tamp = 0.3 and damping constants ¢, = 0 (a)
and 0.1 (b), across a 5-by-3 grid of values of the friction coefficient ratios i, / 14 and iy / 1. In (a,b), the friction coefficient
space is divided by magenta lines into different regions where similar types of optimal motions occur. At the points C—E (a)
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(see §C of the supplementary information). We fix tamp at 0.3, and vary ¢, from 0 to 0.1 (large).
In figure 6, we plot the optima at the two extreme ¢, only, 0 in 2 and 0.1 in b. We have also
computed results at intermediate values, and we find that around c, =103 they smoothly
transition between the behaviours at the extremes. With zero ¢, (), there are essentially two
types of optima, one for s,/ =<3 and another at the largest i,/ wf = 10. The two regimes are
divided by the magenta line in a. For ,/14s <3 and all up/uy, the optimal solution is an s-shaped
body with alternate lifting of the body ends and the body middle, similar to those shown in
figure 4b,c.ef,k, and I, with modest changes depending on the friction coefficient ratios. Examples
are shown by the motions marked C and D in figure 6. The values of P are almost independent of
wo/ s at /g =1 and 3, but have a noticeable variation at pn/py =0.1 and 0.3. At wn/my =10,
the optimum (E) is a combination of undulation and curling/uncurling, together with lifting, as
in figure 4h,i.

With large viscosity, ¢, = 0.1 (), the friction coefficient space divides into three types of optimal
motions rather than two. At i, /tf = 1 and 3 the alternating lifting motion (shown by Dv) is again

2LS02207 8L ¥ 205§ 20igedsi/feuinof BioBuiysignd/aposiefos



Downloaded from https://royalsocietypublishing.org/ on 12 October 2022

optimal. At w;/ ug =10, a symmetric bending motion with alternating pairs of contacts (Ev) is
optimal, as in figure 5h,i. At small wu/ps and pp/pus > 1, different optima are seen, shown by
Cv and Fv. The first four snapshots of Cv show the middle part of the body lifted and placed
forward. Snapshots 4-7 show curling and uncurling of the right side of the body, which pushes
the left side of the body forward. Snapshots 8-11 show curling and uncurling of the left side of the
body, which pushes the right side of the body forward. Motion Fv is a similar pattern of curling
and uncurling, but by the left side of the body only. Curling pushes the left side forward, and
uncurling pushes the right side forward. Meanwhile, there are three almost fixed contact regions
at the two ends and the middle of the body, which resembles the contact pattern at certain times
in Cv, but not others.

At the bottom of the figure is an example of a different type of optimal motion, labelled
Gv. The friction coefficients are the same as for E and Ev (un/pr =10, wp/pg=5), but ¢, =
1074, intermediate between the values in a and b. The contacts occur exclusively at the two
ends throughout the motion. Because these are oriented in the tangential direction, frictional
dissipation occurs mainly with the minimal drag coefficient us. There is also backward
movement at the contacts, but it is much smaller than the forward movement because
Wb/ =5.

To summarize, alternating lifting motions predominate across friction coefficient space both
with small viscosity and large viscosity. However, other motions become optimal when friction is
very anisotropic.

(e) Optima with travelling-wave contacts

One of the most interesting types of lifting motions in biological snakes is the sidewinding
motion, which consists of a travelling wave of curvature synchronized with a travelling wave
of lifting, with a phase difference between the two [12,14,26,37]. Interestingly, for some random
initializations our optimization algorithm converges to these types of motions, across friction
coefficient space. This only occurs for low viscous damping, ¢, =0 or 10 usually. So far in this
paper, we have presented only the best local optimum we have found at a given parameter set,
and these are never the sidewinding-type motions. We now show, in figure 7, examples of the
sidewinding-type local optima. Six different examples are shown, labelled A, C, E, G, I and K in
blue at left. Each case has a different pair of friction coefficient ratios, in parentheses below and
to the right of the blue letter label. Below each of the six cases is the best local optimum found
at the same friction coefficient ratios, labelled B, D, F, H, ] and L at left. These are alternating
lifting motions (B, D, F, H) or curling and sliding motions (J and L) that are similar to those
already discussed. Next to each letter label is the value of P for that motion, and the values for
the sidewinding motions vary from slightly higher (K versus L) to about a factor of two higher (A
versus B, C versus D etc.) than those of the best local optima.

To the right of each set of snapshots are the contact force maps and curvature maps in s-t
space. For the sidewinding motions (A, C, E, G, I and K), both maps have diagonal bands with
about the same slopes, showing unidirectional travelling waves of contact force and curvature
that are approximately synchronized. The optimal motions (B, D, F, H, ] and L) do not show
unidirectional travelling waves except for motion J, and there the diagonal bands in the contact
and curvature maps have different slopes, corresponding to waves moving at different speeds.
Another distinctive feature of the sidewinding motions can be seen by examining the sets of
snapshots in physical space, just to the right of the P values. The black regions (where the
body contacts the ground) of all the snapshots together trace out approximately continuous line
segments on the ground. Between the black regions are almost-parallel arrays of green regions,
lifted parts of the snake body that are being moved from one black region to the next. When
the motion is repeated over multiple periods, the sets of black line segments form a series of
parallel tracks on the ground, as for biological sidewinding snakes [12,14]. In A, C, E, G, T and K,
the tracks are almost orthogonal to the direction of locomotion (up the page), whereas biological
tracks are typically at an oblique angle [12,14,15]. In figure 7, the sidewinding motions separate
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of each row of snapshots are plots showing the contact force distributions and curvature distributions versus s and . (Online
version in colour.)

into two groups: pn/puf <1 (ACEG), where the lifted (green) body segments are at an oblique
angle to the tracks and to the direction of locomotion, and .,/ W= 10, where the lifted segments
are perpendicular to the tracks and parallel to the direction of locomotion. Here, the tracks are
shorter and the body has a larger displacement per period.

It is not obvious why sidewinding optima occur commonly in the computations yet are never
the global optima. Perhaps sidewinding motions require relatively more modes to achieve high
efficiency than the global optima.

5. Simple theoretical motions

Our computed optima include many cases of alternating lifting (walking) or sidewinding,
which involves contact regions rolling on and off the ground. We now demonstrate theoretical
walking and rolling motions that locomote with essentially zero work done against friction. After
describing the motions, we will discuss their differences with the computed optima and biological
motions.

Figure 8a shows a sequence of four snapshots of a walking type of motion, similar in principle
to the optima computed for u,/1f S 1. In each snapshot of 4, the body is bent into a shape with
the x-z plane as a plane of symmetry, in order to extend its base of support along the y direction,
and make it stable to small perturbations that involve a rotation about the x-axis. The body has
regions in contact with the ground—the ‘feet’—and an elevated region that is used to shift the
centre of mass from one foot to the other. Two dashed red lines are used as fixed guides to show
how far the body locomotes. In snapshot 1, the left foot, highlighted in yellow, is in contact with
the ground, and the body’s centre of mass, a black dot, lies within its convex hull, so the body is
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Figure 8. Examples of motions with very little work done against friction. (a) Walking motion, shown by four snapshots
from top to bottom. (b) Tank-treading rolling motion, show by a sequence of three snapshots (light, medium and dark blue).
(c) Falling-centre-of-mass rolling motion, shown by a sequence of three snapshots (solid black line, dashed black line and blue
line). (Online version in colour.)

stable. From snapshot 1 to 2, the right foot is lifted slightly, then brought closer to the left foot,
and meanwhile the elevated portion shifts rightward to keep the centre of mass fixed. Small green
dots in snapshots 2—4 show the regions of the body that have moved from the previous snapshot.
From snapshot 2 to 3, the body puts both feet on the ground, then shifts the elevated region so
the centre of mass lies over the right foot, then lifts the left foot. From snapshot 3 to 4, the left foot
is moved leftward, and simultaneously the elevated region shifts rightward to keep the centre
of mass fixed. Now the body can return from snapshot 4 to snapshot 1 (but translated leftward),
shifting the elevated region and the centre of mass leftward, and repeat the process. As with the
computed optima, the body is a single continuous segment here. The computed optima, which
involved lifting the middle portion and ends of an s-shaped body, are a smoother type of walking
motion, which have smaller viscous dissipation than in a (or even a slightly regularized version
that removes the sharp corners). With a finite number of modes, the computed optima probably
cannot have a frictional dissipation that is precisely zero, as it is for the motion in a.

In (b,c), we examine two rolling types of motions, described as kinematic and dynamic rolling
in [55]. A vast number of shape-changing rolling robots have been created using these types of
motions, e.g. [56-59]. Panel b shows three successive snapshots of a body performing a tank-
treading motion. Portions of the body at the left are rolled off the ground into the semicircle at the
left end while portions at the right are rolled out of the semicircle at the right end, onto the ground.
The dashed lines with arrows show the directions of rolling, and the hash marks show how fixed
material points move between the three snapshots. In the tank-treading motion, the region in
contact with the ground is stabilized by static friction, which is approximated by the sliding
friction model with the small §s term we have used (equation (2.5)) as described in [27]. The tank-
treading motion is called kinematic rolling, because the body is always at a stable equilibrium and
inertia plays no role. In ¢, dynamic rolling, the body starts in a stable elliptical shape (solid black
line), and then changes its shape to the dashed line. If friction is sufficiently large, the ground
contact remains approximately fixed. The dashed line shape is gravitationally unstable, so the
body rolls rightward to reduce the height of its centre of mass, resulting in the blue shape. With
inertia, the body will perform a rocking oscillation about the blue shape, damped by internal
or frictional dissipation in real situations. With further shape changes, the body may continue
rightward with steady or variable velocity [57]. Like walking, these rolling motions do essentially
no work against friction in the ideal case. They can also be made into stable three-dimensional
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shapes by adding a mirror-symmetric portion, as for the motion in a. The rolling motions can be
made to have relatively small changes in curvature, decreasing viscous dissipation.

Many of our computed optima resemble the walking or rolling strategies. The sidewinding
motions involve a continuous rolling on and off the ground at certain contact regions, although
the body does not assume a circular shape. A small number of other organisms have been
found to roll passively (without shape change), including tumbleweed, a type of salamander,
a spider, and a woodlouse [56]. Organisms that use active rolling to locomote include a type
of shrimp and a caterpillar [56]. There may be various reasons why sidewinding is preferable
to a more vertical rolling configuration for snakes. Sidewinding may allow for a better view of
the snake’s surroundings including prey and predators. In the sidewinding motion, the snake is
closer to the ground, which is better for stealth when stalking prey or avoiding predators [15].
Body configurations that are closer to the ground are often more gravitationally stable. Another
advantage is that less work is done is lifting portions of the body high off the ground. Although
gravitational potential energy can be recovered in a periodic motion, there may be more losses
during large conversions of potential to kinetic energy [60].

Another possible advantage of sidewinding over the rolling motions in figure 8 is that it
preserves the snake’s upright orientation. Snakes have an upright orientation in most studies
of locomotion over approximately flat surfaces, and their belly scales seem to be adapted for
contact with surfaces [15]. One notable and unusual case of an upside-down posture is a
specialized antipredator behaviour of the hognose snake [61]. Upright postures are also preferred
by many other organisms such as fish [62,63]. It is interesting that sidewinding optima occur in
our computations even though our model omits biological considerations beyond mechanical
efficiency, as well as details of snake physiology that may favour certain body postures such as
sidewinding. Sidewinding may be the most efficient rolling type of motion that fits the constraint
of small-to-moderate lifting. It is also interesting that sidewinding optima occur only with a
very small viscous damping constant. However, the more-efficient alternating lifting or “walking’
optima are also optimal in many cases with large viscous dissipation, which include high-speed
motions.

6. Conclusion

We have developed a model and computational method to find three-dimensional motions that
optimize the mechanical efficiency of snake-like locomotion with small-to-moderate lifting off of
the ground. The key physical parameters are the two ratios of friction coefficients (un/ s, iy /1),
the lifting amplitude tamp, and the viscous damping parameter c,. Our stochastic population-
based optimization method finds motions that minimize the average input power P while
locomoting with very small net rotation per period. The same types of optima are found when
we vary the numbers of modes in the Chebyshev-Fourier basis that describe the body shapes,
so the results are robust with respect to changing the numbers of modes. Although we have
mainly focused on the best computed optima, in most cases, the second-best computed optimum
is very similar to the best, so the algorithm finds the same optima from different initializations.
Presumably the best computed optimum has a sizeable basin of attraction and is not very difficult
to locate.

For planar (and non-planar) locomotion, the transition from negligible to dominant viscous
damping occurs near ¢, = 1073. The optima in the planar case with zero viscous damping are
very similar to those computed in [28] with a Newton-based optimization method. With non-
zero viscous damping, the body shapes are often similar but smoother, and achieve larger
displacements per period.

When the allowed lifting amplitude tamp is increased from zero, the optimal motions change
dramatically. For p,/us <3, a motion with an s-shaped body and alternating lifting of the
midbody and the ends is typical, though there are other types of motions at certain friction
coefficients. For /s = 10, the optimal motions are a combination of lifting with curling and
sliding at zero c,. At large c,, the motions are a combination of lifting with large amplitude
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bending and sliding, and somewhat resemble lateral undulation but combined with lifting that
alternates between the ends. Other types of optima are seen with moderate and large damping
and small or large pwn/pf and wp/ps >1, including repeated curling and uncurling with the
contacts almost fixed and oriented in the direction of minimal friction.

At all friction coefficient values, optima that resemble sidewinding are seen, but these
underperform the optima with an s-shaped body and alternating lifting. The sidewinding optima
have a unidirectional wave of contact synchronized with a wave of curvature, tracing out a
contiguous contact region (or ‘track’) on the ground. At different friction coefficient ratios, the
body orientation in the lifted region varies. Finally, we discussed the resemblance of the computed
optima to theoretical walking and rolling motions with essentially zero frictional dissipation.
Future work may consider additional physical effects such as a non-planar substrate, as well as
the possible benefits of passive flexibility on efficient non-planar locomotion [46].
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