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Eigenmode analysis of membrane stability in inviscid flow
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We study the instability of a thin membrane (of zero bending rigidity) to out-of-plane
deflections, when the membrane is immersed in an inviscid fluid flow and sheds a trail-
ing vortex-sheet wake. We solve the nonlinear eigenvalue problem iteratively with large
ensembles of initial guesses for three canonical boundary conditions—both ends fixed,
one end fixed and one free, and both free. Over several orders of magnitude of membrane
mass density, we find instability by divergence or flutter (particularly at large mass density
or with one or both ends free). The most unstable eigenmodes generally become wavier
at smaller mass density and smaller tension but with regions of nonmonotonic behavior.
We find good quantitative agreement with unsteady time-stepping simulations at small
amplitudes, but only qualitative similarities with the eventual steady-state large-amplitude
motions.
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I. INTRODUCTION

When extensible membranes of zero bending rigidity are placed in a fluid flow, the interaction
between membrane inertia, resistance to stretching, and external fluid forces can result in complex
time-dependent deformations and dynamics. This holds both for large-amplitude motions and the
initial small-amplitude motions that determine the stability of undeflected membranes. Predict-
ing the onset of membrane instability across parameter space, either by flutter, divergence, or a
combination of the two [1–3], is fundamental to a wide range of applications. As lightweight,
deployable structures that are stable in a variety of configurations, membranes are used, for example,
in sails [4–8], parachutes [9,10], micro-air vehicles [11–15], ballutes for space exploration [16,17],
supersonic aircraft and rockets [18–20], roofs in civil engineering [2,21–23], and the wings of flying
animals [24–26].

In an early work, Nielsen [8] studied a membrane with both edges fixed in a two-dimensional
flow and determined the critical value of the pretension parameter that gives rise to a fully convex
membrane shape. An overview of early models based on potential-flow aerodynamics can be found
in Ref. [6]. Previous works have studied the difference between the flutter of membranes (with zero
bending rigidity) and plates in the limit of zero bending rigidity. Because the bending rigidity term
has the highest (fourth-order) spatial derivative, it is a singular limit and thus the two problems
can have significant differences. In the case of panels in supersonic flows, the membrane is stable
whereas the plate can be unstable to flutter in the limit [27–29]; see also Ref. [[30], pp. 25–26]. This
so-called membrane paradox also arises in solar sails [31] and a related boundary-layer phenomenon
occurs for heaving plates, hanging under gravity [32]. Over the past few decades, theoretical [2,33],
computational [1,3,34,35], and experimental [36] studies of membrane stability have revealed a
wide range of membrane stability behavior and dynamics with various boundary conditions.
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In Ref. [1], we used a nonlinear time-stepping algorithm to compute the stability thresholds for
membranes with three sets of boundary conditions: fixed-fixed, fixed-free, and free-free leading and
trailing edges. Membrane tension has a stabilizing effect in all cases. The ratio of membrane-to-fluid
inertia has a less obvious effect—heavier membranes may be unstable when a lighter membrane
was not, but the instability grows more slowly as membrane mass increases, to the point where it is
difficult to determine whether the membrane is stable or not. Nonlinear time-stepping simulations
with evolving vortex sheet wakes are expensive when large simulation times are required (i.e., to
assess the stability of heavy membranes), and when the membrane develops fine deformations (as
occurs for lighter membranes and smaller pretension values). In the latter case, a fine grid on
the membrane is required, increasing the size of the coupled system of equations that is solved
implicitly, and making it more ill-conditioned, slowing convergence at each time step.

Therefore, in this paper, we develop a less expensive alternative to study the stability problem—a
nonlinear eigenmode solver. We solve for an ensemble of eigenmodes and corresponding eigenval-
ues (growth rates and frequencies) corresponding to small-amplitude deformations. By comparing
with unsteady simulations, we find that the modes accurately capture the early stages of the unsteady
motion starting from the undeflected state. By comparing at later times, we find that the mode shapes
qualitatively resemble those of the steady-state large amplitude motions to varying degrees.

Due to the vortex wake, simple exact eigenmode solutions are difficult to obtain and the physical
mechanisms that underlie the membrane instability are somewhat elusive, but in the present paper
we are able to present a comprehensive characterization of the modes and growth rates in the vicinity
of the stability boundary. The eigenmode approach has been used previously to study membrane
stability with fixed-fixed [2,3,8,35] and periodic [33] boundary conditions. We use our method on
the fixed-fixed case, as well as the fixed-free and free-free cases introduced in Ref. [1], where a
wider range of dynamics can occur. In each case, we study a much wider range of membrane mass
density and pretension values than previous studies. A version of the present method was previously
used to study the flutter instability of bending beams in inviscid flows [37]. There solutions were
obtained by continuation, starting from the known oscillation modes of a beam in a vacuum. Here we
study membranes (with zero bending rigidity) and find that the continuation approach is now more
susceptible to jumping between different eigenmode branches as we vary parameters. Therefore,
we solve the nonlinear eigenvalue problem using dense meshes of initial eigenvalue guesses that
cover the range of lower-mode states. As a result, we obtain a larger ensemble of eigenmodes at
each parameter value set. We obtain good agreement with the stability results in Ref. [1] but are
able to extend the results to much larger and smaller values of the membrane-to-fluid density ratio
and resolve shapes with finer structures.

The structure of the paper is as follows. In Sec. II, we present the membrane and vortex sheet
model and in Sec. III its linearized, small-amplitude version, along with a summary of the numerical
method for determining the eigenvalues and eigenmodes (Sec. III A). In Secs. IV–VI, we present
our results for an extensive range of parameters for each of the three boundary conditions. We then
turn to simulations of the initial value problem and examine how the unsteady motions compare to
the eigenmode shapes from the linearized model (Sec. VII). Section VIII presents conclusions.

II. MEMBRANE-VORTEX-SHEET MODEL

We model the dynamics of an extensible membrane that is nearly aligned with a two-dimensional
background fluid flow with speed U in the far field (see Fig. 1).

In Fig. 1, we illustrate schematically the three cases of boundary conditions at the two ends of the
membrane that we investigated in Ref. [1]: fixed-fixed [Figs. 1(a) and 1(b)], fixed-free [Figs. 1(c)
and 1(d)], and free-free [Figs 1(e) and 1(f)]. In all three cases, the x coordinates of the ends are fixed
at 0 and 2L. In the fixed-fixed case, we set the deflection to zero at both ends of the membrane; most
previous studies of membrane flutter considered this boundary condition [2,3,35,36,38]. In the fixed-
free case, the leading edge deflection is again set to zero but the trailing edge is allowed to deflect
freely in the vertical direction. This is the classical free-end boundary condition for a membrane
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 1. Schematic diagram of flexible membranes (solid curved black lines) at an instant in time. Here 2L
is the chord length (the distance between the endpoints) andU is the oncoming flow velocity. For the nonlinear,
large-amplitude model [(a), (c), (e)], y(x, t ) is the membrane deflection and the dashed line is the free vortex
wake. The right columns show the corresponding linearized, small-amplitude eigenvalue problems, where the
motions are represented by the real and imaginary parts of the eigenmodes Y (x), shown as green and blue
lines, respectively, and flat vortex wakes of fixed length Lw shown as dashed lines at y = 0 [(b), (d), (f)]. The
boundary conditions shown are: fixed-fixed membranes [(a), (b)], fixed-free membranes [(c), (d)], and free-free
membranes [(e), (f)].

[39,40]. The membrane end is fixed to a massless ring that slides along a vertical frictionless pole
(represented by the red lines in Fig. 1). Since the pole is frictionless and the ring is massless, the
membrane can exert no vertical force on the free end by tension, and hence the membrane slope
must be zero.

Free-end boundary conditions have been implemented in various problems in classical mechanics
such as beam flutter [41–60], but they have not been used to a great extent in membrane flutter
problems. Recently, an experimental study determined that membrane wing flutter can be enhanced
by the vibrations of flexible leading and trailing edge supports [61]. For membrane wings with
partially free trailing edges, trailing edge fluttering may occur at relatively low angles of attack
[12]. Partially free edges also occur in sails. In Ref. [5], it is shown that by altering the tension
in cables running along its free edges, one can control the shape of a sail membrane and when
the tension in these edges is sufficiently low, flutter can occur [4]. A related application is energy
harvesting by membranes mounted on tensegrity structures and placed in fluid flows [62,63].

The authors in Refs. [32,64] consider the dynamics and flutter of membranes and cables under
gravity with free ends. In Ref. [1] and in the current paper, to focus on the basic flutter problem [65],
we do not include gravity in the model. However, we still need to ensure that the problem remains
well-posed by requiring some restriction on the motion of the free membrane ends to eliminate the
possibility of membrane compression [64]. This restriction is provided by the vertical frictionless
poles. This has been carried out experimentally by representing a membrane as an extensional spring
tethered by steel wires to vertical supports [66], for example.

The model here is the same as in Ref. [1] but we repeat the main points for completeness. The
membrane dynamics are described by the unsteady extensible elastica equation with body inertia,
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stretching resistance, and fluid pressure loading, obtained by writing a force balance equation for a
small section of membrane lying between α and α + �α:

ρshW ∂ttζ (α, t )�α = T (α + �α, t )ŝ − T (α, t )ŝ − [p]+−(α, t )n̂W (s(α + �α, t ) − s(α, t )). (1)

Here ρs is the mass per unit volume of the undeflected membrane, h is its thickness, and W is
its out-of-plane width, all uniform along the length. In Eq. (1), ζ (α, t ) = x(α, t ) + iy(α, t ) is the
membrane position in the complex plane, parameterized by the material coordinate α, −L � α � L
(L is half the chord length) and time t . The pressure jump across the membrane is [p]+−, the local
arc length coordinate is s(α, t ), the local stretching factor is ∂αs, and the unit vectors tangent and
normal to the membrane are ŝ and n̂, respectively. These are given by

ŝ = ∂αζ (α, t )/∂αs(α, t ) = eiθ (α,t ) and n̂ = iŝ = ieiθ (α,t ), (2)

with θ (α, t ) the local tangent angle. For the pressure jump term, we use + to denote the side toward
which the membrane normal n̂ is directed, and − for the other side. However, for the remainder of
this paper, we drop the + and − for ease of notation.

Dividing Eq. (1) by �α and taking the limit �α → 0, we obtain

ρshW ∂ttζ (α, t ) = ∂α (T (α, t )ŝ) − [p](α, t )W ∂αsn̂. (3)

The membrane tension T (α, t ) is given by linear elasticity [67–69] as

T (α, t ) = T + EhW (∂αs(α, t ) − 1), (4)

where E is the Young’s modulus and T is the tension in the (initial) undeflected equilibrium state.
Equation (3) is made dimensionless by nondimensionalizing length by the membrane’s half-chord
L, time by L/U , and pressure by ρ fU 2, where ρ f is the density of the fluid and U is the oncoming
flow velocity. The nonlinear, extensible membrane equation becomes

R1∂ttζ − ∂α ((T0 + R3(∂αs − 1))ŝ) = −[p]∂αsn̂. (5)

The dimensionless membrane mass is R1 = ρsh/(ρ f L), the dimensionless stretching rigidity is
R3 = Eh/(ρ fU 2L) and, finally, T0 = T /(ρ fU 2LW ) is the dimensionless pretension. The model is
linearized for small-amplitude membrane deflections in Sec. III (shown schematically in Fig. 1,
right column).

We let z = x + iy to use the complex representation of the xy flow plane. The complex conjugate
of the fluid velocity at any point z not on the vortex sheets is a sum of the horizontal background
flow with dimensionless speed unity and the flow induced by the bound and free vortex wakes,

ux(z) − iuy(z) = 1 + 1

2π i

∫ 1

−1

γ (α, t )

z − ζ (α, t )
∂αsdα + 1

2π i

∫ smax

0

γ (s, t )

z − ζ (s, t )
ds, (6)

where s is the arc length along the free sheet starting at 0 at the membrane’s trailing edge and
extending to smax at the free sheet’s far end. To determine the bound vortex sheet strength γ we
require that the fluid does not penetrate the membrane, i.e., the kinematic boundary condition. Here
γ also represents the jump in the component of the flow velocity tangent to the membrane from
the − to the + side, i.e., γ = −[(ux, uy) · ŝ]. The normal components of the fluid and membrane
velocities are equal,

Re(n̂∂tζ (α, t )) = Re

(
n̂
(

1 + 1

2π i

∫ 1

−1

γ (α, t )

z − ζ (α, t )
∂αsdα + 1

2π i

∫ smax

0

γ (s, t )

z − ζ (s, t )
ds

))
, (7)

where n̂ is written as a complex scalar. Solving Eq. (7) for γ on the body requires an additional
constraint that the total circulation is zero for a flow started from rest. At each instant, the part of
the circulation in the free sheet or, alternatively, the strength of γ where the free sheet meets the
trailing edge of the membrane, is set by the Kutta condition which makes the flow velocity finite
at the trailing edge. At every other point of the free sheet, γ is set by the criterion that circulation
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(the integral of γ ) is conserved at material points of the free sheet. The vortex sheet strength γ (α, t )
is coupled to the pressure jump [p](α, t ) across the membrane using a version of the unsteady
Bernoulli equation written at a fixed material point on the membrane,

∂αs∂tγ + ∂α (γ (μ − τ )) + γ (∂ατ − νκ∂αs) = ∂α[p], (8)

where μ is the average flow velocity tangent to the membrane, τ and ν are the tangential and normal
components of the membrane velocity, respectively, and κ (α, t ) = ∂αθ/∂αs is the membrane’s
curvature. At the trailing edge, [p]|α=1 = 0. The derivation of Eq. (8) is included in Ref. [[1],
Appendix A].

III. SMALL-AMPLITUDE LINEARIZATION

The large-amplitude, nonlinear system described in Sec. II becomes more amenable to analysis in
the small-amplitude regime. Here we focus on the computation of eigenmodes and eigenvalues for
the three boundary conditions studied in Ref. [1]: fixed-fixed, fixed-free, and free-free membranes.
We are thereby able to present the small-amplitude motions of the membranes at larger and smaller
membrane densities than in the previous work, and in much greater detail. A similar linearized
model was derived in Ref. [37] for the dynamics of a flapping flag. We consider small deflections
y(x, t ) from the straight configuration, aligned with the flow. Since the membrane stretching factor
is ∂αs ≈ 1 + ∂xy2/2, to linear order α ≈ s ≈ x, all α-derivatives in Eq. (5) are x derivatives, and
ζ (α, t ) ≈ ζ (x, t ) = x + iy(x, t ). At linear order, the tangent and normal vectors are

ŝ ≈ (1, ∂xy)�, n̂ ≈ (−∂xy, 1)�. (9)

The linearized version of the membrane equation is

R1∂tt y − T0∂xxy = −[p]. (10)

The term in the tension force T (α, t ) = T0 + R3(∂αs − 1) involving R3 (dimensionless stretching
rigidity) is of quadratic order, so the linear dynamics are governed by the dimensionless membrane
mass R1 and the dimensionless pretension T0. The boundary conditions are

fixed-fixed: y(±1, t ) = 0, (11)

fixed-free: y(−1, t ) = 0, ∂xy(1, t ) = 0, (12)

free-free: ∂xy(±1, t ) = 0. (13)

The dynamics of the membrane are coupled to the fluid flow through the pressure jump term
[p](x, t ). The linearized version of the pressure jump equation is

∂tγ + ∂xγ = ∂x[p]. (14)

The set of equations is closed by relating the vortex sheet strength γ (x, t ) back to the membrane
position y(x, t ), through the kinematic condition, in linearized form:

∂t y(x, t ) = −∂xy(x, t ) + 1

2π

∫ 1

−1
− v(x′, t )√

1 − x′2(x − x′)
dx′

+ 1

2π

∫ 
w+1

1

γ (x′, t )
x − x′ dx′, −1 < x < 1. (15)

Here, we use that ∂tζ (x, t ) ≈ −i∂t y and from Eqs. (9), the normal velocity component Re(n̂∂tζ ) ≈
∂t y. The general solution γ (x, t ) has inverse square-root singularities at x = ±1 and so we define
v(x, t ), the bounded part of γ (x, t ) by γ = v/

√
1 − x2. The second integral in Eq. (15) represents

the velocity induced by the vortex sheet wake, which extends downstream from the membrane on
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the interval 1 < x < 
w + 1, y = 0. Therefore, the eigenvalue problem assumes a free vortex wake
of a given fixed length 
w, which we take to be large (i.e., we assume we start with a deflection that
is sufficiently small that we remain in the small-amplitude regime for a long time).

The circulation in the wake,

�(x, t ) = −
∫ 
w+1

x
γ (x′, t ) dx′, (16)

is conserved along material points of the wake by Kelvin’s circulation theorem. At linear order, the
wake moves at the constant speed (unity) of the free stream; self-interaction is negligible.

At each time t , the total circulation in the wake, �(1, t ), is set by the Kutta condition, which in
linearized form is unchanged, i.e.,

v(1, t ) = 0. (17)

Using the system of Eqs. (10), (14), (15), and (17), we solve for the following unknowns: the
motion of the membrane and the strengths of the vortex sheets along the membrane and in the wake.

For the linearized system, we may write solutions in the following form:

y(x, t ) = Y (x)eiσ t , (18)

γ (x, t ) = g(x)eiσ t , (19)

v(x, t ) = V (x)eiσ t , (20)

�(1, t ) = �0e
iσ t , (21)

where Y , g,V , and �0 are components of eigenmodes with complex eigenvalues σ = σR + iσI ∈ C.
The real parts of the eigenvalues are the angular frequencies and the imaginary parts are the temporal
growth rates. If σI > 0, small perturbations decay exponentially and the mode is stable, while if
σI < 0, small perturbations grow exponentially and the mode is unstable. If σI = 0, the mode is
neutrally stable.

We wish to identify the region of R1–T0 space in which unstable eigenmodes exist and, when
there are multiple unstable modes, identify the fastest growing mode.

Since � is conserved at material points of the free vortex sheet as they move downstream (at
speed 1) and the material point at location x � 1 at time t was at location x = 1 at time t − (x − 1),
we can write

�(x, t ) = �0e
iσ (t−(x−1)) = �0e

−iσ (x−1)eiσ t , 1 < x < 
w + 1, (22)

γ (x, t ) = ∂x�(x, t ) = −iσ�0e
−iσ (x−1)eiσ t , 1 < x < 
w + 1, (23)

using Eq. (21). Inserting the eigenmodes Eqs. (18)–(21) into the governing equations, Eqs. (10) and
(15), yields

−σ 2R1Y = T0∂xxY − iσ
∫ 1

−1
gdx − g (24)

and

iσY = −∂xY + 1

2π

∫ 1

−1
− V (x′)√

1 − x′2(x − x′)
dx′ − 1

2π
iσ�0

∫ 
w+1

1

e−iσ (x′−1)

x − x′ dx′, −1 < x < 1,

(25)
respectively. Because σ appears in the exponential in the second integral in Eq. (25), this is a
nonlinear eigenvalue problem.
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A. Numerical method for finding the eigenvalues and eigenmodes

We solve the nonlinear eigenvalue problem iteratively. At each iteration, we have an approxima-
tion σ0 to a given eigenvalue σ . We approximate the equations as a quadratic eigenvalue problem

[σ 2A2 + σA1 + A0(σ0)]w = 0, (26)

where the matrices A2, A1, A0 are known from Eqs. (24) and (25), and g(x) = V (x)/
√

1 − x2.
The eigenvector w consists of (a) values of the eigenmodes, defined as Y (x) on the Chebyshev
grid {x j = cos θ j, θ j = ( j − 1)π/m, j = 1, . . . ,m + 1} and (b) the scalar �0. The term A0(σ )w
includes the exponential integral involving σ in Eq. (25) as well as terms that are constant in σ .
In the exponential integral, σ is fixed at σ0, the value of σ from the previous iteration, resulting in
the quadratic eigenvalue problem Eq. (26), which is solved using polyeig in MATLAB. Equation
(26) has 2m + 4 eigenvalue solutions. As in Ref. [37], we define an error function as the difference
between σ0 and the eigenvalue (out of the 2m + 4 possibilities) closest to it. We also compute the
derivatives of the error function (i.e., the Jacobian matrix) with respect to σR and σI using finite
differences at the initial iterate, and update it at subsequent iterates using Broyden’s approximate
formula [70]. The error function and Jacobian define the search direction (via Newton’s formula)
for the next iterate. With this approach, we obtain superlinear convergence to a given eigenvalue.
By using a wide range of initial guesses, we obtain convergence to various eigenvalues and
corresponding eigenmodes.

The numerical solution procedure followed in the current work differs from Ref. [37]. There we
used a continuation method, which for the current problem would start from the analytical solution
for each eigenvalue in the limit R1,T0 � 1, and use the solution at a given (R1,T0) as an initial
guess for slightly smaller (R1,T0) [continuing to smaller and smaller (R1,T0)]. We find that this
method fails to find solutions at certain (R1,T0) and therefore at smaller values also, so we use a
more robust approach here. We compute a large set of eigenvalues at each (R1,T0) using a large
grid of initial eigenvalue guesses in the complex plane covering in most cases σR ∈ [−8, 8] and
σI ∈ [−3,−0.5]. For each initial guess, we perform the eigenvalue iteration described above until it
converges. This reveals the basins of attraction of the eigenvalues under Broyden’s iteration, which
shows that the imaginary part is not as important as the real part of the eigenvalue guess (especially
for large R1 values). We note that in the system of Eqs. (24) and (25) the eigenvalue σ appears in
powers of iσ . For each solution {iσ,w}, the complex conjugate {−iσ̄ , w̄} is also a solution, so we
need only compute one member of the pair, and obtain the other by conjugation. For the eigenvalue
iσ = iσR − σI, the conjugate is −iσ̄ = −iσR − σI; i.e., the sign of σR is reversed. Thus we can
restrict to σR � 0.

We now present typical examples of our eigenmode computations. Throughout the paper, we use
m = 120 for the Chebyshev grid, unless noted otherwise. Comparisons between m = 80 and 120 (as
well as 240) are presented in Appendix A. Figure 2 shows results for (R1,T0) = (10−1, 10−0.27) with
both membrane edges fixed. The coloring in Figs. 2(a) and 2(b) indicates the converged values of σR

[Fig. 2(a)] and σI [Fig. 2(b)] over a grid of initial eigenvalue guesses in the complex plane spanning
320 values in the real direction and four values in the imaginary direction. In Fig. 2(c), we plot
the 25 distinct eigenvalues found with this set of initial guesses and in Fig. 2(d), the corresponding
eigenmodes from the most unstable (smallest — or most negative —σI) on the left to the most stable
(largest σI) on the right. The vertical black line in Fig. 2(d) separates the (only) unstable mode (on
its left) from the stable modes (on its right). The unstable mode loses stability through divergence
as is evident from Fig. 2(c), where the associated eigenvalue has σR ≈ 10−9 and σI < 0. We also
illustrate with a red circle in Figs. 2(a) and 2(b) an instance of an initial guess that gives rise to this
mode. The converged σ values are more sensitive to the real than to the imaginary part of the initial
guess, which motivates the wider range of σR used here and subsequently.

In Fig. 3, we show another example of the eigenvalue computation for fixed-fixed membranes,
with larger membrane mass and pretension: (R1,T0) = (103, 101.5). In Figs. 3(a) and 3(b), we use
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(a) (c)

(b)

(d)

FIG. 2. Fixed-fixed eigenvalues and eigenmodes with R1 = 10−1 and T0 = 10−0.27. Computed σR [(a),
values in color bars at right] and computed σI [(b), values in color bars at right], both plotted over the initial
guess complex plane (c). The distinct eigenvalues generated by the numerical method replotted as red dots in
the (σR, σI ) plane. (d) The corresponding eigenmodes [Re(Y (x)) in green, Im(Y (x)) in blue] from the only
unstable one (with negative σI) on the left to the most stable one (largest σI) on the right. The vertical black
line separates the unstable mode (on its left) and stable modes (on its right).

a grid of initial eigenvalue guesses spanning 640 values in the real direction and six values in the
imaginary direction. For smaller R1 (as in Fig. 2), the converged σ vary more with the initial choice
of σI compared to the larger R1 here, where the converged eigenvalues are independent of the initial
σI, and depend only on the initial σR.

Since a generic perturbation is a superposition of all the eigenmodes multiplied by eiσ t =
eiσRt e−σIt , we classify the stability of generic perturbations in the (R1,T0) parameter space based
on the value of σR + iσI for the smallest σI at a given (R1,T0):

(1) σI > 0: stable
(2) σI = 0: stability boundary location
(3) σI < 0 and σR = 0: divergence (static instability)
(4) σI < 0 and σR 	= 0: flutter and divergence

(a)

(b)

(c)

(d)

FIG. 3. Fixed-fixed eigenvalues and eigenmodes with R1 = 103 and T0 = 101.5 and other quantities as
described in Fig. 2.
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(a) (b)

FIG. 4. The region in R1–T0 space in which the fixed-fixed membrane is unstable. The red line and red dots
indicate the position of the stability boundary computed by linear interpolation between σI of the smallest T0

that gives a stable membrane and the σI of the largest T0 that gives an unstable membrane (shown in the error
bars). The colors of the dots below the stability boundary label: (a) The imaginary parts of the eigenvalues (σI)
corresponding to the most unstable modes. They represent the temporal growth rate. (b) The real parts of the
eigenvalues (σR) for the most unstable modes, representing the angular frequencies. The gray dots correspond
to modes that lose stability by divergence and have σR � 10−9. The orange line that spans log10 R1 ∈ [−2, 2]
represents the stability boundary computed numerically in Ref. [1].

IV. FIXED-FIXED MEMBRANES

We start with membranes that have both edges fixed at zero deflection [satisfying Eq. (11)]. We
plot the stability boundary as the red dots connected by red lines in Figs. 4(a) and 4(b). Below and
to the right is the unstable region. The red dots are computed by linear interpolation of σI between
neighboring T0 values (shown by the horizontal black bars) that bracket the boundary: All σI are
positive at the larger of the T0 values and above, but one σI is negative at the smaller of the T0

values.
The stability boundary (red line) agrees well with that of our nonlinear time-stepping simulations

(orange line, from Ref. [1]) and with the results of Ref. [3]. For each R1, an eigenmode first
becomes unstable when the pretension T0 drops below a critical value T0C (R1). For R1 < 102,
T0C (R1) ∈ [1.7, 2], almost independent of R1. In our nonlinear, unsteady simulations [1], we found
a similar range of T0C (R1), [1.7,1.92], for R1 < 101.5. The small discrepancy could arise from the
δ smoothing on the free vortex sheet (that is not used in the eigenvalue solution but is used in
the time-stepping simulation). Another possible explanation (as stated in Ref. [37]) is that in the
time-stepping simulation [1], the wake grows from zero length but in the current eigenvalue problem
the wake has fixed length 
w. In our simulations, we use 
w = 39, and the modes are essentially
unchanged at larger 
w. In Ref. [1], we were not able to compute the upward sloping portion of the
stability boundary for R1 > 101.5 using the unsteady simulations, due to the slow growth/decay of
small perturbations with large R1.

In Fig. 4, the colored dots give the imaginary [Fig. 4(a)] and real parts [Fig. 4(b)] of the most
unstable eigenvalues (with corresponding eigenmodes shown later in Fig. 5). The gray dots in
Fig. 4(b) indicate negative σI and nearly zero σR (σR � 10−9) for the most unstable eigenmode,
which corresponds to divergence. The colored dots in Fig. 4(b) indicate a nonzero real part (value in
color bar at right) for the most unstable eigenmode, corresponding to flutter and divergence. Within
the instability region (region below the red line), we find that for a fixed T0, the fastest growing
mode has a growth rate (σI) that generally decreases in magnitude as R1 increases. We also find
that membranes with R1 � 101.5, in general, lose stability by divergence for T0 ∈ (10−0.5,T0C (R1)]
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FIG. 5. The shapes Y (x) of the most unstable eigenmodes as a function of R1 and T0 in the fixed-fixed
case. The real and imaginary parts of Y (x) are shown in green and blue, respectively. Each shape is scaled both
vertically and horizontally to fit within the plot. The shapes are superposed on the same stability boundary (red
line) as in Fig. 4. Modes exhibiting a divergence instability have a gray rectangle outline.

but then for a smaller T0 (� 10−0.5), by flutter and divergence. Heavier membranes generally lose
stability by flutter and divergence for T0 ∈ (100.25,T0C (R1)].

In the limit R1,T0 � 1, the fluid pressure is negligible and the linearized membrane Eq. (10)
reduces to the homogeneous wave equation,

R1∂tt y − T0∂xxy = 0, (27)

which after substituting Eq. (18) becomes

−σ 2R1Y − T0∂xxY = 0. (28)

The eigenmodes are linear combinations of cos(kx) and sin(kx), with k = ±σ
√
R1/T0, satisfying

the boundary conditions Eq. (11). Nontrivial linear combinations exist for k values for which the
determinant of the matrix (

sin(−k) cos(−k)

sin(k) cos(k)

)
(29)

vanishes, which occurs at k = nπ/2 for n ∈ Z>0. Each k gives a pair of eigenvalues,

σ = ±k

√
T0

R1
, (30)

and eigenmodes of the form

Y (x) = sin

(
nπ

2
(x + 1)

)
, (31)

for n ∈ Z>0 and −1 � x � 1, where the amplitude is arbitrary.
Similar to Ref. [37], in the limit of R1,T0 � 1, Eq. (30) shows that the frequency scales as√
T0/R1. We have observed this in our simulations: σR is approximately constant along lines of

constant T0/R1 in the upper right portion of Fig. 4(b) (toward the vacuum limit). At smaller R1, the
angular frequency is less sensitive to the membrane pretension.
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The numerical results for the eigenvalues (red dots) shown in Fig. 3(c) show excellent agreement
with the analytical form (30) of σ (black pluses), with very small imaginary parts (vertical axis). In
Fig. 3(d), there are two unstable modes [n = 2 and 4 in Eq. (31)], which are also the unstable modes
that were found in Ref. [3] for large values of R1 and T0.

In Fig. 5, we plot again the instability region in the R1–T0 parameter space for fixed-fixed
membranes, but with the eigenmode shapes corresponding to the most unstable eigenvalues in Fig. 4.
The real and imaginary parts of the eigenmode Y (x) are shown in green and blue, respectively. We
place gray rectangles around the modes that lose stability by divergence. For R1 < 102 and T0 just
below T0C , the unstable eigenmode is a single-hump shape that is nearly fore-aft symmetric. As
the pretension is decreased further below T0C , the divergent eigenmode becomes asymmetric, its
maximum deflection point shifting toward the trailing edge. This agrees with Ref. [[3], Fig. 10]. In
the divergence region of Fig. 5 when T0 = 100 and R1 decreases from 102 to 10−1, the maximum
deflection point also shifts from the midchord toward the trailing edge, in agreement with Ref. [[3],
Fig. 5]. For heavier membranes (R1 � 102), the membrane loses stability with an even-numbered
mode shape through flutter and divergence. In particular, the second mode (n = 2) is the most
unstable mode for R1 � 102 and T0 ∈ [100.5,T0C (R1)], as well as (R1,T0) = (102, 100.25) and
(103, 100.25). Decreasing the pretension value below 100.25, the fourth mode (n = 4) becomes the
most unstable for R1 > 102, followed by the sixth mode at (R1,T0) = (102, 10−0.25), (102.5, 10−0.5).
For heavy membranes with decreasing T0, the most unstable mode apparently moves to progres-
sively higher even-numbered modes.

We now study in more detail how the eigenvalues change in R1–T0 space by examining what
happens when T0 passes through the stability boundary. We track the stable and unstable modes
using a grid of initial eigenvalue guesses in the complex plane covering σR ∈ (0, 8] and σI ∈ [−3, 3],
with 160 values in the real direction and 13 values in the imaginary direction. As can be observed
in Fig. 5, in general, as we move to smaller T0 values, higher wave-number modes become the
most unstable ones. We now consider the instability of higher wave-number modes as we cross
the stability boundary by fixing two values of R1 and decreasing T0, while tracking the real and
imaginary parts of the computed eigenvalues.

In Fig. 6, we show the real (bottom row) and imaginary parts (top row) of the eigenvalues for
R1 = 103 (left column) and 101 (right column) while decreasing T0. The colors show the normalized
root mean square (RMS) slope of each membrane eigenmode on the Chebyshev mesh, defined by

Y ′
RMS :=

√∫ 1

−1

∣∣∣∣dYdx
∣∣∣∣
2

dx

/ ∫ 1

−1
|Y |2 dx, (32)

which is a measure of the waviness of each mode. Each branch that possesses approximately the
same color (lying in a particular, small range of Y ′

RMS) indicates a distinct mode. At the highest
mass (R1 = 1000), Figs. 6(a) and 6(b), we connect the eigenvalues by polygonal lines for the modes
that are sufficiently distinct from the others—the seven lowest wavenumber modes. The branches
in Fig. 6(a) are somewhat jagged when |σI| drops below 10−5. The corresponding σR [Fig. 6(b)]
vary much more smoothly, probably because their magnitudes are larger relative to numerical
errors. The blue branch with the most negative σI values first becomes unstable (σI changes from
positive to negative) at T0 ≈ 101.87, which coincides with the loss of stability in Fig. 5. The mode
associated with this blue branch is the second mode [n = 2 in Eq. (31)]. The next branch to become
unstable corresponds to the fourth mode (n = 4) at T0 ≈ 101.56 and then the sixth mode (n = 6)
at T0 ≈ 101.41. Representative mode shapes at the smallest T0 = 101.2 are shown to the left of
Fig. 6(a), for the three unstable branches (n = 2, 4, and 6) and four stable branches (n = 1, 3, 5, and
7). The Y ′

RMS values that correspond to these seven lowest wave-number modes are approximately
those of the analytical eigenmodes in (31), nπ/2 for n = 1, 2, . . . , 7. We also illustrate examples at
larger T0 values for the n = 2 and 4 branches and find that the mode shapes are almost unchanged.
In particular, we note that the seven modes shown to the left of T0 = 101.2 all remain approximately
the same across the corresponding colored branch for T0 ∈ [101.2, 101.875]. In Fig. 6, we focus on the
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(a)

(b) (d)

(c)

FIG. 6. For two values of membrane mass (R1), 103 (left column) and 101 (right column), the imaginary
[(a), (c)] and real parts [(b), (d)] of the eigenvalues versus pretension (T0) for fixed-fixed membranes. The
coloring represents the RMS of the membrane’s slope, Y ′

RMS (32) for each (R1, T0) pair. The horizontal black
lines in the top panels located at (a) σI = ±10−6 and (c) σI = ±3 × 10−4 distinguish stable modes (above)
and unstable modes (below). To the left of and within (a) and (c), we show typical modes for branches with
Y ′

RMS < 4π .

lowest wave-number shapes, as the higher wave-number shapes (yellow dots) are not numerically
resolved. The odd-numbered modes remain stable for all values of T0 shown. As we decrease
the pretension T0, the number of distinct modes found—with the range of initial guesses that we
are using—increases. This is indicated by the higher density of dots at smaller T0 in Fig. 6(b).
Figures 6(c) and 6(d) show the corresponding data for a smaller membrane mass, R1 = 10. The
modes deviate more from the analytical expression of Eq. (31) and change more significantly across
T0, compared to Fig. 6(a). Representative modes at the smallest T0 = 10−0.3 are shown at the left
side of Fig. 6(c). The shape of the curves that connect the real part of the eigenvalues associated with
a particular mode shape (lower panels) seems to be similar for the two mass densities. However, for
the smaller mass (R1 = 10) there is a disordered band of dark blue dots (with Y ′

RMS < π/4) that are
stable [σI ≈ 10−1 is Fig. 6(c)] and have low frequency [σR � 1 in Fig. 6(d)].

To summarize, in agreement with Ref. [3], we have found that the stability boundary has an
upward slope for R1 � 102, whereas for R1 < 102 the critical T0 for instability lies in [1.7,2],
almost independent of R1. When R1 and T0 are dominant over fluid pressure forces, the membrane
eigenmodes tend to neutrally stable sinusoidal functions. When the fluid forces are small but
nonnegligible, the mode shapes are similar, with the even-numbered modes becoming unstable
with very small growth rates, starting with the second modes. We find roughly two regions:
(a) at small R1, divergence occurs with the most unstable mode becoming more fore-aft asymmetric
as we decrease T0 and (b) at large R1, flutter and divergence occur with approximately sinusoidal
eigenmodes. In both of these regions, the most unstable modes become more wavy at smaller T0.
We have extended previous studies of the fixed-fixed membrane to a wider range of R1–T0 space.
Next, we study cases in which the membrane ends can move freely, which are less well-known.
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(a) (b)

FIG. 7. The region in R1–T0 space in which the fixed-free membrane is unstable. The red line and red dots
indicate the position of the stability boundary computed using linear interpolation between σI of the smallest
T0 that gives only stable eigenmodes and the σI of the largest T0 that gives an unstable eigenmode (shown in the
error bars). The color of the dots below the stability boundary labels: (a) The imaginary part of the eigenvalue
(σI) corresponding to the most unstable modes. It represents the temporal growth rate. (b) The real part of the
eigenvalues (σR) for the most unstable mode, representing the angular frequency. The orange line that spans
R1 ∈ [10−3, 102] represents the stability boundary computed numerically in Ref. [1].

V. FIXED-FREE MEMBRANES

We now investigate the stability of membranes with the leading edge fixed and the trailing edge
free to move vertically, i.e., satisfying the boundary conditions Eq. (12). In Ref. [1], we found that
with one end free, the membrane has a wider range of unsteady dynamics. In particular, in the
steady-state large-amplitude regime, we showed in Ref. [1] that this set of boundary conditions
has a mixture of periodic and chaotic dynamics as opposed to the steady single-hump solutions
observed in fixed-fixed membranes. In the small-amplitude (growth) regime, we will now show that
the eigenmodes can also be somewhat more complicated.

In Fig. 7, we plot the imaginary [Fig. 7(a)] and real parts [Fig. 7(b)] of the most unstable
eigenvalues in the region of instability for the fixed-free membranes in R1–T0 space. The red line
marks the boundary where the eigenvalues change from all σI > 0 (stable membranes) to at least
one σI < 0 (unstable membranes), analogous to Fig. 4. As in the fixed-fixed case, the stability
boundary moves to larger pretension (T0) values with increasing membrane mass (R1), but starting
at much smaller R1 now (�10−1). As R1 decreases below 10−1, the critical pretension reaches a
lower plateau.

The stability boundary of the current study is compared against the boundary from the nonlinear
study in Ref. [1] (orange line). Their shapes are very similar and there is good agreement especially
for R1 ∈ [10−0.75, 100.5]. As in Fig. 4, the discrepancy may be due to δ smoothing used on the
free vortex sheet of Ref. [1], the choice of the vortex wake 
w, or the number of Chebyshev nodes
(m + 1) on the membrane. In the unsteady simulations (orange line), we used m = 40 because the
simulations require more computing time, but in the current paper (red line) we used m = 120.
The eigenvalue solver shows that the boundary slopes upward over R1 ∈ [102, 103], where it was
difficult to obtain accurate results with the unsteady simulations.

The trends of the most unstable eigenvalues (colored dots) are similar to the fixed-fixed case
(Fig. 4) in some ways: the growth rates σI generally become larger in magnitude at smaller T0

and smaller R1 [Fig. 7(a)] and the growth rates vary nonmonotonically with T0 at intermediate
R1 ([100.5, 101.5] for fixed-free and smaller R1 for fixed-fixed). A difference is the slight decrease
in growth rates as R1 decreases below 10−1 for the fixed-free case, which does not occur in the
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(a) (c)

(b)

(d)

FIG. 8. Fixed-free eigenvalues and eigenmodes with R1 = 103 and T0 = 100.8. Computed σR [panel (a),
values in color bars at right] and computed σI [(b), values in color bars at right], both in the initial guess
complex plane. (c) The computed eigenvalues replotted as red dots in the (σR, σI ) plane. The inset in (c) shows
the ten computed eigenvalues (red ◦) that correspond to the eigenmodes shown in (d). The analytical form of the
eigenvalues is σ = ((n − 1/2)π/2)

√
T0/R1 = ((n − 1/2)π/2)

√
100.8/103 for n = 1, . . . , 10 (black pluses).

fixed-fixed case. For R1 ∈ [102, 103], the fixed-free growth rates are qualitatively similar to those in
the fixed-fixed case above T0 = 100.1. Below this value, however, the fixed-free growth rates jump
by more than an order of magnitude. In both cases, the real parts of the eigenvalues [the angular
frequencies σR, Fig. 7(b)] generally decrease with decreasing T0 and with increasing R1, particularly
at the largest R1. Below R1 = 101.5, the frequencies are very different: divergence (σR ≈ 0) does not
occur in the fixed-free case but is common in the fixed-fixed case.

To consider the eigenmodes in the fixed-free case, we again start with R1 and T0 � 1, so the
fluid forcing is negligible and the eigenmodes are again solutions of Eq. (27), i.e., nontrivial linear
combinations of cos(kx) and sin(kx), with k = ±σ

√
R1/T0, but satisfying the boundary conditions

Eq. (12) now. The k are now those for which the determinant of(
sin(−k) cos(−k)

cos(k) − sin(k)

)
(33)

is zero, which leads to k = (n − 1/2)π/2 for n ∈ Z>0, corresponding eigenvalues σ = ±k
√
T0/R1,

and eigenmodes now of the form

Y (x) = sin

((
n − 1

2

)
π

2
(x + 1)

)
, (34)

for n ∈ Z>0 and −1 � x � 1. Each mode has one quarter wavelength less than that of the corre-
sponding fixed-fixed mode, so the trailing edge has zero slope.

Figure 8 shows an example of how the computed eigenvalues [real parts in Fig. 8(a) and
imaginary parts in Fig. 8(b)] vary over a grid of initial guesses in the complex plane for a fixed-free
membrane with (R1,T0) = (103, 100.8) in the large R1 region near the stability boundary. The
quantities plotted are analogous to those in Fig. 3. The grid of initial eigenvalue guesses in the
complex plane covers σR ∈ (0, 8] and σI ∈ [−2,−0.5], spanning 640 values in the real direction and
four values in the imaginary direction. As in Fig. 3, we see that for large R1 (103) and moderately
large T0 (100.8), the eigenvalues obtained by the numerical method depend mainly on the real part
of the initial eigenvalue guess. However, here we see that there is more variation in the computed
eigenvalues with respect to the choice of initial σR compared to Fig. 3, where the vertical bands
of constant real [Fig. 3(a)] and imaginary parts [Fig. 3(b)] of σ are wider. This may be due to the
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FIG. 9. The shapes Y (x) of the most unstable eigenmode as a function of R1 and T0 in the fixed-free case.
The real part of Y (x) is shown in green and the imaginary part of Y (x) is shown in blue. Each shape is scaled,
both vertically and horizontally, to fit within the plot. The shapes are superposed on the same stability boundary
(red line) as in Fig. 7.

smaller value of T0 considered in Fig. 8 (100.8 as opposed to 101.5 in Fig. 3). As we decrease the
membrane pretension (T0), the number of distinct modes found (with our range of initial guesses)
typically increases [e.g., Figs. 6(a) and 6(b)]. The numerically computed eigenvalues from Figs. 8(a)
and 8(b) are replotted as red dots in the (σR, σI ) plane in Fig. 8(c), and those at the smallest σR,
shown in the inset, agree closely with the analytical form Eq. (30) with k = (n − 1/2)π/2 for
n ∈ Z>0 (black pluses in inset; note there is close agreement in the imaginary part due to the small
axis scale). Many eigenmodes are found with wavelengths decreasing down to the mesh scale, but
in Fig. 8(d) we show the ten modes with largest wavelengths [i.e., n = 1, . . . , 10 in Eq. (34)], those
that are best resolved numerically. Starting from the left, the most unstable modes have n = 3, 5,
7, and 9, while n = 10, 8, 6, 4, 1, and 2 are stable. Except for n = 1, the modes with even and
odd n have the opposite stability behavior. Here we omit the computed modes with the highest
wave numbers because they (and the corresponding eigenvalues) are not numerically converged.
For the large-R1, large-T0 limit solved analytically in Eq. (34), we have a quadratic eigenvalue
problem. When discretized by the numerical method in Sec. III A, we have 2m + 2 eigenmodes
Y (x) varying from low wave-number modes to very high wave-number modes that oscillate on
the mesh scale (due to the discretized second x derivative). For more general R1 and T0, we have
a nonlinear eigenvalue problem, but still have eigenmodes that oscillate on the mesh scale, and
are thus not resolved (i.e., not close to a continuum solution). Therefore, we focus on the lower
wave-number eigenmodes—those with Y ′

RMS [defined in Eq. (32)] below a threshold near 4π , or
about four wavelengths for a sinusoidalY (x)—which we can resolve well with m = 120 grid points.

In Fig. 9, we examine the variations in the most unstable eigenmodes in the same (R1,T0) space
as Fig. 7, corresponding to the eigenvalues shown there. There is a narrow band with R1 = 100 and
10−0.65 < T0 < 10−0.55 where our initial guesses all produced σI > 0 and so the modes are stable,
and therefore none are shown in this range. Similar small bands of stability between unstable regions
were also observed in Refs. [33,35] for fixed-fixed membranes. The shapes do not change noticeably
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(a)

(b) (d)

(c)

FIG. 10. For two values of membrane mass (R1), 103 (left column) and 101 (right column), the imaginary
[(a), (c)] and real parts [(b), (d)] of the eigenvalues versus pretension (T0) for fixed-free membranes. The
coloring represents the RMS of the membrane’s slope, Y ′

RMS, for each (R1, T0) pair given by Eq. (32). The
horizontal black line in the top panels located at (a) σI = ±10−6, (c) σI = ±10−4 distinguishes stable modes
(above) and unstable modes (below). We also show typical modes that correspond to each branch with Y ′

RMS <

9π/2.

for the more irregular motions at R1 ∈ [10−3, 10−1.25] (the eigenvalues in Fig. 7 were also nearly
constant in this region). At these smallest R1 values, the deflection at the free end is nearly zero.
As we decrease T0 for R1 � 10−2.5, the ripples move toward the trailing edge of the membrane
while maintaining nearly zero deflection at that end. Close to the stability boundary, all the shapes
for R1 ∈ [100.75, 102] are also nearly alike. At moderate values of R1 ([10−1, 102]) the maximum
deflection occurs in most cases at the trailing edge of the membrane. At these and larger values of
R1, the mean slope of the membrane is nonzero. In a similar region of R1 (i.e., [10−1, 101.75]) fixed-
fixed membranes become unstable with a single hump, losing stability via divergence. Fixed-free
membranes, however, become unstable by flutter and divergence. When T0 is below 10−0.2, the most
unstable mode changes to a wavier profile—the mode wave number increases with decreasing T0.
Similar to the fixed-fixed case where even-numbered modes become unstable for large R1, we see in
Fig. 9 that heavy fixed-free membranes (R1 > 102) with T0 ∈ [100.2,T0C (R1)] become unstable with
an odd-numbered mode—the third mode (the first mode is stable). At T0 < 100.2, we are no longer
in the vacuum limit (R1 � 1 but T0 is not). Thus, the mode shape is not a simple sinusoidal function
of the form Eq. (34), but the waviness still increases with decreasing T0 for heavy membranes.

We now consider the changes in the eigenvalues and associated eigenmode shapes as we pass
through the stability boundary for a fixed mass density, the fixed-free analog of Fig. 6. In Fig. 10,
the colors label Y ′

RMS, given by Eq. (32). For the larger R1, 1000 [Fig. 10(a)] the unstable modes are
odd-numbered and they become unstable in order of increasing n. The third mode becomes unstable
first, at T0 ≈ 101.36—consistent with Fig. 9. Then the fifth mode (n = 5) becomes unstable at T0 ≈
101.33, the seventh mode at T0 ≈ 101.24, and the ninth mode at T0 ≈ 101.18. The even-numbered
modes and the first mode remain stable for all values of T0. Contrary to the fixed-fixed case with
R1 = 1000 [Fig. 6(a)] where the four branches with the largest positive σI correspond to modes n =
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1, 3, 5, 7, the branches with largest σI in the fixed-free case correspond to modes n = 1, 2, 4, 6, 8.
This additional branch with opposite parity (n = 1) in Fig. 10(a) has a slightly smaller σI than the
second mode at the smallest T0 = 101 shown. Above a certain T0 value, the n = 1 branch acquires
the largest σI > 0.

We show the membrane shapes of the nine lowest wave-number modes to the left of Fig. 10(a)
at the lowest T0 = 101, but also examples of membrane shapes at a couple of larger T0 values for
the first two unstable branches and observe that the mode shapes are almost unchanged. The Y ′

RMS
values that correspond to these nine lowest wave-number modes are approximately those of the
analytical eigenmodes in Eq. (34), (n − 1/2)π/2 for n = 1, 2, . . . , 9. Even though higher wave-
number shapes (yellow dots) appear to become unstable at a larger T0 value, such cases are not
numerically resolved and are thus not used in determining T0C here. At R1 = 1000, the branches
with the largest σI > 0 are all continuous but, at R1 = 10, the same branches [blue dots at the top
of Fig. 10(c) and bottom of Fig. 10(d)] are more scattered. There, the numerical method gives
individual eigenvalues that do not seem to follow a particular branch, as was also found for fixed-
fixed membranes at R1 = 10. This could potentially be due to our choice for the range and density
of the mesh of initial eigenvalue guesses. The loss of stability in Fig. 10(c) occurs at T0 ≈ 100.26.
The imaginary parts of the eigenvalues [Fig. 10(c)] are about two orders of magnitude higher than
in Fig. 10(a). At R1 = 10, we see four branches that fall below σI = 0, each having approximately
its own distinct value of Y ′

RMS. If we consider smaller values of T0, we would expect to observe
more branches becoming unstable. As opposed to Fig. 10(a), we see in Fig. 10(c) that the yellow
dots (higher wave-number modes) are mostly stable. Similar to the fixed-fixed case in Fig. 6, we see
that the curves connecting the σR associated with a particular mode shape appear to be steeper in
Fig. 10(d) than in Fig. 10(b).

In summary, the fixed-free stability boundary is lower than the fixed-fixed boundary at small and
moderate values of R1—so more membranes are stable—but resembles the upward-sloping portion
of the fixed-fixed boundary at large R1 (� 102). Similarly to fixed-fixed membranes (Sec. IV), when
R1 and T0 dominate fluid pressure forces the eigenmodes tend to neutrally stable sinusoidal functions
with odd-numbered modes becoming unstable, starting with the third mode. We find that in the small
R1 region (i.e., R1 < 10−1) the most unstable eigenmodes have a small deflection at the trailing edge,
despite its freedom to move in the vertical direction. The small-R1 modes are very wavy shapes. For
all R1, the modes become wavier with decreasing T0. At moderate and large R1, the waves are
superposed on a background shape with nonzero slope.

VI. FREE-FREE MEMBRANES

We have found that allowing the trailing edge to deflect freely in the vertical direction dramat-
ically changes the instability region and the membrane dynamics. As a natural next step, we now
study the effect of making both ends free, satisfying the boundary conditions Eq. (13). The stability
boundary (red line) and most unstable eigenvalues are shown in Fig. 11. The stability boundary is
similar to the fixed-free case (Fig. 7): the critical pretension increases with mass when R1 > 102, it
decreases as we decrease R1, and it plateaus when R1 � 1. In Fig. 11, we show that there is close
agreement for R1 ∈ [10−0.75, 100.5] between the stability boundary computed here and in Ref. [1]
using unsteady simulations (orange line). For smaller R1 ([10−3, 10−1]) and larger R1 ([100.75, 102]),
the red line has slightly higher T0. As noted in Sec. V, the difference in m (40 in Ref. [1] versus
120 here) may be the main cause. As for the fixed-free case, we will show that the most unstable
eigenmodes have higher wave numbers at the smallest R1, so numerical resolution is an issue there:
In Ref. [1], we found that the small- and large-amplitude motions were not converged with m = 40
for R1 < 10−1.

We can again use the imaginary [Fig. 11(a)] and real parts [Fig. 11(b)] of the eigenvalues to
characterize the instability in (R1,T0) space. Within the region of instability (below the red line), a
comparison with fixed-fixed (Fig. 4) and fixed-free membranes (Fig. 7) reveals that the colored dots
(most unstable eigenvalues) have the same general behavior: the temporal growth rates [Fig. 11(a)]
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(a) (b)

FIG. 11. The region in R1–T0 space in which the free-free membrane is unstable. The red line and red dots
indicate the position of the stability boundary computed using linear interpolation between σI of the smallest
T0 that gives a stable membrane and the σI of the largest T0 that gives an unstable membrane (shown in the
error bars). The color of the dots below the stability boundary labels: (a) The imaginary part of the eigenvalue
(σI) corresponding to the most unstable modes. It represents the temporal growth rate. (b) The real part of the
eigenvalues (σR) for the most unstable mode, representing the angular frequency. The orange line that spans
R1 ∈ [10−3, 102] represents the stability boundary computed numerically in Ref. [1].

increase in magnitude with decreasing R1 and T0, but vary nonmonotonically with T0 at moderate
values of R1 ([100, 102]). The growth rates of free-free heavy membranes (R1 ∈ [102, 103]) are
qualitatively similar to those in the fixed-free case in the same region. The angular frequencies (σR,
Fig. 11(b)) are also larger for smaller R1, but vary nonmonotonically with T0. Similar to the fixed-
free case, we observe that membranes exhibit the flutter and divergence instability but do not lose
stability solely by divergence (i.e., with σR ≈ 0) for any (R1,T0) pair. In the region R1 � 10−1.25,

(a) (c)

(b)

(d)

FIG. 12. Free-free eigenvalues and eigenmodes with R1 = 103 and T0 = 101.1. Computed σR [(a), values in
color bars at right] and computed σI [(b), values in color bars at right], both plotted in the initial guess complex
plane. (c) The distinct eigenvalues generated by the numerical method plotted as red dots in the (σR, σI ) plane.
The analytical form of the eigenvalues is σ = ((n − 1)π/2)

√
T0/R1 for n = 1, . . . , 46 (black pluses). (d) The

11 lowest wave-number eigenmodes [Re(Y (x)) in green, Im(Y (x)) in blue], from the most unstable (most
negative σI) on the left to the most stable (largest positive σI) on the right. The vertical black line separates
unstable modes (on its left) and stable modes (on its right).
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FIG. 13. The shapes Y (x) of the most unstable eigenmode as a function of R1 and T0 in the free-free case.
The real part of Y (x) is shown in green and the imaginary part of Y (x) is shown in blue. Each shape is scaled,
both vertically and horizontally, to fit within the plot. The shapes are superposed on the same stability boundary
(red line) as in Fig. 11.

the eigenvalues just below the stability boundary are nearly constant; observed also in the fixed-free
case (Fig. 7).

For R1,T0 � 1, the eigenvalues are the same as for the fixed-fixed case Eq. (30), with the addition
of zero. The free-free eigenmodes are given by

Y (x) = cos

(
(n − 1)π

2
(x + 1)

)
(35)

for n ∈ Z>0 and −1 � x � 1, where the amplitude is arbitrary.
Figure 12 shows an example of how the computed eigenvalues [real parts in Fig. 12(a) and

imaginary parts in Fig. 12(b)] vary over a grid of initial guesses in the complex plane for a free-
free membrane with R1 = 103 and T0 = 101.1, with the same mesh as in the fixed-free case of
Fig. 8. We take R1 and T0 � 1 (vacuum limit) to compare with the analytical values Eq. (30) with
k = (n − 1)π/2 for n ∈ Z>0 [Fig. 12(c)]. In Fig. 12(d), we show the 11 lowest wave-number modes.
Starting from the left, the most unstable modes are n = 3, 5, 7, 9, and 11 whereas n = 1, 10, 8, 6, 4,
and 2 are stable. The sixth shape from the left that is displayed is flat (n = 1), with corresponding
σR and σI ≈ 10−8.

In Fig. 13, we show the most unstable eigenmodes across (R1,T0) space. The mode shapes of
light membranes (R1 � 10−1.75) just below the stability boundary seem very similar to fixed-free
membranes with the same mass but have one less peak and one less trough. Decreasing the
pretension values for membranes with R1 � 10−1.5 not only makes the membrane profile more
wavy but also causes the ripples in the membrane shape to move rearward to the trailing edge. Mode
shapes with nearly zero deflection at the free ends exist up to R1 = 10−0.75, slightly higher than in
the fixed-free case (Fig. 9). When the mass density is between 100.75 and 102 and the pretension
is between 100 and T0C (R1), the membranes are somewhat straighter than in the fixed-free case.
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(a)

(b) (d)

(c)

FIG. 14. For two values of membrane mass (R1), 103 (left column) and 101 (right column), the imaginary
[(a), (c)] and real parts [(b), (d)] of the eigenvalues versus pretension (T0) for free-free membranes. Numerical
results are shown as points with color coded according to the value of the RMS of the membrane’s slope for
each (R1, T0) pair given by Eq. (32), as given in the color bar. The horizontal black line in the top panels located
at (a) σI = ±10−6, (c) σI = ±10−4 distinguishes stable modes (above) and unstable modes (below). We also
show typical modes that correspond to each branch with Y ′

RMS < 9π/2.

Finally, heavy membranes (R1 > 102) with T0 between 100.3 and T0C (R1) (the stability boundary)
all lose stability with the third mode, n = 3 in Eq. (35) [the highlighted mode in Fig. 12(d)].

In Fig. 11, we studied how the most unstable eigenvalues change in the R1–T0 parameter space,
and in Fig. 13 we investigated the trends in the corresponding most unstable eigenmodes. Now in
Fig. 14 we show the changes in the eigenvalues and associated eigenmode shapes as we pass through
the stability boundary for two fixed values of mass density, as for the fixed-fixed and fixed-free
cases (Figs. 6 and 10, respectively). Each dot’s color is used to label Y ′

RMS [Eq. (32)]. For the largest
R1 = 1000 [Fig. 14(a)] the unstable modes are odd-numbered. The first branch to become unstable
is the third mode [n = 3 in Eq. (35)] at T0 ≈ 101.68—consistent with Fig. 13 (for the same R1).
Then the fifth mode (n = 5) becomes unstable at T0 ≈ 101.45 and the seventh mode at T0 ≈ 101.33.
The even-numbered modes are all stable for the entire range of T0 values considered here. We
show the membrane mode shapes that correspond to the nine lowest wave-number modes to the
left of Fig. 14(a) at the lowest T0 = 101.275. The Y ′

RMS values that correspond to these nine lowest
wave-number modes are approximately those of the analytical eigenmodes in Eq. (35), (n − 1)π/2
for n = 1, 2, . . . , 9. We also show instances of membrane shapes at a couple of larger T0 values for
the first two unstable branches and the flat mode. We see that in all cases, these mode shapes have the
same features as at the smallest T0. The branch corresponding to the flat mode (n = 1) in Fig. 14(a)
oscillates about σI = ±10−6 at T0 � 101.6 (while σR lies on ±10−4)—it is essentially zero. As in the
fixed-fixed and fixed-free cases at R1 = 1000, the branches with the largest σI > 0 are all continuous
but at the smaller R1 (i.e., 10), the same branches [blue dots at the top of Fig. 14(c) and bottom of
Fig. 14(d)] appear more disordered. The loss of stability in Fig. 14(c) occurs at T0 ≈ 100.275. The
values of σI in Fig. 14(c) are about two orders of magnitude higher than those in Fig. 14(a) (as for
fixed-free membranes at the same membrane masses). The downward tendency of the darker orange
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(a) (b) (c) (d)

FIG. 15. Fixed-fixed membranes at R1 = 10−1 and (a) T0 = 10−0.1, (b) T0 = 100, (c) T0 = 100.1, and
(d) T0 = 100.2. These membranes lose stability by divergence. We compare the most unstable modes obtained
from the eigenvalue analysis (dashed green lines) to the membrane shapes of the time-stepping simulations
in the small-amplitude (growth) regime—in each panel, 15 equally spaced snapshots are shown in the growth
regime, gray and then black at the last time. The arbitrary amplitudes of the green lines are set to match those
of the black lines. The light blue curves indicate shapes in the large-amplitude steady state regime.

branch when σI drops below 10−2 [Fig. 14(c)] suggests that the mode may be the next to become
unstable as T0 decreases. Contrary to Fig. 14(a), we see in Fig. 14(c) that the yellow dots (higher
wave-number modes) are mostly stable. The free-free angular frequency (σR) behaves similarly to
fixed-fixed and fixed-free membranes: the curves connecting σR associated with particular modes
are steeper for R1 = 10 [Fig. 14(d)] compared to R1 = 1000 [Fig. 14(b)]. The dotted part of the
most unstable branch shown in Figs. 14(c) and 14(d) is used to bridge a gap in T0 in which we did
not find eigenvalues and eigenmodes for the lowest branch.

VII. COMPARISON WITH UNSTEADY AND LARGE-AMPLITUDE SIMULATIONS

We now compare the most unstable eigenmodes, in a few cases, with the corresponding small-
amplitude motions as well as the eventual large-amplitude steady-state motions in the unsteady
time-stepping simulations of Ref. [1]. The main differences are that in the eigenvalue problem
the free vortex wake has a finite length 
w whereas in the unsteady simulations it grows from
zero length, and has δ smoothing to avoid chaotic dynamics. For fixed-fixed membranes, Fig. 15
compares eigenmodes (dashed green lines) with snapshots of time-stepping simulations in the
small-amplitude growth regime (sequence of gray lines ending with black lines) and the time-
stepping simulations’ eventual large-amplitude steady states (blue lines). The comparison is made at
R1 = 10−1 with T0 increasing: (a) 10−0.1, (b) 100, (c) 100.1, and (d) 100.2, the last value close to the
stability boundary. Here we have a divergence instability, so the imaginary parts of the eigenmodes
are zero; the green lines show the real parts. As T0 increases, the small-amplitude membrane shapes
change gradually, from ones with both downward and upward curvature [Fig. 15(a)] to a nearly
fore-aft symmetric hump with upward curvature only [Fig. 15(d)]. The close agreement between
the green and black lines shows that the linearized model captures the small-amplitude unsteady
dynamics well. Here the initial deflection is y(x, 0) = 10−12 sin(πx), but we find essentially the
same agreement with a different form of the initial perturbation, in which the leading edge is moved
slightly upward and then back to y = 0. In this case, the membrane initially forms a small bump
near the trailing edge as it evolves under the nonlinear membrane Eq. (5). Both types of initial
deflections are much smaller than the gray shapes in Fig. 15, and eventually converge to them as the
fastest growing mode outgrows the other modal components of the initial deflections. At large times,
all the unsteady shapes converge to steady humps (blue lines), nearly fore-aft symmetric, despite the
early-time differences. The magnitudes of the humps’ deflections are set by the nonlinear stretching
resistance in Eq. (5), the term proportional to the stretching modulus R3. Here R3 is set to 10 but
only the magnitudes of the humps, and not their shapes, change much over the range R3 � 10 [1].

We now investigate membranes with the leading edges fixed and the trailing edges free. Now
the membranes lose stability through divergence and flutter, so the eigenmodes are complex. They
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(a) (b)

(c) (d)

(e) (f)

FIG. 16. Fixed-free membranes at R1 = 10−0.5 and R3 = 101.5, with T0 = 10−0.8 for (a), (c), (e) and T0 =
10−0.7 for (b), (d), (f). In (a) and (b), the solid red lines are Re(ynonlin(α)) estimated from the time-stepping
simulation, which are close to Re(Y (x)) from the eigenvalue problem (dotted black lines). The solid green
lines are Im(ynonlin(α)), close to Im(Y (x)) from the eigenvalue problem (dotted blue lines). The gray lines are a
subset of snapshots in the linear growth regime. In (c) and (d), we show snapshots during the small-amplitude
(growth) regime, but with the exponential growth removed. (e), (f) show snapshots during the steady-state
large-amplitude motions. We show 20 equally spaced snapshots of membranes over a period, ranging from
light blue at earlier times to dark blue at the last time.

are determined only up to a complex constant, with both a magnitude and a phase that need to be
matched to a given time-stepping simulation of Ref. [1]. In Appendix B, we give details about how
the matching is done.

In Fig. 16, we compare two cases slightly below the stability boundary at R1 = 10−0.5:
T0 = 10−0.8 [Figs. 16(a), 16(c) 16(e)] and T0 = 10−0.7 [Figs. 16(b), 16(d) and 16(f)]. In
Figs. 16(a) and 16(b), the gray lines again show sequences of snapshots from the time-
stepping simulations. We fit the values y(α, t ) for such a sequence to a function of the form
Re([Re(ynonlin(α)) + iIm(ynonlin(α))]eiσ t ). First, σI and σR are estimated. Then for each α, the real
and imaginary parts of y(α, t )e−iσ t are estimated (in amplitude-phase form; see Appendix B), giving
Re(ynonlin(α)) [red solid lines in Figs. 16(a) and 16(b)] and Im(ynonlin(α)) (green solid lines). The
most unstable eigenmodeY (x) is arbitrary up to a complex constant. The function ynonlin(α) contains
a complex factor (magnitude and phase) that depends on the initial conditions of the time-stepping
simulation. To account for this, we scale Y (x) by the complex factor that gives the best L1-fit with
ynonlin(α) ≈ ynonlin(x) (see Appendix B) and plot the resulting Re(Y ) and Im(Y ) as dotted black and
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(a) (b)

(c) (d)

(e) (f)

FIG. 17. Same quantities as described in Fig. 16 but with R1 = 101 and R3 = 101.5, and T0 = 10−0.1 [for
(a), (c), and (e)]; T0 = 100 [for (b), (d) and (f)].

blue lines respectively, in Figs. 16(a) and 16(b). The fit between Y (x) and ynonlin(x) is nearly as good
as in the steady fixed-fixed cases (Fig. 15). The slight increase of error in the fit may be due to the
extra steps involved in fitting the fixed-free eigenmodes because they are complex.

In Figs. 16(c) and 16(d), we show 20 snapshots from the time-stepping simulations, but multi-
plied by our estimate of eσIt , which should remove the exponential growth. This shows the mode
shapes much more clearly than in Figs. 16(a) and 16(b). The rescaled shapes are equally spaced
over our estimate of one time period. They appear to follow an up-down symmetric, periodic
(as expected) oscillation with seven [Fig. 16(c)] and five [Fig. 16(d)] “necks” in their envelopes,
respectively. Figs. 16(e) and 16(f) show snapshots in the eventual large-amplitude periodic steady-
state. The shapes are qualitatively similar to those in Figs. 16(c) and 16(d), but the numbers of
necks are reduced to four in both Figs. 16(e) and 16(f). The shapes are nearly the same in both
panels; as in the fixed-fixed case (Fig. 15) the differences in the small-amplitude shapes disappear at
large amplitude. This may be because the T0 term in Eq. (5) is subdominant to the R3 term at large
amplitudes, even at T0C (R1), the largest T0 where the membranes are unstable.

We show the same comparisons at larger R1 (10) in Fig. 17 at two T0 values near the stability
boundary. The wave numbers of the shapes are much reduced—only one neck appears in each
envelope now—but otherwise many of the same features carry over from the previous figure. There
is again good agreement between the eigenmodes and the versions estimated from the time-stepping
simulations [Figs. 17(a) and 17(b)]. The periodic parts of the small-amplitude motions have small
but noticeable differences in Figs. 17(c) and 17(d)—in particular, the widths of the necks relative
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to the maximum widths of the envelopes. The large-amplitude motions [Figs. 17(e) and 17(f)] are
again nearly indistinguishable, however.

We obtain similar levels of agreement in the free-free case; two examples are shown in
Appendix C.

VIII. CONCLUSIONS

To summarize, we have used a linearized model and a nonlinear eigenvalue solver to study small
amplitude membrane motions, including the onset of membrane instability, in inviscid fluid flows.
We characterized the different types of possible motions with respect to the two key dimensionless
parameters—membrane mass and pretension—and for three sets of boundary conditions: fixed-
fixed, fixed-free, and free-free leading and trailing edges. Previous work by other groups was limited
to the fixed-fixed case and a smaller range of membrane mass densities, and our own previous
time-stepping simulations [1] were unable to resolve the small-amplitude motions at small mass
densities due to limited spatial resolution and at large mass densities due to the very slow growth of
instabilities.

For each of the three sets of boundary conditions, when membrane inertia and pretension
dominate fluid pressure forces, the eigenmodes tend toward neutrally stable sinusoidal functions
with half-integer or quarter-integer numbers of wavelengths. When the fluid forces are small
but nonnegligible, the mode shapes are similar, but the even- (for fixed-fixed) or odd-numbered
modes (for fixed-free and free-free) become unstable, starting with the second and third modes,
respectively. For the fixed-fixed case, there are roughly two regimes: small membrane density, where
divergence occurs and the most unstable mode becomes more fore-aft asymmetric as one moves
further into the instability region, and large membrane density, where flutter and divergence occur
with approximately sinusoidal modes. In both regimes, the most unstable modes become wavier at
smaller T0, akin to the most unstable beam modes at smaller bending rigidity in Ref. [37]. These
results agree with those of Ref. [3] in the same parameter regimes.

The stability boundaries for the fixed-free and free-free cases resemble the fixed-fixed case at
large membrane densities, showing an upward slope for R1 � 102 (which we were not able to
compute using time-stepping simulations). The fixed-free and free-free stability boundaries differ
strongly from the fixed-fixed case at moderate and small membrane densities. There the membranes
remain stable down to smaller pretension values, and eventually become unstable by flutter and
divergence. For 10−3 � R1 � 10−1, the most unstable mode is very wavy, and we were unable
to resolve it with the time-stepping simulations in Ref. [1]. Here we find that the most unstable
eigenmodes have small deflection at the leading and trailing edges, despite the free boundary
conditions. For 10−1 � R1 � 102, the modes are wavy shapes (wavier at smaller T0) superposed
on background shapes with nonzero slopes (fixed-free) and/or deflections (free-free). By tracking
the eigenmodes across the stability boundaries, we found that at moderate membrane densities, the
modes resemble the sinusoidal shapes at large densities but with more disorder and the appearance
of irregular bands of stable low-wave-number modes that are difficult to associate with a particular
branch.

Finally, we compared the eigenmodes with the membrane motions in the time-stepping sim-
ulations and found very good agreement with the small-amplitude portion of the time-stepping
simulations in examples with the three different boundary conditions. In all the examples, the
large-amplitude motions qualitatively resembled those in the small amplitude regime in terms of
the number of necks in the deflection envelopes, but had clear differences in the envelopes’ shapes
and the relative sizes of maxima and minima.
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APPENDIX A: CONVERGENCE WITH RESPECT TO NUMBER OF CHEBYSHEV NODES

In this paper, we have computed the membrane eigenmodes and eigenvalues using m = 120
(121 Chebyshev points on the membrane) and a free vortex wake of length 
w = 39. We consider
here the effect of varying the former. The effect of varying the vortex wake length was explored in
Ref. [[37], Sec. V], and here we find that the results in the unstable regime are basically unchanged
when 
w is as large as 39, given the exponential decay of circulation in the wake (except right on the
stability boundary, but there is still algebraic decay of the induced velocity by an alternating-sign
wake).

To compare the eigenmodes obtained when using m = 80 versus 120, we remove the arbitrary
phase shift from the eigenmode solver by finding φ ∈ [0, 2π ] that solves

min
φ

∫ 1

−1
|Y80(x) − Y120(x)eiφ| dx. (A1)

To perform the subtraction in Eq. (A1), we interpolate Y80 using shape-preserving piecewise cubic
interpolation onto the 120-point grid. In Fig. 18, we compare the real [Fig. 18(a)] and imaginary
parts [Fig. 18(b)] of the fixed-free eigenmodes when using m = 80 and 120 across an array of
(R1,T0) pairs. The eigenmodes agree well except in some cases at the smallest values of T0 for each
R1, where the modes are also more wavy and difficult to resolve numerically. In Fig. 19, we present
the relative error in the eigenvalues when m = 80 and 120. This quantity is computed as

relative error =
∣∣∣σ80 − σ120

σ120

∣∣∣. (A2)

The errors are typically 10−2–10−5 near the stability boundary, and gradually increase to 10−1–100

as we decrease T0, eventually reaching a point where the solutions are under-resolved (as in Fig. 18).
Figure 20 shows three examples of the computed eigenvalues using grids of initial guesses with

m = 80 (green diamonds), 120 (red circles), and 240 (blue crosses). Figure 20(a) corresponds to
a fixed-free membrane at a moderate value of R1 (100.5) and T0 = 10−0.25. The eigenvalues agree
well except for an additional stable eigenmode found when m = 240 [small blue cross located at
(σR, σI ) ≈ (0.29, 0.13)]. Figure 20(b) corresponds to a fixed-free membrane with a larger value
of R1 (103), and T0 = 100.8. The eigenvalues agree well at the three values of m when σR � 2.5,
approximately the 15 lowest modes. As σR increases, the modes are eventually under-resolved
and the eigenvalues deviate significantly, beginning with m = 80 (green diamonds). Figure 20(c)
corresponds to a free-free membrane at R1 = 100.5 as in Fig. 20(a) but with T0 slightly smaller,
10−0.5. As in Fig. 20(a), there are extra stable eigenvalues (with σR < 2 and σI > 0.1), most with
m = 240 (blue crosses) and one with m = 80 (green diamond). These eigenvalues are similar to
those in the irregular bands of stable eigenvalues in Figs. 6, 10, and 14 when R1 = 10. We have
good agreement among the eigenvalues that are unstable or close to neutrally stable. In each case,
the most unstable modes (i.e., the modes associated with smallest—or most negative—σI) change
little when m increases from 120 to 240, and they are the focus of this paper.

APPENDIX B: METHOD FOR COMPARING THE EIGENVALUE ANALYSIS RESULTS
TO TIME-STEPPING SIMULATIONS

Here we outline the method for comparing mode shapes obtained using the eigenvalue analysis
developed in the current paper and mode shapes obtained from the time-stepping simulations in
Ref. [1].

We first determine the regime of exponential growth in the nonlinear simulations by plotting
the trailing edge deflection as a function of time, i.e., y(1, t ). The time it takes to reach the large-
amplitude steady-state regime depends on the magnitude of the initial perturbation. To extend the
time spent in the small-amplitude regime, we start with a very small perturbation, O(10−12). This is
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(a)

(b)

FIG. 18. Comparison between the (a) real and (b) imaginary parts of the eigenmodes with fixed-free
boundary conditions, using grids with m = 80 and m = 120. Each shape is scaled in both vertical and
horizontal directions to fit within the plot. The red dots indicate the position of the stability boundary (same as
in Fig. 9).
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FIG. 19. At each (R1, T0 ) in the instability region (below red line), the relative error Eq. (A2) in the
eigenvalues when using m = 80 and m = 120 Chebyshev points on the fixed-free membrane is plotted as a
colored dot.

important particularly when the growth rate is large, i.e., for unstable membranes that are far from
the stability boundary in parameter space.

During this exponential growth (with flutter) regime, we approximate the computed y(α, t ) as

y(α, t ) ≈ Re([Re(ynonlin(α)) + iIm(ynonlin(α))]eiσ t ). (B1)

To obtain σ and ynonlin(α), we first obtain σI as the negative of the slope of ln(|y|) versus time
[Fig. 21(a)] and subsequently compute y(α, t )eσIt . For each grid point 1, . . . ,m + 1 in α ∈ [−1, 1],
this is a function that oscillates sinusoidally in time but does not grow [Fig. 21(b)].

(a) (b) (c)

FIG. 20. Spectrum of eigenvalues for m = 80 (green diamonds), 120 (red circles), and 240 (blue crosses)
for a fixed-free membrane at (a) (R1, T0) = (100.5, 10−0.25), (b) (R1, T0 ) = (103, 100.8), and a free-free mem-
brane at (c) (R1, T0) = (100.5, 10−0.5).
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FIG. 21. Example of the comparison method using data from fixed-free membranes with (R1,T0 ) =
(10−0.5, 10−0.7). (a) ln(|y|) versus time for the 10th (blue), 30th (red), and 100th (yellow) grid points on
the membrane. (b) A portion of the time series of yeσIt at the 10th (blue), 30th (red), and 100th (yellow)
grid points. This corresponds to part of the small-amplitude regime but with the growth removed. The black
dashed lines represent the constructed R(α) cos(σRt + φ(α)) at the same grid points. (c) The reconstructed data
Re([Re(ynonlin(α)) + iIm(ynonlin(α))]eiσ t ) (black dashed lines) compared against the data y(α, t ) (cyan solid
lines) at the times t = 20, 100, 160. The initial perturbation here is ζ (α, 0) = η sin(πα) where η is chosen as
0.0001. Note that the axes are not to scale.

We estimate the frequency f of these functions as the reciprocal of the time between the peaks
of the sinusoidal function. The frequency should be the same for all α ∈ [−1, 1] according to our
ansatz, and the computed values vary only slightly due to numerical errors. We use the average
over α as our estimate of the single, global frequency. We then define σR := 2π f and denote the
amplitudes of these sinusoidal functions R(α). We denote by tpeak(α) the times at which they reach
their peaks and define the phase as φ(α) := −σR · tpeak (α). Thus, we have

Re(ynonlin(α)) = R(α) cos(φ(α)), (B2)

Im(ynonlin(α)) = R(α) sin(φ(α)). (B3)

We show in Fig. 21(c), the reconstructed data Re([Re(ynonlin(α)) + iIm(ynonlin(α))]eiσ t ) (black
dashed line) compared to y(α, t ) (cyan solid lines) at three times.

Finally, we choose a phase φ that gives the best match betweenY (x) from the eigenvalue analysis
described in Sec. III and ynonlin(α) from the nonlinear simulations. We do this by solving the
following optimization problem:

min
φ

∫ 1

−1

∣∣∣∣ [Re(ynonlin(x)) + iIm(ynonlin(x))]

max(|[Re(ynonlin(x)) + iIm(ynonlin(x))]|) − Y (x)eiφ

max(|Y (x)eiφ|)
∣∣∣∣dx (B4)

for φ ∈ [0, 2π ].

APPENDIX C: COMPARISON OF EIGENMODES AND TIME-STEPPING SIMULATIONS
WITH FREE-FREE BOUNDARY CONDITIONS

In Fig. 22, we compare the eigenmodes to the time-stepping simulations for two cases of free-free
membranes: (R1,T0) = (101, 100.1) [Figs. 22(a), 22(c) and 22(e)] and (101.5, 100.2) [Figs. 22(b),
22(d) and 22(f)] at R3 = 101.5 in both cases. The comparison methods for fixed-free membranes
(see Appendix B) are used again here. In Figs. 22(a) and 22(b), we see close agreement between
the real and imaginary parts of the eigenmodes obtained from the two methods. In Figs. 22(c) and
22(d), a point of inflection occurs close to the midpoint of the membrane, and migrates closer to the
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(a) (b)

(c) (d)

(e) (f)

FIG. 22. Free-free membranes at (R1, T0) = (101, 100.1) for (a), (c), and (e) and at (R1, T0) = (101.5, 100.2)
for (b), (d), and (f), with R3 = 101.5 in both cases. These membranes lose stability by flutter and divergence. In
(a) and (b), the solid red lines are Re(yynonlin(α)) estimated from the time-stepping simulation, which are close
to Re(Y (x)) from the eigenvalue problem (dotted black lines). The solid green lines are Im(yynonlin(α)), close to
Im(Y (x)) from the eigenvalue problem (dotted blue lines). The gray lines are a subset of snapshots in the linear
growth regime. In (c) and (d), we show the snapshots during the small-amplitude (growth) regime but with
the exponential growth removed. (e) and (f) show snapshots during the steady-state large-amplitude motions.
Shades of gray (and blue) increase from light to dark as 20 membrane positions cycle through a period.

leading edge at large amplitude [Figs. 22(e) and 22(f)]. The small- and large-amplitude shapes are
similar in terms of the number of local maxima and minima of deflection (typically one of each).
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