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a b s t r a c t

We investigate the dynamics of membranes that are held by freely-rotating rigid tethers
in fluid flows. The tethered boundary condition allows periodic and chaotic oscillatory
motions for certain parameter values. We characterize the oscillations in terms of
deflection amplitudes, dominant periods, and numbers of local extrema of deflection
along the membranes across the parameter space of membrane mass density, stretching
modulus, pretension, and tether length. We determine the region of instability and the
small-amplitude behavior by solving a nonlinear eigenvalue problem. We also consider
an infinite periodic membrane model, which yields a regular eigenvalue problem,
analytical results, and asymptotic scaling laws. We find qualitative similarities among
all three models in terms of the oscillation frequencies and membrane shapes at small
and large values of membrane mass, pretension, and tether length/stiffness.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

There have been many studies of fluid–structure interactions induced by thin flexible bodies. Most of these studies
oncern flexible beams that are nearly inextensible (Taneda, 1968; Kornecki et al., 1976; Zhang et al., 2000; Zhu and
eskin, 2002; Watanabe et al., 2002; Shelley et al., 2005; Argentina and Mahadevan, 2005; Eloy et al., 2007, 2008; Alben
nd Shelley, 2008; Alben, 2008; Michelin et al., 2008; Tang et al., 2009a,b; Shelley and Zhang, 2011; Zhao et al., 2012).
nother important case that has received somewhat less attention is extensible membranes of zero bending modulus.
embranes arise in various biological and technological applications including membrane aircraft and shape-morphing
irfoils (Lian and Shyy, 2005; Hu et al., 2008; Stanford et al., 2008; Jaworski and Gordnier, 2012; Piquee et al., 2018;
chomberg et al., 2018; Tzezana and Breuer, 2019), sails (Colgate, 1996; Kimball, 2009), parachutes (Pepper and Maydew,
971; Stein et al., 2000), membrane roofs (Haruo, 1975; Knudson, 1991; Sygulski, 1996, 1997, 2007), and the wings of
lying animals such as bats (Swartz et al., 1996; Song et al., 2008; Cheney et al., 2015). The majority of previous studies
f membranes showed that when they are held with their ends fixed in a uniform oncoming fluid flow, they tend to
dopt steady shapes with a single hump (that is, when the flat state is unstable) (Song et al., 2008; Mavroyiakoumou
nd Alben, 2020). In the current work, we show that periodic and chaotic oscillations can occur in a simple physical
etup. In our investigation we consider a passive case, i.e., we do not impose heaving or pitching motions (Jaworski,
012; Tregidgo et al., 2013; Gordnier and Attar, 2014; Tzezana and Breuer, 2019). We also do not have any forcing of
scillations from leading-edge vortex shedding (vortex induced vibrations), which can be important in membranes that
re driven by heaving and pitching motions or held at nonzero angle of attack (Rojratsirikul et al., 2011; Jaworski and
ordnier, 2012; Sun et al., 2018).
In Mavroyiakoumou and Alben (2020) we investigated how the membrane dynamics change when using different

oundary conditions at the two ends of the membrane. In the first case, fixed–fixed, the membrane ends were held
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able 1
ypical values of parameter ranges relevant to our current model as used in previous membrane studies. Computational (c ), experimental (e), or
heoretical (t ) ranges of the dimensionless body mass density R1 , stretching modulus R3 , and pretension T0 .

Reference Material R1 =
ρsh
ρf L

R3 =
Eh

ρf U2L
T0 =

T
ρf U2LW

Newman and Païdoussis (1991)t Sail 0–6 – 0–2
Le Maître et al. (1999)e Sail 0–0.8 101 , 50, 102 , 500, 103 –
Sygulski (2007)e& t Latex rubber 0.1, 1 – 130.6, 217
Jaworski and Gordnier (2012)c & e Latex rubber 2.4 100, 200, 400, 614 4, 10, 20, 30.7
Tiomkin and Raveh (2017)c – 0–80 – 0–6
Nardini et al. (2018)c – 0–60 – 0–3
Das et al. (2020a)e Silicone rubber 2.5–31.25 3.75 × 10−5–0.04 1–4
Das et al. (2020b)e Silicone rubber 2.5–31.25 3.75 × 10−5–0.04 1–4
Mavroyiakoumou and Alben (2020)c & t — 10−3–102 100–104 10−3–103

Mavroyiakoumou and Alben (2021)c & t — 10−3–103 – 10−1.5–102

Current studyc & t — 10−4–104 100.5–104 10−3–102

fixed, as in most previous studies of membrane flutter (Le Maître et al., 1999; Sygulski, 2007; Tiomkin and Raveh, 2017;
ardini et al., 2018). In the second case, fixed–free, we allowed the trailing edge of the membrane to move, but only in
he direction perpendicular to the oncoming flow. This gives the free-end boundary condition for a string or membrane
n classical mechanics (Graff, 1975; Farlow, 1993), where the membrane end has horizontal slope. The physical meaning
f the boundary condition is that the end slides without friction perpendicularly to the membrane’s flat equilibrium state
for example, in Farlow (1993) the end is attached to a frictionless, massless ring).

Although well known in classical mechanics, free-end boundary conditions have not been studied much in membrane
as opposed to beam/plate) flutter problems. In Hu et al. (2008), the authors study membrane wings with partially
ree trailing edges and find that trailing edge fluttering may occur at relatively low angles of attack. Another recent
xperimental study found that membrane wing flutter can be enhanced by the vibrations of flexible leading and trailing
dge supports (Arbós-Torrent et al., 2013). Partially free edges occur also in sails: the shape of a sail membrane can be
ontrolled by altering the tension in cables running along its free edges (Kimball, 2009). Flutter can occur when the tension
n these edges is sufficiently low (Colgate, 1996). A related application is to energy harvesting by membranes mounted
n tensegrity structures (networks of rigid rods and elastic fibers) and placed in fluid flows (Sunny et al., 2014; Yang and
ultan, 2016). In such cases the membrane ends have some degrees of freedom akin to the free-end boundary conditions
efined above.
Related work has studied the dynamics and flutter of membranes and cables under gravity with free ends (Triantafyllou

nd Howell, 1994; Manela and Weidenfeld, 2017). Here we neglect gravity to focus specifically on the basic flutter
problem (Shelley and Zhang, 2011). Without gravity, some restriction on the motion of the free membrane ends is needed
to avoid ill-posedness due to membrane compression (Triantafyllou and Howell, 1994). Such a restriction was realized
experimentally by Kashy et al. (1997), with the membrane represented by an extensional spring that is tethered by steel
wires to vertical supports. The membrane is thus free to move perpendicularly to its flat rest state, but remains stretched
between the supports, allowing for stable dynamics. The current paper uses this tethered boundary condition to study
membrane dynamics in a fluid flow. We study both small- and large-amplitude dynamics when the membrane is attached
to tethers – i.e., inextensible rods that rotate freely – or mounted on springs.

We will show that as the tether length is increased, the membrane dynamics change from static deflections with
a single maximum, typical of the fixed–fixed case (similar to the shapes in Newman and Low (1984), Rojratsirikul et al.
(2010), Waldman and Breuer (2013, 2017), Nardini et al. (2018), Tzezana and Breuer (2019)) to a wide range of oscillatory
motions that have some commonalities with flapping plates and flags (Shelley and Zhang, 2011). We study the stability
properties of tethered membranes via a nonlinear eigenvalue problem. The nonlinearity makes it difficult to solve in
certain regions of parameter space. Therefore we consider an approximate problem – an infinite membrane mounted
on a periodic array of Hookean springs – that is easier to solve and allows us to obtain asymptotic scaling laws for the
eigenmodes’ dependences on membrane pretension and mass density.

We show in Table 1 typical ranges of membrane parameters – mass density ratios (R1), stretching rigidities (R3), and
pretensions (T0) – from previous experimental, theoretical, and computational studies. Newman and Païdoussis (1991)
used an infinite periodic membrane model with a low-mode approximation and found that stability is lost through
divergence. Le Maître et al. (1999) used a vortex sheet model to study a more complex situation—the motions of a sail
membrane under harmonic perturbations of the trailing edge and with randomly perturbed inflow velocities. Sygulski
(2007) studied the membrane flutter threshold and divergence modes theoretically, with some experimental validation.
Although most works omit specific values of the aspect ratio h/L and the bending modulus R2 = Eh3/(12ρfU2L3) =

3(h/L)2/12, an example is given in Jaworski and Gordnier (2012) for a latex rubber, where the aspect ratio is h/L = 1/750
nd the bending modulus is therefore about a factor of 10−7 smaller than R3. In Jaworski and Gordnier (2012), they
tudied a heaving and pitching membrane airfoil in a fluid stream numerically at Reynolds number 2500, and found
lastic modulus and prestress parameters that led to enhanced thrust and propulsive efficiency. Tiomkin and Raveh (2017)
2
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Fig. 1. Schematic diagram of a flexible membrane (dark green surface) at an instant in time. U is the oncoming flow velocity and W is the
embrane’s spanwise width. The leading edge and the trailing edge of the membrane is attached to inextensible rods (red frames) that rotate freely
bout their hinged ends (small black/blue circles). There is also a vortex wake (light green surface) emanating from the membrane’s trailing edge.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

resented a more detailed flutter threshold calculation using an inviscid, small amplitude vortex sheet model. Nardini et al.
2018) compared a reduced-order model with direct numerical simulations to study the effect of Reynolds number on
he flutter stability threshold and small-amplitude membrane deflection modes. Das et al. (2020a) modeled the material
roperties of ultrasoft dielectric elastomers over a wide range of elastic properties, prestretch, and thicknesses. They
easured the mechanical response of the silicone membranes and found that stiffer membranes harden at lower stretch

atios due to the increased fraction of polymer chains in them. Das et al. (2020b) studied the deformations, forces, and flow
ields associated with a highly compliant membrane disk placed head-on in a uniform flow field. With increasing flow
elocity, the membrane deforms hyper-elastically into parachute-like shapes. A resulting drag increase correlates with
he unsteady fluid–structure interactions between the membrane and the flow. In the present study, we set R2 to zero
nd study the dynamics of tethered membranes over wide ranges of the remaining parameters—R1, R3, and T0—as well
s the tether length or stiffness. Here unsteady dynamics are possible because, unlike in previous studies, the membrane
s attached to inextensible rod tethers whose lengths set the transition between steady and unsteady motions.

The paper is structured as follows. We begin in Section 2 by presenting the membrane and vortex-sheet model and
n Section 2.1 we present the boundary conditions when the membranes are attached to inextensible-rod tethers. In
ection 3 we present the results in the large-amplitude regime for this boundary condition. In Sections 3.1 and 3.2 we

study the related case of membranes mounted on Hookean springs. In Section 4 we present a linearized, small-amplitude
version of our model and study the stability properties (Section 4.1). We then study the stability behavior of an infinite
periodic membrane mounted on a periodic array of springs and propose asymptotic scaling laws (Section 5). Finally, in
Section 6, we summarize our findings.

2. Membrane and vortex-sheet model

We model the dynamics of an extensible membrane that is nearly aligned with a two-dimensional background fluid
flow that has speed U in the far field (see Fig. 1). The membrane is shown as a dark green surface with the vortex
wake (light green surface) emanating from its trailing edge. Each membrane end is attached to a massless, open rigid
frame of inextensible rods (red solid lines) that pivots freely at the hinges shown by small black/blue circles in Fig. 1 and
therefore the membrane’s ends are constrained to move along circles of radius R centered at the hinges. The motions
of the membrane and open rod frames are assumed to be invariant in the spanwise direction (along W ), and the effect
of gravity is neglected for simplicity. The four clamping poles (black lines) at the end of the rod frame away from the
membrane are sufficiently thin that their influence on the fluid flow is assumed to be negligible.

The membrane and flow models are the same as in Mavroyiakoumou and Alben (2020) but we repeat them briefly for
completeness. The membrane dynamics are described by the unsteady extensible elastica equation with body inertia,
stretching resistance, and fluid pressure loading, obtained by writing a force balance equation for a small section of
membrane that lies between material coordinates α and α + ∆α:

ρshW∂ttζ (α, t)∆α = T (α + ∆α)ŝ − T (α, t)ŝ − [p]+
−
(α, t)n̂W (s(α + ∆α, t) − s(α, t)). (1)

Here ρs is the mass per unit volume of the undeflected membrane, h is the membrane’s thickness, and W its spanwise
width, all uniform along the length. In Eq. (1), ζ (α, t) = x(α, t) + iy(α, t) denotes the membrane position in the complex

plane, parameterized by the material coordinate α, −L ≤ α ≤ L (L is half the initial length) and time t . T is the tension in

3
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he membrane, [p]+− is the pressure jump across it, s(α, t) is the local arc length coordinate, and the unit vectors tangent
nd normal to the membrane are ŝ = ∂αζ (α, t)/∂αs(α, t) = eiθ (α,t) and n̂ = iŝ = ieiθ (α,t), respectively, with θ (α, t) the local

tangent angle and ∂αs the local stretching factor. We use + to denote the side towards which the membrane normal n̂ is
directed, and − for the other side. However, for the remainder of this paper, we drop the + and − for ease of notation.

Dividing Eq. (1) by ∆α and taking the limit ∆α → 0, we obtain

ρshW∂ttζ (α, t) = ∂α(T (α, t)ŝ) − [p](α, t)W∂αsn̂, (2)

where the membrane tension T (α, t) is given by linear elasticity (Carrier, 1945; Narasimha, 1968; Nayfeh and Pai, 2008)
as

T (α, t) = T + EhW (∂αs(α, t) − 1). (3)

Here E is the Young’s modulus and T is the tension in the initial, undeflected equilibrium state. After nondimensionalizing
length by L, time by L/U , and pressure by ρfU2, where ρf is the density of the fluid and U is the oncoming flow velocity,
q. (2) becomes the nonlinear, extensible membrane equation

R1∂ttζ − ∂α((T0 + R3(∂αs − 1))ŝ) = −[p]∂αsn̂. (4)

n Eq. (4), R1 = ρsh/(ρf L) is the dimensionless membrane mass, T0 = T/(ρfU2LW ) is the dimensionless pretension, and
finally, R3 = Eh/(ρfU2L) is the dimensionless stretching rigidity. We use Eq. (4) to study large-amplitude motions in
Section 3. We use a linearized, small-amplitude version to study membrane stability in Sections 4 and 5.

We express the 2D flow past the membrane using z = x + iy, the complex representation of the xy flow plane. The
complex conjugate of the fluid velocity at any point z not on the vortex sheets is a sum of the horizontal background
flow with speed unity and the flow induced by the bound and free vortex sheets,

ux(z) − iuy(z) = 1 +
1

2π i

∫ 1

−1

γ (α, t)
z − ζ (α, t)

∂αsdα +
1

2π i

∫ smax

0

γ (s, t)
z − ζ (s, t)

ds, (5)

here s is the arc length along the free sheet starting at 0 at the membrane’s trailing edge and extending to smax at the
ree sheet’s far end. To determine the bound vortex sheet strength γ we require that the fluid does not penetrate the
embrane, which is known as the kinematic boundary condition. Here γ represents the jump in the component of the

low velocity tangent to the membrane from the − to the + side, i.e., γ = −[(ux, uy) · ŝ]. The normal components of the
luid and membrane velocities are equal along the membrane:

Re(n̂∂tζ (α, t)) = Re
(
n̂
(
1 +

1
2π i

∫ 1

−1

γ (α, t)
z − ζ (α, t)

∂αsdα +
1

2π i

∫ smax

0

γ (s, t)
z − ζ (s, t)

ds
))

, (6)

where n̂ is written as a complex scalar. Solving Eq. (6) for γ requires an additional constraint that the total circulation is
zero for a flow started from rest. At each instant the part of the circulation in the free sheet, or alternatively, the strength
of γ where the free sheet meets the trailing edge of the membrane, is set by the Kutta condition which makes velocity
finite at the trailing edge. At every other point on the free sheet, γ is set by the criterion that circulation (the integral
of γ ) is conserved at fluid material points of the free sheet. The vortex sheet strength γ (α, t) is coupled to the pressure
jump [p](α, t) across the membrane using a version of the unsteady Bernoulli equation written at a fixed material point
on the membrane:

∂αs∂tγ + ∂α (γ (µ − τ )) + γ (∂ατ − νκ∂αs) = ∂α[p], (7)

where µ is the average flow velocity tangent to the membrane, τ and ν are the tangential and normal components of
the membrane velocity, respectively, and κ(α, t) = ∂αθ/∂αs is the membrane’s curvature. At the trailing edge, [p]|α=1= 0.
The derivation of Eq. (7) can be found in Mavroyiakoumou and Alben (2020, Appendix A).

2.1. Boundary conditions: inextensible-rod tethers

A slice through the membrane and rod frame in the 2D flow plane is shown schematically in Fig. 2. The rod frames
pivot freely about the points (−R, 0) and (2+R, 0), respectively. Because the frames are inextensible, the membrane ends
are constrained to move along circular arcs of radius R. This is enforced by requiring

(x−1 − (−R))2 + y2
−1 = R2 and (x1 − (2 + R))2 + y21 = R2, (8)

for all time, where x±1 = x(±1, t) and y±1 = y(±1, t) are four unknowns that denote the x- and y-coordinates of the
membrane ends, respectively. Two equations for the four unknowns are (8) and the remaining two equations require the
membrane and rod frames to be tangent where they meet:

∂αy
⏐⏐⏐⏐ =

y−1 − 0
and

∂αy
⏐⏐⏐⏐ =

0 − y1
, (9)
∂αx α=−1 x−1 − (−R) ∂αx α=1 (2 + R) − x1
4
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Fig. 2. Slice through the membrane in Fig. 1. Schematic diagram of a flexible membrane (green line) at an instant in time. The leading edge of the
membrane with position (x(−1, t), y(−1, t)) is attached to an inextensible rod frame (red line) whose motion is restricted to a circle of radius R
length of rod frame) and whose other end is fixed at (−R, 0) for all time. The membrane’s trailing edge with position (x(1, t), y(1, t)) is attached
o another rod frame whose other end is fixed at (2 + R, 0) for all time. There is also a vortex wake emanating from the membrane’s trailing edge
light green line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Examples of membrane (black) and rod (red and blue) snapshots at two different times, superposed on a larger set of membrane snapshots
(gray) within a period. Each column corresponds to a rod length R: 10−0.5 (left column), 100 (middle column), and 100.5 (right column). Here
3 = 101.5 and T0 = 10−2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

gain for all time. Eqs. (9) follow from balancing the forces on an infinitesimal length of membrane near the membrane
nds; because its mass is infinitesimal, the tension forces on it from the rods and from the adjacent portion of the
embrane must be aligned. The rod tether length R is an important parameter that influences the dynamics of the

membrane. With short rods (R → 0), we will show that the membrane dynamics are similar to fixed–fixed membranes,
whereas with longer rods the dynamics resemble free–free membranes but without the large-scale translational motions
seen in Mavroyiakoumou and Alben (2020).

3. Large-amplitude results

We simulate the membrane starting from an initial condition in which the membrane is perturbed from the flat
horizontal equilibrium state: it has a linear profile with a small nonzero slope,

ζ (α, 0) = (α + 1)(1 + iσ ), (10)

for σ = 10−3. We evolve the membrane and vortex sheet wake forward in time using a numerical method similar to
those in Alben (2009) and Mavroyiakoumou and Alben (2020).

In Fig. 3 we show snapshots of membranes and rods for a fixed stretching rigidity (R3 = 101.5) and pretension
(T0 = 10−2), at six pairs of (R1, R) values that give typical dynamics. In each case, two of the snapshots show the rods
(blue in one and red in the other) together with the membranes (black lines). The remaining 16 snapshots show only
the membranes (gray lines), equally spaced in time within a period of motion. R increases from left to right: 10−0.5 (left
column), 100 (middle column), and 100.5 (right column). The membrane deflection may be very small, particularly at small
R1 (bottom left case), and may be steady, particularly at small R (top left case). In the bottom row, middle column case
(i.e., R1 = 100.5 and R = 100) and in the bottom row, right column case (i.e., R1 = 100 and R = 100.5) it is evident that
the inextensible rods may deflect upwards or downwards.

We characterize the large-amplitude dynamics using three main quantities. One is the time-averaged deflection of the
membrane, defined as

⟨ydefl⟩ ≡
1
t2

∫ t1+t2

t1

(
max

−1≤α≤1
y(α, t) − min

−1≤α≤1
y(α, t)

)
dt. (11)

Here, as in Mavroyiakoumou and Alben (2020), t1 and t2 are sufficiently large (typically 50–100) that ⟨ydefl⟩ changes by
less than 1% with further increases in these values. So, ⟨ydefl⟩ is the maximum membrane deflection minus the minimum
membrane deflection, averaged over time.
5
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Fig. 4. (Inextensible rods) Snapshots of large-amplitude membrane motions in R–R3 space for fixed T0 = 10−2 and R1 = 10−0.5 . Colors represent
the time-averaged deflection of the membranes defined by Eq. (11). For rods with length R ≤ 10−1 the membranes behave similarly to those with
ixed–fixed ends, yielding a single hump solution, whereas when R ≥ 10−0.5 the membranes oscillate as in some cases with free–free ends. At each
R, R3) value, the set of snapshots is scaled to fit within a colored rectangle centered at that value and normalized by the maximum deflection of
he snapshots to show the motions more clearly. The red solid line separates membranes with m = 40 points (above) and m = 120 points (below).
n the framed figure we look at a finer grid between R = 10−0.7 and 10−0.5 , to investigate dynamics near the transition between the single-hump
olution and the flapping state occurs. The red dashed lines indicate a jump in the increment of R values. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

The second quantity used to characterize the large-amplitude dynamics is the time period. This is computed using
he peak frequency in the power spectrum computed using the fast Fourier transform (fft function in Matlab). The
ower spectrum is obtained from a time series of the membrane’s midpoint when the membrane has reached steady-
tate large-amplitude dynamics. The third quantity is the time-averaged number of zero crossings along the membrane,
omputed using the same temporal data as the power spectrum. Apart from the number of zero crossings, we also use
he time-averaged number of local extrema as a different measure of the ‘waviness’ of the membrane shape.

In Fig. 4 we show typical membrane snapshots in R–R3 space, while fixing T0 = 10−2 and R1 = 10−0.5. At each
(R, R3) value, the set of snapshots is normalized by the maximum deflection of the snapshots to show the motions more
clearly and scaled to fit within a colored rectangle at the (R, R3) value. Each snapshot has the corresponding R value at
its horizontal midpoint, and the R3 value at its average vertical position. Colors represent the time-averaged deflection
defined by Eq. (11). In the lower-left corner the snapshots are omitted because steady-state membrane motions were
not obtained. Two main types of membrane behaviors are seen: at small R, a steady single-hump shape that is fore–aft
symmetric, similar to membranes that have both the leading and trailing edges fixed at zero deflection; at moderate-
to-large R, an oscillatory motion. The framed panel on the right-hand side of Fig. 4 shows the transition between these
states in finer detail, between R = 10−0.65 and 10−0.57. The red dashed lines show where larger increments of R are taken,
from 10−0.65 to 10−0.7 (where only single hump solutions are obtained for any R3) and from R = 10−0.57 to 10−0.5 (where
only flapping membranes are observed, for any R3). In the framed panel we see that the initial condition of nonzero slope
[Eq. (10)] may evolve to single-hump shapes that are concave up, concave down, or to oscillatory motions when R is
changed slightly. In the left panel, the oscillatory motions are mostly close to periodic and fore–aft symmetric, with some
deviations particularly at R = 10−0.5 and 101.5, where a less wavy shape becomes more common.

For very large stretching rigidity R3 ≳ 103 the code reaches the steady-state regime only if we decrease the membrane
discretization size to m = 40 (from m = 120 below the red dividing line). As we observed in Mavroyiakoumou and Alben
(2020), in many cases varying the stretching rigidity R3 alters the overall deflection magnitudes but leaves the membranes’
shapes nearly unchanged.

In Fig. 5 we show how the time-averaged deflection quantitatively depends on R3 at several fixed values of R ∈

10−1.5, 10−1, . . . , 101.5
}, for R1 = 100.5 and T0 = 10−2 here. The ⟨ydefl⟩ ∼ R−1/2

3 dependence at large R3 is the same
or other mass ratios from R1 = 10−0.5 to R1 = 102, again with T0 = 10−2. This was observed also for fixed–fixed, fixed–
ree, and free–free membranes in Mavroyiakoumou and Alben (2020). We include the explanation for how the scaling
ydefl⟩ ∼ R−1/2

3 arises from the y-component of the membrane equation [Eq. (4)] with small deflections. We assume that
αy ≪ 1 and ∂αx ≈ 1. Then ∂αs − 1 =

√
(∂αx)2 + (∂αy)2 − 1 ≈ ∂αy2/2 and ŝy ≈ ∂αy. With these approximations, the

-components of the T0 and R3 terms in Eq. (4) are linear and cubic in deflection, respectively:

∂α(T0ŝy) ≈ T0∂ααy; ∂α(R3(∂αs − 1)ŝy) ≈ R3∂α((∂αy)3/2). (12)

he R1 term that multiplies ∂tty is also linear in deflection. The pressure jump is linear in the bound vortex sheet strength
ecause the left-hand side of Eq. (7) ≈ ∂ γ + ∂ γ with small deflections. The bound vortex sheet strength is linear in the
t α

6
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Fig. 5. (Inextensible rods) Time-averaged deflections of the membranes (defined by Eq. (11)) versus R3 for various R and fixed R1 = 100.5 , T0 = 10−2 .
The dotted black line indicates the scaling R−1/2

3 .

deflection by the linearized version of Eq. (6),

∂ty(α, t) ≈
1
2π

−

∫ 1

−1

γ (α′, t)
x(α, t) − x(α′, t)

dα′
−

1
2π

∫ Γ+(t)

0

x(α, t) − x(Γ ′, t)
(x(α, t) − x(Γ ′, t))2 + δ(Γ ′, t)2

dΓ ′, (13)

in which the second integral consists of bound vorticity advected from the trailing edge, so it has the same dependence on
deflection as the bound vorticity. Here, with small deflections, we have assumed that ∂αx ≈ 1, and then the linearization
is the same as in Alben and Shelley (2008), Mavroyiakoumou and Alben (2020). Without viscous stresses, horizontal
membrane deformations arise only through nonlinear terms in the elastic and pressure forces associated with large
deflections, so it is reasonable to neglect them, and this is consistent with the simulation results. Balancing the terms
that are linear in deflection with the product of R3 and a term that scales with deflection cubed gives ⟨ydefl⟩ ∼ R−1/2

3 . The
slight increase in ⟨ydefl⟩ between R3 = 102.5 and 103 when R = 101 (light blue line with upward-pointing triangle) and
R = 101.5 (dark red line with right-pointing triangle) arises because for R3 = 102.5 the discretization size of the membrane
is m = 120 whereas for R3 = 103 it is m = 40.

In Fig. 4 we saw that the motions do not change considerably with R3 (apart from their amplitudes) except in the
arrow transition region shown in the inset. We also find that the motions do not depend much on T0 except close to
he critical value of T0 below which the flat state is unstable. In Table 2 we show membrane snapshots in the full four-
dimensional parameter space R1–T0–R3–R, collected into four subpanels, each with a particular value of T0 and R3 (labeled
t top and left, respectively), and with a range of values of R1 and R within each subpanel. There is more variation within a
iven subpanel than between corresponding points in different subpanels, indicating that R and R1 have a stronger effect
n the dynamics than T0 and R3. The white background and flat lines at R1 = 10−1 and R ≥ 100 when T0 = 10−1 (top row)
ndicate stable membranes, so the deflection there is zero. From this comparison we see that, as in the previous figure, the
eflections decrease with increasing R3 (values in color bars at right) but often the snapshot shapes do not change much,

at the same (R1, R) values. Some membranes with moderate values of R1 (100 and 101) have more prominent differences
s R3 is changed, sometimes by altering the location of a transition between different types of dynamics. Decreasing the
alue of T0 can cause stable membranes to become unstable (e.g., at R1 = 10−1), but otherwise decreasing T0 has a small
ffect, mainly to increase the deflection slightly at a given R3. Below 10−2, the T0 term in the membrane equation [Eq. (4)]

becomes insignificant, as noted in Mavroyiakoumou and Alben (2020).
In Fig. 6, we focus on the lower left subpanel of Table 2, but double the density of values of R1 and R, and decrease

the lower limit of R1, to obtain a more comprehensive picture of the dynamics. The motions in Fig. 6 have the largest
deflection amplitudes at the largest R1 = 102. As mentioned in Mavroyiakoumou and Alben (2020), we hypothesize that
at large R1 membrane inertia allows the membrane to maintain its momentum for longer times against restoring fluid
forces, and obtain larger deflections (with longer periods, as we will show) before reversing direction. The same has been
observed for flutter with bending rigidity (Connell and Yue, 2007; Alben and Shelley, 2008). As R1 decreases, the membrane
deflection amplitudes progressively decrease until the motions become difficult to resolve numerically (for R1 ≲ 10−1).
In this region, we find chaotic membrane oscillations with very small amplitudes and high spatial frequencies. To obtain
numerically-converged motions with respect to the spatial grid when R1 ≤ 10−1 we use more discretization points. In
the lower-left corner in Fig. 6, i.e., (R1, R) = (10−1.5, 10−1), (10−1.5, 10−0.75), and (10−1.25, 10−1), snapshots are omitted

ecause steady-state membrane motions were not obtained.
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able 2
able of plots showing snapshots of large-amplitude membrane motions in R1–R space for two values of stretching rigidity R3 (101.5 in left column,

103 in right column) and two values of pretension T0 (10−1 in top row, 10−2 in bottom row). Colors represent the time-averaged deflection defined
by Eq. (11).

Fig. 6. (Inextensible rods) Membrane profiles in the large-amplitude steady-state regime, in R1–R space for fixed T0 = 10−2 (dimensionless pretension)
nd R3 = 101.5 (dimensionless stretching rigidity). The colored background represents the time-averaged deflection of the membranes defined by
q. (11). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Decreasing the membrane mass ratio (R1) generally tends to introduce more oscillating states and fewer single-hump

olutions for R values in the range (10−0.75, 100.25). For large R (heavy membranes) the maximum deflection of the
1
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Fig. 7. (Inextensible rods) Colors represent the time-averaged number of zero-crossings (values in color bar at right) for membrane flutter in the
R1–R parameter space for fixed T0 = 10−2 and R3 = 101.5 . Note that R1 is the dimensionless membrane mass, T0 is the dimensionless pretension, and
3 is the dimensionless stretching modulus. We also define R to be the length of the inextensible rods at either end of the membrane. The white
ackground corresponds to membranes with no zero-crossings. At each (R1, R) value the set of snapshots is normalized by the maximum deflection
f the snapshots to show the motions more clearly. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)

embrane occurs close to either the leading or trailing edge of the membrane. However, at R1 ∈ [10−0.75, 100.25
] the

aximum membrane deflection seems to occur close to the midpoint of the membrane, with the deflection at the
ndpoints decreasing with decreasing R1 in this region.
We now quantify the membrane shapes in terms of the time-averaged number of ‘zero crossings’. Our definition is the

umber of crossings that a membrane makes with the line connecting its two endpoints, averaged over time—excluding
he endpoints. This is one way to measure the ‘waviness’ of a shape that is not sinusoidal and whose wavelength is
hus not well defined (Alben, 2015; Mavroyiakoumou and Alben, 2020). We first focus on moderate-to-large values of R1
here the membranes have fewer zero-crossings (Fig. 7). Decreasing R1 from the largest value (102), the average number
f zero crossings changes non-monotonically. In most cases it decreases until about R1 = 101.25 for R ∈ [100, 101

]. Further
ecreases in R1 give rise to more periodic motions with slightly larger numbers of zero-crossings. Independent of R1, when
0 and R3 are fixed at 10−2 and 101.5, respectively, and when the rods have a length of ≤ 10−0.75 then the membrane
ehaves similarly to the fixed–fixed case, where a single-hump solution is obtained. We use a white background for
embranes with no zero-crossings (single hump solutions).
In Fig. 8 we present the zero-crossings in the small R1 (≤ 10−1) region, where higher spatial frequency components

ccur with decreasing R1. The motions also become more irregular at the smallest R1 values, where we increase the
patial grid density to resolve the fine undulations that appear on the membranes. On the right-hand side of Fig. 8 we
show four panels with examples of sequences of membrane snapshots, equally spaced in time (with the thicker black
line representing the membrane at the last time), to emphasize that even though the number of zero-crossings is a good
measure of waviness it also misses some features of the shapes. For example, we see that the shape at R1 = 10−1.5

and R = 100 (bottom row of right-most column) has small undulatory features that are not reflected in the number of
zero-crossings. In the small-R1 region, the numbers of zero-crossings (shown by the colors) vary more rapidly compared
to Fig. 7. In the lower-left corner, snapshots are omitted because steady-state membrane motions were not obtained.

To quantify the small undulatory features on the membranes, we calculate the time-averaged number of local extrema
of deflection. In Fig. 9 we show that for fixed R3 = 101.5, T0 = 10−2, and various fixed values of R, the time-averaged
number of local extrema for small R1 scales as R−1

1 approximately. At moderate-to-large values of R1 (i.e., [100, 102
]) and

R small, the membranes tend to fore–aft symmetric, single-hump solutions and therefore the average number of extrema
is one. For the oscillatory shapes that occur at larger values of R in the same region of R1, the average number of local
extrema is not large (i.e., between 1 and 5).
9



C. Mavroyiakoumou and S. Alben Journal of Fluids and Structures 107 (2021) 103384

a
t

f

t
t
u

Fig. 8. (Inextensible rods) Colors represent the time-averaged number of zero-crossings (values in color bar at right) for membrane flutter in the
R1–R parameter space for fixed T0 = 10−2 and R3 = 101.5 for light membranes (R1 ≤ 10−1). Snapshots of these large-amplitude membrane motions
re superposed to show the motions clearly in this region. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

Fig. 9. (Inextensible rods) Time-averaged number of local extrema of the membranes versus the dimensionless mass density R1 for various R and
ixed R3 = 101.5 and T0 = 10−2 . The dotted black line at small R1 indicates the scaling R−1

1 .

We have considered the amplitude of membrane deflection and its spatial frequency (in terms of zero crossings and
numbers of extrema). The third main quantity we consider is the temporal period. We compute the power spectra of the
time series of the membrane’s midpoint, y(0, t), using the fast Fourier transform. We identify the dominant frequency
as that corresponding to the largest local maximum in the power spectrum (in a few cases excluding the peak closest
to zero, which represents the time scale of the entire time series, and occurs because of the discontinuity in y(0, t) at
he beginning and end of the time series). The background color in Fig. 10 represents the dominant period, defined as
he reciprocal of the dominant frequency, and is white for the steady single-hump solutions since the dominant period is
ndefined in the steady case. Similar to Figs. 6 and 8, in the lower-left corner, snapshots are omitted because steady-state

membrane motions were not obtained.
We find different types of power spectra in different regions of R1–R space, corresponding to the different motions

illustrated in Fig. 10. At small R (≲ 10−1) the motions are more chaotic and there, the power spectra have a broad band
1
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Fig. 10. (Inextensible rods) Colors represent the dominant periods (values in color bar at right) of large-amplitude motions for various R1 and R,
nd fixed T0 = 10−2 and R3 = 101.5 . The data in the bottom-left corner are obtained for a shorter time and so we neglect the computational results
or those values of R1 and R. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

Fig. 11. Plots of the dominant period (T ) versus mass density R1 for various R and fixed R3 = 101.5 and T0 = 10−2 . The dotted black line at large
1 shows the scaling R1/2

1 and the dotted black line at small R1 shows the scaling R5/6
1 .

of frequencies. At small-to-moderate values of R1—between 10−0.75 and 100.25—the motions are periodic and thus the
power spectra have a discrete set of peaks. At moderate values of R1—between 100.5 and 101—the peak frequencies are
decreased. Finally, for large values of R1 (≥ 101.25) the motions become somewhat chaotic again (as at the smallest R1),
and with little dependence on R except at values greater than 101, where there is a slight increase in the dominant period.
In Fig. 11 we show how the dominant period varies with R1 for various fixed values of R. The trend at the largest R1 is
approximately T ∼ R1/2

1 (admittedly over a short range of R1). This scaling arises when one approximates the normal
omponent of the membrane equation [Eq. (4)] by its y-component, and chooses a characteristic time scale t0 so that
1∂tty balances other terms that depend on y but not its time derivatives (i.e., the R3 and T0 terms and some of the fluid

pressure terms). At large R1, R1∂tty is comparable to the other terms when R1/T 2
∼ 1 giving a typical period T ∼ R1/2

1 . For
some values of R, when 100.25 < R1 < 101.25 and R1 > 101.5, the period increases to > 30 as can be seen in Fig. 11. This
ange of moderate R1 is a transition region, and at smaller R1, (here, 10−1.5

≤ R1 < 100.25), another power law behavior
s observed: T ∼ R5/6.
1
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Fig. 12. Schematic diagram of a flexible membrane (green surface) at an instant in time. U is the oncoming flow velocity. There is also a vortex
ake (light green surface) emanating from the membrane’s trailing edge. The leading edge of the membrane with position (x(−1, t), y(−1, t)) is
ttached to springs (red coils) of spring constant ks whose other ends are fixed at (0, 0) for all time. The membrane’s trailing edge with position
x(1, t), y(1, t)) is attached to another spring whose other end is fixed at (2, 0). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

.1. Hookean springs

The inextensible rods are a particular choice of tether motivated by the experiment of Kashy et al. (1997). In this
ection we briefly explore some alternative tethers involving Hookean springs. In the first case, we replace the inextensible
ods at the ends of the membrane with springs of rest length zero that obey Hooke’s law (Hooke, 1678). We illustrate
chematically this alternative configuration in Fig. 12. The four prescribed dimensionless parameters are: membrane
ass R1, stretching rigidity R3, pretension T0, and spring stiffness ks. We solve for the four endpoint unknowns (x±1,

±1) with four boundary conditions. At the membrane-spring contact, the tension forces must be equal in magnitude
nd direction to avoid infinite acceleration at the membrane ends, as for the rod tethers. Here the forces are equal in
agnitude when:

ks
√
x2
−1 + y2

−1 = T−1 and ks
√
(x1 − 2)2 + y21 = T1. (14)

ere T±1 is the tension force at α = ±1 and
√
x2
−1 + y2

−1 is the stretch of the spring (change in length from its rest length,
ero). The directions of the tensions in the membrane and springs are equal if the slopes of the membrane and springs
re equal:

∂αy
∂αx

⏐⏐⏐⏐
α=−1

=
y−1 − 0
x−1 − 0

and
∂αy
∂αx

⏐⏐⏐⏐
α=1

=
0 − y1
2 − x1

. (15)

When we simulate the spring-tethered membrane for various ks, we find that for sufficiently large ks, the membrane
ehaves like the fixed–fixed case, converging to a steady single-hump shape when the flat state is unstable. As we decrease
s, the single hump solution continues until a threshold value of ks (near unity) where the membrane develops a sharp
pike at the trailing edge at early times and the simulations fail to converge beyond a short time. Unlike the inextensible-
od tethers, here the springs are too soft to ensure that the membrane remains under tension during the dynamics, and
he membrane equation is ill-posed under compression (Triantafyllou and Howell, 1994).

.2. Vertical Hookean springs

More interesting dynamics occur with springs in an alternative configuration, in which the springs are attached to
assless rings that slide along vertical poles, shown in Fig. 13. This is the same as the free–free boundary condition
xcept that the vertical motion is not free but instead resisted by springs. As in the free–free case, the vertical poles
nsure that the membrane does not experience significant compression, and thus stable long-time oscillatory dynamics
an occur. We will show that this boundary condition is equivalent to that of the inextensible-rod tethers in the limit
f small deflections, so it provides an alternative way to understand the effect of the rods. Both the rods and vertical
prings allow for a difference in resistance to transverse and in-plane motions, and hence allow for stable oscillatory
arge-amplitude flutter.

Here, by balancing the vertical forces on the rings, we obtain the mixed boundary conditions:

T−1
∂αy

⏐⏐⏐⏐ − ksy−1 = 0 and − T1
∂αy

⏐⏐⏐⏐ − ksy1 = 0. (16)

∂αs α=−1 ∂αs α=1

12
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Fig. 13. Schematic diagram of a flexible membrane (green surface) at an instant in time. U is the oncoming flow velocity. There is also a vortex
ake (light green surface) emanating from the membrane’s trailing edge. The leading edge of the membrane with position (0, y(−1, t)) is attached to
ertical springs (red coils) of spring constant ks whose other end is fixed at (0,0) for all time. The membrane’s trailing edge with position (2, y(1, t))
s attached to another vertical spring whose other end is fixed at (2, 0). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

Fig. 14. (Vertical springs) Snapshots of large-amplitude membrane motions in ks–R3 space for fixed T0 = 10−2 and R1 = 10−0.5 . Colors represent the
ime-averaged deflection of membranes defined by Eq. (11). Oscillatory (ks ≤ 100) and steady single-hump solutions (ks ≥ 100.5) are obtained. At
ach (ks, R3) value, the set of snapshots is scaled to fit within a colored rectangle at the (ks, R3) value and normalized by the maximum deflection of
he snapshots to show the motions more clearly. The framed panel at right shows a finer grid between ks = 100.12 and 100.18 , near the transitional
s value. The red line separates membranes with m = 40 points (above) and m = 80 points (below). (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

he free–free case corresponds to ks = 0 (Mavroyiakoumou and Alben, 2020). The fixed–fixed case (y(−1, t) = y(1, t) = 0)
ccurs when ks → ∞. The remaining boundary conditions are x−1 = 0 and x1 = 2, due to the poles.
In Fig. 14 we show membrane snapshots in the ks–R3 parameter space for fixed T0 = 10−2 and R1 = 10−0.5. The shapes

re superposed on colors that represent the time-averaged deflections of the membranes [Eq. (11)]. As for the rod tethers,
he stretching rigidity R3 mainly affects the deflection of the membrane, not its shape. For R3 = 100.5 and ks ∈ [100.5, 101

]

he deflections are so large that vortex shedding might not be confined to the trailing edge in reality, but we include these
esults to illustrate the model’s behavior. The red line separates simulations with m = 80 points (below) and m = 40
above); the smaller value is needed when R3 ≥ 103 to reach the steady-state regime. When ks ≥ 100.5 the membranes
each the single hump state, as in the fixed–fixed case, and for the rods with R ≤ 10−1 in Fig. 4.

There is a critical value of ks at which the membrane transitions from the steady single-hump solutions to oscillatory
otions. In the framed panel on the right-hand side of Fig. 14, we show the dynamics close to the transition. From ks = 100

o 100.12 the membrane shapes become less wavy. At ks = 100.12 and 100.14 they have only one ‘‘neck’’ in their deflection
nvelopes, apart from (k , R ) = (100.12, 100.5) and (100.14, 103).
s 3
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. Linearized membrane model

In this section we analyze the small-amplitude behavior of the system described in Section 2. We are able to present
he small-amplitude motions of the membranes at a wide range of parameter values (membrane mass and pretension)
y computing the eigenvalues and eigenmodes in detail, and after further simplifications, obtain asymptotic scaling
aws. The modes resemble the large-amplitude motions qualitatively, and quantitatively in some cases. We consider
mall deflections y(x, t) from the straight configuration, aligned with the flow. Since the membrane stretching factor is
αs ≈ 1+∂xy2/2, to linear order α ≈ s ≈ x, all α-derivatives in Eq. (4) are x-derivatives, and ζ (α, t) ≈ ζ (x, t) = x+ iy(x, t).

At linear order, the tangent and normal vectors are:

ŝ ≈ (1, ∂xy)⊤, n̂ ≈ (−∂xy, 1)⊤. (17)

The linearized version of the membrane equation [Eq. (4)] is

R1∂tty − T0∂xxy = −[p]. (18)

When considering the linearized problem the term in the tension force T (α, t) = T0 + R3(∂αs − 1) involving R3
(dimensionless stretching rigidity) is neglected since it is of quadratic order, and so the linear dynamics are governed
by the dimensionless membrane mass R1 and the dimensionless pretension T0.

The linearized conditions from Sections 2.1 and 3.2 are:

Inextensible rods: x(−1, t) = 0, x(1, t) = 2, ∂xy(−1, t) =
1
R
y(−1, t), ∂xy(1, t) = −

1
R
y(1, t), (19)

Vertical Hookean springs: T0∂xy(−1, t) − ksy(−1, t) = 0, −T0∂xy(1, t) − ksy(1, t) = 0. (20)

e note that the boundary conditions in Eqs. (19) are equivalent to Eqs. (20) with 1/R = ks/T0. In Mavroyiakoumou and
lben (2020) the boundary conditions were (i) fixed–fixed: y(±1, t) = 0, (ii) fixed–free: y(−1, t) = 0, ∂xy(1, t) = 0, and
iii) free–free: ∂xy(±1, t) = 0.

The dynamics of the membrane are coupled to the fluid flow through the pressure jump term [p](x, t). The linearized
ersion of the pressure jump equation [Eq. (7)] is

∂tγ + ∂xγ = ∂x[p]. (21)

he set of equations is closed by relating the vortex sheet strength γ (x, t) back to the membrane position y(x, t), through
he kinematic condition [Eq. (6)], which in linearized form is:

∂ty(x, t) = −∂xy(x, t) +
1
2π

−

∫ 1

−1

v(x′, t)
√
1 − x′2(x − x′)

dx′
+

1
2π

∫ ℓw+1

1

γ (x′, t)
x − x′

dx′, −1 < x < 1. (22)

Here, we use that ∂tζ (x, t) ≈ −i∂ty and from Eq. (17), the normal velocity component is Re(n̂∂tζ ) ≈ ∂ty. The general
olution γ (x, t) has inverse square-root singularities at x = ±1 and so we define v(x, t), the bounded part of γ (x, t), by
= v/

√
1 − x2. The second integral in Eq. (22) represents the velocity induced by the vortex sheet wake, which extends

downstream from the membrane on the interval 1 < x < ℓw + 1, y = 0. Therefore, the eigenvalue problem assumes a
ree vortex wake of a given fixed length ℓw , which we take to be large, 39 here, as in Mavroyiakoumou and Alben (2021).
n that work, we found that the modes are essentially unchanged at larger values of ℓw . This long flat wake corresponds
o starting with a deflection that is sufficiently small that we remain in the small-amplitude regime for large times.

The circulation in the wake,

Γ (x, t) = −

∫ ℓw+1

x
γ (x′, t) dx′, (23)

s conserved along material points of the wake by Kelvin’s circulation theorem. At linear order, the wake moves at the
onstant speed (unity) of the free stream; self-interaction is negligible.
At each time t , the total circulation in the wake, Γ (1, t), is set by the Kutta condition, i.e.,

v(1, t) = 0. (24)

sing the system of Eqs. (18), (21), (22), and (24) we solve for the following unknowns: the motion of the membrane and
he strength of the vortex sheets along the membrane and in the wake.

For the linearized system, we may write solutions in the following form:

y(x, t) = Y (x)eiσ t , γ (x, t) = g(x)eiσ t , v(x, t) = V (x)eiσ t , Γ (1, t) = Γ0eiσ t , (25)

here Y , g , V , and Γ0 are components of eigenmodes with complex eigenvalues σ = σR + iσI ∈ C. The real parts of
he eigenvalues are the angular frequencies and the imaginary parts are the temporal growth rates. If σI > 0, small
erturbations decay exponentially and the mode is stable, while if σI < 0, small perturbations grow exponentially and
he mode is unstable. If σI = 0 the mode is neutrally stable. We wish to identify the region of R1–T0 space in which
nstable eigenmodes exist, and when there are multiple unstable modes, identify the fastest growing mode.
14
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Fig. 15. (Vertical springs) The region in R1–T0 space in which membranes are unstable. The springs attached at the leading and trailing edges of
the membrane have spring constant ks = 10−1 . The red line and red dots indicate the position of the stability boundary computed using linear
interpolation between σI of the smallest T0 that gives a stable membrane and the σI of the largest T0 that gives an unstable membrane (shown
in the error bars). The color of the dots below the stability boundary labels: (A) The imaginary part of the eigenvalue (σI) corresponding to the
most unstable modes. It represents the temporal growth rate. (B) The real part of the eigenvalues (σR) for the most unstable mode, representing the
angular frequency. The gray dots correspond to modes that lose stability by divergence and have σR ≤ 10−9 . (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Since Γ is conserved at material points of the free vortex sheet as they move downstream (at speed 1), and the material
point at location x ≥ 1 at time t was at location x = 1 at time t − (x − 1) we can write

Γ (x, t) = Γ0eiσ (t−(x−1))
= Γ0e−iσ (x−1)eiσ t , 1 < x < ℓw + 1, (26)

γ (x, t) = ∂xΓ (x, t) = −iσΓ0e−iσ (x−1)eiσ t , 1 < x < ℓw + 1, (27)

using Γ (1, t) from Eq. (25). Inserting the eigenmodes (25) into the governing Eqs. (18) and (22), yields

− σ 2R1Y = T0∂xxY − iσ
∫ 1

−1
g dx − g, (28)

and

iσY = −∂xY +
1
2π

−

∫ 1

−1

V (x′)
√
1 − x′2(x − x′)

dx′
−

1
2π

iσΓ0

∫ ℓw+1

1

e−iσ (x′−1)

x − x′
dx′, −1 < x < 1, (29)

respectively. Because σ appears in the exponential in the second integral in Eq. (29), this is a nonlinear eigenvalue
problem. We solve the nonlinear eigenvalue problem iteratively by the method shown in the Appendix, the same as
in Mavroyiakoumou and Alben (2021).

4.1. Eigenmode analysis of membranes attached to vertical Hookean springs

For the small-amplitude analysis we focus on membranes attached to vertical Hookean springs, equivalent to rods
(shown by Eqs. (19) and (20) with 1/R = ks/T0).

In Fig. 15 we plot the imaginary (Fig. 15A) and real parts (Fig. 15B) of the most unstable eigenvalues in the region
f instability for membranes attached to springs with spring constant ks = 10−1 in R1–T0 space. The red line marks
he boundary where the eigenvalues change from all σI > 0 (stable membranes) to at least one σI < 0 (unstable
embranes). The stability boundary moves to larger pretension (T0) values with increasing membrane mass (R1), starting
t R1 = 10−1.25. As R1 decreases below 10−1.75 the critical pretension reaches a lower plateau. Below and to the right of
he red line is the unstable region. The red dots that mark the stability boundary are computed by linear interpolation
f σI between neighboring T0 values (shown by the horizontal black bars) that bracket the boundary: all σI are positive
t the larger of the T0 values and above, but one σI is negative at the smaller of the T0 values. The gray dots in Fig. 15B
ndicate negative σI and nearly zero σR (σR ≤ 10−9) for the most unstable eigenmode, which corresponds to divergence
ithout flutter; they occur at (R1, T0) = (10−0.75, 10−0.85), (101, 100.25), and several cases with R1 ≥ 101.5 and T0 ≤ 100.
he colored dots in Fig. 15B indicate a nonzero real part (value in color bar at right) for the most unstable eigenmode,
orresponding to flutter and divergence.
In Fig. 16 we examine the variations in the most unstable eigenmodes in the same (R1, T0) space as Fig. 15,

orresponding to the eigenvalues shown there. We also include our results from Mavroyiakoumou and Alben (2021, Figs. 5

nd 13) for the stability boundary when both ends of the membrane are fixed (dotted blue line) and when both ends of

15



C. Mavroyiakoumou and S. Alben Journal of Fluids and Structures 107 (2021) 103384

o
h
s
l
i

t
o
n
e
t
R
(

h

w

T
E

v

w
b

b
m

Fig. 16. (Vertical springs) The shapes Y (x) of the most unstable eigenmode as a function of R1 and T0 with springs that have a spring stiffness
f ks = 10−1 . The real part of Y (x) is shown in green and the imaginary part of Y (x) is shown in blue. Each shape is scaled, both vertically and
orizontally, to fit within the plot. Modes exhibiting a divergence instability have a gray rectangle outline. The shapes are superposed on the same
tability boundary (red line) as in Fig. 15. The blue dotted line represents the stability boundary for fixed–fixed membranes and the black dotted
ine represents the stability boundary for free–free membranes from Mavroyiakoumou and Alben (2021). We include them here for comparison. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

he membrane are free (dotted black line). The real part of the eigenmode Y (x) is shown in green and the imaginary part
f Y (x) is shown in blue. We place gray rectangles around the modes that lose stability by divergence. The shapes do
ot change noticeably for the wavier motions at R1 ∈ [10−3, 10−2

]. At these small R1 values the deflection at the trailing
dge is nearly zero. With R1 increased to (10−1, 10−0.25), however, the maximum deflection occurs at the trailing edge of
he membrane in most cases. Here and at some larger values of R1, the mean slope of the membrane is nonzero. When
1 ∈ [101.25, 103

] and T0 = 100.25 the modes are nearly alike and their growth rates (σI, Fig. 15A) and angular frequencies
σR, Fig. 15B) are almost equal.

In the limit R1, T0 ≫ 1, the fluid pressure is negligible and the linearized membrane equation reduces to the
omogeneous wave equation

R1∂tty − T0∂xxy = 0, (30)

hich after substituting the form of y(x, t) from Eq. (25) becomes

−σ 2R1Y − T0∂xxY = 0. (31)

he eigenmodes are combinations of cos(kx) and sin(kx), with k = ±σ
√
R1/T0, satisfying the two boundary conditions in

qs. (20). We find k by determining where the determinant of the matrix(
−kT0 sin(−k) − ks cos(−k) kT0 cos(−k) − ks sin(−k)

kT0 sin(k) − ks cos(k) −kT0 cos(k) − ks sin(k)

)
(32)

anishes, which occurs if k sin(k) − (ks/T0) cos(k) = 0 or k cos(k) + (ks/T0) sin(k) = 0. The numerical solutions of these
two nonlinear equations for ks = 10−1 and T0 = 101 are:

k = 0.0998, 1.5771, 3.1448, 4.7145, 6.2848, 7.8553, 9.4258, 10.9965, 12.5672. (33)

The eigenmodes are given by

Y (x) = cos(k(x + 1)) +

(
ks
T0

)
1
k
sin(k(x + 1)), (34)

ith k from Eq. (33), for −1 ≤ x ≤ 1. Heavy membranes (R1 > 102) with T0 between 100.25 and T0C (R1) (i.e., the stability
oundary) all lose stability with the third mode, k = 3.1448 in Eq. (34).
We now consider the analogous results when the Hookean spring constant is increased to ks = 100. The stability

oundary is shown as the red dots connected by red lines in Figs. 17A and 17B. As with ks = 10−1, the stability boundary
oves to larger pretension (T0) values with increasing membrane mass (R1), starting at R1 = 102. Now the critical

pretension reaches a lower plateau at R1 = 100 and below. The gray dots in Fig. 17B again indicate divergence without
flutter (negative σ and nearly zero σ (≤ 10−9) for the most unstable eigenmode). We observe this for all R ≤ 100
I R 1
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a

Fig. 17. (Vertical springs) Same as Fig. 15 but with ks = 100 .

Fig. 18. (Vertical springs) Same as Fig. 16 but with ks = 100 .

nd R1 ∈ [100.75, 101.25
] close to the stability boundary, as well as for (R1, T0) = (103, 100) and R1 ∈ [10−3, 10−1

]

with T0 = 10−0.75. Therefore, an increase in the spring stiffness not only changes the location and shape of the stability
boundary but also leads to more instances of the divergence instability at smaller R1 and fewer at larger R1.

The corresponding eigenmodes are shown in Fig. 18. The critical pretension for R1 < 100 is larger for ks = 100 than
for ks = 10−1 and lies almost midway between the stability boundary for fixed–fixed membranes (ks → ∞, blue dotted
line) and for free–free membranes (ks = 0, black dotted line). The mode shapes of light membranes R1 ≤ 100 close to
the stability boundary have three extrema and are mostly symmetric. The shapes do not vary noticeably with R1 at these
R1 values. The eigenvalues in Fig. 17 were also nearly constant in this region for fixed T0. In general, as T0 decreases the
most unstable mode changes to a ‘‘wavier’’ profile at small R1. However, there are exceptions: the membrane modes at
R1 ≥ 101 and T0 = 100 all have a similar shape (small but nonzero mean slope) but the associated eigenvalues vary more
significantly there, as can be seen from Fig. 17.

Using ks = 100 and T0 = 101 we have that the determinant of Eq. (32) vanishes when

k = 0.3111, 1.6320, 3.1731, 4.7335, 6.2991, 7.8667, 9.4354, 11.0047, 12.5743. (35)

When the mass density is between 100.75 and 102 (especially close to the boundary), the membranes are similar in shape
to those with ks = 10−1. The modes for heavy membranes (R1 > 102), with T0 between 100.5 and T0C (R1), all lose stability
again with the third mode, k = 3.1731 in Eq. (34).

Increasing ks further to 101 we approach the small-amplitude dynamics of a membrane whose edges are both fixed
at zero deflection. In Fig. 19 the colored dots give the imaginary (Fig. 19A) and real parts (Fig. 19B) of the most unstable
eigenvalues (with corresponding eigenmodes shown later, in Fig. 20). There are now many more cases of divergence
without flutter (gray dots in Fig. 19B). At R > 102 and T > 100, divergence with flutter occurs (colored dots in Fig. 19B).
1 0
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Fig. 19. (Vertical springs) Same as Fig. 15 but with ks = 101 .

Fig. 20. (Vertical springs) Same as Fig. 16 but with ks = 101 .

In Fig. 20 we see that the critical pretension for R1 ≤ 101.5 is almost the same as the stability boundary for fixed–fixed
embranes (ks → ∞, blue dotted line in Fig. 18). We place gray rectangles around the modes that lose stability by
ivergence. The shapes are also similar to the ones seen for a fixed–fixed membrane: For R1 < 102 and T0 just below
0C , the unstable eigenmode is a single-hump shape that is nearly fore–aft symmetric. As the pretension is decreased
urther below T0C (at T0 = 100 and R1 < 102.5) the divergent eigenmode becomes asymmetric, its maximum deflection
point shifting towards the trailing edge. As the membrane mass (R1) is increased to 102.5, the maximum camber point
oves towards the midchord and the membrane shape becomes almost fore–aft symmetric. At a smaller T0 (10−0.25)

he membranes still lose stability by divergence but there is now an inflection point approximately at the membrane’s
idchord, with the maximum point on the membrane being closer to the aft part. Even though the membrane mode
hapes generally look very similar to the fixed–fixed membranes in Mavroyiakoumou and Alben (2021, Fig. 5) when
s = 101, this is not the case for R1 > 102.5. The critical pretension in Fig. 20 starts to increase when R1 ≳ 102 as opposed

to a smaller mass, i.e., R1 ≳ 101.5 for fixed–fixed membranes, and the mode shapes there are also very different. As for
the other ks values, here we use ks = 101 and for a fixed value of T0 determine the value of k such that the determinant
of Eq. (32) is equal to zero. In Fig. 20 the first membrane that becomes unstable just below the stability boundary (at
T0 = 101.35) is approximately the third sinusoidal mode (k = 3.28). At T0 = 101 and 100.5 the most unstable modes
are approximately the fifth and seventh sinusoidal modes (k = 6.44 and 9.74, respectively). The trend of odd-numbered
modes does not continue when T0 < 100.5.

To summarize, we have found that the stability boundary has an upward slope for large R1, whereas for small-to-
moderate R values, the critical T is smaller. At small R the critical pretension for instability reaches a plateau value
1 0 1
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I

Fig. 21. Schematic diagram of a section of an infinite, flexible membrane (green surface) at an instant in time. Here L is the x-period of the membrane,
y(x, t) is the membrane deflection and the red springs of stiffness ks are spaced one unit apart. The distance between springs is smaller than the
membrane’s period (L > 1, L ∈ N). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

that depends on the spring stiffness. When R1 and T0 are dominant over fluid pressure forces, the membrane eigenmodes
tend to neutrally-stable sinusoidal functions. Increasing the spring stiffness ks introduces more divergence instabilities, in
agreement with the fixed–fixed case studied in Mavroyiakoumou and Alben (2021). In general, the most unstable modes
become more wavy at smaller T0 and small R1. The nonlinear eigenvalue problem for the linearized membrane model
has allowed us to extend results from the large-amplitude model in Section 3 to a wider range of R1–T0 space. Next, we
study a more analytically tractable model—that of an infinite, periodic array of springs attached to an infinite membrane.
This model allows us to compute solutions for a much wider range of parameters and obtain asymptotic scaling laws.

5. Periodic array of springs on an infinite membrane

We have seen that the eigenvalue problem for a membrane tethered with springs (or rods) interpolates between the
fixed–fixed and free–free cases. The vortex sheet wake results in a nonlinear eigenvalue problem, requiring an iterative
solver that is time-consuming, particularly at small T0. We now consider a simplified model with spatially periodic
solutions that will allow us to derive asymptotic scaling laws. We assume the membrane extends to infinity upstream and
downstream, and is tethered by an infinite, periodic array of Hookean springs (with stiffness ks). The horizontal spacing
between the springs (unity) is analogous to the length of the finite membrane in the previous section. This problem is
shown schematically in Fig. 21, where the green surface represents a section of the infinite membrane at an instant in
time and the pairs of red coils on either side of the membrane span represent the springs. The membrane has period L.
By taking L larger than the distance between the springs, the infinite periodic membrane may have different deflections
at streamwise-adjacent spring locations, as occurs for the tethered finite membrane. As L increases, the membrane can
assume a wider range of shapes, but the eigenvalue problem becomes more costly to solve. We choose L = 4 as a
compromise between these competing considerations. The flow velocity is again uniform at infinity (far above and below
the membrane). With an infinite membrane there is no free vortex wake, and the nonlinear eigenvalue problem is reduced
to a quadratic eigenvalue problem, which has analytic solutions for the eigenvalues when ks = 0. In Newman and
Païdoussis (1991) a related approximate model was considered—an infinite membrane with two- and three-harmonic
truncations that were used to approximate fixed–fixed boundary conditions. The system of governing equations is:

R1∂tty − T0∂xxy = −[p] − ksy(x, t)δ1(x), (36)

∂ty + ∂xy =
1
2π

∫
∞

−∞

γ (x′, t)
x − x′

dx′, (37)

∂tγ + ∂xγ = ∂x[p]. (38)

n Eq. (36), δ1(x) is a periodic Dirac delta function with period one, resulting in a spring force at each integer x, and
proportional to y(x, t), the vertical deflection there. We next write the membrane position, vortex sheet strength, and
pressure jump across the membrane, each as a Fourier series with period L, and the periodic Dirac delta function as a
Fourier series with period one:

y(x, t) =

∞∑
k=−∞

ŷkei(2πk/L)xeiσ t , γ (x, t) =

∞∑
k=−∞

γ̂kei(2πk/L)xeiσ t , (39)

[p](x, t) =

∞∑
k=−∞

[̂p]ke
i(2πk/L)xeiσ t , δ1(x) =

∞∑
k=−∞

ei(2πk)x, (40)
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espectively, where ŷk, γ̂k, [̂p]k are complex Fourier coefficients to be found.
Using Eqs. (39) and (40), the membrane equation [Eq. (36)] can be written as

∞∑
k=−∞

(
−σ 2R1ŷk + T0

(
2πk
L

)2

ŷk

)
ei(2πk/L)x

= −

∞∑
k=−∞

[̂p]ke
i(2πk/L)x

− ks
∞∑

k′=−∞

ŷk′ei(2πk′/L)x
∞∑

k′′=−∞

ei(2πk′′)x, (41)

having divided throughout by the common factor eiσ t . Substituting Eqs. (39) into Eq. (37), we obtain
∞∑

k=−∞

(
iσ + i

2πk
L

)
ŷkei(2πk/L)xeiσ t

=

∞∑
k=−∞

−
i
2
sgn

(
2πk
L

)
γ̂kei(2πk/L)xeiσ t , (42)

hich implies that

i
(

σ +
2πk
L

)
ŷk = −

i
2
sgn

(
2πk
L

)
γ̂k. (43)

imilarly, if we substitute Eqs. (39) and (40) into Eq. (38), we get

i
(

σ +
2πk
L

)
γ̂k = i

2πk
L

[̂p]k. (44)

sing Eqs. (43) and (44) in Eq. (37) and in Eq. (38), we obtain

γ̂k = −2sgn (k)
(

σ +
2πk
L

)
ŷk, (45)

[̂p]k = −
L

π |k|

(
σ +

2πk
L

)2

ŷk, (46)

espectively, where we use that sgn (2πk/L) = sgn(k) and thus write Eq. (41), in terms of ŷk only, as
∞∑

k=−∞

(
−σ 2R1 + T0

(
2πk
L

)2
)
ŷkei(2πk/L)x

=

∞∑
k=−∞

L
π |k|

(
σ +

2πk
L

)2

ŷkei(2πk/L)x

− ks
∞∑

k′=−∞

ŷk′

(
∞∑

k′′=−∞

ei(2π (k′′L+k′)/L)x

)
. (47)

e match coefficients of ei(2πk/L)x in Eq. (47) and obtain(
−R1 −

L
π |k|

)
σ 2ŷk −

4k
|k|

σ ŷk +

(
2πk
L

)2 (
T0 −

L
π |k|

)
ŷk + ks

∑
k′≡k mod L

ŷk′ = 0, (48)

or k = −N, . . . ,−1, 1, . . . ,N . The last sum in Eq. (48) includes those k′ that are equal to k plus a multiple of L. If we
ake the truncation approximation that ŷk = 0 for |k| > N then Eq. (48) is a system of 2N + 1 equations in 2N + 1
nknowns ŷk. In the derivation we assumed k ̸= 0. From Eq. (43) we see that ŷ0 = 0 (Hilbert transform of a constant is
qual to zero). Therefore, we insert 0 for ŷ0 in the system of equations and remove ŷ0 from the unknowns, resulting in
N equations in 2N unknowns.
Eq. (48) is a quadratic eigenvalue problem of the form

(A2σ
2
+ A1σ + A0)ŷ = 0, (49)

here A2 and A1 are diagonal matrices, A0 is a rank-L matrix, and ŷ is the eigenvector of Fourier coefficients {ŷk, k =

N, . . . ,−1, 1, . . . ,N}. Using polyeig in Matlab we solve for the eigenvalues σ and determine the fastest growing
igenmode, i.e., corresponding to the most negative σI.
In Fig. 22 we show the imaginary parts of the most unstable modes for the periodic membrane problem, over one

eriod 0 ≤ x ≤ 4, and thus with 4 subintervals between springs shown. In a few examples (at the corners) in panels A–D,
e show the locations of the springs by small red lines. In many (but not all cases), the shapes seem to repeat 4 times.
his is particularly true at larger ks, where the springs are stronger and impose a period-1 component more strongly in
he eigenmode. The real parts are similar and are omitted. Membranes that lose stability by divergence without flutter
re again outlined with gray rectangles. We compute the relative error in the eigenvalues when N = 28 and 29:

relative error =

⏐⏐⏐⏐σ28 − σ29

σ29

⏐⏐⏐⏐ . (50)

The maximum relative error is small for the cases in Fig. 22: 0.0437 when R1 = 10−4 (Fig. 22A), 0.0269 when R1 = 10−1

(Fig. 22B), 0.00267 when R = 100 (Fig. 22C), and 1.31 × 10−5 when R = 104 (Fig. 22D).
1 1
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Fig. 22. Imaginary part of the most unstable eigenmode [Im(y(x))] in T0–ks parameter space for (A) R1 = 10−4 , (B) R1 = 10−1 , (C) R1 = 100 , and
(D) R1 = 104 . Modes exhibiting a divergence instability with σR ≤ 10−9 have a gray rectangle outline. In all the panels, we use N = 29 . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The periodic membrane modes do not align precisely with those in the membrane-vortex-wake model due to the
different membrane boundary conditions (periodic versus finite with a trailing vortex wake). However, there are many
qualitative similarities. In both cases, the modes become sharper (or wavier) as we decrease T0. At large R1 the membranes
are more sinusoidal with single bumps between the springs at large values of T0 (in Fig. 22D for the periodic membrane).
At small R1 (Figs. 22A and 22B), the membranes are less sinusoidal and less symmetric. Another similarity at small R1 is
that increasing the spring stiffness ks causes the maximum deflection point of the membrane to move downstream (to
the right) with sharp peaks close to the spring locations (Figs. 22A and 22B as well as Fig. 16). Also true for both models
is that the stability boundary shifts to lower T0 at small R1 and small ks. As a result, at some locations in the lower right
f panels A and B, membranes are omitted because all modes are stable, unlike at the corresponding locations in panels
and D (where R1 is larger).
The membrane deflections at the springs increase when R1 and T0 increase relative to ks. This can be seen by moving

rom left to right in some of the rows of Figs. 22A–C (i.e., increasing T0 at fixed ks), such as ks = 100 in panel C. The same
trend is seen moving from panel A to B to C to D, at the same location in each panel, i.e., increasing R1 with ks and T0
fixed. A similar phenomenon was seen in the membrane-vortex-wake model.

In Fig. 23 we plot the imaginary parts of the most unstable eigenvalues as colored dots in the region of instability
for membranes attached to a periodic array of springs with spring constants ks = 0 (Fig. 23A), ks = 10−1 (Fig. 23B),
ks = 100 (Fig. 23C), and ks = 101 (Fig. 23D). When ks = 0, Eqs. (48) become decoupled scalar quadratic equations which
can be solved analytically. The resulting σI are plotted in Fig. 23A. In Figs. 23B–D, ks ̸= 0, and we use the aforementioned
Matlab eigenvalue solver. With 29 modes, the results are resolved only in a small portion of Fig. 23A—a subset of the
region within the red rectangle. The axis limits of panels B–D coincide with the red rectangle. Both the analytical results in
panel A and the computed results in panels B–D are much easier to obtain than in the case of the membrane-vortex-wake
model, so the data in all the panels of Fig. 23 are much more extensive than in Figs. 15, 17, and 19, a key advantage of
the infinite-membrane model.

For this periodic problem, we see that the stability boundary at large R1 plateaus, independent of the value of ks, i.e., the
critical pretension (T0) is the same for all R1 ≳ 101 instead of increasing with increasing mass as in the vortex-wake model
(Figs. 15, 17, and 19). Although the stability boundaries differ at large R1, here the vortex-wake model’s eigenvalues are
only slightly unstable [σI = O(10−5)] compared to neutrally stable (σI = 0) in the infinite membrane model.

We see that for smaller R1 (< 100), the stability boundary in Fig. 23A is close to the diagonal line T0 = R1, and we will
show this asymptotically in the next section. In panels B–D (ks ̸= 0), this line is no longer the stability boundary, but is
instead the location of a sharp change in σI, shown by the sharp change in colors moving across this line, particularly in
panel B and less so in C and D.

From the colors of the dots in all the panels we see that if we fix R1 and decrease T0, the growth rate σI becomes larger
in magnitude (value in color bar at right). If we fix T0 and increase R1 above T0, the growth rate σI becomes smaller in

magnitude which implies slower growth of instabilities.
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Fig. 23. (Infinite, periodic membrane) The region in R1–T0 space in which membranes are unstable. The color of the dots in the instability region
labels the imaginary part of the eigenvalues (σI) corresponding to the most unstable modes. It represents the growth rate. The springs have stiffness
alues of: (A) ks = 0 (analytical result), (B) ks = 10−1 , (C) ks = 100 , and (D) ks = 101 . The numerical results shown in panels B–D are with N = 29 .
he red rectangle in panel A indicates the region we consider in panels B–D to facilitate comparison. The red outline on some of the colored dots
ndicates the cases where convergence with respect to N (as defined by Eq. (50)) was not obtained. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

In Fig. 23B, ks = 10−1 as in Fig. 15A for the membrane-vortex-wake model. There are two main points of qualitative
greement between the models in this case. One is that a lower plateau of the stability boundary occurs at small R1;
nother is that the growth rates are much lower for R1 < T0. At this ks value (10−1) and at small R1 and T0 close to the
tability boundary (e.g., at T0 = 10−0.5 and 10−0.875, for R1 ≲ 10−2), there are also a few narrow bands of instability (lines
f yellow dots) between stable regions, which was not observed in the membrane-vortex-wake model (Fig. 15A). Moving
o Fig. 23C, ks is increased to 100, and the stable regions in panel B surrounding the isolated bands become unstable in
anel C, with larger growth rates than in the bands. Therefore, the stability boundary in panel C is almost at constant T0
or all R1, with a very small increase when R1 ≥ 101. An upward shift in the lower plateau is also seen in the vortex-wake
odel with the same increase in ks, moving from Fig. 15A to Fig. 17A. Increasing ks further to 101 (Fig. 23D) in the periodic
embrane model these trends continue: the stability boundary is horizontal at T0C ≈ 10−0.25 (a factor of ≈ 3 smaller

han T0C in the small-to-moderate R1 region of Fig. 19), and the growth rates have increased further where R1 < T0. In
igs. 23B–D as T0 decreases, N = 29 is eventually too small to resolve the most unstable eigenmodes. These cases are
hown by red outlines around the colored dots, and become more prevalent as we move from panel B to C to D. These
ases correspond to an eigenvalue relative error (as defined in Eq. (50))> 3 × 10−2 (chosen somewhat arbitrarily; other
alues give a similar classification of nonconvergence).
In Fig. 24 we plot the corresponding real parts of the eigenvalues for the most unstable modes. Increasing the spring

tiffness ks introduces more divergence modes (the gray dots, σR ≤ 10−9). Note that this also occurs in the vortex-wake
odel, Figs. 15, 17, and 19. σR varies more strongly with R1 than with T0. There is almost no variation with T0 in Fig. 24A,
nd little variation in panels B–D—mainly when T0 > R1. Here, as T0 decreases, σR increases but non-monotonically,
articularly at the isolated bands of dots in panel B that become bands of non-monotonic change in σR in panels C and
, including changes between divergence (gray dots) and flutter and divergence (colored dots). Next we discuss more
uantitatively how the real and imaginary parts of the eigenvalues depend on R1 and T0, including asymptotic scaling
aws.
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Fig. 24. (Infinite, periodic membrane) The region in R1–T0 space in which membranes are unstable. The color of the dots in the instability region
labels the real part of the eigenvalues (σR) corresponding to the most unstable modes. It represents the angular frequency. The springs have stiffness
values of: (A) ks = 0 (analytical result), (B) ks = 10−1 , (C) ks = 100 , and (D) ks = 101 . The numerical results shown in panels B–D are with N = 29 .
he gray dots correspond to modes that lose stability by divergence and have σR ≤ 10−9 . The red rectangle in panel A indicates the region we
onsider in panels B–D to facilitate comparison. The red outline on some of the colored/gray dots indicates the cases where convergence with respect
o N (as defined by Eq. (50)) was not obtained. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

.1. Analytical results and scaling laws in the instability region

In this section we find analytically the eigenvalues and the corresponding eigenmodes (sinusoidal functions)—in the
pecial case of ks = 0. From these analytical solutions we derive asymptotic approximations for how the maximum growth
ate, corresponding angular frequency, and dominant wave number depend on R1 and T0 when these parameters are small
nd large. We also study how the scaling laws behave when ks ̸= 0, where numerical solutions are required.
With ks = 0 Eq. (48) reduces to[(

−R1 −
L

π |k|

)
σ 2

−
4k
|k|

σ +

(
2πk
L

)2 (
T0 −

L
π |k|

)]
ŷk = 0, (51)

or k = −∞, . . . ,−1, 1, . . . ,∞. Solving Eq. (51) for σ , we obtain

σ = −
2k

|k| (R1 + L/(π |k|))
±

√
Dk, (52)

here

Dk :=
4

(R1 + L/(π |k|))2

[
1 +

(
R1 +

L
π |k|

)(
πk
L

)2 (
T0 −

L
π |k|

)]
. (53)

he term in brackets can be written as (L(−R1 + T0) + πR1T0|k|) multiplied by a positive factor. Therefore Dk can be
negative only for T0 < R1. When R1 is small the R1T0 term is negligible, so the stability boundary follows T0 = R1 as
shown in Fig. 23A.
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able 3
ummary of asymptotic scalings for the dominant wavenumber (kmax), the real part of the eigenvalue (σR), and the imaginary part of the eigenvalue
σI) in the small- and large-R1 and small-T0 regimes, in the instability region.

Regimes Quantities

kmax σR σI

R1 → ∞ (fixed T0 ≤ T0C ) max
(

L
2πT0

, 1
)

2
R1

max

(
1

√
R1T0

,
2π

L
√
R1

√
L
π

− T0

)

R1 → 0 (T0 = cR1 , 0 < c < 1)
LC

4πT0

2C
R1(C + 4c)

√
C3(4 − 4c − C)
2R1(C + 4c)

√
c

T0 → 0 (fixed R1)
L

2πT0

2
R1

1
√
R1T0

In Eq. (52) there are two possible eigenvalues for each R1 and T0 combination (due to the square root) that correspond
o a complex-conjugate pair. We can then find k for the most unstable mode by setting the derivative of Eq. (53) with
respect to k to zero and solving for k:

kmax = ±

L(R1 − 5T0) + L
√
R2
1 + 14R1T0 + T 2

0

4πR1T0
. (54)

ince the discriminant in Eq. (53) is symmetric about k = 0, we have a symmetric pair of kmax in Eq. (54). For the periodic
embrane, kmax must be an integer, but Eq. (54) is not necessarily an integer. Restricting kmax to integer values, we find

hat it is given by one of the integers nearest to the value in Eq. (54).
With this model we are able to obtain asymptotic scaling laws in the instability region for a wide range of R1 and T0

alues. Unstable membrane modes are realized when the argument of the radical in Eq. (52) is negative, i.e., Dk < 0 in
q. (53). We will now present the asymptotic scaling laws for kmax, σR, and σI in different limits within the instability
egion. As we do so, we will refer to the summary in Table 3. We study three asymptotic regimes that correspond to
oving within the unstable region of Fig. 23A (or Fig. 24A) in three different directions. Moving rightward off to infinity,
e have R1 → ∞ with fixed T0 ≤ T0C , the first row of Table 3. Moving diagonally downward and leftward, parallel to
he stability boundary, we have R1 → 0 with T0 = cR1, for a fixed c between 0 and 1, the second row of Table 3. Moving
ertically downward instead, we have T0 → 0 with fixed R1, the third row of Table 3. Moving across each row, we give
he asymptotic behavior of the three main quantities of interest. In the first column of Table 3, we give the asymptotic
orms of kmax by taking the appropriate limits in Eq. (54). In the first and third rows, we obtain

k = kmax →
L

2πT0
. (55)

n the second row, setting T0 = cR1 and taking R1 → 0, we have

k = kmax = ±
LC

4πcR1
= ±

LC
4πT0

where C = (1 − 5c) +

√
1 + 14c + c2. (56)

In Fig. 25 we plot the dominant wavenumber versus T0 for various fixed values of R1 (one per line) and for four values
of spring stiffness: ks = 0 (Fig. 25A), ks = 10−1 (Fig. 25B), ks = 100 (Fig. 25C), and ks = 101 (Fig. 25D). When ks = 0,
we have the analytical result in Eq. (54) (actually, the nonzero integer closest to it, as mentioned previously). We also
still assume that the membrane has period L = 4, as in the ks ̸= 0 case discussed previously. In panel A, we find that
the wavenumber does not vary significantly with R1 except when R1 ≪ 1 and we are close to the stability boundary,
i.e., T0 ≈ R1 for small R1. The lines in panel A with R1 ≤ 10−2 curve downwards towards a vertical asymptote as they
approach the stability boundary, but kmax is bounded below by 1, the endpoint of each line. The dotted black line in
Fig. 25A shows that the dominant wave number for various fixed R1 values follows the scaling T−1

0 . Representative mode
shapes at various (R1, T0) pairs are shown for x ∈ [0, L], with the colors of the modes corresponding to the value of R1.
They are sinusoidal modes with wavelength that increases with T0.

In panels B–D, ks ̸= 0, and the eigenmodes are found computationally. They are a superposition of multiple sinusoidal
modes. For the most unstable mode we define the dominant wavenumber to be that of the sinusoidal component with
the largest amplitude (the k for which |ŷk| is largest [see Eq. (39)]). In Figs. 25B–D we find that at large R1 (≳ 100), where
the spring force is relatively less significant, the lines scale as T−1

0 and do not vary significantly with R1, similarly to the
case without springs in panel A. At smaller R1, the lines deviate greatly from this behavior, and do not seem to follow any
specific power law. The data points outlined with black squares are cases that are not resolved (using the same definition
as for the red circles in Figs. 23 and 24—when the eigenvalue relative error [Eq. (50)] > 3× 10−2). These occur mostly at
small T0, when the dominant wavenumber kmax is very large, so good resolution would require a larger N than is feasible
computationally. The deviations at small R1 coincide with changes in the eigenmodes similar to those seen in Fig. 22
when R and T are small relative to k . In particular, the mode shapes are less sinusoidal and less symmetric than at
1 0 s
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Fig. 25. (Infinite, periodic membrane) Plots showing the membrane’s dominant wavenumber versus T0 for various fixed R1 values at four values of
pring constants: (A) ks = 0 (analytical results), (B) ks = 10−1 , (C) ks = 100 , and (D) ks = 101 . We show typical examples of the imaginary part of
he eigenmode shapes. The dotted black line shows the scaling T−1

0 .

arge R1. For example, as the spring stiffness ks increases, moving from panel B to C to D, the envelopes of deflection for
he green modes at (R1, T0) = (100, 10−1.5) and the red modes at (R1, T0) = (102, 10−1.75) are decreased near the springs
at x = 0, 1, . . . , L = 4. The light blue modes at (R1, T0) = (101, 10−0.75) are sinusoidal in panels A–C but change to a non-
sinusoidal shape at largest ks (panel D), and the dominant wavenumber there is also decreased compared to the sinusoidal
cases in panels A–C. The orange mode (at (R1, T0) = (104, 10−0.375)) has larger R1 and therefore retains a sinusoidal shape
even at the largest ks value. Moving to much smaller R1, such as the purple mode ((R1, T0) = (10−1, 10−1.375)) we again
have a transition from a sinusoidal shape at ks = 0 to a shape that is less sinusoidal as ks increases (from panels B to
D) and less fore–aft symmetric, with peaks of deflection just upstream of the spring locations, unlike the more fore–aft
symmetric red and green shapes at larger R1.

We now present the real parts of the eigenvalues within the instability region, with three asymptotic behaviors given
in the three rows of the second column of Table 3. For each row, we find the dominant behaviors of σR by inserting the
values of kmax from the first column of that row into the first term on the right side of Eq. (52), which is σR. When we take
the appropriate limits for each row (shown on the left side of Table 3), we obtain the expressions for σR in the second
column of Table 3.

Fig. 26 plots the values of the real parts of the eigenvalues (σR) with respect to the membrane mass (R1) for various
fixed T0 (one value per line) and for the same four spring stiffness constants as in Fig. 25, one per panel. As with Fig. 25A,
the values in Fig. 26A, with ks = 0, are obtained analytically through Eq. (52), and are obtained computationally for the
remaining panels. Most of the data lie nearly on the straight line given by 2/R1, corresponding to the first and third rows
in the second column of Table 3. For each T0 ≤ 10−1, the corresponding line curves downward and becomes nearly vertical
at the stability boundary. A vertical asymptote would occur if kmax could decrease to 0 (as in Eq. (54) when R1 → T0), but
it is bounded below by 1 (as in Fig. 25A), and consequently σR also has a positive lower bound at the stability boundary.

When ks is increased from 0 to 10−1 we obtain different behaviors, shown in Fig. 26B. When R1 ≫ 1, the data follow
the same 2/R1 behavior as in panel A for T0 relatively large but below the stability boundary. At other (R1, T0) pairs, the
springs cause different behaviors. Disconnected lines or points are observed (e.g., at T = 10−1.25, 10−1, 10−0.75) where
0
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Fig. 26. (Infinite, periodic membrane) Plots showing the real parts of the eigenvalues for spring constants: (A) ks = 0 (analytical result), (B)
ks = 10−1 , (C) ks = 100 , and (D) ks = 101 . Panels B–D share the same legend, and result from computations with N = 29 . The dotted black line at
moderate-to-large values of R1 shows the scaling R−1

1 .

the membrane switches between being stable and unstable. These correspond to the isolated bands of unstable modes
seen in Fig. 23B.

In Fig. 26 (panels B, C, and D), some membranes lose stability by divergence, shown by the sharp drop in some of the
raphs to values below 10−6 (for example, T0 = 10−0.5 in panels B and C and T0 = 10−1.25 and T0 = 10−0.75 in panel D).
he graphs continue to the left or right R1 limits of the plots with values ≈ 10−12 (not visible), indicating instability by
ivergence throughout these regions. Divergence occurs for ranges of small and large R1 that are generally more extensive
t larger T0 until the stability boundary is reached. When T0 = 10−0.25 and 10−0.5 in panel D all membranes lose stability
y divergence. Therefore, the lines for these two cases do not appear in the panel. Another striking effect of ks ̸= 0 is the
lateaus on the left sides of panels B–D, at small R1. Here the values of σR drop to a plateau instead of a vertical asymptote
s in panel A. The values of σR for each plateau decrease with increasing T0 in most cases in panels B and C.
The small square with the black outline in panel C shows a case with an eigenvalue that is not converged. More of

hese cases occur in panel D where divergence occurs (below the lower limit of the panel, and so not shown).
Finally, we present the imaginary parts of the eigenvalues in the unstable region and investigate the same three

symptotic regimes as for the other two quantities in Table 3. For each regime, we derive the dominant behaviors of
I by substituting the kmax values shown in the first column of Table 3 in the second term on the right side of Eq. (52),
hich is ±iσI if Dk < 0, i.e., the mode is unstable.
In Fig. 27 we plot the imaginary parts of the eigenvalues (σI) versus the membrane mass (R1) for various fixed values

f T0 and for the same spring stiffness constants, one per panel, as in Figs. 25 and 26. In Fig. 27A at large R1 for fixed T0,
I follows the R−1/2

1 scaling shown by the dotted line. The lines are equispaced at large R1, consistent with the scaling
−1/2
0 for fixed R1. Both behaviors are consistent with the asymptotic scaling law σI ∼ 1/

√
R1T0 at large R1 or at small

T0, the first and third rows, respectively, of the third column of Table 3. As in Fig. 26A, each line curves downward to a
vertical asymptote as it approaches the stability boundary at a certain R1 value. The dashed line shows the R−1

1 scaling of
σ when T = cR , 0 < c < 1 and R → 0, given analytically in the second row of the third column of Table 3.
I 0 1 1
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Fig. 27. (Infinite, periodic membrane) Plots showing the imaginary parts of the eigenvalues for spring constants: (A) ks = 0 (analytical result), (B)
s = 10−1 , (C) ks = 100 , and (D) ks = 101 . Panels B–D share the same legend, and for the numerical results shown we use N = 29 . The dotted black
ine at moderate-to-large values of R1 shows the scaling R−1/2

1 .

Panels B–D show the results with three nonzero ks values, and have many similarities with the corresponding results
for σR (Figs. 26B–D). For example, the lines end in panel B where the membrane switches between being stable and
unstable. Another similarity, when ks ̸= 0, is that σI plateaus on the left sides of panels B–D, at small R1. Here, when
T0 → R−

1 the lines of σI initially curve downward (but not towards a vertical asymptote as in Fig. 27A) and then tend
to a constant value at small R1 in most cases. These lines curve downward less sharply as ks increases, and the region
f downward curving disappears completely in some cases in panel D. Another qualitative similarity with Fig. 26 is that

the growth rate |σI| decreases with increasing T0 in most cases. As previously, the small squares with the black outline
in Figs. 27C and 27D correspond to (R1, T0) pairs where the eigenvalue is not converged with respect to N but we still
include them here to distinguish them from stable membranes where a marker is omitted altogether.

There is no indication in Figs. 27B–D of a switch in behavior corresponding to the changes from divergence with flutter
to divergence without flutter shown by the sudden drops in σR in Figs. 26B–D. In other words, the imaginary parts of the
eigenvalues change smoothly despite the sharp changes in the real parts. The orange line with asterisks, T0 = 100, is not
present in Figs. 27C and 27D because the critical T0 for instability drops below 100 as ks increases to 100 and 101.

. Summary and conclusions

In this work we have studied the flutter instability of thin membranes whose leading and trailing edges are attached
o inextensible rods of length R and Hookean springs of stiffness constant ks. We looked at different parts of the four-
imensional parameter spaces (R1, R3, T0, R) and (R1, R3, T0, ks). We found that when membranes are attached to rods with
mall length R or to springs of moderate-to-large stiffness ks, they exhibit large (but physically reasonable) deflections that
onverge to states of steady deflection with single humps that are almost fore–aft symmetric. When R is moderate-to-
arge and ks small, we find a wide range of unsteady dynamics, somewhat similar to those seen in studies of flapping
lates or flags (or fixed–free and free–free membranes in Mavroyiakoumou and Alben (2020)). In either of the two
egimes, deflections scale as R−1/2, when the stretching modulus R is large. The large-amplitude dynamics depend most
3 3
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s
trongly on the membrane mass density R1 and less strongly on the pretension T0. At the largest R1 studied we find the
smallest oscillation frequencies and largest membrane deflections corresponding to somewhat chaotic and asymmetrical
membrane motions. Here the dominant time period scales as R1/2

1 . As R1 decreases, the membrane motions become more
periodic and symmetrical, and with larger spatial frequency components (sharper curvatures and more zero crossings).
At R1 ≲ 10−1.25 the motions become more chaotic again, with much finer spatial features that are difficult to resolve
numerically and so a finer mesh on the membrane is required there. Our study shows that the boundary conditions
(inextensible rods and vertical Hookean springs) allow for a smooth transition between types of membrane dynamics
that were observed when both membrane ends are fixed at zero deflection or when one or both ends are free to move
in the vertical direction.

To study the onset of membrane instability and small-amplitude membrane motions, we used a linearized model and
a nonlinear eigenvalue solver – similar to the one in Mavroyiakoumou and Alben (2021). In this regime, the nonlinear
R3 term in Eq. (4) is negligible so we characterized the different types of motions with respect to the other two key
dimensionless parameters – membrane mass and pretension. In the small-amplitude model we focused on the vertical
Hookean springs, equivalent to inextensible rods via 1/R = ks/T0. When membrane inertia and pretension dominate
fluid pressure forces, the eigenmodes tend towards neutrally stable sinusoidal functions. As we increase ks, we transition
from membranes that resemble the free–free case to membranes that resemble the fixed–fixed case. There are roughly
two regimes: small membrane density, where divergence occurs and the most unstable mode becomes more fore–aft
asymmetric as one moves further into the instability region, and large membrane density, where flutter and divergence
occur with approximately sinusoidal modes. In both regimes, the most unstable modes become wavier at smaller T0 and
small R1, akin to the most unstable beam modes at smaller bending rigidity in Alben (2008). The stability boundaries with
ks = 10−1 and 100 are very similar at large membrane densities, showing an upward slope for R1. This upward slope for
R1 is also seen with ks = 101 but it starts at a larger R1.

To derive asymptotic scaling laws theoretically, we introduced a simplified model with spatially periodic solutions
by assuming that the membrane extends to infinity upstream and downstream and is tethered by an infinite, periodic
array of Hookean springs, all with stiffness ks. This model corresponds to a standard eigenvalue problem, and is much
faster to compute than the nonlinear eigenvalue problem of the membrane-vortex-wake model. We can thus study much
wider ranges of the key parameters R1, T0, and ks. When ks = 0 we can compute asymptotic scaling laws for the real and
imaginary parts of the eigenvalues, and the dominant wave number of the most unstable eigenmodes. We find that as
R1 increases from small to large, the dominant wave number scaling varies from R−1

1 to R0
1 for the periodic membrane

within the instability region. In the large amplitude simulations, the time-averaged number of extrema of deflection also
changes from R−1

1 to R0
1 scalings as R1 increases from small to large. For the periodic membrane, the frequency σR scales

as R−1
1 at both small and large R1, while the large-amplitude dominant frequency transitions scales as R−5/6

1 and R−1/2
1 ,

respectively. At small R1, the large-amplitude results are mostly independent of T0 within the instability region, while the
periodic membrane results do depend on T0. For the periodic membrane, we also considered the small-amplitude growth
rate σI. At large R1, it decays as R−1/2

1 for a fixed T0; at small R1 and T0 = cR1 for 0 < c < 1, it decays as R−1
1 . When ks is

increased to a nonzero value, both σR and σI plateau at small R1.
There are qualitative similarities in the shapes of the stability boundaries for the periodic membrane and membrane-

vortex-wake models. At small R1, the stability boundaries have a plateau at a certain T0 value, that decreases as ks
decreases. At large R1, the periodic membrane has a flat stability boundary, while that with the vortex wake is upward
sloping, corresponding to unstable modes at larger T0, albeit with very slow growth rates. At all R1, as ks increases
divergence modes become more common near the stability boundary in both models.

The membrane modes from the two models also share many features. For example, the mode shapes become wavier
at smaller T0 in both models. Additionally, by tracking the eigenmodes across the three parameter space of R1, T0, and ks,
we found that at larger R1, the modes are more sinusoidal and fore–aft symmetric in both models. At small-to-moderate
R1, the modes are more asymmetric, with peak deflections shifted downstream.
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Appendix. Numerical method for determining the set of eigenvalues and eigenmodes for each membrane

We solve the nonlinear eigenvalue problem iteratively by the same method as in Mavroyiakoumou and Alben (2021)

but we include a brief description here for completeness.
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At each iteration, we have an approximation σ0 to a given eigenvalue σ . We approximate the equations as a quadratic
igenvalue problem:

[σ 2A2 + σA1 + A0(σ0)]w = 0, (A.1)

here the matrices A2, A1, A0 are known from Eqs. (28), (29), and g(x) = V (x)/
√
1 − x2. The eigenvector consists w consists

f: (a) values of the eigenmodes, defined as Y on the Chebyshev grid {xj = cos θj, θj = (j − 1)π/m, j = 1, . . . ,m + 1}
and (b) the scalar Γ0. The term A0(σ )w includes the exponential integral involving σ in Eq. (29) as well as terms that
are constant in σ . In the exponential integral, σ is fixed at σ0, the value of σ from the previous iteration, resulting in
the quadratic eigenvalue problem [Eq. (A.1)], which is solved using polyeig function in Matlab. Eq. (A.1) has 2m + 4
igenvalue solutions. As in Alben (2008), Mavroyiakoumou and Alben (2021), we define an error function as the difference
etween σ0 and the eigenvalue (out of the 2m+4 possibilities) closest to it. We also compute the derivatives of the error
unction (i.e., the Jacobian matrix) with respect to σR and σI using finite differences at the initial iterate, and update it
t subsequent iterates using Broyden’s approximate formula. The error function and Jacobian define the search direction
via Newton’s formula) for the next iterate. With this approach we obtain superlinear convergence to a given eigenvalue.
y using a wide range of initial guesses, we obtain convergence to various eigenvalues and corresponding eigenmodes.
ore details about the numerical method can be found in Mavroyiakoumou and Alben (2021).
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