The Space Broker: A Middleware for Mediating Interactions in
Smart loT Spaces

Hamim Md Adal

Department of Computer Science
University of New Mexico, USA
hmdadal@unm.edu

Christine Julien
Department of Electrical and
Computer Engineering
University of Texas at Austin, USA
c.julien@utexas.edu

ABSTRACT

The Internet of Things (IoT) is a major technological development
likely to have a profound effect on all aspects of society. Among
other things, it promises smooth and personalized interactions be-
tween people and the spaces they inhabit and visit. Unfortunately,
we are not yet at the point of interacting with smart spaces per se;
rather, we simply interact with collections of devices having differ-
ent interfaces, offered by different manufacturers, living in different
administrative domains, and using different apps. The research
reported in this paper promises to take us a step closer to achiev-
ing the personalized interaction modalities the IoT technology is
capable of offering. The starting point is to reimagine the smart
space as being defined by spatial characteristics (e.g., illumination,
security, temperature, etc.) with most devices receding from the
user’s explicit awareness. Users can specify their needs from the
environment in terms of the abstract characteristics. Key to accom-
plishing this is the introduction of the concept of the Space Broker,
a software agent that manages available devices so as to meet user
requirements expressed in terms of spatial characteristics.

CCS CONCEPTS

« Human-centered computing — Mobile phones; Mobile de-
vices; Contextual design; Collaborative interaction; « Infor-
mation systems — Location based services; Sensor networks;
« Computing methodologies — Intelligent agents.

KEYWORDS

space, characteristic, middleware, space broker, smart, api, device,
sensor, application, agent, interaction, IoT, android

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

BuildSys "21, November 17-18, 2021, Coimbra, Portugal

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9114-6/21/11...$15.00
https://doi.org/10.1145/3486611.3486664

Colin Milhaupt

Department of Computer Science
University of New Mexico, USA
cmilhaupt@unm.edu

101

Jie Hua
Department of Electrical and
Computer Engineering,
University of Texas at Austin, USA
mich94hj@utexas.edu

Gruia-Catalin Roman
Department of Computer Science
University of New Mexico, USA
gcroman@unm.edu

ACM Reference Format:

Hamim Md Adal, Colin Milhaupt, Jie Hua, Christine Julien, and Gruia-
Catalin Roman. 2021. The Space Broker: A Middleware for Mediating Inter-
actions in Smart IoT Spaces. In ACM International Conference on Systems
for Energy-Efficient Built Environments (BuildSys °21), November 17-18, 2021,
Coimbra, Portugal. , 10 pages. https://doi.org/10.1145/3486611.3486664

1 INTRODUCTION

In a smart space, personal devices and IoT-enabled physical devices
interact intelligently in a connected, organized, and programmable
digital environment. The objective is to make the user interaction
natural and intuitive. The Internet of Things (IoT) provides such
a platform where numerous programmable devices and sensors
offer services designed to meet specific users’ needs in the context
of the spaces they inhabit or explore. In a smart IoT environment,
personal devices (such as smart mobile phones, smart tablets, etc.)
and physical devices (such as smart locks, smart lights, smart speak-
ers, etc.) work together by communicating over a local network to
achieve complex functionalities centered on the user’s needs.

Users’ personal devices are no longer restricted merely to making
calls and sending texts but can also energize a wide range of smart
features in IoT spaces. A user can manually set up a lighting device
via a mobile app and control it over a network. In the same way, a
user can set up and use a smart speaker. Despite the availability of
such a plethora of features, providing them with minimal human
involvement and cognitive load remains a challenge.

To take advantage of today’s IoT environments, a user needs to
know the whereabouts of every IoT-enabled physical device in the
space, the specific services each device offers, and the details of how
to interact with the device. Manually installing each physical device
is yet another struggle. It is difficult to maintain a single interface
when a user moves from one space to another, especially in spaces
that are recognized through physical devices. When users visit new
spaces, they discover new sets of devices with different configura-
tions and capabilities. Existing frameworks providing proprietary
interfaces between personal devices and physical devices do not
transfer readily from one environment to another, even when the
same manufacturer is involved. After inspecting all the complexi-
ties, an ideal solution demands having one standard interface that

https://doi.org/10.1145/3486611.3486664
https://doi.org/10.1145/3486611.3486664

BuildSys "21, November 17-18, 2021, Coimbra, Portugal

creates a cohesive view of the physical space in which multiple de-
vices of different types or from different manufacturers coordinate
to ensure a personalized and carefree experience for the user.

A user should perceive the IoT environment as a smart space that
offers services that impact spatial characteristics (e.g., illumination,
temperature, sound) of the environment rather than as a set of
physical devices that affect the environment. Such a transition
requires an agent that acts as an intermediary between the user
and the space, accepting requests from the user in terms of spatial
characteristics and realizing these requests using the (potentially
dynamic) set of available physical devices. We propose the Space
Broker as an agent that provides this mediation between high-level,
abstract user requests (in terms of spatial characteristics) and the set
of devices and sensors available at a particular location. For instance,
the need for an ambient temperature level at the kitchen may be
addressed by engaging a combination of devices quite distinct in
nature (e.g., smart HVAC, smart window shades) as well as the
impact of unrelated devices (e.g., heat produced by a stove that can
affect the kitchen’s temperature) that happen to be in use at the
time. Users no longer need to maintain knowledge about the space
and the physical devices it contains. All they need to do is to make
a request in terms of spatial characteristics, and the Space Broker
will adjust the devices using its knowledge about the space.

To illustrate the role of the Space Broker, consider a user Alice
whose home has programmable light devices, a digitally controllable
HVAC system, and a variety of sensors in various locations in her
home. When she arrives home, a handshake takes place between
her personal device and the Space Broker. As a result, the personal
device provides the Space Broker access to its available onboard
devices (e.g., camera, light sensor). In addition, the Space Broker
offers Alice full access to all of the spatial characteristics it controls.

Now suppose Alice needs a specific amount of illumination to
read a book while sitting on her chair in her living room. She also
appreciates an ambient temperature of 75°F. The living room’s
thermostat provides access to the temperature, but it does not have
a light sensor to measure ambient luminance. The Space Broker
utilizes the thermostat to control the temperature but still needs to
find a solution for the illumination. Luckily, Alice’s personal device
has a camera that can measure luminance in the space. Therefore,
the Space Broker employs Alice’s personal device’s camera (given
that Alice permits the Space Broker to access it) to measure the
illumination level in the room and then uses this information to
operate the programmable lighting devices to achieve the intended
amount of luminosity. The Space Broker meets Alice’s requests by
utilizing its knowledge of and control over the physical devices in
the space. One important observation is that Alice is not aware of
the light devices, HVAC, or sensors in the space; she is only aware of
the characteristics of the space made manifest by the Space Broker.

The Space Broker provides a single interface to connect indirectly
and transparently to all available physical devices and sensors in
a space and to assist a user in interacting with a space in terms of
characteristics that can be inspected and regulated. In this context,
this paper makes the following key research contributions:

e We support personal devices viewing a space not as a collection
of IoT devices to be managed, but in terms of a set of abstract
spatial characteristics that can be examined and controlled.

102

Hamim Md Adal, Colin Milhaupt, Jie Hua, Christine Julien, and Gruia-Catalin Roman

e We propose a software agent, the Space Broker, to support this
view, whose role is to manage interactions with devices by
translating requests about spatial characteristics into actions
taken by one or more devices in the space.

o We design the Space Broker API, which allows user-facing ap-
plications to interact with the space at the level of character-
istics. The interaction process is simple and managed on the
user-device side by a lightweight proxy that makes developing
applications more effortless and less communication intensive.

e We demonstrate the feasibility of our approach within a small-
scale physical environment.

The next section presents related work. In Section 3, we describe
the Space Broker model, including a discussion of spatial character-
istics and their relationships to physical devices. Section 4 presents
the Space Broker APL In Section 5, we define a small-scale proto-
type IoT environment. In Section 6, we compare our Space Broker
model with existing approaches. Section 7 provides a discussion of
future work, and Section 8 concludes.

2 RELATED WORK

Relying on a middleware to mediate interactions between a user
and IoT devices is not a new idea. The Semantic Information Bro-
ker (SIB) [8, 11, 12, 16] adopts the semantic web to share information
between devices and enable portability and dependability. Although
SIB simplifies development, it does not separate a user’s preferences
from the characteristics of the space and thus an interface employed
to interact with one space cannot efficiently transfer to other spaces
(because different spaces present different semantic models).
Information Centric Networking (ICN) has also been used to
cope with IoT challenges. ICN was originally used to manage data
collected by IoT devices but has also recently been investigated to
provide solutions to IoT device organization [1-4, 17]. In ICN, all
10T devices are treated as resources and referenced by names; this
approach increases programming simplicity and interoperability.
The user does not need to form a direct connection to a device
to use it. However, the user still needs to provide control signals
at the individual device level by specifying the exact name of the
resource to use so that the ICN infrastructure can manage the
interaction. A similar but more abstract idea is the Service Centric
Network (SCN) [5], which enhances ICN by supporting services as
an extension to devices so that a user does not have to reference
specific devices. However SCN only supports a predefined set of
services and the number of services grows exponentially relative
to the number of devices, so the approach does not easily scale.
We target more ubiquitous interactions in which a user is un-
aware of the underlying device that satisfies a request. The Space
Broker abstraction enables this separation by relying on existing
solutions to provide connectivity among heterogeneous devices.
UniGate [7] is a universal gateway that can be implemented on
the wireless router that is common in an IoT-enabled space like
those we target. Other middleware like Hydra [6] and Warble [15]
can provide automatic discovery of devices and dynamic connec-
tion based on the current IoT context. Such approaches are more
suitable for our needs. By layering on top of such middleware, the
Space Broker can dynamically leverage the sensors and actuators

The Space Broker: A Middleware for Mediating Interactions in Smart loT Spaces

available in the space, even those that are transient, e.g., because
they reside on the personal devices that users bring into the space.

Since the client of the Space Broker is the personal device which
is a proxy for a specific user, the smart space is expected to be
responsive to the presence of the user. That is, the Space Broker
model should be able to support responsive services. Examples of
such services are introduced in many smart space applications and
systems. rIoT [10], CA4IOT [14] and ACE [13] use sensor collected
context to enable automation in the IoT. In our model, such a sys-
tem can be deployed on the personal device to query the Space
Broker for sensor readings and issue requests to the Space Broker
in response to the user’s presence or immediate needs.

3 SPACE BROKER MODEL

In this section, we start by presenting a conceptual overview of
the Space Broker model. We then provide a formal definition of
the model that leans on the definition of spatial characteristics to
represent the context of the smart space.

Conceptual View. Interactions between personal devices and IoT-
enabeld physical devices are often supported by a local network
accessible through a router or wireless gateway. The IoT vision
promises an immersive environment that support users’ needs in
a spontaneous way. But today, users manage devices in isolation
and interact with them in proprietary ways. This is because users
directly control individual devices, rather than controlling or influ-
encing the space in which they exist. Users also have to deal with
difficulties caused by proprietary interfaces promoted by different
manufacturers. To overcome these challenges, our Space Broker
promotes a model in which interactions happen at a different cogni-
tive level where users interact with the space and not with specific
devices. For example, when reading a book, the user may require a
certain level of illumination and ambient temperature at a particular
location. Fulfilling this request demands a software agent that can
(1) identify multiple devices related to a particular functionality (i.e.,
categorizing light-influencing devices and temperature-influencing
devices separately to achieve to the tasks of providing illumination
and temperature, respectively) and (2) control those devices in spe-
cific ways to provide the requested service. This is a dramatic shift
in the way users are able to interact with their smart spaces: rather
than a user activating “the light device above the counter” this shift
allows the user to focus on the more abstract goal of “illuminating
the kitchen for the purpose of cooking”

Figure 1 shows the conceptual model of the Space Broker. An
instance of the Space Broker is associated with a bounded space
(e.g., a home, an office, a city block, etc.) and provides a virtual
representation of that space in terms of concepts we call spatial
characteristics (e.g., illumination, temperature, security). We con-
tend that most user concerns can be addressed at this level rather
than at the level of specific individual devices. In our Space Broker
model, we rely on the user’s personal device (e.g. smartphone) to
provide the interaction interface with the characteristics of the sur-
rounding space. Through the personal device, the user can query
for the status of available spatial characteristics and make requests
for changes to those same characteristics. The characteristics can
be queried, modified, and maintained upon request in response to
the user needs and at specific locations.

103

BuildSys ’21, November 17-18, 2021, Coimbra, Portugal

Made visible to the personal Space Broker Purview

device’s Applications’ — —
as a set of spatial / \

characteristics. \ [Physical Devices Physical space \

populated by

smart loT devices

(i)
Personal Device

Applications

Onboard
Devices

J

/

Virtual Space

Illumination
[
|

~
Sensors
\\ (@) | sensors //

§ ()

Personal Device’s
‘Onboard Devices’
(sensors and
actuators)
contributing as part
of the space.

G [Echo
o

Onboard Ve
Devices

Figure 1: Conceptual Model of IoT Space Broker.

To satisfy users’ queries and requests, the Space Broker employs
the IoT-enabled physical devices that reside in the space. The Space
Broker has knowledge of and access to all devices (regardless of
the manufacturers) in the space, including the personal device’s
onboard devices (such as sensors and actuators, which may be made
available to the Space Broker depending on the user’s permission).
To participate in the space, each physical device needs to only
discover the local Space Broker and announce itself. The Space
Broker maintains knowledge of the details (such as location and
functionality) of every physical device in the space and integrates
their capabilities into the space. Users do not need to be aware
of any particular physical devices in the space, they only have to
concern themselves with the characteristics of the space. Of course,
if the Space Broker is leveraging the personal device’s onboard
devices to support some characteristic, the user may need to be
aware of that purpose, for instance to ensure that the device is not
in their pocket while being used to sense the illumination level.

When a personal device makes requests for a specific character-
istic, the Space Broker acts on them by reading and controlling the
appropriate set of devices, given the configuration of the space and
the current contextual state of the space. In this paper, though we
focus on the abstract interactions with the space in terms of char-
acteristics, we acknowledge that there are situations when the user
will want to interact with specific devices. Our view of the Space
Broker is not incompatible with a system that ultimately presents
a user with both the device-level and characteristic-level concerns.
Because the device-specific coordination is widely explored and
well-handled, in this paper, we have our singular focus on users
interacting with the space at the level of characteristics only.

Formal Specification. We next offer a formal specification for the
functionality of the Space Broker. We assume that the capability of
a device to sense and change a characteristic does not change over
time. While the types of spatial characteristics one can envision are
many and varied, a reasonable starting point is to view the Space
Broker SB as a set of functions mapping space to scalar ranges:

SB={Fy,...,Fp},where F; : S — R;r

where each element of S is a location in the space, and each function
F; (associated with the i characteristic) maps point in space to a
value in the scalar range R; plus undefined (L).

BuildSys "21, November 17-18, 2021, Coimbra, Portugal

Despite its immediate appeal, this formalization is overly sim-
plistic because it ignores the basic fact that the definitions of the
functions F; are affected by the state of the devices residing in the
space. If we assume that there are m devices (d; with j = 1...m)
in the space and each device has a state determined by a control
variable v}, the space broker SB is actually a set of functions that
map control variable values (a control configuration) to functions
from space to scalar ranges:

SB={FFy,...,FF,} where FF; : [Vi X --- X V] = [S — R:’]

with V; being the domain of the control variable v;. This revised def-
inition captures the fact that the control variables impact the map-
ping of spatial characteristics to scalar values. Consequently, when
a personal device issues a query for the third characteristic of the
space at location x, the query might be represented as F3(x), but this
is internally converted by the Space Broker to FF3[vq, ..., 0m](x).
Similarly, for a request to change the state of the space to achieve
a scalar value r for this characteristic at location x, the user’s re-
quest would be phrased as F3(x/r), which is converted by the Space
Broker as a request to solve the equation:

FF3[vy,...,0m](x) = r for control variables vy, . ..,0m,

leaving unchanged all the control variables that cannot affect the
solution.

If, for instance, F3 refers to illumination and the only devices
affecting illumination are d; and ds, all the other control variables
could be denoted as “don’t care” arguments as in:

=) =7 1

Solving these kinds of equations is at the core of implement-
ing the Space Broker. However, the efficiency and accuracy of the
associated processes is also important. For now we perform an ex-
haustive search of available solutions, which is tractable for small
smart home deployments. As the scale of purview of the Space Bro-
ker grows, heuristics will also be needed to search for good (even
if not optimal) solutions efficiently. The development of effective
algorithms that solve these equations is essential to deploying the
Space Broker for large scale smart spaces, which is considered as
future work. In principle, these approaches may involve exploiting
sensors in the space, learning from previous experiences, exploiting
high accuracy physics models, selecting promising starting points
for localized searches, constraint optimization, etc. In this paper,
rather than focusing on optimized algorithms, we concern our-
selves with the programming interfaces the Space Broker presents
to applications wishing to control a small-scale smart space.

FF3[v1,— 03,

4 PRAGMATICS OF CAPTURING
CHARACTERISTICS

The user’s personal device sees the space as a set of spatial char-
acteristics offered by the Space Broker, whereas the Space Broker
views the space as a collection of physical devices and sensors re-
sponsible for delivering services. As far as the user requests are
concerned, the Space Broker supports two kinds of functionalities.
First, it responds to queries made by the user regarding the current
values of particular spatial characteristics. Second, it acts upon user
requests for changes in the value of characteristics (to modify a

104

Hamim Md Adal, Colin Milhaupt, Jie Hua, Christine Julien, and Gruia-Catalin Roman

Wireless communication
implementing remote

’ b 3
p . procedure invocation | Programmable loT Space

4 Personal Device / :
1

-{ Space Broker

[Physical Devices

Space Broker
Proxy

\ Application MR -pace Bro.ars S S [Devices |

‘ Sensors ‘

Dnboard Devices

I
I 4
Locator ‘ 1
Sensors T T :

a
A(tuators Localization
Service

Figure 2: Architecture of the IoT Space Broker Model.

characteristic’s value or to maintain a given value over time). Both
queries and requests relate to specific locations in the space.

Location is a fundamental concept in the Space Broker, and the
ability for the Space Broker to localize devices (both physical devices
in the IoT space and personal devices of users) is essential. However,
different spaces will have different resources available to support
localization (e.g., overhead cameras, indoor radio-based tracking
systems, or dead-reckoning positioning systems). Therefore the
Space Broker does not assume a single approach to localization but
rather relies on an external Localization Service that (1) provides
a coordinate system that applications can use for reference in the
given space and (2) provides an interface that maps a device’s
identity onto that coordinate system. If device positions change
over time, we assume that the localization service updates this
information so that it can provide the Space Broker a continuous
view of devices’ locations. These assumptions are realizable using
smart space localization services that are available today [9].

Figure 2 captures the high-level software architecture supporting
users’ interactions with the programmable IoT space. As the figure
shows, the Space Broker mediates the users’ interactions by control-
ling all of the physical devices in the space, including knowledge
of their locations. As described previously, when a personal device
enters the space, a handshake process ensues that allows the user’s
device and the Space Broker to recognize each other.

A skeleton of the Space Broker interaction methods is shown in
Table 1. The first two methods listed in the table are callbacks
invoked on the Space Broker by the underlying discovery ser-
vice whenever a new personal device is discovered in the space
(i.e., spaceBroker.enter) or when a personal device leaves (i.e.,
spaceBroker.exit). During the handshake process that ensues,
the personal device and space broker exchange information about
the sensing and actuation resources available on the personal
device through the device.requestResources method. In ad-
dition, the Space Broker delivers a piece of code that we term
the Space Broker Proxy to the user’s personal device (using the
device.deliverProxy method). Through this proxy, the Space
Broker makes the user’s applications aware of its available charac-
teristics (see proxy.getCharacteristics).

Each Space Broker action is tied to a spatial characteristic. Once
the personal device acquires knowledge of a characteristic via the
proxy, applications on the device can secure access to three modes
of interaction with respect to that characteristic. First, the personal

The Space Broker: A Middleware for Mediating Interactions in Smart loT Spaces

BuildSys ’21, November 17-18, 2021, Coimbra, Portugal

Table 1: Space Broker API

API Method

Description]

Discovery-Centered Methods

spaceBroker.enter(device)

When a device enters the administrative domain of the Space Broker, a handshake process between the
two ensues, which includes calling device.requestResources and proxy.getCharacteristics().

spaceBroker.exit(device)

When a known device leaves the administrative domain of the Space Broker, the Space Broker cleans
up its registered resources.

Personal Device Integration Methods

device.requestResources()

When this method is called by the Space Broker, the personal device returns proxies to the interfaces
of any sensors and actuators the personal device is willing to share with the space along with their
corresponding characteristics.

device.deliverProxy(proxy)

This method is called by the Space Broker to share with the personal device the proxy that personal
applications will use to interact with the space.

Proxy and Characteristic Interaction Methods

proxy.getCharacteristics()

This method returns a list of characteristics that can be queried, modified or maintained in this space.
Each characteristic includes its semantic description as well as the capabilities (i.e., read or write)
associated with that characteristic.

characteristic.query(location)

This method is called by a personal device and returns the value of the characteristic at the provided
location.

characteristic.modify(location, value)

This method is called by a personal device and requests a change to the specified characteristic at the
given location. The value is the target number for the characteristic to reach.

characteristic.maintain(location, value)

This method is called by a personal device to maintain the value of the characteristic at the given
location at value. This method can also optionally be passed an expiration time after which the Space

Broker stops maintaining the value.

device can query the state of the space relative to that characteristic
(see characteristic.query in Table 1); the illumination level at
a specified location can be accessed in this manner.

Second, if a characteristic is modifiable, the application can re-
quest to change the state of the characteristic to a specified value
at a particular location (see characteristic.modify in Table 1).
For instance, a user can request the Space Broker to deliver 850
lumens of luminosity in the kitchen to prepare supper. Comparing
the current and desired illumination level, the Space Broker adjusts
the available light devices in the kitchen to achieve the intended
amount of luminance for the user.

Finally, if the characteristic is maintainable, a personal de-
vice can request that the Space Broker maintain continuous
control over a characteristic’s value at a specific location (see
characteristic.maintain in Table 1). For example, a user can ask
the Space Broker to maintain 700 lumens over their desk through-
out the day. During most of the day (and depending on weather
conditions), a significant amount of luminance may come from the
office window. As conditions outside the window change, the Space
Broker repeatedly updates the settings of the available office lights
to balance the illumination level with sunlight’s luminosity.

Interacting with characteristics in a smart space demands fre-
quent reference to locations, which makes localization an essential
capability of the space. Within the generic specification of the Space
Broker, we do not embed a single definition of location. Rather a
variety of localization options are easily integrated with the Space
Broker model. For instance, the Space Broker (and hence the Space
Broker proxy) may connect to a service provided in the space that
allows the user to download a map (e.g., a floorplan) of the space
and then use this map to select a location. Alternatively, a space
may provide semantic labels for the space, and users may be able to
use voice commands to indicate a specific location in the space. The

105

references in Table 1 to location use the space’s semantic mean-
ing of location as provided by the localization service depicted in
Figure 2. Finally, we have so far assumed that users are static, but if
the user makes a request to the Space Broker to maintain the value
of a characteristic at the user’s location, even as the user moves,
this can be accomplished with the Space Broker proxy by enabling
the user to provide a reference to a user-side locator object resident
on the personal device (as shown in Figure 2) in place of providing
a concrete location. In this way, the user delegates responsibility
for providing the needed location value to the maintain method
to an object that dynamically fills in the value as the user moves,
in collaboration with the space’s localization service.

Resolving users’ requests is a tall task for the Space Broker.
The API presented in Table 1 simplifies the programming burden
on the user side at the expense of embedding the complexity in
the Space Broker. The ability to provide service for a particular
characteristic depends on the presence of the right IoT devices
and sensors in the space, upon knowledge about the histories of
(successful and unsuccessful interactions by users in this space),
models of the physics of the characteristics in the space, learning
from user feedback, etc. The Space Broker’s separation of concerns
shields application programmers from any idiosyncracies of specific
device manufacturers. In fact, because applications are written at
the level of spatial characteristics, integrating new devices from new
manufacturers has no impact on existing applications. In contrast,
new devices will need to be integrated into the Space Broker, which
requires coding an adaptor that maps the device’s API onto the
characteristic(s) that the device impacts. In the next section, we
describe a first implementation of the Space Broker in a prototypical
smart space. This implementation focuses on feasibility rather than
on optimality, leaving the latter for future research.

BuildSys "21, November 17-18, 2021, Coimbra, Portugal

%:} LE:?I
,

LED 2

‘i} Space 1

LDR 1

LDR 3
LED S ‘/i Space3
‘ J

q:g“ LED6

(a) Schematic floorplan of the box. Yellow stars represent LEDs; red
circles represent light sensors. The green ball represents the user.

(b) Overhead photograph of the box.

Figure 3: The Prototypical Space.

5 THE SPACE BROKER IN ACTION

Due to the lack of access to our laboratory facilities and real human
participants, we built a small-scale experimental test environment
using foam core walls, LED lights, LDR sensors, a cooling fan, and
temperature sensors. The human participant is represented by an
avatar placed in the space, a green ball that can be repositioned at
will; to localize the personal device, we rely on an overhead camera
that can track this ball. In contrast, we assume physical devices
are fixed in the space. In real smart environments, devices may
be added to or removed from the space, or they may be relocated
within the same space. Our prior work [9] showed that, with respect
to localizing such new devices, these updates can be accomplished
with minimal user involvement. In the future, we will integrate
more adaptive localization mechanisms with the Space Broker ar-
chitecture. But for now, rather than using a localization service
for the physical devices, we assume the positions of the physical
devices are known to the Space Broker. To avoid conflicting uses of
the devices at the user level, we only consider a single user in the
space; handling conflicts among users is reserved for future work.

Figure 3 shows our prototypical smart space, labeling each com-
ponent used and depicting how the space is divided into smaller
spaces. The physical space was constructed using foam core pan-
els. The interior walls are not permanently attached to allow the

Hamim Md Adal, Colin Milhaupt, Jie Hua, Christine Julien, and Gruia-Catalin Roman

Wireless communication
implementing remote
procedure invocation

-,
’

N
1 Programmable IoT Space ‘I
1

/ Personal Device —
[Physical Devices |

[Devices]
‘ Sensors
L 4

Space Broker } ol

l Application e

]

Onboard Devices

Sensors
Actuators

Camera |

Floorplan

e

Figure 4: Concrete architecture of prototype Space Broker.

flexibility to change the layout and perform a wide range of experi-
ments with minimal reconfiguration. Using this environment and
its embedded sensors and actuators, applications can engage the
Space Broker to query and control two characteristics: illumination
and temperature. Light sensors and LEDs were used for any actions
related to the illumination characteristic. A pair of LEDs (value
ranging between 0 to 100 units) and an LDR sensor (capable of
sensing value ranging between 0 to 1000 units) was located at each
corner of the box. To avoid congestion in the picture, devices used
for the temperature characteristic were not shown in the figures.

The Space Broker is implemented on a Raspberry-Pi. User appli-
cations run on an Android smart phone, which connects wirelessly
to the Space Broker. To demonstrate the Space Broker API, we built
an Android application that allows a user to query and control
illumination and temperature. Even though the physical devices
are fixed in the space and their locations are known to the Space
Broker, we implemented a simple localization service to track the
location of the “user” (e.g., green ball). The localization service is
implemented on the same Raspberry-Pi device. It assumes a 2D
coordinate system overlaid on the floorplan in Figure 3a.

Figure 4 depicts the architecture of the Space Broker as realized
for this demonstration. The Locator object on the personal device
is used by the application to obtain the user’s location from the
localization service. Similarly, the Floorplan object on the personal
device is used by the application to retrieve the 2D map of the space
from the localization service so that user’s requests to the Space
Broker can reference specific locations. The localization service
has access to an overhead camera that was set up atop the foam
core box with a top view of the entire space. We assume that every
pixel in the camera frame corresponds to a coordinate. The primary
purpose of the overhead camera is to detect the user’s location. The
secondary purpose is to capture the top view image of the space
and send it to the personal device so that the user can click on any
spot of the image to indicate a specific location in the space.

Figure 5 shows the GUI of our application, which supports query-
ing, modifying, and maintaining the value of a characteristic either
at the user location or at a location provided by the user.

Clicking on the User Location button in the Home Screen takes
the user to a screen where they can query, modify, or main-
tain the value of a characteristic (in this example, illumination)
at their location. Querying the value of illumination causes a
characteristic.query action on the Space Broker proxy, which
is in turn delivered to the Space Broker. The Space Broker uses

106

The Space Broker: A Middleware for Mediating Interactions in Smart loT Spaces

8:00 -
illumination
BOD i 80D
illumination
.
10.0.0.32:21567
'QUERY WITH USER LOCATION
- USER LOCATION
"
MODIFY WITH USER LOCATION SPECIFIC LOCATION Ly
MAINTAIN WITH USER LOCATION
< o] o
User Location
Screen
Home Screen

illumination

‘SHOW THE SPACE

ante to d position:

BuildSys ’21, November 17-18, 2021, Coimbra, Portugal

8:00 i

et
(s, sy

a‘.‘».-!"’
. i/ l' . |

illumination

10.0.0.32:21567

QUERY WITH SPECIFIC LOCATION

‘SHOW THE SPACE

MODIFY WITH SPECIFIC LOCATION

MANTAIN WITH SPECIFIC LOCATION

< o] o

Specific Location
Screen

Figure 5: Screenshots of the Space Broker Application.

the provided location to identify the appropriate sensor to use (in
this example, we simply use the closest sensor). Upon its return to
the Android device, the queried result is displayed on the screen.
Requesting to modify or maintain the characteristic value at the
user’s location requires the user to provide a desired value in the in-
put fields before submitting the request. For each action, the user’s
location is automatically retrieved from the localization service
before the request is sent to the Space Broker proxy.

To initiate user requests at a location other than the user’s loca-
tion, the user needs to enter the Specific Location for the request. In
the Specific Location Screen, a user can request to display the top
view of the 2D space. Then, by tapping on the displayed image of
the space, the user can set the location they want to query, modify,
or maintain. After selecting the desired location (e.g., x=349, y=118
as shown in Figure 5), the user can submit a request to the proxy.

Figure 6 depicts the sequence of actions that occur behind the
scenes on Space Broker when a user initiates a request from the
application. Suppose a user desires to achieve 850 units of illumina-
tion at their location. When they put the value of 850 as an input
in the User Location Screen and submit a modify request, both the
user location and the desired value are passed from the application
to the Space Broker via the proxy. As a result, the LEDs around the
user become operational, seeking to obtain 850 unit of luminosity.

This tabletop environment is a faithful implementation of the
actual Space Broker, with an application that uses the provided
API directly. It provides the ability to implement and measure real
applications with real devices. Of course, such an environment
has its limitations, especially with respect to not being able to
perform a large number of experiments in diverse settings. A key

107

avenue for future research is to integrate our implementation of the
Space Broker with a smart space simulator to enable the additional
benefit of measurements at different scales and in diverse spaces.
This will become increasingly important as we implement multiple
algorithms to resolve Space Broker requests and need to compare
their performance in terms of accuracy and overhead.

6 EVALUATION

Through our initial study with the test environment, we seek to
answer three questions about the approach:

(1) What are the key novelties of the Space Broker in the context
of programmable IoT smart spaces?

(2) What are the impacts on ease of programming when controlling
characteristics rather than individual devices?

(3) Is the Space Broker API feasible in the context of a programmable
smart space?

In this section, we use examples related to illumination to show
the ease of programming and feasibility of implementing the Space
Broker. The same arguments extend to other characteristics.

Novelty. 1t is not possible to measure novelty quantitatively, but
we start our evaluation with a qualitative assessment of the Space
Broker in the context of other models for interacting with pro-
grammable smart spaces. Existing available frameworks to interact
with programmable IoT environments perceive the space as a col-
lection of smart gadgets that are mostly accessed at the device level
with the help of a mediating agent. For example, a user can request
Alexa to turn on a light, but they cannot ask Alexa to impact the en-
vironment by requesting a specific level of illumination at a specific

BuildSys "21, November 17-18, 2021, Coimbra, Portugal

ace 1
Current LED1 Value:

Current LED2 Value:

Space 3
Current LED5 Valu
ent LED6 Valu

(a) In this example, LED7 and LEDS8 are activated, attempting to
achieve 850 lumens at the user location.

bs Help
OBJECT DETECTED !!l1l!

The location of the object is in (453,84) coordinate
object is in 4

ent illumination level: 851.48692131 unit

Modified value achieved!!

Valu
2 Valu

3 Value: 0
Value: 0

t LED5 Valu
LED6 Valu

LED7 Valu
LED8 Valu

(b) The result is that 850 lumens is achieved at the user location
when LED?7 is at its maximum (100), and LED8 has a value of 90.

Figure 6: A terminal window shows the background activity
of the Space Broker upon receiving a modify request for 850
lumens at the user’s location.

location and expect Alexa to come up with a solution by controlling
the right light sources in the space. One reason is that the exist-
ing middleware do not have an interface designed for taking user
requests in the form of characteristics of the environment.

Like the leading existing interaction frameworks (such as Alexa,
Google Assistant, or Siri), the Space Broker can act as a mediator
between the user and a space, with the key novelty being the ability
to accept user requests in terms of spatial characteristics. Further,
all of the IoT devices of a smart environment are also within the
Space Broker’s awareness so that it can have full ability to set
combinations of devices to achieve a user’s desired effect.

The Space Broker allows user applications to observe the space,
not as an assemblage of devices that can be managed, but as a set of
spatial characteristics that can be identified and regulated. Not all
smart devices (e.g., light sources) related to a single characteristic
(e.g., illumination) can produce the same level of intensity (e.g.,
luminance). For this reason and others, different devices present

Hamim Md Adal, Colin Milhaupt, Jie Hua, Christine Julien, and Gruia-Catalin Roman

Listing 1: Modifying illumination using Space Broker API

1 //... inside the Android activity

2 Characteristic illumination = // ... retrieved from Space Broker proxy

3 btnModifyUserLocation.setOnClickListener(new View.OnClickListener(){

4 @Override

5 public void onClick(View v){

6 String modifyValue = modifyValueUserLocation.getText().toString();
7 illumination.modify(null, modifyValue);

8 }
9 s

Listing 2: Modifying illumination using devices directly

//... inside the Android activity
2 Device[] lights = // ... retrieved via some discovery process
3 Device[] lightSensors = // .. retrieved via some discovery process
4 btnModifyUserLocation.setOnClickListener(new View.OnClickListener(){
5

@0verride
6 public void onClick(View v){
7 Location loc = Locator.getLocation()
8 String modifyValue = modifyValueUserLocation.getText().toString();

9 Map<Location, Integer> lightLevels = senselLight(loc, lightSensors);
10 Map<Device, Integer> targetlLevels =

11 determineSettings(loc, lights, lightLevels, modifyValue);
12 targetLevels.forEach((k,v) -> k.setValue(v);

o

dramatically different control interfaces to the user. To use an over-
head light, a user might employ a dimmer switch mounted on the
wall or a slider in the manufacturer’s smartphone app. In contrast,
to adjust the light level by raising or lowering the window shades,
the user may employ a cord on the shades or a raise-and-lower func-
tion in the manufacturer’s application. Each of these controls may
have widely varying impacts on the level of illumination. However,
by unifying these controls under the single abstraction of charac-
teristic, the Space Broker provides a novel way for applications to
view a smart space. We posit that this will in turn ease the burden
of programming smart spaces.

Ease of Programming. To present the Space Broker’s impact on
easing the programming smart spaces, we examine a snippet of
code that relies on the Space Broker API (Listing 1). In particular,
this code shows the implementation for modifying the illumination
characteristic at the user’s location.

In Listing 1, we show the listener associated with the modify
button in the far left screenshot of Figure 5. Line 6 gets the user’s
desired illumination level from the user interface, and line 7 calls
modify on the illumination characteristic that was created by the
proxy when the user device connected to the Space Broker. In line 7,
the first parameter indicates the location of the request; when it is
set to null, the Space Broker proxy fills in the user’s location before
sending the request to the Space Broker. The proxy does this by in-
teracting with the on-device Locator. In our prototype environment,
this Locator in turn relies on the overhead camera that provides the
position of the green ball relative to the space’s coordinate space.
Again, the specific semantics of location in the space are defined
by the localization service, which is accessed by both the personal
device’s Locator and the Space Broker implementation.

In contrast, to implement this functionality without the assis-
tance of the Space Broker abstraction, the user’s application would
be required to (1) discover all of the available illumination devices
in the space; (2) assess the contextual conditions of the space before
selecting one or more devices to control and (3) issue directives
directly to these devices, which may provide diverse interfaces.

108

The Space Broker: A Middleware for Mediating Interactions in Smart loT Spaces

Listing 2 shows a sketch of a simplified version of this device-
specific approach. This sketch assumes that all light devices have the
same interface. As shown in lines 2-3, the application must discover
the available devices without the support of the Space Broker (and
rediscover them if the devices in the space change). When the user
wishes to execute a request, the application must retrieve the user’s
location (line 7), retrieve the target value from the user interface
(line 8), assess the current light levels (line 9), determine the needed
levels for each light device (lines 10-11), and then iterate over the
available lighting devices to change their settings (line 12). Lines
9-11 assume the availability of algorithms to assess the space and
the devices it contains. In the Space Broker implementation, the
application delegates these algorithms to the Space Broker rather
than implementing them as part of the application. This allows
the algorithms to belong to the space and the user’s application
to leverage different algorithms in different spaces. In this way,
the application can dynamically leverage the availability of diverse
devices as its user encounters differently configured spaces.

Feasibility. We have implemented the Space Broker, its proxy,
and an example Android application, all as described in the pre-
vious section. To ensure wide reproducibility, we have made our
code publicly available!. To give a sense of how the Space Bro-
ker Proxy realizes the characteristic-based interface, we show the
implementation of a proxied characteristic in Listing 3.

The listing shows the API invoked by the example in Listing 1.
The illumination object in Listing 1 is of type Characteristic,
which means it implements the CharacteristicInterface to pro-
vide the query, modify, and maintain methods. These methods
take the provided location (or resolve that to the user location if no
location is provided) and the desired value (in the case of modify
and maintain), create a String request, and dispatch that request
to the Space Broker via the available wireless communication.

The Space Broker implementation is written in Python. It re-
ceives string requests from the proxy and uses the physical devices
to resolve the requests. To implement a query, the current imple-
mentation simply finds the light sensor closest to the request’s
location and returns the value sensed at that location. To imple-
ment a modify request, the Space Broker starts by attempting to
adjust the light nearest to the request’s location. The Space Broker
adjusts this light up or down depending on the difference between
the target value and the sensed value at the nearest light sensor.
If the target value can be achieved using only the nearest light,
the Space Broker finishes and returns. Otherwise, the Space Bro-
ker continues to the next nearest light, and so on, until it either
reaches the target value or exhausts all of its options. To implement
a maintain request, the Space Broker performs the same actions as
for modify, but it repeats these in a loop, continuously sensing the
environment and adjusting as needed.

This implementation of the Space Broker, its API, and the proxy
that delivers its API to application developers demonstrates the fea-
sibility of implementing the characteristic abstraction and building
real applications that rely on that abstraction rather than requiring
developers to program to device interfaces. As exemplified through
this study, the Space Broker brings several important benefits:

https://github.com/HamimAdal/Middleware_Space_Broker

BuildSys ’21, November 17-18, 2021, Coimbra, Portugal

Listing 3: Implementation details for Space Broker Proxy

% S

interface CharacteristicInterface { // Space Broker proxy API methods
String query(Location location);
void modify(Location location, String Value);
void maintain(Location location, String Value);

}

class Characteristic implements CharacteristicInterface {
/] Fkkkkkkkkkkkkkkkk
// STS is the string or message that will be sent to the space broker
// (on the raspberry-pi) from the application. It includes:
// 1. requestId and/or,
/7 2. location and/or,
/7 3. value.
// It is formatted as a string for ease of transmission and processing
// on the raspberry-pi side.
/] Fxkkkkkkkkkkkkkkk

@0verride
public String query(Location location) {
Location loc = resolvelLocation(location);
String requestId = REQUEST_TYPES.QUERY;
String STS = requestId + + loc.X + + loc.Y ;
sendRequest(STS);

DataInputStream inp = new DataInputStream(socket.getInputStream());
queriedValue = inp.readUTF(); // receive queried value
return queriedvValue;

}

@0verride

public void modify(Location location, String value) {
Location loc = resolvelLocation(location);
String requestId = REQUEST_TYPES.MODIFY;
String STS = requestId + + loc.X +
sendRequest (STS);

}

+ loc.Y + + value;

@Override

public void maintain(Location location, String value) {
Location loc = resolvelLocation(location);
String requestId = REQUEST_TYPE.MAINTAIN;
String STS = requestId + + loc.X +
sendRequest (STS);

}

+ loc.Y + + value;

private void resolvelLocation(Location location){
return (location == null) ? Locator.getUserLocation() : location;

}

private void sendRequest(String request){
wirelessCommunication wireless = new wirelessCommunication();
wireless.execute(STS); // sends string request to Space Broker

¢ By allowing applications to reason at the level of a characteristic,
diverse device types that impact the same characteristic can be
brought under the same control mechanism. For example, the
settings of lights and window shades both affect illumination,
and the application can delegate to the space how to adjust them
in concert to realize a lighting goal.

e Users’ policies and preferences related to smart spaces exist
at the characteristic level, but current implementations are at
the device level. By separating policies and preferences (on
the application-side of the Space Broker API) from device-level
implementations (within the Space Broker), our model makes
user- and application-level settings transferable across spaces. It
also allows different spaces to provide different implementations
of these policies depending on their low level device capabilities.

e The ease of programming that comes with the Space Broker
API allows application developers to distance themselves from
concerns related to network connections and low-level device
interfaces, resulting in code that is less error prone.

BuildSys "21, November 17-18, 2021, Coimbra, Portugal

7 DISCUSSION AND FUTURE WORK

The Space Broker as described is a first demonstration of spatial
characteristics and their capabilities. Future work will focus on
both algorithms for resolving complex requests and mediating con-
flicts among multiple users in the space. Of particular interest is
developing more robust models of the impacts of diverse devices
on characteristics. For instance, the ways that window shades, fans,
heating systems, and cooktops impact a space’s temperature are
diverse and vary with both time and space. Embedding an un-
derstanding of the physics of characteristics into the Space Broker
would improve the quality of user interactions with the smart space.
Similarly, requests from multiple users may result in conflicts that
the Space Broker must negotiate. Immediately ongoing work on
the Space Broker seeks to identify such conflicts and resolve them,
through explicit user engagement as well as automatically.

Further, a user may have preferences with respect to possible
solutions to a request (e.g., one user may prefer natural light, while
another prefers to keep the shades closed for privacy). Future work
will explore extending the Space Broker to allow for such prefer-
ences, both explicitly, as part of the API calls and implicitly, for
instance as learned through feedback from users.

Another important area of future work is developing efficient
algorithms to resolve users’ requests in complex spaces. In relatively
small spaces, we expect to be able to derive optimal algorithms; in
more complex, unpredictable, or dynamic spaces, we expect to rely
on heuristics. In addition, the Space Broker’s algorithms are only
as good as the quality of the information that the Space Broker
has to act on. If sensors are of poor quality or report incorrect
information, the Space Broker may also perform incorrectly. We
plan to address these uncertainties and inconsistencies through
redundant sensing (e.g., using sensors of different modalities for a
single characteristic) and through user feedback. Our prior work
demonstrated that it is feasible to collect feedback from users both
explicitly and implicitly [9, 10]. In the latter case, it is possible
to observe a series of user interactions (e.g., requesting a certain
illumination level then immediately requesting a higher level) and
infer that the space is not behaving in the manner the user expects.
These observations can help detect inconsistencies in sensing and
adjust the Space Broker algorithms to account for them.

Finally, the security of smart spaces is essential. On one hand,
the Space Broker itself must be protected. It embeds knowledge
a user’s devices and sensors, the user’s location, the floorplan of
the home, and, ultimately, the user’s behaviors and habits. Future
work will ensure protection of the Space Broker, e.g., by encrypting
and authenticating all interactions between devices and the Space
Broker. On the other hand, the Space Broker can also be leveraged
to help users control the physical security of their smart spaces, an
area of research that we are currently exploring.

8 CONCLUSION

A framework for interacting with programmable smart spaces
should be able to accommodate various types of spatial charac-
teristics of the space that are distinct in nature. With the Space
Broker interface, applications can specify useful interactions for
examining and manipulating characteristics of the space like “il-
lumination”, “temperature”, “sound” etc. While we focused in this

110

Hamim Md Adal, Colin Milhaupt, Jie Hua, Christine Julien, and Gruia-Catalin Roman

paper on scalar characteristics, not all smart space characteristics fit
this model. For instance, handling characteristics such as “security”
or “streaming media” is a more challenging task. The concept of se-
curity can be conceptualized in a variety of ways, from monitoring
the boundaries of the space, protecting a region within the space,
detecting the presence of unknown persons, etc. To connect stream-
ing media to streaming-capable devices in a space, a user needs to
have the ability to change the media stream or to have an active
stream follow them throughout the space. In the future, we will
examine the Space Broker to accommodate such characteristics.

ACKNOWLEDGEMENTS

This work was funded in part by the National Science Foundation
under grants CNS-1813263, CNS-1909221, CNS-1907959. Any opin-
ions, findings, conclusions or recommendations expressed are those
of the authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] Adhatarao, S.S., Arumaithurai, M., Kutscher, D., Fu, X.: Isi: Integrate sensor
networks to internet with icn. IEEE Internet of Things Journal 5(2), 491-499
(2017)

Amadeo, M., Campolo, C., Iera, A., Molinaro, A.: Information centric networking
in iot scenarios: The case of a smart home. In: 2015 IEEE international conference
on communications (ICC). pp. 648-653. IEEE (2015)

Ascigil, O., Refié, S., Xylomenos, G., Psaras, I, Pavlou, G.: A keyword-based icn-iot
platform. In: Proceedings of the 4th ACM Conference on Information-Centric
Networking. pp. 22-28. ACM (2017)

Bracciale, L., Loreti, P., Detti, A., Paolillo, R., Melazzi, N.B.: Lightweight named
object: an icn-based abstraction for iot device programming and management.
IEEE Internet of Things Journal (2019)

Braun, T., Hilt, V., Hofmann, M., Rimac, 1., Steiner, M., Varvello, M.: Service-
centric networking. In: 2011 IEEE International Conference on Communications
Workshops (ICC). pp. 1-6. IEEE (2011)

Eisenhauer, M., Rosengren, P., Antolin, P.: Hydra: A development platform for
integrating wireless devices and sensors into ambient intelligence systems. In:
The Internet of Things, pp. 367-373 (2010)

Felemban, E., Murad, M., Manzoor, M.A., Sheikh, A.A.: Unigate: Modular univer-
sal wireless gateway. In: 2014 World Congress on Computer Applications and
Information Systems (WCCAIS). pp. 1-3. IEEE (2014)

Honkola, J., Laine, H., Brown, R., Tyrkké, O.: Smart-m3 information sharing
platform. In: The IEEE symposium on Computers and Communications. pp.
1041-1046. IEEE (2010)

Hua, J., Lee, S., Roman, G.C., Julien, C.: Arciot: Enabling intuitive device control
in the internet of things through augmented reality. In: 2021 IEEE International
Conference on Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops). pp. 558-564. IEEE (2021)

Hua, J., Liu, C., Kalbarczyk, T., Wright, C., Roman, G.C., Julien, C.: riot: Enabling
seamless context-aware automation in the internet of things. In: Proceedings
of the 16th international conference on Mobile Ad-hoc and Smart Systems. pp.
227-235. IEEE Press (2019)

Korzun, D.G., Kashevnik, A.M., Balandin, S.I., Smirnov, A.V.: The smart-m3 plat-
form: Experience of smart space application development for internet of things.
In: Internet of Things, Smart Spaces, and Next Generation Networks and Systems,
pp. 56-67. Springer (2015)

Morandi, F., Roffia, L., D’Elia, A., Vergari, F., Cinotti, T.S.: Redsib: a smart-m3
semantic information broker implementation. In: 2012 12th Conference of Open
Innovations Association (FRUCT). pp. 1-13. IEEE (2012)

Nath, S.: Ace: exploiting correlation for energy-efficient and continuous context
sensing. In: Proc. of MobiSys. pp. 29-42 (2012)

Perera, C., et al.: Context aware computing for the internet of things: A survey.
IEEE Communications Surveys & Tutorials 16(1) (2014)

Saputra, Y., Hua, J., Wendt, N, Julien, C., Roman, G.C.: Warble: programming
abstractions for personalizing interactions in the internet of things. In: Proceed-
ings of the 6th International Conference on Mobile Software Engineering and
Systems. pp. 128-139. IEEE Press (2019)

Yus, R., Bouloukakis, G., Mehrotra, S., Venkatasubramanian, N.: Abstracting
interactions with iot devices towards a semantic vision of smart spaces. In:
Proceedings of the 6th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation. pp. 91-100 (2019)

Zhang, Y., Raychadhuri, D., Ravindran, R., Wang, G.: Icn based architecture for
iot. IRTF contribution, October (2013)

[2

(10]

(1]

=
&

[13]

(14

[15

(16]

(17]

	Abstract
	1 Introduction
	2 Related Work
	3 Space Broker Model
	4 Pragmatics of Capturing Characteristics
	5 The Space Broker in Action
	6 Evaluation
	7 Discussion and Future Work
	8 Conclusion
	References

