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Abstract— We introduce a tunable loss function called α-loss,1

parameterized by α ∈ (0, ∞], which interpolates between2

the exponential loss (α = 1/2), the log-loss (α = 1), and3

the 0-1 loss (α = ∞), for the machine learning setting of4

classification. Theoretically, we illustrate a fundamental connec-5

tion between α-loss and Arimoto conditional entropy, verify6

the classification-calibration of α-loss in order to demonstrate7

asymptotic optimality via Rademacher complexity generalization8

techniques, and build-upon a notion called strictly local quasi-9

convexity in order to quantitatively characterize the optimization10

landscape of α-loss. Practically, we perform class imbalance,11

robustness, and classification experiments on benchmark image12

datasets using convolutional-neural-networks. Our main practical13

conclusion is that certain tasks may benefit from tuning α-loss14

away from log-loss (α = 1), and to this end we provide simple15

heuristics for the practitioner. In particular, navigating the α16

hyperparameter can readily provide superior model robustness to17

label flips (α > 1) and sensitivity to imbalanced classes (α < 1).18

Index Terms—α-loss, Arimoto conditional entropy, robust-19

ness, classification-calibration, strictly local quasi-convexity,20

generalization.21

I. INTRODUCTION22

IN THE context of machine learning, the performance of a23

classification algorithm, in terms of accuracy, tractability,24

and convergence guarantees crucially depends on the choice25
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of the loss function during training [3], [4]. Consider a feature 26

vector X ∈ X , an unknown finite-valued label Y ∈ Y , and a 27

hypothesis h : X → Y . The canonical 0-1 loss, given by 28

[h(X) #= Y ], is considered an ideal loss function in the 29

classification setting that captures the probability of incorrectly 30

guessing the true label Y using h(X). However, since the 31

0-1 loss is neither continuous nor differentiable, its applica- 32

bility in state-of-the-art learning algorithms is highly 33

restricted [5]. As a consequence, surrogate loss functions that 34

approximate the 0-1 loss such as log-loss, exponential loss, 35

sigmoid loss, etc. have garnered much interest [6]–[16]. 36

In the field of information-theoretic privacy, Liao et al. 37

recently introduced a tunable loss function called α-loss for 38

α ∈ [1,∞] to model the inferential capacity of an adversary 39

to obtain private attributes [17]–[19]. For α = 1, α-loss 40

reduces to log-loss which models a belief-refining adversary; 41

for α = ∞, α-loss reduces to the probability of error which 42

models an adversary that makes hard decisions. Using α-loss, 43

Liao et al. in [17] derived a new privacy measure called 44

α-leakage which continuously interpolates between Shannon’s 45

mutual information [20] and maximal leakage introduced by 46

Isaa et al. [21]; indeed, Liao et al. showed that α-leakage 47

is equivalent to the Arimoto mutual information [22]. In this 48

paper, we extend α-loss to the range α ∈ (0,∞] and propose 49

it as a tunable surrogate loss function for the ideal 0-1 loss 50

in the machine learning setting of classification. Through our 51

extensive analysis, we argue that: 1) since α-loss continuously 52

interpolates between the exponential (α = 1/2), log (α = 1), 53

and 0-1 (α = ∞) losses and is related to the Arimoto 54

conditional entropy, it is theoretically an object of interest in 55

its own right; 2) navigating the convexity/robustness trade-offs 56

inherent in the α hyperparameter offers significant practical 57

improvements over log-loss, which is a canonical loss function 58

in classification, and can be done quickly and effectively. 59

A. Related Work 60

The study and implementation of tunable utility (or loss) 61

metrics which continuously interpolate between useful quan- 62

tities is a persistent theme in information theory, networking, 63

and machine learning. In information theory, Rényi entropy 64

generalized the Shannon entropy [23], and Arimoto extended 65

the Rényi entropy to conditional distributions [24]. This led to 66

the α-mutual information [22], [25], which is directly related 67
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to a recently introduced privacy measure called α-leakage [17].68

More recently in networking, Mo et al. introduced α-fairness69

in [26], which is a tunable utility metric that alters the value of70

different edge users; similar ideas have recently been studied71

in the federated learning setting [27]. Even more recently in72

machine learning, Barron in [15] presented a tunable extension73

of the l2 loss function, which interpolates between several74

known l2-type losses and has similar convexity/robustness75

themes as this work. Presently, there is a need in the machine76

learning setting of classification for alternative losses to the77

cross-entropy loss (one-hot encoded log-loss) [28]. We pro-78

pose α-loss, which continuously interpolates between the79

exponential, log, and 0-1 losses, as a viable solution.80

In order to evaluate the statistical efficacy of loss func-81

tions in the learning setting of classification, Bartlett et al.82

proposed the notion of classification-calibration in a seminal83

paper [6]. Classification-calibration is analogous to point-84

wise Fisher consistency in that it requires that the mini-85

mizer of the conditional expectation of a loss function agrees86

in sign with the Bayes predictor for every value of the87

feature vector. A more restrictive notion called properness88

requires that the minimizer of the conditional expectation of89

a loss function exactly replicates the true posterior [29]–[31].90

Properness of a loss function is a necessary condition for effi-91

cacy in the class probability estimation setting (see, e.g., [31]),92

but for the classification setting which is the focus of this93

work, the notion of classification-calibration is sufficient.94

In the sequel, we find that the margin-based form of α-95

loss is classification-calibrated for all α ∈ (0,∞] and96

thus satisfies this necessary condition for efficacy in binary97

classification.98

While early research was predominantly focused on convex99

losses [6], [8]–[10], more recent works propose the use of100

non-convex losses as a means to moderate the behavior of an101

algorithm [7], [11], [15], [32]. This is due to the increased102

robustness non-convex losses offer over convex losses [15],103

[32], [33] and the fact that modern learning models (e.g., deep104

learning) are inherently non-convex as they involve vast func-105

tional compositions [34]. There have been numerous theoreti-106

cal attempts to capture the non-convexity of the optimization107

landscape which is the loss surface induced by the learning108

model, underlying distribution, and the surrogate loss function109

itself [32], [35]–[41]. To this end, Hazan et al. [35] introduce110

the notion of strictly local quasi-convexity (SLQC) to para-111

metrically quantify approximately quasi-convex functions, and112

provide convergence guarantees for the Normalized Gradient113

Descent (NGD) algorithm (originally introduced in [42]) for114

such functions. Through a quantification of the SLQC para-115

meters of the expected α-loss, we provide some estimates116

that strongly suggest that the degree of convexity increases117

as α decreases less than 1 (log-loss); conversely, the degree118

of convexity decreases as α increases greater than 1. Thus,119

we find that there exists a trade-off inherent in the choice120

of α ∈ (0,∞], i.e., trade convexity (and hence optimization121

speed) for robustness and vice-versa. Since increasing the122

degree of convexity of the optimization landscape is conducive123

to faster optimization, our approach could serve as an alter-124

native to other approaches whose objective is to accelerate125

the optimization process, e.g., the activation function tuning 126

in [43]–[45] and references therein. 127

Understanding the generalization capabilities of learning 128

algorithms stands as one of the key problems in theoretical 129

machine learning. A classical approach to this problem con- 130

sists in deriving algorithm independent generalization bounds, 131

mainly relying on the notion of Rademacher complexity 132

[4, Ch. 26]. A recent line of research, initiated by the works 133

of Russo and Zou [46] and Xu and Raginsky [47], aims 134

to improve generalization bounds by considering the sta- 135

tistical dependency between the input and the output of a 136

given learning algorithm. While there are many extensions 137

and refinements, e.g., [48]–[54], these results are inherently 138

algorithm dependent which makes them hard to instantiate and 139

obfuscates the role of the loss function. Hence, in this work 140

we rely on classical Rademacher complexity tools to provide 141

algorithm independent generalization bounds that lead to the 142

asymptotic optimality of α-loss w.r.t. the 0-1 loss. 143

There are a few proposed tunable loss functions for the 144

classification setting in the literature [11], [55]–[57]. Notably, 145

the symmetric cross entropy loss introduced by Wang et al. 146

in [55] proposes the tunable linear combination of the usual 147

cross entropy loss with the so-called reverse cross entropy loss, 148

which essentially reverses the roles of the one-hot encoded 149

labels and soft prediction of the model. Wang et al. report 150

gains under symmetric and asymmetric noisy labels, par- 151

ticularly in the very high noise regime. Another approach 152

introduced by Amid et al. in [56] is a bi-tempered logistic 153

loss, which is based on Bregman divergences. As the name 154

suggests, the bi-tempered logistic loss depends on two temper- 155

ature hyperparameters, which Amid et al. show improvements 156

over vanilla cross-entropy loss again on noisy data. Recently, 157

Li et al. introduced tilted empirical risk minimization [57], 158

a framework which parametrically generalizes empirical risk 159

minimization using a log-exponential transformation to induce 160

fairness or robustness in the model. Contrasting with this work, 161

we note that our study is exclusively focused on α-loss acting 162

within empirical risk minimization. Summing up, the main 163

distinctions that differentiate this work from related work are 164

that α-loss has a fundamental relationship to the Arimoto con- 165

ditional entropy, continuously interpolates between the expo- 166

nential, log, and 0-1 losses, and provides robustness to noisy 167

labels and sensitivity to imbalanced classes. Lastly, we note 168

that α-loss has also been recently studied in the context of 169

generative adversarial networks [58] and boosting [59]. 170

B. Contributions 171

The following are the main contributions of this paper: 172

• We formulate α-loss in the classification setting, extend- 173

ing it to α ∈ (0, 1), and we thereby extend the result of 174

Liao et al. in [17] which characterizes the relationship 175

between α-loss and the Arimoto conditional entropy. 176

• For binary classification, we define a margin-based form 177

of α-loss and demonstrate its equivalence to α-loss for 178

all α ∈ (0,∞]. We then characterize convexity and 179

verify statistical calibration of the margin-based α-loss 180

for α ∈ (0,∞]. We next derive the minimum conditional 181
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risk of the margin-based α-loss, which we show recovers182

the relationship between α-loss and the Arimoto condi-183

tional entropy for all α ∈ (0,∞]. Lastly, we provide184

synthetic experiments on a two-dimensional Gaussian185

mixture model with asymmetric label flips and class186

imbalances, where we train linear predictors with α-loss187

for several values of α.188

• For the logistic model in binary classification, we show189

that the expected α-loss is convex in the logistic para-190

meter for α ≤ 1 (strongly-convex when the covariance191

matrix is positive definite), and we show that it retains192

convexity as α increases greater than 1 provided that the193

radius of the parameter space is small enough. We provide194

a point-wise extension of strictly local quasi-convexity195

(SLQC) by Hazan et al., and we reformulate SLQC into196

a more tractable inequality using a geometric inequality197

which may be of independent interest. Using a bootstrap-198

ping technique which also may be of independent interest,199

we provide bounds in order to quantify the evolution of200

the SLQC parameters as α increases.201

• Also for the logistic model in binary classification,202

we characterize the generalization capabilities of α-loss.203

To this end, we employ standard Rademacher complexity204

generalization techniques to derive a uniform general-205

ization bound for the logistic model trained with α-206

loss for α ∈ (0,∞]. We then combine a result by207

Bartlett et al. and our uniform generalization bound to208

show (under standard distributional assumptions) that209

the minimizer of the empirical α-loss is asymptotically210

optimal with respect to the expected 0-1 loss (probabil-211

ity of error), which is the ideal metric in classification212

problems.213

• Finally, we perform symmetric noisy label and class214

imbalance experiments on MNIST, FMNIST, and CIFAR-215

10 using convolutional-neural-networks. We show that216

models trained with α-loss can either be more robust217

or sensitive to outliers (depending on the application)218

over models trained with log-loss (α = 1). Follow-219

ing some of our theoretical intuitions, we demonstrate220

the “Goldilocks zone” of α ∈ (0,∞], i.e., for most221

applications α∗ ∈ [.8, 8]. Thus, we argue that α-loss222

is an effective generalization of log-loss (cross-entropy223

loss) for classification problems in modern machine224

learning.225

Different subsets of the authors published portions of this226

paper as conference proceedings in [1] and [2]. Specifi-227

cally, results provided in [1] primarily comprise a subset228

of the second bullet in the list above, however, this work229

extends those published results to α ∈ (0, 1), clarifies the230

relationship to Arimoto conditional entropy, and provides231

synthetic experiments; in addition, results in [2] primarily232

comprise a subset of the third bullet in the list above, how-233

ever, this work provides a new convexity result for α > 1,234

provides SLQC background material including a point-wise235

statement and proof of Lemma 1, and utilizes a boot-236

strapping argument which significantly improves the bounds237

in [2]. The remaining three bullets are all comprised of238

unpublished work.239

Fig. 1. (a) α-loss (2) as a function of the probability for several values of
α; (b) α-tilted posterior (6) for several values of α where the true underlying
distribution is the (20,0.5)-binomial distribution.

II. INFORMATION-THEORETIC MOTIVATIONS OF α-LOSS 240

Consider a pair of discrete random variables denoted 241

(X, Y ) ∼ PX,Y . Observing X , one can construct an estimate 242

Ŷ of Y such that Y −X − Ŷ form a Markov chain. It is 243

possible to evaluate the fitness of a given estimate Ŷ using a 244

loss function " : Y × P(Y) → R+ via the expectation 245

EX,Y

[
"(Y, PŶ |X)

]
, (1) 246

where Ŷ |X ∼ PŶ |X is the learner’s posterior estimate of Y 247

given knowledge of X ; for simplicity we sometimes abbreviate 248

PŶ |X=x as P̂ when the context is clear. In [17], Liao et al. 249

proposed the definition of α-loss for α ∈ [1,∞] in order to 250

quantify adversarial action in the information leakage context. 251

We adapt and extend the definition of α-loss to α ∈ (0,∞] in 252

order to study the efficacy of the loss function in the machine 253

learning setting. 254

Definition 1: Let P(Y) be the set of probability distributions 255

over Y . For α ∈ (0, 1)∪ (1,∞), we define α-loss, denoted by 256

lα : Y × P(Y) → R+, as 257

lα(y, P̂ ) :=
α

α− 1

(
1 − P̂ (y)1−1/α

)
, (2) 258

and, by continuous extension, l1(y, P̂ ) := − log P̂ (y) and 259

l∞(y, P̂ ) := 1 − P̂ (y). 260

Note that for (y, P̂ ) fixed, lα(y, P̂ ) is continuous and 261

monotonically decreasing in α. Also note that l1 recovers log- 262

loss, and plugging in α = 1/2 yields l1/2(y, P̂ ) := P̂−1(y)− 263

1. One can use expected α-loss EX,Y [lα(Y, PŶ |X)], hence 264

called α-risk, to quantify the effectiveness of the estimated 265

posterior PŶ |X . In particular, 266

EX,Y

[
l1(Y, PŶ |X)

]
= EX

[
H(PY |X=x, PŶ |X=x)

]
, (3) 267

where H(P, Q) := H(P ) + DKL(P‖Q) is the cross-entropy 268

between P and Q. Similarly, 269

EX,Y [l∞(Y, PŶ |X)] = P[Y #= Ŷ ], (4) 270

i.e., the expected α-loss for α = ∞ equals the probability of 271

error. Recall that the expectation of the canonical 0-1 loss, 272

EX,Y [ [Y #= Ŷ ]], also recovers the probability of error [4]. 273

For this reason, we sometimes refer to l∞ as the 0-1 loss. 274

Observe that α-loss presents a tunable class of loss functions 275

that value the probabilistic estimate of the label differently 276

as a function of α; see Fig. 1(a). In the sequel, we find 277

that, when composed with a sigmoid, l1/2, l1, l∞ become the 278
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exponential, logistic, and sigmoid (smooth 0-1) losses, respec-279

tively. While we note that there may be infinitely many ways280

to continuously interpolate between the exponential, log, and281

0-1 losses, we observe that the interpolation introduced by282

α-loss is monotonic in α, seems to provide an information-283

theoretic interpretation (Proposition 1), and also appears to284

be apt for the classification setting which will be further285

elaborated in the sequel. The following result was shown by286

Liao et al. in [17] for α ∈ [1,∞] and provides an explicit287

characterization of the optimal risk-minimizing posterior under288

α-loss. We extend the result to α ∈ (0, 1).289

Proposition 1: For each α ∈ (0,∞], the minimal α-risk is290

min
PŶ |X

EX,Y

[
lα(Y, PŶ |X)

]
=

α

α− 1

(
1 − e

1−α
α HA

α (Y |X)
)

,291

(5)292

where HA
α (Y |X) :=

α

1 − α
log
∑
x

(∑
y

PX,Y (x, y)α
)1/α

is293

the Arimoto conditional entropy of order α [60]. The resulting294

unique minimizer, P̂ ∗
α , is the α-tilted true posterior295

P̂ ∗
α(y|x) =

PY |X(y|x)α

∑
y

PY |X(y|x)α
. (6)296

The proof of Proposition 1 for α ∈ [1,∞] can be found297

in [17] and is readily extended to the case where α ∈ (0, 1)298

with similar techniques. Through Proposition 1, we note299

that α-loss exhibits different operating conditions through300

the choice of α. Observe that the minimizer of (5) given301

by the α-tilted distribution in (6) recovers the true posterior302

only if α = 1, i.e., for log-loss. Further, as α decreases303

from 1 towards 0, α-loss places increasingly higher weights304

on the low probability outcomes; on the other hand as α305

increases from 1 to ∞, α-loss increasingly limits the effect306

of the low probability outcomes. Ultimately, we find that for307

α = ∞, minimizing the corresponding risk leads to making308

a single guess on the most likely label, i.e., MAP decoding.309

See Fig. 1(b) for an illustration of the α-tilted distribution310

on a (20,0.5)-Binomial distribution. Intuitively, empirically311

minimizing α-loss for α #= 1 could be a boon for learning312

the minority class (α < 1) or ignoring label noise (α > 1);313

see Section VI for experimental consideration of such class314

imbalance and noisy label trade-offs.315

With the information-theoretic motivations of α-loss behind316

us, we now consider the setting of binary classification, where317

we study the optimization, statistical, and robustness properties318

of α-loss.319

III. α-LOSS IN BINARY CLASSIFICATION320

In this section, we study the role of α-loss in binary clas-321

sification. First, we provide its margin-based form, which we322

show is intimately related to the original α-loss formulation in323

Definition 1; next, we analyze the optimization characteristics324

and statistical properties of the margin-based α-loss where325

we notably recover the relationship between α-loss and the326

Arimoto conditional entropy in the margin setting; finally,327

we comment on the robustness and sensitivity trade-offs which328

are inherent in the choice of α through theoretical discussion329

and experimental considerations. First, however, we formally 330

discuss the binary classification setting through the role of 331

classification functions and surrogate loss functions. 332

In binary classification, the learner ideally wants to obtain 333

a classifier h : X → {−1, +1} that minimizes the probability 334

of error, or the risk (expectation) of the 0-1 loss, given by 335

R(h) = P[h(X) #= Y ], (7) 336

where the true 0-1 loss given by [h(X) #= Y ]. Unfortu- 337

nately, this optimization problem is NP-hard [5]. Therefore, 338

the problem is typically relaxed by imposing restrictions on 339

the space of possible classifiers and by choosing surrogate loss 340

functions with desirable properties. Thus during the training 341

phase, it is common to optimize a surrogate loss function 342

over classification functions of the form f : X → R, R = 343

R ∪ {±∞}, whose output captures the certainty of a model’s 344

prediction of the true underlying binary label Y ∈ {−1, 1} 345

associated with X [1], [3], [4], [6]–[9], [61]. Once a suit- 346

able classification function has been chosen, the classifier is 347

obtained by making a hard decision, i.e., the model outputs 348

the classification h(X) = sign(f(X)), in order to predict the 349

true underlying binary label Y ∈ {−1, 1} associated with 350

the feature vector X ∈ X . Examples of learning algorithms 351

which optimize surrogate losses over classification functions 352

include SVM (hinge loss), logistic regression (logistic loss), 353

and AdaBoost (exponential loss), to name a few [3]. With the 354

notions of classification functions and surrogate loss functions 355

in hand, we now turn our attention to an important family of 356

surrogate loss functions in binary classification. 357

A. Margin-Based α-Loss 358

Here, we provide the definition of α-loss in binary classifi- 359

cation and characterize its relationship to the form presented 360

in Definition 1. First, we discuss an important family of loss 361

functions in binary classification called margin-based losses. 362

A loss function is said to be margin-based if, for all x ∈ X 363

and y ∈ {−1, +1}, the loss associated to a pair (y, f(x)) is 364

given by l̃(yf(x)) for some function l̃ : R → R+ [6]–[9], [28]. 365

In this case, the loss of the pair (y, f(x)) only depends on the 366

product z := yf(x), the (unnormalized) margin [61]. Observe 367

that a negative margin corresponds to a mismatch between the 368

signs of f(x) and y, i.e., a classification error by f . Similarly, 369

a positive margin corresponds to a match between the signs 370

of f(x) and y, i.e., a correct classification by f . We now 371

provide the margin-based form of α-loss, which is illustrated 372

in Fig. 2(a). 373

Definition 2: For α ∈ (0, 1)∪(1,∞), we define the margin- 374

based α-loss, l̃α : R → R+, as 375

l̃α(z) :=
α

α− 1

(
1 −

(
1 + e−z

)1/α−1
)

, (8) 376

and, by continuous extension, l̃1(z) = log(1 + e−z) and 377

l̃∞(z) = (1 + ez)−1. 378

Note that l̃1/2(z) = e−z . Thus, l̃1/2, l̃1, and l̃∞ recover the 379

exponential, logistic, and sigmoid losses, respectively. Navi- 380

gating the various regimes of α induces different optimization, 381

statistical, and robustness characteristics for the margin-based 382
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Fig. 2. (a) Margin-based α-loss (8) as a function of the margin (z := yf(x))
for α ∈ {0.3, 0.5, 0.77, 1, 1.44,∞}; (b) Minimum conditional risk (14) for
the same values of α.

α-loss; this is elaborated in the sequel. First, we discuss383

its relationship to the original form in Definition 1, which384

requires alternative prediction functions to classification func-385

tions called soft classifiers.386

In binary classification, it is also common to use soft387

classifiers g : X → [0, 1] which encode the conditional388

distribution, namely, g(x) := PŶ |X(1|x). In essence, soft389

classifiers capture a model’s belief of Y |X [1], [4], [34].390

Similar to the classification function setting, the hard decision391

of a soft classifier is obtained by h(x) = sign(g(x) − 1/2).392

Log-loss, and by extension α-loss as given in Definition 1,393

are examples of loss functions which act on soft classifiers.394

In practice, a soft classifier can be obtained by composing395

a classification function with the logistic sigmoid function396

σ : R → [0, 1] given by397

σ(z) =
1

1 + e−z
, (9)398

which is generalized by the softmax function in the multiclass399

setting [34]. Observe that σ is invertible and σ−1 : [0, 1] → R400

is given by401

σ−1(z) = log
(

z

1 − z

)
, (10)402

which is often referred to as the logistic link [31].403

With these two transformations, one is able to map clas-404

sification functions to soft classifiers and vice-versa. Thus,405

a loss function in one domain is readily transformed into a406

loss function in the other domain. In particular, we are now407

in a position to derive the correspondence between α-loss in408

Defintion 1 and the margin-based α-loss in Definition 2, which409

generalizes our previous proof in [1].410

Proposition 2: Consider a soft classifier g(x) = PŶ |X(1|x).411

If f(x) = σ−1(g(x)), then, for every α ∈ (0,∞],412

lα(y, g(x)) = l̃α(yf(x)). (11)413

Conversely, if f is a classification function, then the soft414

classifier g(x) := σ(f(x)) satisfies (11). In particular, for415

every α ∈ (0,∞],416

min
g

EX,Y (lα(Y, g(x))) = min
f

EX,Y (l̃α(Y f(X))). (12)417

Therefore, there is a direct correspondence between α-loss418

in Definition 1 and the margin-based α-loss which is used in419

binary classification.420

Remark 1: Instead of the fixed inverse link function (9),421

it is also possible to use any other fixed inverse link function,422

or even inverse link functions dependent on α; indeed, it is 423

possible to derive many such tunable margin-based losses 424

this way. However, the margin-based α-loss as given in 425

Definition 2 allows for continuous interpolation between the 426

exponential, logistic, and sigmoid losses, and thus motivates 427

our choice of the fixed sigmoid in (9) as the inverse link. 428

The following result, which quantifies the convexity of 429

the margin-based α-loss, will be useful in characterizing the 430

convexity of the average loss, or landscape, in the sequel. 431

Proposition 3: As a function of the margin, l̃α : R → R+ 432

is convex for α ≤ 1 and quasi-convex for α > 1. 433

Recall that a real-valued function f : R → R is quasi- 434

convex if, for all x, y ∈ R and λ ∈ [0, 1], we have that 435

f(λx+(1−λ)y) ≤ max {f(x), f(y)}, and also recall that any 436

monotonic function is quasi-convex (see e.g., [62]). Intuitively 437

through Fig. 2(a), we find that the quasi-convexity of the 438

margin-based α-loss for α > 1 reduces the penalty induced 439

during training for examples which have a negative margin; 440

this has implications for robustness that will also be investi- 441

gated in the sequel. 442

B. Calibration of Margin-Based α-Loss 443

With the definition and basic properties of the margin-based 444

α-loss in hand, we now discuss a statistical property of the 445

margin-based α-loss that highlights its suitability in binary 446

classification. Bartlett et al. in [6] introduce classification- 447

calibration as a means to compare the performance of a 448

margin-based loss function relative to the 0-1 loss by inspect- 449

ing the minimizer of its conditional risk. Formally, let φ : 450

R → R+ denote a margin-based loss function and let 451

Cφ(η(x), f(x)) = E[φ(Y f(X))|X = x] denote its condi- 452

tional expectation (risk), where η(x) = PY |X(1|x) is the true 453

posterior and f : X → R is a classification function. Thus, 454

the conditional risk of the margin-based α-loss for α ∈ (0,∞] 455

is given by 456

Cα(η(x), f(x)) = EY [l̃α(Y f(X))|X = x]. (13) 457

We say that φ : R → R+ is classification-calibrated if, for all 458

x ∈ X , its minimum conditional risk 459

inf
f :X→R

Cφ(η(x), f(x)) 460

= inf
f :X→R

η(x)φ(f(x)) + (1 − η(x))φ(−f(x)), (14) 461

is attained by a f∗ : X → R such that 462

sign(f∗(x)) = sign(2η(x) − 1). (15) 463

In words, a margin-based loss function is classification- 464

calibrated if for each feature vector, the minimizer of its 465

minimum conditional risk agrees in sign with the Bayes opti- 466

mal predictor. Note that this is a pointwise form of Fisher 467

consistency [6], [8]. 468

The expectation of the loss function φ, or the φ-risk, 469

is denoted Rφ(f) = EX [Cφ(η(X), f(X))]; this notation will 470

be useful in the sequel when we quantify the asymptotic 471

behavior of α-loss. Finally, as is common in the literature 472

[6], [7], we omit the dependence of η and f on x, and 473

we also let C∗
φ(η) = Cφ(η, f∗) for notional convenience. 474
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With the necessary background on classification-calibrated475

loss functions in hand, we are now in a position to show that476

l̃α is classification-calibrated for all α ∈ (0,∞].477

Theorem 1: For α ∈ (0,∞], the margin-based α-loss l̃α is478

classification-calibrated. In addition, its optimal classification479

function is given by480

f∗
α(η) = α · σ−1(η) = α log

(
η

1 − η

)
. (16)481

See Appendix A for full proof details. Examining the opti-482

mal classification function in (16) more closely, we observe483

that this expression is readily derived from the α-tilted distri-484

bution for a binary label set in Proposition 2. Thus, analogous485

to the intuitions regarding the α-tilted distribution in (6), the486

optimal classification function in (16) suggests that α > 1 is487

more robust to slight fluctuations in η and α < 1 is more488

sensitive to slight fluctuations in η. In the sequel, we find489

that this has practical implications for noisy labels and class490

imbalances.491

Upon plugging (16) into (13), we get the next result which492

specifies the minimum conditional risk of l̃α for α ∈ (0,∞].493

Corollary 1: For α ∈ (0,∞], the minimum conditional risk494

C∗
α(η) of l̃α is equal to495






α
α−1

(
1 − (ηα + (1 − η)α)1/α

)
α ∈ (0, 1) ∪ (1, +∞),

−η log η − (1 − η) log (1 − η) α = 1,

min{η, 1 − η} α→ +∞.

496

(17)497

Remark 2: Observe that in (17) for α = 1, the minimum498

conditional risk can be rewritten as499

C∗
1 (η) = −η log η − (1 − η) log (1 − η) (18)500

= H(Y |X = x), (19)501

where H(Y |X = x) is the Shannon conditional entropy for a502

Y given X = x [63]. For α ∈ (0, 1)∪ (1, +∞), also note that503

in (17), the minimum conditional risk can be rewritten as504

C∗
α(η) =

α

α− 1

[
1 − (ηα + (1 − η)α)1/α

]
(20)505

=
α

α− 1

[
1 − e

1−α
α HA

α (Y |X=x)
]
, (21)506

where HA
α (Y |X = x) = 1

1−α log
(∑

y PY |X(y|x)α
)

is the507

Arimoto conditional entropy of order α [60]. Finally, observe508

that EX [C∗
α(η(X))] recovers (5) in Proposition 1.509

Finally, note that the minimum conditional risk of the510

margin-based α-loss is concave for all α ∈ (0,∞] (see511

Fig. 2(b)); indeed, this is known to be a useful property for512

classification problems [7]. Therefore, since the margin-based513

α-loss is classification-calibrated and its minimum conditional514

risk is concave for all α ∈ (0,∞], it seems to have reasonable515

statistical behavior for binary classification problems. We now516

turn our attention to the robustness and sensitivity tradeoffs517

induced by traversing the different regimes of α for the518

margin-based α-loss.519

Fig. 3. Two synthetic experiments each averaged over 100 runs highlighting
the differences in trained linear predictors of α-loss for α ∈ {0.65, 1, 4}
on imbalanced and noisy data, which are compared with the Bayes opti-
mal predictor for the clean, balanced distribution. Training data present in
both figures is obtained from the last run in each experiment, respectively.
(a) Averaged linear predictors trained using α-loss on imbalanced data with
2 examples from Y = −1 class per run. Averaged linear predictors for smaller
values of α are closer to the Bayes predictor for the balanced distribution,
which highlights the sensitivity of α-loss to the minority class for α < 1.
(b) Averaged linear predictors trained using α-loss on noisy data, which is
obtained by flipping the labels of the Y = −1 class with probability 0.2.
Averaged linear predictor for α = 4 is closer to the Bayes predictor for the
balanced distribution, which highlights the robustness of α-loss to noise for
α > 1.

C. Robustness and Sensitivity of Margin-Based α-Loss 520

Despite the advantages of convex losses in terms of numer- 521

ical optimization and theoretical tractability, non-convex loss 522

functions often provide superior model robustness and classifi- 523

cation accuracy [1], [7], [11], [15], [32], [33], [61], [64], [65]. 524

In essence, non-convex loss functions tend to assign less 525

weight to misclassified training examples1 and therefore algo- 526

rithms optimizing such losses are often less perturbed by 527

outliers, i.e., examples which induce large negative margins. 528

More concretely, consider Fig. 2(a) for α = 1/2 (convex) 529

and α = 1.44 (quasi-convex), and suppose that z1 = −1 and 530

z2 = −5. Plugging these parameters into Definition 2, we find 531

that l̃1/2(z1) = e1 ≈ 2.7, l̃1/2(z2) = e5 ≈ 148.4, l̃1.44(z1) ≈ 532

1.1, and l̃1.44(z2) ≈ 2.6. In words, the difference in these loss 533

evaluations for a negative value of the margin, which is repre- 534

sentative of a misclassified training example, is approximately 535

exponential versus sub-linear. Indeed, this difference appears 536

to be most relevant for outliers (e.g., noisy or imbalanced 537

training examples) [7], [61]. 538

We explore these ideas with the following synthetic exper- 539

iment presented in Fig. 3. We assume the practitioner has 540

access to modified training data which approximates the true 541

underlying distribution given by a two-dimensional Gaussian 542

Mixture Model (2D-GMM) with equal mixing probability 543

P[Y = −1] = P[Y = +1], symmetric means 544

µX|Y =−1 = (−1,−1)ᵀ = −µX|Y =1, (22) 545

and shared identity covariance matrix Σ = I2. The first 546

experiment considers the scenario where the training data 547

suffers from a class imbalance; specifically, the number of 548

training examples for the Y = −1 class is 2 and the number 549

of training examples for the Y = +1 class is 98 for every run. 550

1Convex losses grow at least linearly with respect to the negative margin
which results in an increased sensitivity to outliers. See Fig. 2(a) for α = 1 as
an example of this phenomenon.

Authorized licensed use limited to: Lalitha Sankar. Downloaded on October 17,2022 at 00:37:19 UTC from IEEE Xplore.  Restrictions apply. 



SYPHERD et al.: TUNABLE LOSS FUNCTION FOR ROBUST CLASSIFICATION: CALIBRATION, LANDSCAPE, AND GENERALIZATION 6027

The second experiment considers the scenario where the train-551

ing data suffers from noisy labels; specifically, the labels of the552

Y = −1 class are flipped with probability 0.2 and the labels553

of the Y = +1 class are kept fixed. For both experiments we554

train α-loss on the logistic model, which is the generalization555

of logistic regression with α-loss and is formally described556

in the next section. Specifically, we minimize α-loss using557

gradient descent with the fixed learning rate = 0.01 for each558

α ∈ {0.65, 1, 4}. Note that α = 0.65 (lower limit) and α = 4559

(upper limit) were both chosen for computational feasibility560

in the logistic model; in practice, the range of α ∈ (0,∞],561

while usually contracted as in this experiment, is dependent562

on the model - this is elaborated in the sequel. Training is563

allowed to progress until convergence as specified by the564

optimality parameter = 10−4. The linear predictors presented565

in Fig. 3 are averaged over 100 runs of randomly generated566

data according to the parameters for each experiment.567

Ideally, the practitioner would like to generate a linear568

predictor which is invariant to noisy or imbalanced training569

data and tends to align with the Bayes optimal predictor for570

the balanced distribution. Indeed, when the training data is571

balanced (and clean), all averaged linear predictors generated572

by α-loss collapse to the Bayes predictor; see Fig. 11 in573

Appendix D.2. However, training on noisy or imbalanced data574

affects the linear predictors of α-loss in different ways. In the575

class imbalance experiment in Fig. 3(a), we find that the aver-576

aged linear predictor for the smaller values of α more closely577

approximate the Bayes predictor for the balanced distribution,578

which suggests that the smaller values of α are more sensitive579

to the minority class. Similarly in the class noise experiment580

in Fig. 3(b), we find that the averaged linear predictor for581

α = 4 more closely approximates the Bayes predictor for the582

balanced distribution, which suggests that the larger values583

of α are less sensitive to noise in the training data. Both584

results suggest that α = 1 (log-loss) can be improved with585

the use of α-loss in these scenarios. For quantitative results586

of this experiment, including a wider range of α’s, additional587

imbalances and noise levels, and results using the F1 score,588

see Tables VII, VIII, and IX in Appendix D.2.589

In summary, we find that navigating the convexity regimes590

of α-loss induces different robustness and sensitivity charac-591

teristics. We explore these themes in more detail on canonical592

image datasets in Section VI; theoretical investigations of593

the robustness of α-loss can be found in [59]. We now turn594

our attention to theoretically characterizing the optimization595

complexity of α-loss for the different regimes of α in the596

logistic model.597

IV. OPTIMIZATION GUARANTEES FOR598

α-LOSS IN THE LOGISTIC MODEL599

In this section, we analyze the optimization complexity of600

α-loss in the logistic model as we vary α by quantifying601

the convexity of the optimization landscape. First, we show602

that the α-risk is convex (indeed, strongly-convex if a certain603

correlation matrix is positive definite) in the logistic model for604

α ≤ 1; next, we provide a brief summary of a notion known605

as strictly local quasi-convexity (SLQC); then, we provide a606

more tractable reformulation of SLQC which is instrumental 607

for our theory; finally, we study the convexity of the α-risk 608

in the logistic model through SLQC for a range of α > 1, 609

which we argue is sufficient due to the rapid saturation effect 610

of α-loss as α → ∞. Notably, our main result depends on a 611

bootstrapping argument that might be of independent interest. 612

Our main conclusion of this section is that there exists a 613

“Goldilocks zone” of α ∈ (0,∞] which drastically reduces 614

the hyperparameter search induced by α for the practitioner. 615

Finally, note that all proofs and background material can be 616

found in Appendix B. 617

A. α-Loss in the Logistic Model 618

Prior to stating our main results, we clarify the setting 619

and provide necessary definitions. Let X ∈ [0, 1]d be the 620

normalized feature where d ∈ N is the number of dimen- 621

sions, Y ∈ {−1, +1} the label and we assume that the pair 622

is distributed according to an unknown distribution PX,Y , 623

i.e., (X, Y ) ∼ PX,Y . For θ̃ ∈ Rd and r > 0, we let 624

Bd(θ̃, r) := {θ ∈ Rd : ‖θ − θ̃‖ ≤ r}. For simplicity, we let 625

Bd(r) = Bd(0, r) when θ̃ = 0; also note that all norms are 626

Euclidean. Given r > 0, we consider the logistic model and its 627

associated hypothesis class G = {gθ : θ ∈ Bd(r)}, composed 628

of parameterized soft classifiers gθ such that 629

gθ(x) = σ(〈θ, x〉), (23) 630

with σ : R → [0, 1] being the sigmoid function given by 631

(9). For convenience, we present the following short form of 632

α-loss in the logistic model which is equivalent to the 633

expanded expression in [1]. For α ∈ (0,∞], α-loss is given 634

by 635

lα(y, gθ(x)) =
α

α− 1

[
1 − gθ(yx)1−1/α

]
. (24) 636

For α = 1, l1 is the logistic loss and we recover logistic 637

regression by optimizing this loss. Note that in this setting 638

〈yx, θ〉 is the margin, and recall from Proposition 3 that (24) 639

is convex for α ∈ (0, 1] and quasi-convex for α > 1 in 〈yx, θ〉. 640

For θ ∈ Bd(r), we define the α-risk Rα as the risk of the loss 641

in (24), 642

Rα(θ) := EX,Y [lα(Y, gθ(X))]. (25) 643

The α-risk (25) is plotted for several values of α in a two- 644

dimensional Gaussian Mixture Model (GMM) in Fig. 4. Fur- 645

ther, observe that, for all θ ∈ Bd(r), 646

R∞(θ) := EX,Y [l∞(Y, gθ(X))] = P[Y #= Ŷθ], (26) 647

where Ŷθ is a random variable such that for all x ∈ Bd(1), 648

P[Ŷθ = 1|X = x] = gθ(x). 649

In order to study the landscape of the α-risk, we compute 650

the gradient and Hessian of (24), by employing the following 651

useful properties of the sigmoid 652

σ(−z) = 1 − σ(z) and
d

dz
σ(z) = σ(z)(1 − σ(z)). (27) 653

Indeed, a straightforward computation shows that 654

∂

∂θj
lα(y, gθ(x)) =

[
−ygθ(yx)1−1/α(1 − gθ(yx))

]
xj , (28) 655
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Fig. 4. The landscape of α-loss (Rα for α = 0.95, 1, 2, 10) in the logistic
model, where features are normalized, for a 2D-GMM with P[Y = −1] =
0.12, µX|Y =−1 = (−0.18, 1.49)ᵀ , µX|Y =1 = (−0.01, 0.16)ᵀ , Σ−1 =
[3.20,−2.02;−2.02, 2.71], and Σ1 = [4.19, 1.27; 1.27, 0.90].

where θj , xj denote the j-th components of θ and x, respec-656

tively. Thus, the gradient of α-loss in (24) is657

∇θl
α(Y, gθ(X)) = F1(α, θ, X, Y )X, (29)658

where F1(α, θ, x, y) is defined as the expression within brack-659

ets in (28). Another straightforward computation yields660

∇2
θl

α(Y, gθ(X)) = F2(α, θ, X, Y )XXᵀ, (30)661

where F2 is defined as662

F2(α, θ, x, y) :=gθ(yx)1−1/αgθ(−yx)663

×
(

gθ(yx) −
(

1 − 1
α

)
gθ(−yx)

)
. (31)664

B. Convexity of the α-Risk665

We now turn our attention to the case where α ∈ (0, 1]; we666

find that for this regime, Rα is strongly convex; see Fig. 4667

for an example. Prior to stating the result, for two matrices668

A, B ∈ Rd×d, we let / denote the Loewner (partial) order669

in the positive semi-definite cone. That is, we write A / B670

when A − B is a positive semi-definite matrix. For a matrix671

A ∈ Rd×d, let λ1(A), . . . ,λd(A) be its eigenvalues. Finally,672

we recall that a function is m-strongly convex if and only if673

its Hessian has minimum eigenvalue m ≥ 0 [62].674

Theorem 2: Let Σ := E[XXᵀ]. If α ∈ (0, 1], then Rα(θ)675

is Λ(α, r
√

d) min
i∈[d]

λi (Σ)-strongly convex in θ ∈ Bd(r), where676

Λ(α, r
√

d) :=σ(r
√

d)1−1/α
677

×
(
σ′(r

√
d) −

(
1 − 1

α

)
σ(−r

√
d)2
)

. (32)678

Observe that if mini∈[d] λi(Σ) = 0, then the α-risk is679

merely convex for α ≤ 1. Also observe that for r
√

d > 0680

fixed, Λ(α, r
√

d) is monotonically decreasing in α. Thus, Rα681

becomes more strongly convex as α approaches zero.682

While Theorem 2 states that the α-risk is strongly-convex683

for all α ≤ 1 and for any r
√

d > 0, the following corollary,684

which is proved with similar techniques as Theorem 2, states685

that the α-risk is strongly-convex for some range of α > 1, 686

provided that r
√

d > 0 is small enough. 687

Corollary 2: Let Σ := E[XXT ]. If r
√

d ≤ arcsinh (1/2), 688

then Rα(θ) is Λ̃(α, r
√

d)mini∈[d] λi (Σ)-strongly convex in 689

θ ∈ Bd(r) for α ∈
(
0, (e2r

√
d − er

√
d)−1

]
, where 690

Λ̃(α, r
√

d) := σ(−r
√

d)2−1/ασ(r
√

d) 691

×
(

1 − er
√

d +
e−r

√
d

α

)
. (33) 692

It could be verified that (e2r
√

d − er
√

d)−1 > 1 whenever 693

r
√

d < arcsinh (1/2). By inspecting the relationship between 694

convexity and its dependence on r
√

d, Corollary 2 seems to 695

suggest that as α increases slightly greater than 1, convexity 696

is lost faster nearer to the boundary of the parameter space. 697

Indeed, refer to Fig. 4 to observe an example of this effect for 698

α increasing from α = 1 to α = 2, and note that convexity is 699

preserved in the small radius about 0 for α = 2. 700

Examining the α-risk in Fig. 4 for α = 2 more closely, 701

we see that it is reminiscent of a quasi-convex function. Recall 702

that (e.g., Chapter 3.4 in [62]) a function f : Rd → R is quasi- 703

convex if for all θ, θ0 ∈ Rd, such that f(θ0) ≤ f(θ), it follows 704

that 705

〈−∇f(θ), θ0 − θ〉 ≥ 0. (34) 706

In other words, the negative gradient of a quasi-convex func- 707

tion always points in the direction of descent. While α-loss 708

(24) is quasi-convex for α > 1, this does not imply that the 709

α-risk (25) is quasi-convex for α > 1 since the sum of quasi- 710

convex functions is not guaranteed to be quasi-convex [62]. 711

Thus, we need a new tool in order to quantify the optimization 712

complexity of the α-risk for α > 1 in the large radius regime. 713

C. Strictly Local Quasi-Convexity and Its Extensions 714

We use a framework developed by Hazan et al. in [35] 715

called strictly local quasi-convexity (SLQC), which is a gener- 716

alization of quasi-convexity. Intuitively, SLQC functions allow 717

for multiple local minima below an ε-controlled region while 718

stipulating (strict) quasi-convex functional behavior outside the 719

same region. Formally, we recall the following parameteric 720

definition of SLQC functions provided in [35]. 721

Definition 3 (Definition 3.1, [35]): Let ε,κ > 0 and 722

θ0 ∈ Rd. A function f : Rd → R is called (ε,κ, θ0)-strictly 723

locally quasi-convex (SLQC) at θ ∈ Rd if at least one of the 724

following conditions apply: 725

1. f(θ) − f(θ0) ≤ ε, 726

2. ‖∇f(θ)‖ > 0 and, for every θ′ ∈ B(θ0, ε/κ), 727

〈−∇f(θ), θ′ − θ〉 ≥ 0. (35) 728

Briefly, in [35] Hazan et al. refer to a function as SLQC 729

in θ, whereas for the purposes of our analysis we refer to a 730

function as SLQC at θ. We recover the uniform SLQC notion 731

of Hazan et al. by articulating a function is SLQC at θ for 732

every θ. Our later analysis of the α-risk in the logistic model 733

benefits from this pointwise consideration. 734

Observe that where Condition 1 of Definition 3 does not 735

hold, Condition 2 implies quasi-convexity about B(θ0, ε/κ) 736
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Fig. 5. An illustration highlighting the difference between quasi-convexity
as given in (34) and the second SLQC condition of Definition 3. If f is quasi-
convex, the red angle describes the possible negative gradients of f at θ with
respect to θ0. If f is SLQC, the blue angle describes the possible negative
gradients of f at θ with respect to θ0 and the given ε/κ-radius ball.

as evidence through (34); see Fig. 5 for an illustration of737

the difference between classical quasi-convexity and SLQC738

in this regime. We now present the following lemma, which739

is a structural result for general differentiable functions that740

provides an alternative formulation of the second requirement741

of SLQC functions in Definition 3; proof details can be found742

in Appendix B.1.743

Lemma 1: Assume that f : Rd → R is differentiable,744

θ0 ∈ Rd and ρ > 0. If θ ∈ Rd is such that ‖θ− θ0‖ > ρ, then745

the following are equivalent:746

1. 〈−∇f(θ), θ′ − θ〉 ≥ 0 for all θ′ ∈ Bd (θ0, ρ),747

2. 〈−∇f(θ), θ0 − θ〉 ≥ ρ‖∇f(θ)‖.748

Intuitively, the equivalence presented by Condition 2 of749

Lemma 1 is easier to manipulate in proving SLQC properties750

of the α-risk as we merely need to control 〈−∇f(θ), θ0 − θ〉751

rather than 〈−∇f(θ), θ′ − θ〉 for every θ′ ∈ B(θ0, ε/κ).752

In [35], Hazan et al. measure the optimization com-753

plexity of SLQC functions through the normalized gradient754

descent (NGD) algorithm, which is almost canonical gradi-755

ent descent (see, e.g., Chapter 14 in [4]) except gradients756

are normalized such that the algorithm applies uniform-size757

directional updates given by a fixed learning rate η > 0. While758

NGD may not be the most appropriate optimization algorithm759

in some applications, we use it as a theoretical benchmark760

which allows us to understand optimization complexity; fur-761

ther details regarding NGD can be found in Appendix B.1.762

Indeed, the convergence guarantees of NGD for SLQC func-763

tions are similar to those of Gradient Descent for convex764

functions.765

Proposition 4 (Thm. 4.1, [35]): Let f : Rd → R, θ1 ∈ Rd,766

and θ∗ = argminθ∈Rd f(θ). If f is (ε,κ, θ∗)-SLQC at θ for767

every θ ∈ Rd, then running the NGD algorithm with learning768

rate η = ε/κ for number of iterations T ≥ κ2‖θ1 − θ∗‖2/ε2769

achieves min
t=1,...,T

f(θt) − f(θ∗) ≤ ε.770

For an (ε,κ, θ0)-SLQC function, a smaller ε provides better771

optimality guarantees. Given ε > 0, smaller κ leads to faster772

optimization as the number of required iterations increases773

with κ2. Finally, by using projections, NGD can be easily774

adapted to work over convex and closed sets (e.g., B(θ0, r)775

for some θ0 ∈ Rd and r > 0).776

D. SLQC Parameters of the α-Risk 777

With the above SLQC preliminaries in hand, we start quanti- 778

fying the SLQC parameters of the α-risk, Rα. It can be shown 779

that for α ∈ (0,∞], Rα is Cd(r,α)-Lipschitz in θ ∈ Bd(r) 780

where, for α ∈ (0, 1], 781

Cd(r,α) :=
√

dσ(r
√

d)σ(−r
√

d)1−1/α; (36) 782

and, for α ∈ (1,∞], 783

Cd(r,α) :=






√
d
(

α−1
2α−1

)1−1/α (
α

2α−1

)
er

√
d ≥ α−1

α ,
√

dσ(r
√

d)σ(−r
√

d)1−1/α er
√

d < α−1
α .

784

(37) 785

Thus, in conjunction with Theorem 2, Corollary 2, and a 786

result by Hazan et al. in [35] (after Definition 3), we provide 787

the following result that explicitly characterizes the SLQC 788

parameters of the α-risk Rα for two separate ranges of α 789

near 1. 790

Proposition 5: Suppose that Σ 2 0 and θ0 ∈ Bd(r) is fixed. 791

We have one of the following: 792

• If r
√

d < arcsinh (1/2), then, for every ε > 0, Rα is 793

(ε, Cd(r,α), θ0)-SLQC at θ for every θ ∈ Bd(r) when 794

α ∈
(
0, (e2r

√
d − er

√
d)−1

]
where Cd(r,α) is given 795

in (36) and (37); 796

• Otherwise, for every ε > 0, Rα is (ε, Cd(r,α), θ0)-SLQC 797

at θ for every θ ∈ Bd(r) for α ∈ (0, 1]. 798

Thus, by Proposition 4 and (36), the number of iterations 799

of NGD, Tα, tends to infinity as α tends to zero. This conse- 800

quence of the result seems somewhat counterintuitive because 801

one would expect that increasing convexity (Rα becomes 802

“more” strongly convex in θ as α decreases, see Theorem 2 803

and Fig. 4) would improve the convergence rate. However, the 804

number of iterations of NGD tends to infinity as α tends to 805

zero because the Lipschitz constant of Rα, Cd(r,α) = κ blows 806

up. This phenomenon of the Lipschitz constant worsening 807

the convergence rate is not merely a feature of the SLQC 808

theory surrounding NGD. It is also present in convergence 809

rates for SGD optimizing convex functions, e.g., see Theorem 810

14.8 in [4]. Therefore, we find that there exists a trade-off 811

between the desired strong-convexity of Rα and the optimiza- 812

tion complexity of NGD. 813

Next, we quantify the evolution of the SLQC parameters of 814

Rα both in the small radius regime and in the large radius 815

regime. Since Rα tends more towards the probability of error 816

(expectation of 0-1 loss) as α approaches infinity, we find that 817

the SLQC parameters deteriorate and the optimization com- 818

plexity of NGD increases as we increase α. Fortunately, in the 819

logistic model, α-loss exhibits a saturation effect whereby 820

relatively small values of α resemble the landscape induced by 821

α = ∞. In order to quantify this effect, we state the following 822

two Lipschitz inequalities which will also be instrumental for 823

our main SLQC result. 824
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Fig. 6. An illustration of the saturation phenomenon of α-loss (Rα for
α = 10,∞) in the logistic model for a 2D-GMM with P[Y = 1] =
P[Y = −1], µX|Y =−1 = (−.91, .50)ᵀ , µX|Y =1 = (−.27, .20)ᵀ ,
Σ = [1.38, .55; .55, 2.18]. Note the small difference, uniformly over the
parameter space, between R10 and R∞.

Lemma 2: If α,α′ ∈ [1,∞], then, for all θ ∈ Bd(r),825

|Rα(θ) − Rα′(θ)| ≤ Ld(θ)
∣∣∣∣
α− α′

αα′

∣∣∣∣ , (38a)826

‖∇Rα(θ) −∇Rα′(θ)‖ ≤ Jd(θ)
∣∣∣∣
α− α′

αα′

∣∣∣∣ , (38b)827

where828

Ld(θ) :=

(
log
(
1 + e‖θ‖

√
d
))2

2
, (39a)829

Jd(θ) :=
√

d log
(
1 + e‖θ‖

√
d
)
σ(‖θ‖

√
d). (39b)830

This result is proved in Appendix B.2, and it can be applied831

to illustrate a saturation effect of α-loss in the logistic model.832

That is, let α = 10 and α′ = ∞, then for all θ ∈ Bd(r),833

we have that834

|R10(θ) − R∞(θ)| ≤ Ld(θ)
10

, (40a)835

|∇R10(θ) −∇R∞(θ)| ≤ Jd(θ)
10

, (40b)836

where Ld(θ) and Jd(θ) are both given in (39). In words,837

the pointwise distance between the α = 10 landscape and838

the α = ∞ landscape decreases geometrically; for a visual839

representation see Fig. 6.840

The saturation effect of α-loss suggests that it is unnecessary841

to work with large values of α. In particular, this motivates us842

to study the evolution of the SLQC parameters of the α-risk843

as we increase α > 1.844

Theorem 3: Let α0 ∈ [1,∞], ε0,κ0 > 0, and θ0, θ ∈ Bd(r).845

If Rα0 is (ε0,κ0, θ0)-SLQC at θ and846

0 ≤ α− α0 <
α2

0‖∇Rα0(θ)‖

2Jd(θ)
(
1 + rκ0

ε0

) , (41)847

then Rα is (ε,κ, θ0)-SLQC at θ with848

ε = ε0 + 2Ld(θ)
(
α− α0

αα0

)
, (42)849

ε

κ
=
ε0
κ0



1 −

(
1 + 2rκ0

ε0

)
Jd(θ)(α − α0)

αα0‖∇Rα0(θ)‖ − Jd(θ)(α − α0)



 . (43)850

The proof of Theorem 3 can be found in Appendix B.2. The 851

crux of the proof is a consideration of two cases, dependent 852

on the location of θ ∈ Bd(r) relative to the ε0-plane. The first 853

case considers θ ∈ Bd(r) such that Rα0(θ) − Rα0(θ0) ≤ ε0 854

and provides the required increase for ε to capture such points 855

as α increases. The second case considers θ ∈ Bd(r) such that 856

Rα0(θ) − Rα0(θ0) > ε0 and provides the required decrease 857

for ε/κ to capture such points as α increases. The second case 858

is far more geometric than the first one, as it makes use of 859

finer gradient information. As a result, the decrease in ε/κ is 860

more closely related to the landscape evolution of Rα than 861

the corresponding increase in ε. From a numerical point of 862

view, Proposition 4 implies that reducing the radius of the 863

ε/κ ball about θ0 increases the required number of iterations 864

(for optimality), and thus reflects the intuition that increasing 865

α > 1 more closely approximates the intractable 0-1 loss. 866

While on the contrary, Proposition 4 implies that increasing 867

the value of ε reduces the optimality guarantee itself. 868

We note that the bounds provided in Theorem 3 are pes- 869

simistic, but fortunately, we can improve them by employing a 870

bootstrapping technique - we take infinitesimal steps in α and 871

repeatedly apply the bounds in Theorem 3 to derive improved 872

bounds on α, ε, and κ. The following result is the culmination 873

of our analysis regarding the SLQC parameters of the α-risk in 874

the logistic model. The proof can be found in Appendix B.3. 875

Theorem 4: Let α0 ∈ [1,∞), ε0,κ0 > 0, and θ0, θ ∈ Bd(r). 876

Suppose that Rα0 is (ε0,κ0, θ0)-SLQC at θ ∈ Bd(r) and that 877

there exists gθ > 0 such that ‖∇Rα′(θ)‖ > gθ for every 878

α′ ∈ [α0,∞]. Then, for every λ ∈ (0, 1), Rαλ is (ελ,κλ, θ0)- 879

SLQC at θ where 880

αλ := α0 + λ
α2

0gθ

Jd(θ)
(
1 + 2rκ0

ε0

) , (44) 881

ελ := ε0 + 2λLd(θ)
(
αλ − α0

αλα0

)
α2

0gθ

Jd(θ)
(
1 + rκ0

ε0

) , (45) 882

ελ
κλ

>
ε0
κ0

(1 − λ). (46) 883

We now provide three different interpretations and com- 884

ments regarding the previous result. First regarding the SLQC 885

parameters themselves, observe from (44) that the bound on 886

α is improved over Theorem 3 as the factor of 2 in the 887

denominator in (41) is moved into the parentheses; next, it can 888

be observed (upon plugging in αλ) that ελ in (45) is linear 889

in λ, which is again an improvement over the first equation 890

in (42); finally, note that the bound on ελ/κλ in (45) is vastly 891

more tractable and informative than the second expression 892

in (42). Thus, bootstrapping the bounds of Theorem 3 provides 893

strong improvements for all three relevant quantities, α, ε, 894

and κ. Next, regarding the extra assumption for Theorem 4 895

over Theorem 3, i.e., the existence of a lowerbound gθ on the 896

norm of the gradient ‖∇Rα′(θ)‖ for all α′ ≥ α0, observe 897

that this is equivalent to the requirement that the landscape at 898

θ does not become “flat” for any α′ ≥ α0. In essence, this 899

is a distributional assumption in disguise, and it should be 900

addressed in a case-by-case basis. Finally, regarding the effect 901

of the dimensionality of the feature space, d, on the bounds, 902

we observe that for θ ∈ Bd(r) and d ∈ N large enough, 903
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Jd(θ) ≈ d‖θ‖ as given in (39). Thus in the high-dimensional904

regime, the bound on α, i.e., αλ, is dominated by 1/d. This905

implies that the convexity of the landscape worsens as the906

dimensionality of the feature/parameter vectors d increases.907

While a practitioner would ultimately like to approximate908

the 0-1 loss (captured by α = ∞), the bounds presented909

in Theorem 4 suggest that the optimization complexity of910

NGD increases as α increases. Fortunately, α-loss exhibits a911

saturation effect as exemplified in (40) and Fig. 6 whereby912

smaller values of α quickly resemble the landscape induced913

by α = ∞. Thus, while the optimization complexity increases914

as α increases (and increases even more rapidly in the high-915

dimensional regime), the saturation effect suggests that the916

practitioner need not increase α too much in order to reap917

the benefits of the ∞-risk. Therefore, for the logistic model,918

we ultimately posit that there is a narrow range of α useful919

to the practitioner and we dub this the “Goldilocks zone”; we920

explore this theme in the experiments in Section VI.921

Before this however, we conclude the theoretical analysis922

of α-loss with a study of the empirical α-risk, and we provide923

generalization and optimality guarantees for all α ∈ (0,∞].924

V. GENERALIZATION AND ASYMPTOTIC OPTIMALITY925

In this section, we provide generalization and asymptotic926

optimality guarantees for α-loss for α ∈ (0,∞] in the927

logistic model by utilizing classical Rademacher complexity928

tools and the notion of classification-calibration introduced929

by Bartlett et al. in [6]. We invoke the same setting and930

definitions provided in Section IV. In addition, we consider the931

evaluation of α-loss in the finite sample regime. Formally, let932

X ∈ [0, 1]d be the normalized feature and Y ∈ {−1, +1} the933

label as before, and let Sn = {(Xi, Yi) : i = 1, . . . , n} be the934

training dataset where, for each i ∈ {1, . . . , n}, the samples935

(Xi, Yi) are independently and identically drawn according to936

an unknown distribution PX,Y . Finally, we let R̂α denote the937

empirical α-risk of (24), i.e., for each θ ∈ Bd(r) we have938

R̂α(θ) =
1
n

n∑

i=1

lα(Yi, gθ(Xi)). (47)939

In the following sections, we consider the generalization capa-940

bilities and asymptotic optimality of a predictor θ ∈ Bd(r)941

which is learned through empirical evaluation of α-loss (47).942

First, we recall classical results in Rademacher complexity943

generalization bounds.944

A. Rademacher Complexity Preliminaries945

In this section, we provide the main tools we use to derive946

generalization bounds for α-loss in the sequel. The techniques947

are standard; see Chapter 26 in [4] for a complete discussion.948

First, we recall that the Rademacher distribution is the uniform949

distribution on the set {−1, +1}. The Rademacher complexity950

of a set is as follows.951

Definition 4: The Rademacher complexity of a nonempty952

set A ⊂ Rn is defined as953

R(A) := E
(

sup
a∈A

1
n
〈σ, a〉

)
, (48)954

where σ = (σ1,σ2, . . . ,σn) with σ1,σ2, . . . ,σn i.i.d. 955

Rademacher random variables. 956

In words, the Rademacher complexity of a set approxi- 957

mately measures the richness of the set through the max- 958

imal correlation of its elements with uniformly distributed 959

Rademacher vectors. The notion of Rademacher complexity 960

can be used to measure the richness of a hypothesis class as 961

established in the following proposition. 962

Proposition 6 (Thm. 26.5, [4]): Let H be a hypothesis class. 963

Assume that l : X ×Y×H → R+ is a bounded loss function, 964

i.e., there exists D > 0 such that for all h ∈ H and for all 965

(x, y) ∈ (X ,Y) we have that |l(h, (x, y))| ≤ D. Then, with 966

probability at least 1 − δ, for all h ∈ H, 967

∣∣∣Rl(h) − R̂l(h)
∣∣∣ ≤ 2R(l ◦H ◦ Sn) + 4D

√
2 ln (4/δ)

n
, (49) 968

where Rl(h) and R̂l(h) denote the true risk and empirical risk 969

of l, respectively, and2 l ◦H ◦ Sn ⊂ Rn which is equal to 970

{(l(h, (x1, y1)), . . . , l(h, (xn, yn))) : h ∈ H}. (50) 971

For linear predictors, obtaining a bound on R(l ◦H ◦ Sn) 972

is feasible; we now provide two results (in conjunction with 973

Proposition 6) necessary to derive a generalization bound for 974

α-loss in the logistic model. 975

Lemma 3 (Lemma 26.9, [4]): Suppose l̃1, . . . , l̃n : R → 976

R are r0-Lipschitz functions with common constant r0 ≥ 0. 977

If l̃ = (l̃1, . . . , l̃n) and A ⊂ Rn, then R(l̃(A)) ≤ r0R(A), 978

where l̃(A) := {(l̃1(a1), . . . , l̃n(an)) : a ∈ A}. 979

The previous result, known as the Contraction Lemma, 980

provides an upperbound on the Rademacher complexity of the 981

composition of a function acting on a set. For our purposes, 982

one can think of l̃ = (l̃1, . . . , l̃n) as a margin-based loss 983

function acting on a training set with n samples - this will be 984

further elaborated in the sequel. The following result provides 985

an upperbound on the Rademacher complexity of the set 986

comprised of inner products between a given parameter vector 987

drawn from a bounded space and the n-sample training set. 988

Lemma 4 (Lemma 26.10, [4]): Let x1:n = {x1, . . . , xn} 989

be a set of vectors each in Rd, and define the following 990

composition H ◦ x1:n = {(〈θ, x1〉, . . . , 〈θ, xn〉) : ‖θ‖2 ≤ r}. 991

Then, 992

R(H ◦ x1:n) ≤
r maxi∈[n] ‖xi‖2√

n
. (51) 993

With the above Rademacher complexity preliminaries in 994

hand, we now apply these results to derive a generalization 995

bound for α-loss in the logistic model. 996

B. Generalization and Asymptotic Optimality of α-Loss 997

We now present the following Lipschitz inequality for the 998

margin-based α-loss (Definition 2) and will be useful in apply- 999

ing Proposition 6. It can readily be shown that the margin- 1000

based α-loss, l̃α is Cr0(α)-Lipschitz in z ∈ [−r0, r0] for every 1001

r0 > 0, where for α ∈ (0, 1], 1002

Cr0(α) := σ(r0)σ(−r0)1−1/α; (52) 1003

2In (49) we present the two-sided version of Theorem 26.5 in [4], which
can be readily obtained via the symmetrization technique.
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and, for α ∈ (1,∞],1004

Cr0(α) :=






(
α−1
2α−1

)1− 1
α
(

α
2α−1

)
er0 ≥ α−1

α ,

σ(r0)σ(−r0)1−
1
α er0 < α−1

α .
(53)1005

That is, for α ∈ (0,∞] and z, z′ ∈ [−r0, r0], we have that1006

|l̃α(z)− l̃α(z′)| ≤ Cr0(α)|z−z′|; see Lemma 6 in Appendix C1007

for the proof. Lastly, note that for any fixed r0 > 0, Cr0(α)1008

is monotonically decreasing in α.1009

With the Lipschitz inequality for l̃α in hand, we are now1010

in a position to state a generalization bound for α-loss in the1011

logistic model.1012

Theorem 5: If α ∈ (0,∞], then, with probability at least1013

1 − δ, for all θ ∈ Bd(r),1014

∣∣∣Rα(θ) − R̂α(θ)
∣∣∣ ≤ Cr

√
d (α)

r
√

d√
n

+ Dr
√

d (α)

√
log
(

4
δ

)

n
,1015

(54)1016

where Cr
√

d (α) is given in (52) and (53) and where Dr
√

d (α)1017

is given by Dr
√

d (α) := 4
√

2
α

α− 1

(
1 − σ(−r

√
d)1−1/α

)
.1018

Note that Dr
√

d(α) is also monotonically decreasing in α1019

for fixed r
√

d > 0. Thus, Theorem 5 seems to suggest that1020

generalization improves as α→ ∞. However, because Rα and1021

R̂α also monotonically decrease in α, it is difficult to reach1022

such a conclusion. Nonetheless, Corollary 3 in Appendix C1023

offers an attempt at providing a unifying comparison between1024

the ∞-risk, R∞, and the empirical α-risk, R̂α.1025

Lastly, observe that for the generalization result1026

in Theorem 5, we make no distributional assumptions1027

such as those by Tsybakov, et. al in [66], where they assume1028

the posterior satisfies a margin condition. Under such an1029

assumption, we observe that faster rates could be achieved,1030

but optimal rates are not the focus of this work. Nonetheless,1031

the next theorem relies on the assumption that the minimum1032

α-risk is attained by the logistic model, i.e., given α ∈ (0,∞],1033

suppose that1034

min
θ∈Bd(r)

Rα(θ) = min
f :X→R

Rα(f), (55)1035

where Rα(θ) is given in (25) and Rα(f) = E[l̃α(Y f(X))]1036

for all measurable f .1037

Theorem 6: Assume that the minimum α-risk is attained1038

by the logistic model, i.e., (55) holds. Let Sn be a training1039

dataset with n ∈ N samples as before. If for each n ∈ N, θ̂α
n1040

is a global minimizer of the associated empirical α-risk θ 5→1041

R̂α(θ), then the sequence (θ̂α
n)∞n=1 is asymptotically optimal1042

for the 0-1 risk, i.e., almost surely,1043

lim
n→∞

R(fθ̂α
n
) = R∗, (56)1044

where fθ̂α
n
(x) = 〈θ̂α

n , x〉 for each n ∈ N and the Bayes risk1045

R∗ is given by R∗ := min
f :X→R

P[Y #= sign(f(X))].1046

In words, setting the optimization procedure aside, utilizing1047

α-loss for a given α ∈ (0,∞] is asymptotically optimal1048

with respect to the probability of error (expectation of the1049

0-1 loss). Observe that the assumption in (55) is a stipu-1050

lation for the underlying data-generating distribution, PX,Y ,1051

in disguise. That is, we assume that PX,Y is separable by a 1052

linear predictor, which is a global minimizer for the α-risk. 1053

In essence, Theorem 6 is a combination of Theorem 5 and 1054

classification-calibration. 1055

With the statistical, optimization, and generalization con- 1056

siderations of α-loss behind us, we now provide experimental 1057

results in two canonical settings for α-loss in logistic and 1058

convolutional-neural-network models. 1059

VI. EXPERIMENTAL RESULTS 1060

As was first introduced in Section III-C, in this section we 1061

further experimentally evaluate the efficacy of α-loss in the 1062

following two canonical scenarios: 1063

(i) Noisy Labels: the classification algorithm is trained on 1064

a binary-labeled dataset that suffers from symmetric noisy 1065

labels, and it attempts to produce a model which achieves 1066

strong performance on the clean test data. 1067

(ii) Class Imbalance: the classification algorithm is trained 1068

on a binary-labeled dataset that suffers from a class imbalance, 1069

and it attempts to produce a model which achieves strong 1070

performance on the balanced test data. 1071

Our hypotheses are as follows: for setting (i), tuning α > 1 1072

(away from log-loss) improves the robustness of the trained 1073

model to symmetric noisy labels; for setting (ii), tuning α < 1 1074

(again away from log-loss) improves the sensitivity of the 1075

trained model to the minority class. In general, we experi- 1076

mentally validate both hypotheses. 1077

In our experimental procedure, we use the following image 1078

datasets: MNIST [67], Fashion MNIST (FMNIST) [68], and 1079

CIFAR-10 [69]. While these datasets have predefined training 1080

and test sets, we present binary partitions of these datasets 1081

for both settings in the main text, in alignment with our 1082

theoretical investigations of α-loss for binary classification 1083

problems; in Appendix D.4, we present multiclass symmetric 1084

noise experiments for the MNIST and FMNIST datasets. 1085

Regarding the binary partitions themselves, we chose classes 1086

which are visually similar in order to increase the difficulty 1087

of the classification task. Specifically, for MNIST we used a 1088

binary partition on the 1 and 7 classes, for FMNIST we used 1089

a binary partition on the T-Shirt and Shirt classes, and finally 1090

for our binary experiments on CIFAR-10 we used a binary 1091

partition on the Cat and Dog classes. 1092

All code is written in PyTorch, version 1.30 [70]. Archi- 1093

tectures learning CIFAR are trained with GPUs, while the 1094

architectures learning MNIST and FMNIST are both trained 1095

with CPUs. Throughout, we consider two broad classes of 1096

architectures: logistic regression (LR) and convolutional neural 1097

networks (CNNs) with one or two fully connected layers 1098

preceded by varying convolutional layer depths (2, 3, 4, and 1099

6) such that we obtain the shorthand CNN X+Y where X is 1100

one of 2, 3, 4, or 6 and Y is one of 1 or 2. For all architectures 1101

learning CIFAR, we additionally use a sigmoid at the last layer 1102

for smoothing. For each set of experiments, we randomly fix a 1103

seed, and for each iteration we reinitialize a new architecture 1104

with randomly selected weights. We use softmax activation 1105

to generate probabilities over the labels, and we evaluate the 1106

model’s soft belief using α-loss on a one-hot-encoding of the 1107

training data. 1108
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All (dataset, architecture) tuples were trained with the same1109

optimizer, vanilla SGD, with fixed learning rates. In order to1110

provide the fairest comparison to log-loss (α = 1), for each1111

(dataset, architecture) tuple we select a fixed learning rate from1112

the set {10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1}1113

which provides the highest validation accuracy for a model1114

trained with log-loss. Then for the chosen (dataset, architec-1115

ture) tuple, we train α-loss for each value of α using this1116

fixed learning rate. Regarding the optimization of α-loss itself1117

which is parameterized by α ∈ (0,∞], in general we find that1118

searching over α ∈ [.8, 8] for noisy labels and α ∈ [.8, 4] for1119

class imbalances is sufficient, and we typically do so in step-1120

sizes of 0.1 or 0.05 (near α = 1) or a step-size of 1 (when1121

α > 1). This is in line with our earlier theoretical discussions1122

regarding the “Goldilocks zone” of α-loss, i.e., the gradient1123

explosion for very small values of α, the increased difficulty of1124

optimization for large values of α, and the fact that relatively1125

small values of α closely approximate the ∞-loss.1126

For all experiments, we employ a training batch size1127

of 128 examples. For all experiments on the MNIST and1128

FMNIST datasets, training was allowed to progress for1129

50 epochs; for all experiments on the CIFAR-10 dataset,1130

training was allowed to progress for 120 epochs - convergence1131

for all values of α was ensured for both choices. Lastly, for1132

each architecture we re-run each experiment 10 times and1133

report the average test accuracies calculated according to the1134

relative accuracy gain, which we rewrite for our experimental1135

setting as1136

rel acc gain % =
|α-loss acc − log-loss acc|

log-loss acc
× 100, (57)1137

where we use acc to denote test accuracy. Also note that α∗
1138

is chosen as the α over the search range which maximizes the1139

average test accuracy of its trained models. For more details1140

regarding architecture configurations (i.e., CNN channel sizes,1141

kernel size, etc) and general experiment details, we refer the1142

reader to the code for all of our experiments (including the1143

implementation of α-loss), which can be found at [71].1144

A. Noisy Labels1145

For the first set of experiments, we evaluate the robustness1146

of α-loss to symmetric noisy labels, and we generate symmet-1147

ric noisy labels in the binary training data as follows:1148

1) For each run of an experiment, we randomly select1149

0-40% of the training data in increments of 10%.1150

2) For each training example in the randomly selected1151

group, we flip the label of the selected training example.1152

Note that for all symmetric noisy label experiments we keep1153

the test data clean, i.e., we do not perform label flips on1154

the test data. Thus, these experiments address the scenario1155

where training data is noisy and test data is clean. Also note1156

that during our 10-iteration averaging for each accuracy value1157

presented in each table, we are also randomizing over the1158

symmetric noisy labels in the training data.1159

The results on the binary MNIST dataset (composed of1160

classes 1 and 7), binary FMINIST dataset (composed of1161

classes T-Shirt and Shirt), and binary CIFAR-10 (composed1162

TABLE I

SYMMETRIC BINARY NOISY LABEL EXPERIMENT ON MNIST CLASSES
1 AND 7. NOTE THAT ARCH STANDS FOR ARCHITECTURE, LF FOR

LABEL FLIP, LL ACC AND α ACC STAND FOR LOG-LOSS ACCU-
RACY AND α-LOSS ACCURACY FOR α∗ , RESPECTIVELY, AND

THAT GAIN % IS CALCULATED ACCORDING TO (57). ALSO
NOTE THAT EACH REPORTED ACCURACY IS AVERAGED

OVER 10 RUNS

TABLE II

SYMMETRIC BINARY NOISY LABEL EXPERIMENT ON CLASSES
T-Shirt AND Shirt OF THE FMNIST DATASET

of classes Cat and Dog) are presented in Tables I, II, and III, 1163

respectively. As stated previously, in order to report the fairest 1164

comparison between log-loss and α-loss, we first find the 1165

optimal fixed learning rate for log-loss from our set of learning 1166

rates (given above), then we train each chosen architecture 1167

with α-loss for all values of α also with this found fixed 1168

learning rate. Following this procedure, for the binary MNIST 1169

dataset, we trained both the LR and CNN 2+2 architectures 1170

with a fixed learning rate of 10−2; for the binary FMNIST 1171

dataset, we trained the LR and CNN 2+2 architectures with 1172

fixed learning rates of 10−4 and 5 × 10−3, respectively; for 1173

the binary CIFAR-10 dataset, we trained the CNN 2+1, 3+2, 1174

4+2, and 6+2 architectures with fixed learning rates of 10−2, 1175

10−1, 5 × 10−2, and 10−1, respectively. 1176

Regarding the results presented in Tables I, II, and III, 1177

in general we find for 0% label flips (from now on referred 1178

to as baseline) the extra α hyperparameter does not offer 1179

significant gains over log-loss in the test results for each 1180

(dataset, architecture) tuple. However once we start to increase 1181

the percentage of label flips, we immediately find that α∗
1182

increases greater than 1 (log-loss). Indeed for each (dataset, 1183

architecture) tuple, we find that as the number of symmet- 1184

ric label flips increases, training with α-loss for a value of 1185

α > 1 increases the test accuracy on clean data, often 1186

significantly outperforming log-loss. Note that this perfor- 1187

mance increase induced by the new α hyperparameter is 1188

not monotonic as the number of label flips increases, i.e., 1189
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TABLE III

SYMMETRIC BINARY NOISY LABEL EXPERIMENT
ON CIFAR-10 CLASSES Cat AND Dog

there appears to be a noise threshold past which the per-1190

formance of all losses decays, but this occurs for very1191

high noise levels, which are not usually present in practice.1192

Recalling Section III-C, the strong performance of α-loss for1193

α > 1 on binary symmetric noisy training labels can intuitively1194

be accounted for by the quasi-convexity of α-loss in this1195

regime, i.e., the reduced sensitivity to outliers. Thus, we con-1196

clude that the results in Tables I, II, and III on binary MNIST,1197

FMNIST, and CIFAR-10, respectively, indicate that practition-1198

ers should employ α-loss for α > 1 when training robust1199

architectures to combat against binary noisy training labels.1200

Lastly, we report two experiments for multiclass symmetric1201

noisy training labels in Appendix D.4. In short, we find similar1202

robustness to noisy labels for α > 1, but we acknowledge1203

that further empirical study of α-loss on multiclass datasets is1204

needed.1205

B. Class Imbalance1206

For the second set of experiments, we evaluate the sensi-1207

tivity of α-loss to class imbalances, and we generate binary1208

class imbalances in the training data as follows:1209

1) Given a dataset, select two classes, Class 1 and Class 2,1210

and generate baseline 50/50 (balanced) data, i.e., such1211

that |Class 1| = |Class 2| = 2500 training examples.1212

For all experiments ensure that |Class 1| + |Class 2| =1213

5000 randomly drawn training examples.1214

2) Starting at the baseline (2500/2500) and drawing from1215

the available training examples in each dataset when1216

necessary, increase the number of training examples of1217

Class 1 by 500, 1000, 1500, 2000, and 2250 and reduce1218

the number of training examples of Class 2 by the same1219

amounts in order to generate training example splits of1220

60/40, 70/30, 80/20, 90/10, and 95/5, respectively.1221

3) Repeat the previous step where the roles of Class 1 and1222

Class 2 are reversed.1223

Note that the test set is balanced for all experiments with 1224

2000 test examples (1000 for each class). Thus, these experi- 1225

ments address the scenario where training data is imbalanced 1226

and the test data is balanced. Also note that during our 1227

10-iteration averaging for each accuracy value presented in 1228

each table, we are also randomizing over the training exam- 1229

ples present in each class imbalance split, according to the 1230

procedure above. 1231

The results on binary FMNIST (composed of classes 1232

T-Shirt and Shirt) and binary CIFAR-10 (composed of classes 1233

Cat and Dog) are presented in Tables IV, V, and VI. For this 1234

set of experiments, note that α∗ is the optimal α ∈ [0.8, 4] 1235

(in our search set) which maximizes the average test accuracy 1236

of the minority class, and also note that there are slight test 1237

accuracy discrepancies between the baselines in the symmetric 1238

noisy labels and class imbalance experiments because of the 1239

reduced training and test set size for the class imbalance 1240

experiments. For the binary FMNIST dataset, we trained the 1241

LR and CNN 2+2 architectures with fixed learning rates 1242

of 10−4 and 5 × 10−3, respectively; for the binary CIFAR- 1243

10 dataset, we trained the CNN 2+1, 3+2, 4+2, and 6+2 1244

architectures with fixed learning rates of 10−2, 10−1, 5×10−2, 1245

and 10−1, respectively. 1246

In general, we find that the minority class is almost always 1247

favored by the smaller values of α, i.e., we typically have that 1248

α∗ < 1. Further, we observe that as the percentage of class 1249

imbalance increases, the relative accuracy gain on the minority 1250

class typically increases through training with α-loss. This 1251

aligns with our intuitions articulated in Section III-C regarding 1252

the benefits of “stronger” convexity of α-loss when α < 1 over 1253

log-loss (α = 1), particularly when the practitioner desires 1254

models which are more sensitive to outliers. Nonetheless, 1255

sometimes there does appear to exist a trade-off between how 1256

well learning the majority class influences predictions on the 1257

minority class, see e.g., recent work in the area of stiffness 1258

by Fort et al. [72]. This is a possible explanation for why 1259

α < 1 is not always preferred for the minority class, e.g., 30% 1260

and 40% imbalance in Table V when Dog is the minority class. 1261

Thus we conclude that the results in Tables IV, V, and VI, 1262

on binary FMNIST and CIFAR-10, respectively, indicate that 1263

practitioners should employ α-loss (typically) for α < 1 when 1264

training architectures to be sensitive to the minority class in 1265

the training data. 1266

C. Key Takeaways 1267

We conclude this section by highlighting the key takeaways 1268

from our experimental results. 1269

1) Overall Performance Relative to Log-Loss: The experi- 1270

mental results as evidenced through Tables I to VI suggest that 1271

α-loss, more often than not, yields models with improvements 1272

in test accuracy over models trained with log-loss, with more 1273

prominent gains in the canonical settings of noisy labels and 1274

class imbalances in the training data. In order to remedy the 1275

extra hyperparameter tuning induced by the seemingly daunt- 1276

ing task of searching over α ∈ (0,∞], we find that searching 1277

over α ∈ [.8, 8] in the noisy label experiments or α ∈ [.8, 4] in 1278

the class imbalance experiments is sufficient. This aligns with 1279
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TABLE IV

BINARY FMNIST LOGISTIC REGRESSION IMBALANCE EXPERIMENTS ON THE T-Shirt AND Shirt CLASSES. NOTE THAT LL-F1 CORRESPONDS TO THE
F1 SCORE OF LOG-LOSS ON THE IMBALANCED CLASS; SIMILARLY α∗ -F1 CORRESPONDS TO THE F1 SCORE OF α∗-LOSS ON THE IMBALANCED

CLASS. SEE APPENDIX D.1 FOR A BRIEF REVIEW OF THE DEFINITION OF THE F1 SCORE. THE RELATIVE % GAIN IS DEFINED AS THE
RELATIVE PERCENT GAIN (57) ON THE AVERAGE MINORITY CLASS ACCURACY (ON TEST DATA) OF MODELS TRAINED WITH LOG-

LOSS VS. THE AVERAGE MINORITY CLASS ACCURACY OF MODELS TRAINED WITH α-LOSS. NOTE THAT OV = OVERALL.
LASTLY, OBSERVE THAT FOR THE BASELINE (50% IMBALANCE) EXPERIMENTS, WE PRESENT THE ACCURACY AND

α∗ FOR BOTH CLASSES

TABLE V

BINARY CIFAR-10 CNN 4+2 IMBALANCE EXPERIMENTS ON Cat AND Dog CLASSES. NOTE THAT LL-F1 CORRESPONDS TO THE F1 SCORE OF LOG-
LOSS ON THE IMBALANCED CLASS; SIMILARLYα∗-F1 CORRESPONDS TO THE F1 SCORE OF α∗-LOSS ON THE IMBALANCED CLASS. NOTE THAT

DUE TO OUR CALCULATION OF REL % GAIN THAT DIVISION BY 0 IS ∞, AND THUS ABSOLUTE % GAIN FOR THE MINORITY CLASS Cat
AT A 5% IMBALANCE IS 9.6%

TABLE VI

BINARY CIFAR-10 CNN 6+2 IMBALANCE EXPERIMENTS ON Cat AND Dog CLASSES

our earlier theoretical investigations (Section IV) regarding1280

the so-called “Goldilocks zone”, i.e., most of the meaningful1281

action induced by α occurs in a narrow region. Notably in the1282

class imbalance experiments, we find that the relevant region1283

is even narrower than our initial choice, i.e., α∗ ∈ [.8, 2.5]1284

(in our search set) for all imbalances. For the noisy label 1285

experiments, we always find that α∗ > 1 and usually α 1286

is not too large, and for the class imbalance experiments, 1287

we almost always find that α∗ < 1. These two heuristics 1288

enable the practitioner to readily determine a very good α in 1289
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these two canonical scenarios. Consequently, α-loss seems to1290

be a principled generalization of log-loss for the practitioner,1291

and it perhaps remedies the concern of Janocha et al. in [28]1292

regarding the lack of canonical alternatives to log-loss (cross-1293

entropy loss) in modern machine learning.1294

VII. CONCLUSION1295

In this work, we introduced a tunable loss function called α-1296

loss, α ∈ (0,∞], which interpolates between the exponential1297

loss (α = 1/2), the log-loss (α = 1), and the 0-1 loss1298

(α = ∞), for the machine learning setting of classifica-1299

tion. We illustrated the connection between α-loss and Ari-1300

moto conditional entropy (Section II), and then we studied1301

the statistical calibration (Section III), optimization landscape1302

(Section IV), and generalization capabilities (Section V) of1303

α-loss induced by navigating the α hyperparameter. Regard-1304

ing our main theoretical results, we showed that α-loss is1305

classification-calibrated for all α ∈ (0,∞]; we also showed1306

that in the logistic model there is a “Goldilocks zone”, such1307

that most of the meaningful action induced by α occurs in a1308

narrow region (usually α ∈ [.8, 8]); finally, we showed (under1309

standard distributional assumptions) that empirical minimizers1310

of α-loss for all α ∈ (0,∞] are asymptotically optimal with1311

respect to the true 0-1 loss. Practically, following intuitions1312

developed in Section III-C, we performed noisy label and class1313

imbalance experiments on MNIST, FMNIST, and CIFAR-101314

using logistic regression and convolutional neural networks1315

(Section VI). Furthermore, we showed that models trained1316

with α-loss can be more robust or sensitive to outliers (depend-1317

ing on the practitioner’s choice) over models trained with1318

log-loss (α = 1). Therefore, we argue that α-loss seems to1319

be a principled generalization of log-loss for classification1320

algorithms in modern machine learning. Regarding promising1321

avenues to further explore the role of α-loss in machine learn-1322

ing, the robustness of neural-networks to adversarial influence1323

has recently drawn much attention [73]–[75] in addition to1324

learning censored and fair representations that ensure statisti-1325

cal fairness for all downstream learning tasks [76].1326

APPENDIX1327

A. α-Loss in Binary Classification1328

Proposition 2: Consider a soft classifier g(x) = PŶ |X(1|x).1329

If f(x) = σ−1(g(x)), then, for every α ∈ (0,∞],1330

lα(y, g(x)) = l̃α(yf(x)). (58)1331

Conversely, if f is a classification function, then the set of1332

beliefs PŶ |X associated to g(x) := σ(f(x)) satisfies (11).1333

In particular, for every α ∈ (0,∞],1334

min
g

EX,Y (lα(Y, g(x))) = min
f

EX,Y (l̃α(Y f(X))). (59)1335

Proof: Consider a soft classifier g and let PŶ |X be the set1336

of beliefs associated to it. Suppose f(x) = σ−1(g(x)), where1337

g(x) = PŶ |X(1|x). We want to show that1338

lα(y, PŶ |X=x) = l̃α(yf(x)). (60)1339

We assume that α ∈ (0, 1)∪(1,∞). Note that the cases where 1340

α = 1 and α = ∞ follow similarly. 1341

Suppose that g(x) = PŶ |X(1|x) = σ(f(x)). If y = 1, then 1342

lα(1, PŶ |X(1|x)) = lα(1,σ(f(x))) (61) 1343

=
α

α− 1

[
1 − σ(f(x))1−1/α

]
(62) 1344

= l̃α(f(x)). (63) 1345

If y = −1, then 1346

lα(−1, PŶ |X(−1|x)) = lα(−1, 1 − PŶ |X(1|x)) (64) 1347

= lα(−1, 1 − σ(f(x))) (65) 1348

= lα(−1,σ(−f(x))) (66) 1349

=
α

α− 1
[1 − σ(−f(x))1−1/α] (67) 1350

= l̃α(−f(x)), (68) 1351

where (66) follows from 1352

σ(x) + σ(−x) = 1, (69) 1353

which can be observed by (9). To show the reverse direction 1354

of (60) we substitute 1355

f(x) = σ−1(g(x)) = σ−1(PŶ |X(1|x)), (70) 1356

in l̃α(yf(x)). For y = 1, 1357

l̃α(f(x)) = l̃α(σ−1(PŶ |X(1|x))) (71) 1358

=
α

α− 1
[1 − (σ(σ−1(PŶ |X(1|x))))1−1/α] (72) 1359

=
α

α− 1
[1 − PŶ |X(1|x)1−1/α] (73) 1360

= lα(1, PŶ |X(1|x)). (74) 1361

For y = −1, 1362

l̃α(−f(x)) = l̃α(−σ−1(PŶ |X(1|x))) (75) 1363

=
α

α− 1
[1 − σ(−σ−1(PŶ |X(1|x)))1−1/α] (76) 1364

=
α

α− 1
[1 − (1 − σ(σ−1(PŶ |X(1|x))))1−1/α] 1365

(77) 1366

=
α

α− 1
[1 − PŶ |X(−1|x)1−1/α] (78) 1367

= lα(−1, PŶ |X(−1|x)), (79) 1368

where (77) follows from (69). 1369

The equality in the results of the minimization procedures 1370

follows from the equality between lα and l̃α. As was shown 1371

in [17], the minimizer of the left-hand-side is 1372

P ∗
Ŷ |X(y|x) =

PY |X(y|x)α

∑
y

PY |X(y|x)α
. (80) 1373

Using f(x) = σ−1(PŶ |X(1|x)), f∗(x) = σ−1(P ∗
Ŷ |X(1|x)). 1374

1375

Proposition 3: As a function of the margin, l̃α : R → R+ 1376

is convex for α ≤ 1 and quasi-convex for α > 1. 1377
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Proof: The second derivative of the margin-based α-loss1378

for α ∈ (0,∞] with respect to the margin is given by1379

d2

dz2
l̃α(z) =

(e−z + 1)1/αez(αez − α+ 1)
α(ez + 1)3

. (81)1380

Observe that if α ∈ (0, 1], then we have that, for all z ∈ R,1381

d2

dz2
l̃α(z) ≥ 0, which implies that l̃α is convex [62]. If we1382

have α ∈ (1,∞], then note that αez −α+1 < 0 for all z ∈ R1383

such that z < log
(
1 − α−1

)
. Thus, the margin-based α-loss,1384

l̃α, is not convex for α ∈ (1,∞]. However, observe that1385

d

dz
l̃α(z) =

−(e−z + 1)1/αez

(1 + ez)2
. (82)1386

Since
d

dz
l̃α(z) < 0 for α ∈ [1,∞] and for all z ∈ R, l̃α1387

is monotonically decreasing. Furthermore, since monotonic1388

functions are quasi-convex [62], we have that l̃α is quasi-1389

convex for α > 1.1390

Theorem 1: For α ∈ (0,∞], the margin-based α-loss l̃α is1391

classification-calibrated. In addition, its optimal classification1392

function is given by1393

f∗
α(η) = α · σ−1(η). (83)1394

Proof: We first show that l̃α is classification-calibrated1395

for all α ∈ (0,∞]. Suppose that α ∈ (0, 1]; we rely on the1396

following result by Bartlett et al. in [6].1397

Proposition 7 (Thm. 6, [6]): Suppose φ : R → R is1398

a convex function in the margin. Then φ is classification-1399

calibrated if and only if it is differentiable at 0 and φ′(0) < 0.1400

Observe that l̃α is smooth and monotonically decreasing1401

for all α ∈ (0,∞], and for α ∈ (0, 1], l̃α is convex by1402

Proposition 3. Thus, l̃α satisfies Proposition 7, which implies1403

that l̃α is classification-calibrated for α ∈ (0, 1).1404

Now consider α ∈ (1,∞). Since classification-calibration1405

requires proving that the minimizer of (14) agrees in sign1406

with the Bayes predictor, we first obtain the minimizer of the1407

conditional risk for all η #= 1/2. We have that1408

inf
f∈R

Cl̃α(η, f) = inf
f∈R

ηl̃α(f) + (1 − η)l̃α(−f) (84)1409

=
α

α− 1

(
1 − sup

f∈R

[
ησ(f)1−1/α + (1 − η)σ(−f)1−1/α

])
,1410

(85)1411

where we substituted l̃α into (84) and pulled the infimum1412

through. We take the derivative of the expression inside the1413

supremum, which we denote g(η,α, f), and obtain1414

d

df
g(η,α, f) =

(
1 − 1

α

)(
1

ef + 2 + e−f

)
1415

×
[
η
(
1 + e−f

) 1
α − (1 − η)

(
1 + ef

) 1
α

]
.1416

(86)1417

One can then obtain the f∗ minimizing (84) by setting1418

d

df
g(η,α, f) = 0, i.e.,1419

η
(
1 + e−f∗

)1/α
= (1 − η)

(
1 + ef∗

)1/α
, (87)1420

and solving for f∗ we have 1421

f∗
α(η) = α log

( η

1 − η

)
= α · σ−1(η). (88) 1422

Recall that the Bayes predictor, which is optimal, is given by 1423

hBayes(η) = sign(2η − 1), and notice that the classification 1424

function representation is simply fBayes(η) = 2η− 1. Observe 1425

that for all η #= 1/2 and for α ∈ [1,∞) (indeed α < 1 as 1426

well), we have that sign(fBayes(η)) = sign(f∗
α(η)). Thus, l̃α is 1427

classification-calibrated for α ∈ (0,∞). Lastly, if α = +∞, 1428

then l̃α becomes 1429

l̃∞(z) = 1 − σ(z) =
ez

1 + ez
, (89) 1430

which is sigmoid loss. Similarly, sigmoid loss can be shown 1431

to be classification-calibrated as is given in [6]. Therefore, l̃α 1432

is classification-calibrated for all α ∈ (0,∞]. 1433

Finally, note that the proof of classification-calibration 1434

yielded the optimal classification function given in (88) for all 1435

α ∈ (0,∞]. Alternatively, the optimal classification function 1436

can be obtained from Proposition 1 by Liao et al. Specifi- 1437

cally, substitute the α-tilted distribution (6) for a binary label 1438

Y = {−1, +1} into (10) as stated by Proposition 2. Indeed, 1439

we have that 1440

f∗(x) = σ−1(P ∗
Ŷ |X(1|x)) (90) 1441

= log
(

PY |X(1|x)α

PY |X(−1|x)α

)
(91) 1442

= α log
(

η(x)
1 − η(x)

)
, (92) 1443

which aligns with (16). 1444

Corollary 1: For α ∈ (0,∞], the minimum conditional risk 1445

C∗
α(η) of l̃α is equal to 1446






α
α−1

(
1 − (ηα + (1 − η)α)1/α

)
α ∈ (0, 1) ∪ (1, +∞),

−η log η − (1 − η) log (1 − η) α = 1,

min{η, 1 − η} α→ +∞.

1447

(93) 1448

Proof: For α = 1, we recover logistic loss and we know 1449

from [7] and [1] that the minimum conditional risk is given 1450

by 1451

C∗
1 (η) = −η log η − (1 − η) log (1 − η). (94) 1452

Similarly, for α = ∞, we recover the sigmoid loss and we 1453

know from [6] and [1] that the minimum conditional risk is 1454

given by 1455

C∗
∞(η) = min{η, 1 − η}. (95) 1456

Thus, we now consider the case where α ∈ (0,∞) \ {1}. The 1457

conditional risk of l̃α is given by 1458

Cα(η, f) = ηl̃α(f) + (1 − η)l̃α(−f) (96) 1459

=
α

α− 1

[
1 − ησ(f)1−1/α − (1 − η)σ(−f)1−1/α

]
, 1460

(97) 1461
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where we substituted (8) into (96). We can obtain the mini-1462

mum conditional risk upon substituting (16) into (97) which1463

yields1464

C∗
α(η) =

α

α− 1
− α

α− 1
(1 − η)

(
(1 − η)α

ηα + (1 − η)α

)1−1/α

1465

− α

α− 1
η

(
ηα

ηα + (1 − η)α

)1−1/α

(98)1466

=
α

α− 1

[
1 − (ηα + (1 − η)α)1/α

]
, (99)1467

where the last equation is obtained after some algebra.1468

Finally, observe that C∗
1/2(η) = 2

√
η(1 − η), which aligns1469

with [7].1470

B. Optimization Guarantees for α-Loss in the Logistic Model1471

Theorem 2: Let Σ := E[XXᵀ]. If α ∈ (0, 1], then Rα(θ)1472

is Λ(α, r
√

d) min
i∈[d]

λi (Σ)-strongly convex in θ ∈ Bd(r), where1473

Λ(α, r
√

d) :=σ(r
√

d)1−1/α
1474

×
(
σ′(r

√
d) −

(
1 − 1

α

)
σ(−r

√
d)2
)

.1475

(100)1476

Proof: For each α ∈ (0, 1], it can readily be shown that1477

each component of F2(α, θ, x, y) is positive and monotonic1478

in 〈θ, x〉, which implies that F2(α, θ, x, y) ≥ Λ(α, r
√

d) > 0.1479

Now, consider Rα(θ) = E[lα(Y, gθ(X))]. We have1480

∇2
θRα(θ) = EX,Y [∇2

θl
α(Y, gθ(X))] (101)1481

= EX,Y [F2(α, θ, X, Y )XXᵀ] (102)1482

/ Λ(α, r
√

d)E[XXᵀ] (103)1483

= Λ(α, r
√

d)Σ / 0, (104)1484

where we used an identity of positive semi-definite matrices1485

for (103) (see, e.g., [77, Ch. 7]); for (104), we used the fact1486

that Λ(α, r
√

d) ≥ 0 and we recognize that Σ is positive semi-1487

definite as it is the correlation of the random vector X ∈ [0, 1]d1488

(see, e.g., [78, Ch. 7]). We also note that mini∈[d] λi (Σ) ≥ 01489

(see, e.g., [77, Ch. 7]). Thus, ∇2
θRα(θ) is positive semi-definite1490

for every θ ∈ Bd(r). Therefore, since λmin(∇2Rα(θ)) ≥1491

Λ(α, r
√

d)mini∈[d] λi (Σ) ≥ 0 for every θ ∈ Bd(r), which1492

follows by the Courant-Fischer min-max theorem [77, The-1493

orem 4.2.6], we have that Rα is Λ(α, r
√

d)mini∈[d] λi (Σ)-1494

strongly convex for α ∈ (0, 1].1495

Corollary 2: Let Σ := E[XXᵀ]. If r
√

d < arcsinh (1/2),1496

then Rα(θ) is Λ̃(α, r
√

d)mini∈[d] λi (Σ)-strongly convex in1497

θ ∈ Bd(r) for α ∈
(
0, (e2r

√
d − er

√
d)−1

]
, where1498

Λ̃(α, r
√

d) :=σ(−r
√

d)2−1/α
1499

× σ(r
√

d)
(

1 − er
√

d +
1
α

e−r
√

d

)
. (105)1500

Proof: Let θ ∈ Bd(r) be arbitrary. We similarly have that 1501

∇2
θRα(θ) = EX,Y [∇2

θl
α(Y, gθ(X))] (106) 1502

= EX,Y [gθ(Y X)1−1/α(g′θ(Y X) 1503

−
(

1 − 1
α

)
gθ(−Y X)2)XXᵀ] (107) 1504

= EX,Y [gθ(Y X)1−1/αgθ(−Y X)(gθ(Y X) 1505

−
(

1 − 1
α

)
gθ(−Y X))XXᵀ], (108) 1506

where we recall (102) and factored out gθ(−Y X). Considering 1507

the expression in parentheses in (108), we note that this is 1508

the only part of the Hessian which can become negative. 1509

Examining this term more closely, we find that 1510

gθ(Y X) −
(

1 − 1
α

)
gθ(−Y X) 1511

=
1

1 + e−〈θ,Y X 〉 −
(

1 − 1
α

)
1

1 + e〈θ,Y X 〉 (109) 1512

= gθ(Y X)
[
1 −

(
1 − 1

α

)
1 + e−〈θ,Y X 〉

1 + e〈θ,Y X 〉

]
(110) 1513

= gθ(Y X)
[
1 −

(
1 − 1

α

)
e−〈θ,Y X〉

]
. (111) 1514

Continuing, observe that 1515

1 −
(

1 − 1
α

)
e−〈θ,Y X〉 = 1 − e−〈θ,Y X〉 +

e−〈θ,Y X〉

α
(112)

1516

≥ 1 − er
√

d +
e−r

√
d

α
≥ 0, (113) 1517

where we lowerbound using the radius of the balls (Cauchy- 1518

Schwarz), i.e., 〈θ, Y X 〉 ≤ |Y |‖θ‖‖X‖ ≤ r
√

d and the last 1519

inequality in (113) holds if α ≤ e−r
√

d(er
√

d − 1)−1. Thus, 1520

returning to (108), we have that 1521

∇2
θRα(θ) 1522

= EX,Y [gθ(Y X)1−
1
α g′θ(Y X)(1 − (1 − 1

α
)e−〈θ,Y X〉)XXᵀ] 1523

(114) 1524

/ σ(−r
√

d)2−
1
ασ(r

√
d)

(
1 − er

√
d +

e−r
√

d

α

)
E [XXᵀ] 1525

(115) 1526

= σ(−r
√

d)2−
1
ασ(r

√
d)

(
1 − er

√
d +

e−r
√

d

α

)
Σ / 0, 1527

(116) 1528

where in (114) we used (111) and the fact as given in (27) 1529

that σ′(z) = σ(z)σ(−z), and in (115) and (116) we use 1530

the upper-bound derived above and the same arguments as 1531

Theorem 2, mutatis mudandis. Thus, if we have the following 1532

bound α ≤ e−r
√

d(er
√

d − 1)−1, then we have that Rα(θ) is 1533

Λ̃(α, r
√

d)mini∈[d] λi (Σ)-strongly convex in θ ∈ Bd(r), 1534

Λ̃(α, r
√

d) :=σ(−r
√

d)2−1/α
1535

× σ(r
√

d)
(
1 − er

√
d + α−1e−r

√
d
)

. (117) 1536
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Finally, recall that sinh(x) = (ex − e−x)/2 and that1537

arcsinhx = log (x +
√

x2 + 1). Observe that if we have1538

r
√

d ≤ arcsinh (1/2), then e−r
√

d(er
√

d − 1)−1 ≥ 1. Also1539

note that e−r
√

d(er
√

d − 1)−1 is monotonically decreasing in1540

r
√

d and that arcsinh (1/2) ≈ 0.48.1541

Proposition 5: Suppose that Σ 2 0 and θ0 ∈ Bd(r) is fixed.1542

We have one of the following:1543

• If r
√

d < arcsinh (1/2), then, for every ε > 0, Rα is1544

(ε, Cd(r,α), θ0)-SLQC at θ for every θ ∈ Bd(r) when1545

α ∈
(
0, (e2r

√
d − er

√
d)−1

]
where Cd(r,α) is given1546

in (36) and (37);1547

• Otherwise, for every ε > 0, Rα is (ε, Cd(r,α), θ0)-SLQC1548

at θ for every θ ∈ Bd(r) for α ∈ (0, 1].1549

Proof: In order to prove the result, we apply a result by1550

Hazan, et al. [35] where they show that if a function f is1551

G-Lipschitz and strictly-quasi-convex, then for all ε > 0, f is1552

(ε, G, θ0)-SLQC in θ. Thus, one may view κ as approximately1553

quantifying the growth of the gradients of general functions.1554

First, we show that Rα is Cd(r,α)-Lipschitz in θ ∈ Bd(r)1555

where for α ∈ (0, 1],1556

Cd(r,α) :=
√

dσ(r
√

d)σ(−r
√

d)1−1/α; (118)1557

and, for α ∈ (1,∞],1558

Cd(r,α) :=






√
d
(

α−1
2α−1

)1−1/α (
α

2α−1

)
er

√
d ≥ α−1

α ,
√

dσ(r
√

d)σ(−r
√

d)1−1/α er
√

d < α−1
α .

1559

(119)1560

Formally, we want to show that for all θ, θ′ ∈ Bd(r),1561

|Rα(θ) − Rα(θ′)| ≤ C‖θ − θ′‖, (120)1562

where C := supθ∈Bd(r) ‖∇Rα(θ)‖. Recall from (29) that1563

∇θRα(θ) = E[∇θl
α(Y, gθ(X)] (121)1564

= E[F1(α, θ, X, Y )X ], (122)1565

where from (28) we have1566

F1(α, θ, x, y) = −ygθ(yx)1−1/α(1 − gθ(yx)). (123)1567

It can be shown that for α ≤ 1,1568

|F1(α, θ, x, y)| = gθ(yx)1−1/α(1 − gθ(yx)), (124)1569

is monotonically decreasing in 〈θ, x〉. Thus for α ≤ 1,1570

C =
√

dσ(r
√

d)σ(−r
√

d)1−1/α. (125)1571

It can also be shown that for α > 1, |F1(α, θ, x, y)| is1572

unimodal and quasi-concave with the maximum obtained1573

at 〈θ, x〉∗ = log (1 − 1/α). If r
√

d ≥ log (1 − 1/α), we obtain1574

upon plugging in 〈θ, x〉∗ for α > 1,1575

C =
√

d

(
α− 1
2α− 1

)1−1/α( α

2α− 1

)
. (126)1576

Otherwise, if r
√

d < log (1 − 1/α), then, using the local1577

monotonicity of |F1(α, θ, x, y)|, we obtain for α > 1,1578

C =
√

dσ(r
√

d)σ(−r
√

d)1−1/α, (127)1579

which mirrors the α < 1 case. Thus, combining the two 1580

regimes of α we have that Rα is Cd(r,α)-Lipschitz in θ ∈ 1581

Bd(r) for α ∈ (0,∞] where Cd(r,α) is given in (36) and (37). 1582

Finally when Rα is strongly-convex, this implies that Rα 1583

is strictly-quasi-convex. That is, since Σ 2 0, we merely 1584

apply Corollary 2 to obtain strong-convexity of Rα when 1585

α ∈ (0, (e2r
√

d − er
√

d)−1] for r
√

d < arcsinh (1/2). Sim- 1586

ilarly, we apply Theorem 2 to obtain strong-convexity of Rα 1587

for α ∈ (0, 1], otherwise. 1588

1) Fundamentals of SLQC and Reformulation: In this sub- 1589

section, we briefly review strictly locally quasi-convexity 1590

(SLQC) which was introduced by Hazan et al. in [35]. Recall 1591

that in [35] Hazan et al. refer to a function as SLQC in 1592

θ, whereas for the purposes of our analysis we refer to a 1593

function as SLQC at θ. We recover the uniform SLQC notion 1594

of Hazan et al. by articulating a function is SLQC at θ 1595

for every θ. Our later analysis of the α-risk in the logistic 1596

model benefits from this pointwise consideration. Intuitively, 1597

the notion of SLQC functions extends quasi-convex functions 1598

in a parameterized manner. Regarding notation, for θ0 ∈ Rd
1599

and r > 0, we let B(θ0, r) := {θ ∈ Rd : ‖θ − θ0‖ ≤ r}. 1600

Definition 3 (Definition 3.1, [35]): Let ε,κ > 0 and θ0 ∈ 1601

Rd. A function f : Rd → R is called (ε,κ, θ0)-strictly locally 1602

quasi-convex (SLQC) at θ ∈ Rd if at least one of the following 1603

conditions apply: 1604

1. f(θ) − f(θ0) ≤ ε, 1605

2. ‖∇f(θ)‖ > 0 and, for every θ′ ∈ B(θ0, ε/κ), 1606

〈−∇f(θ), θ′ − θ〉 ≥ 0. (128) 1607

Observe that the notion of SLQC implies quasi-convexity 1608

about B(θ0, ε/κ) on {θ ∈ Θ : f(θ) − f(θ0) > ε}; see Fig. 5 1609

for an illustration of the difference between classical quasi- 1610

convexity and SLQC in this regime. In [35], Hazan et al. note 1611

that if a function f is G-Lipschitz and strictly-quasi-convex, 1612

then for all θ̃1, θ̃2 ∈ Rd, for all ε > 0, it holds that f is 1613

(ε, G, θ̃1)-SLQC at θ̃2 for every θ̃2 ∈ Rd; this will be useful 1614

in the sequel. 1615

As shown by Hazan et al. in [35], the convergence guar- 1616

antees of Normalized Gradient Descent (NGD, given in 1617

Algorithm 1) for SLQC functions are similar to those of 1618

Gradient Descent for convex functions.

Algorithm 1 Normalized Gradient Descent (NGD)

1: Input: T ∈ N no. of iterations, θ0 ∈ Rd initial parameter,
η > 0 learning rate

2: for t = 0, 1, . . . , T − 1 do

3: Update: θt+1 = θt − η
∇f(θt)

‖∇f(θt)‖
4: Return θ̄T = arg min

θ1,...,θT

f(θt)

1619

Proposition 4 (Thm. 4.1, [35]): Let f : Rd → R, θ1 ∈ Rd, 1620

and θ∗ = argminθ∈Rd f(θ). If f is (ε,κ, θ∗)-SLQC at θ for 1621

every θ ∈ Rd, then running the NGD algorithm with learning 1622

rate η = ε/κ for number of iterations T ≥ κ2‖θ1 − θ∗‖2/ε2 1623

achieves min
t=1,...,T

f(θt) − f(θ∗) ≤ ε. 1624
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Fig. 7. A companion illustration for Lemma 1 which depicts the relevant
quantities involved. Note that there are three different configurations of the
angles δ, φ and ψ. Refer to Fig. 8 for this illustration.

For an (ε,κ, θ0)-SLQC function, a smaller ε provides better1625

optimality guarantees. Given ε > 0, smaller κ leads to faster1626

optimization as the number of required iterations increases1627

with κ2. Hazan, et al. [35] show that if a function f is G-1628

Lipschitz and strictly-quasi-convex, then for all ε > 0, f is1629

(ε, G, θ0)-SLQC in θ. Thus, one may view κ as approximately1630

quantifying the growth of the gradients of general functions.1631

Finally, by using projections, NGD can be easily adapted to1632

work over convex and closed sets (e.g., B(θ0, r) for some1633

θ0 ∈ Rd and r > 0).1634

We conclude this subsection by studying the behavior of1635

(ε,κ, θ0)-SLQC functions on the ball Bd(θ0, ε/κ), which is1636

articulated by the following novel result.1637

Proposition 8: Let ε,κ > 0 and θ0 ∈ Rd. Assume f is1638

(ε,κ, θ0)-SLQC at θ ∈ Rd. If θ ∈ Bd(θ0, ε/κ), then f(θ) −1639

f(θ0) ≤ ε. Indeed, if f is (ε,κ, θ0)-SLQC on Θ, then1640

Bd(θ0, ε/κ) ∩ Θ ⊂ {θ ∈ Θ : f(θ) − f(θ0) ≤ ε}.1641

Proof: Since f is (ε,κ, θ0)-SLQC at θ ∈ Rd we have1642

that at least one condition of Definition 3 holds. Suppose that1643

Condition 2 holds. In this case, we have that ‖∇f(θ)‖ > 01644

and 〈−∇f(θ), θ′ − θ〉 ≥ 0 for every θ′ ∈ B(θ0, ε/κ). Since1645

‖θ − θ0‖ < ε/κ, choose δ > 0 small enough such that1646

θ′ := θ + δ∇f(θ) ∈ B(θ0, ε/κ). (129)1647

Thus, we have that1648

0 ≤ 〈−∇f(θ), θ′ − θ〉 (130)1649

= 〈−∇f(θ), θ + δ∇f(θ) − θ〉 (131)1650

= −δ〈∇f(θ),∇f(θ)〉 (132)1651

= −δ‖∇f(θ)‖2, (133)1652

which is a contradiction since δ > 0 and ‖∇f(θ)‖ > 0. There-1653

fore, we must have that Condition 1 of Definition 3 holds, i.e.,1654

f(θ) − f(θ0) ≤ ε. Finally, a continuity argument shows that1655

f(θ) − f(θ0) ≤ ε whenever θ ∈ Bd(θ0, ε/κ) ∩ Θ.1656

The following is the formal statement and proof of1657

Lemma 1, which provides a useful characterization of the gra-1658

dient of (ε,κ, θ0)-SLQC functions outside the set Bd(θ0, ε/κ).1659

Refer to Fig. 7 for a picture of the relevant quantities.1660

Lemma 1: Suppose f : Rd → R is differentiable, θ0 ∈ Rd
1661

and ρ > 0. If θ ∈ Rd is such that ‖θ−θ0‖ > ρ and ‖∇f(θ)‖ >1662

0, then the following are equivalent:1663

(1) 〈−∇f(θ), θ′ − θ〉 > 0 for all θ′ ∈ Bd (θ0, ρ);1664

(2) 〈−∇f(θ), θ′ − θ〉 ≥ 0 for all θ′ ∈ Bd (θ0, ρ);1665

(3) 〈−∇f(θ), θ0 − θ〉 ≥ ρ‖∇f(θ)‖.1666

Proof: Clearly (1) ⇒ (2). (2) ⇒ (3): Let θ′ be the point 1667

of tangency of a line tangent to Bd(θ0, ρ) passing through θ, 1668

as depicted in Fig. 7. We define 1669

δ: the angle between θ0 − θ and θ′ − θ; 1670

φ: the angle between −∇f(θ) and θ′ − θ; 1671

ψ: the angle between −∇f(θ) and θ0 − θ. 1672

Recall that the inner product satisfies that 1673

〈u, v〉 = ‖u‖‖v‖ cos(ϕu,v), (134) 1674

where ϕu,v ∈ [0,π] is the angle between u and v. By conti- 1675

nuity and Condition (2), 1676

‖∇f(θ)‖‖θ′ − θ‖ cos(φ) = 〈−∇f(θ), θ′ − θ〉 ≥ 0, (135) 1677

which implies that φ ≤ π
2 . Observe that, by construction, 1678

we have φ = ψ + δ. In particular, we have that ψ ≤ π
2 − δ. 1679

Since cos(·) is decreasing over [0,π], we have that 1680

cos(ψ) ≥ cos
(π

2
− δ
)

= sin(δ). (136) 1681

Since the triangle 8θθ′θ0 is a right triangle, we have that 1682

sin(δ) = ρ
‖θ0−θ‖ and thus 1683

cos(ψ) ≥ ρ

‖θ0 − θ‖ . (137) 1684

Therefore, we conclude that 1685

〈−∇f(θ), θ0 − θ〉 = ‖∇f(θ)‖‖θ0 − θ‖ cos(ψ) (138) 1686

≥ ρ‖∇f(θ)‖, (139) 1687

as we wanted to prove. 1688

(3) ⇒ (1): For a given θ′ ∈ Bd(θ0, ρ), we define ψ, φ and 1689

δ as above. By assumption, 1690

‖∇f(θ)‖‖θ0 − θ‖ cos(ψ) = 〈−∇f(θ), θ0 − θ〉 (140) 1691

≥ ρ‖∇f(θ)‖ ≥ 0. (141) 1692

Since cos−1(·) is decreasing over [−1, 1], (140) implies that 1693

ψ ≤ cos−1

(
ρ

‖θ0 − θ‖

)
. (142) 1694

Also, an immediate application of the law of cosines yields 1695

δ = cos−1

(
‖θ0 − θ‖2 + ‖θ′ − θ‖2 − ‖θ′ − θ0‖2

2‖θ0 − θ‖‖θ′ − θ‖

)
. (143) 1696

Since ‖θ′ − θ0‖ < ρ, we have that 1697

δ < cos−1

(
‖θ0 − θ‖2 + ‖θ′ − θ‖2 − ρ2

2‖θ0 − θ‖‖θ′ − θ‖

)
. (144) 1698

A routine minimization argument further implies that 1699

δ < cos−1




√

1 −
(

ρ

‖θ0 − θ‖

)2


 = sin−1

(
ρ

‖θ0 − θ‖

)
, 1700

(145) 1701

where the equality follows from the trigonometric identity 1702

cos(sin−1(x)) =
√

1 − x2. Observe that, in order to prove 1703

〈−∇f(θ), θ′ − θ〉 = ‖∇f(θ)‖‖θ′ − θ‖ cos(φ) > 0, (146) 1704
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Fig. 8. Three different configurations of the angles δ, φ and ψ.

it is enough to show that φ < π
2 . Depending on the position1705

of θ′, the angles δ, φ and ψ can be arranged in three different1706

configurations, as depicted in Fig. 8.1707

a) Since ρ
‖θ0−θ‖ > 0, (142) implies that ψ < π

2 . Therefore,1708

φ < π
2 as φ ≤ ψ.1709

b) Since ρ
‖θ0−θ‖ < 1, (145) implies that δ < π

2 . Therefore,1710

φ < π
2 as φ ≤ δ.1711

c) Since sin−1(x) + cos−1(x) = π
2 , (142) and (145) imply1712

that φ = ψ + δ < π
2 .1713

Since in all cases φ < π
2 , the result follows.1714

2) Lipschitz Inequalities in α−1 and Main SLQC Result for1715

the α-Risk:1716

Lemma 2: If α,α′ ∈ [1,∞], then, for all θ ∈ Bd(r),1717

|Rα(θ) − Rα′(θ)| ≤ Ld(θ)
∣∣∣∣
α− α′

αα′

∣∣∣∣ , (147a)1718

‖∇Rα(θ) −∇Rα′(θ)‖ ≤ Jd(θ)
∣∣∣∣
α− α′

αα′

∣∣∣∣ , (147b)1719

where,1720

Ld(θ) :=

(
log
(
1 + e‖θ‖

√
d
))2

2
, (148a)1721

Jd(θ) :=
√

d log
(
1 + e‖θ‖

√
d
)
σ(‖θ‖

√
d). (148b)1722

Proof: Here, we present proofs for both Lipschitz1723

inequalities.1724

a) Proof of First Inequality: For ease of notation,1725

we denote β = 1/α. Thus, we have that for α ∈ [1,∞],1726

i.e., β ∈ [0, 1],1727

Rα(θ) = E[lα(Y, gθ(X))] (149)1728

= E
[

1
1 − β

(
1 − gθ(yx)1−β

)]
(150)1729

= Rβ(θ). (151)1730

To show that Rα is Lipschitz in α−1 = β ∈ [0, 1], it suffices1731

to show
d

dβ
Rβ(θ) ≤ L for some L > 0. Observe that1732

d

dβ
Rβ(θ) = E

[
d

dβ

1
1 − β

(
1 − gθ(yx)1−β

)]
, (152)1733

where the equality follows since we assume well-behaved1734

integrals. Consider without loss of generality the expression1735

in the brackets; we denote this expression as1736

f(β, θ, yx) =
d

dβ

1
1 − β

(
1 − gθ(yx)1−β

)
. (153)1737

It can be shown that 1738

f(β, θ, yx) =
gθ(yx)1−β log (gθ(yx))

1 − β
+

1 − gθ(yx)1−β

(1 − β)2
, 1739

(154) 1740

and 1741

f(1, θ, yx) =
(log gθ(yx))2

2
. (155) 1742

In addition, it can be shown that for any y ∈ {−1, +1}, 1743

x ∈ [0, 1]d, and θ ∈ Bd(r) that f(β, θ, yx) is monotonically 1744

increasing in β ∈ [0, 1]. Therefore, for any β ∈ [0, 1], 1745

y ∈ {−1, +1}, x ∈ [0, 1]d, and θ ∈ Bd(r), 1746

f(β, θ, yx) ≤ f(1, θ, yx) (156) 1747

=
(log gθ(yx))2

2
(157) 1748

≤

(
log σ(−‖θ‖

√
d)
)2

2
. (158) 1749

b) Proof of Second Inequality: For ease of notation, 1750

we let β = 1/α. Since α ∈ [1,∞], β ∈ [0, 1]. Thus, we have 1751

that for α ∈ [1,∞], i.e., β ∈ [0, 1], 1752

∇Rα(θ) = E[F1(α, θ, X, Y )X ] (159) 1753

= E[−Y gθ(Y X)1−β(1 − gθ(Y X))X ], (160) 1754

and we let F̃1(β, θ, X, Y ) := −Y gθ(Y X)1−β(1 − gθ(Y X)). 1755

For any θ ∈ Bd(r) we have 1756

‖∇Rα(θ) −∇Rα′(θ)‖ 1757

= ‖E[(F̃1(β, θ, X, Y ) − F̃1(β′, θ, X, Y ))X ]‖ (161) 1758

≤ E[|(F̃1(β, θ, X, Y ) − F̃1(β′, θ, X, Y ))|‖X‖] (162) 1759

≤
√

dE[|(F̃1(β, θ, X, Y ) − F̃1(β′, θ, X, Y ))|], (163) 1760

where we used the fact that X has support [0, 1]d for the 1761

second inequality. Here, we obtain a Lipschitz inequality on 1762

F̃1 by considering the variation of F̃1 with respect to β for 1763

any θ ∈ Bd(r), x ∈ [0, 1]d, and y ∈ {−1, +1}. Taking the 1764

derivative of F̃1(β, θ, x, y) with respect to β we obtain 1765

d

dβ
F1(β, θ, x, y) =

d

dβ
−ygθ(yx)1−β(1 − gθ(yx)) (164) 1766

= y(1 − gθ(yx))gθ(yx)1−β log gθ(yx), 1767

(165) 1768
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Fig. 9. Another illustration highlighting the saturation of α-loss (Rα for
α = 10,∞) in the logistic model for a 2D-GMM with P[Y = 1] = .5,
µX|Y =−1 = [.5, .5], µX|Y =1 = [1, 1], and shared covariance matrix
Σ = [1, .5; .5, 3].

where we used the fact that
d

dx
a1−x = −a1−x log a. Contin-1769

uing, we have1770

y(1 − gθ(yx))gθ(yx)1−β log gθ(yx)1771

≤ log
(
1 + e‖θ‖

√
d
)
σ(‖θ‖

√
d)σ(‖θ‖

√
d)1−β (166)1772

= log
(
1 + e‖θ‖

√
d
)
σ(‖θ‖

√
d)2−β (167)1773

≤ log
(
1 + e‖θ‖

√
d
)
σ(‖θ‖

√
d). (168)1774

Thus, we have that, for any θ ∈ Bd(r),1775

‖∇Rα(θ) −∇Rα′(θ)‖ ≤ Jd(θ)|β − β′|, (169)1776

where β,β′ ∈ [0, 1] (α,α′ ∈ [1,∞]). Therefore, we have that,1777

for any θ ∈ Bd(r),1778

‖∇Rα(θ) −∇Rα′(θ)‖ ≤ Jd(θ)
∣∣∣∣
1
α
− 1
α′

∣∣∣∣ , (170)1779

where α,α′ ∈ [1,∞].1780

Theorem 3: Let α0 ∈ [1,∞], ε0,κ0 > 0, and θ0, θ ∈ Bd(r).1781

If Rα0 is (ε0,κ0, θ0)-SLQC at θ and1782

0 ≤ α− α0 <
α2

0‖∇Rα0(θ)‖
2Jd(θ)

(
1 + rκ0

ε0

) , (171)1783

then Rα is (ε,κ, θ0)-SLQC at θ with1784

ε = ε0 + 2Ld(θ)
(
α− α0

αα0

)
, (172)1785

ε

κ
=
ε0
κ0



1 −

(
1 + 2rκ0

ε0

)
Jd(θ)(α − α0)

αα0‖∇Rα0(θ)‖ − Jd(θ)(α − α0)



 . (173)1786

Proof: For ease of notation let ρ0 =
ε0
κ0

and ρ =
ε

κ
, and1787

consider the following two cases.1788

Fig. 10. Loss landscape visualizations obtained using [79] for α ∈ {.9, 1,
2, 10} training a ResNet-18 on the MNIST dataset. The visualization tech-
nique finds two “principal directions” of the model to allow for a 3D plot.
We note that similar themes as theoretically articulated in Section IV for
the simpler logistic model are also evident here; i.e., exploding gradients
for α too small, a loss of convexity (and increasing “flatness”) as α increases
greater than 1, and also a saturation effect as exhibited by the visual similarity
between the α = 2 and α = 10 loss landscapes. This hints at the generality
of the theory presented in Section IV.

Case 1: Assume that Rα0(θ) − Rα0(θ0) ≤ ε0. Then, 1789

Rα(θ) − Rα(θ0) 1790

= Rα(θ) − Rα0(θ) + Rα0(θ) 1791

− Rα0(θ0) + Rα0(θ0) − Rα(θ0) (174) 1792

≤ Ld(θ)
(
α− α0

αα0

)
+ ε0 + Ld(θ)

(
α− α0

αα0

)
. (175) 1793

Since ε0+2Ld(θ)
(

α−α0
αα0

)
= ε, we have Rα(θ)−Rα(θ0) ≤ ε. 1794

Case 2: Assume that Rα0(θ) − Rα0(θ0) > ε0. Since 1795

Rα0 is (ε0,κ0, θ0)-SLQC at θ by assumption, we have that 1796

‖∇Rα0(θ)‖ > 0 and 〈−∇Rα0(θ), θ′ − θ〉 ≥ 0 for every 1797

θ′ ∈ B(θ0, ρ0). 1798

Let ρ = ε/κ be given as in (42). If ‖θ − θ0‖ > ρ, 1799

‖∇Rα(θ)‖ > 0 and 1800

〈−∇Rα(θ), θ0 − θ〉 ≥ ρ‖∇Rα(θ)‖, (176) 1801

then Lemma 1 would imply that Rα is (ε,κ, θ0)-SLQC at 1802

θ. In order to show these three expressions, we make ample 1803

use of the following three inequalities: The first is the reverse 1804

triangle inequality associated with ∇Rα and ∇Rα0 , i.e., 1805

‖∇Rα0(θ) −∇Rα(θ)‖ ≥ |‖∇Rα(θ)‖ − ‖∇Rα0(θ)‖|. 1806

(177) 1807

The second is that ∇Rα(θ) is Jd(θ)-Lipschitz in α−1, i.e., 1808

∣∣∣∣
1
α0

− 1
α

∣∣∣∣Jd(θ) ≥ ‖∇Rα0(θ) −∇Rα(θ)‖. (178) 1809

The third follows from a manipulation of (41), i.e., 1810

‖∇Rα0(θ)‖ > 2Jd(θ)
(
1 + rρ−1

0

)
(α−1

0 − α−1) (179) 1811

> Jd(θ)(α−1
0 − α−1), (180) 1812
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using the fact that α2
0 ≤ αα0 and since rρ−1

0 ≥ 1. With these1813

inequalities in hand, we are now in a position to complete the1814

three steps required to show that Rα is (ε,κ, θ0)-SLQC at θ.1815

First, we show that ‖θ−θ0‖ > ρ. Since Rα0 is (ε0,κ0, θ0)-1816

SLQC at θ and Rα0(θ) − Rα0(θ0) > ε0 by assumption,1817

we have by the contrapositive of Proposition 8 that θ /∈1818

Bd(θ0, ρ0). Thus, we have that ‖θ− θ0‖ > ρ0. Next, note that1819

ρ is related to ρ0 by (42). If we can show that ρ0 > ρ, then1820

we have the desired conclusion. Rearranging the left-hand-side1821

of (179), we have that1822

‖∇Rα0(θ)‖(α−1
0 − α−1)−1 > 2Jd(θ)(1 + rρ−1

0 ), (181)1823

which can be rewritten to obtain1824

‖∇Rα0(θ)‖(α−1
0 − α−1)−1 − Jd(θ) > Jd(θ)(1 + 2rρ−1

0 ).1825

(182)1826

Since by the right-hand-side of (179) we have that1827

‖∇Rα0(θ)‖(α−1
0 − α−1)−1 − Jd(θ) > 0, (183)1828

it follows by (182) that1829

1 >
Jd(θ)(1 + 2rρ−1

0 )
‖∇Rα0(θ)‖(α−1

0 − α−1)−1 − Jd(θ)
. (184)1830

Thus examining (42) in light of (184), we have that ρ0 > ρ,1831

which implies that ‖θ − θ0‖ > ρ, as desired.1832

Second, we show that ‖∇Rα(θ)‖ > 0. Applying (177)1833

to (178) we obtain1834

‖∇Rα(θ)‖ ≥ ‖∇Rα0(θ)‖ − Jd(θ)(α−1
0 − α−1) > 0, (185)1835

where the right-hand-side inequality again follows by (179).1836

Thus, we have that ‖∇Rα(θ)‖ > 0, as desired.1837

Finally, we show the expression in (176), i.e.,1838

〈−∇Rα(θ), θ0 − θ〉 ≥ ρ‖∇Rα(θ)‖. By the Cauchy-Schwarz1839

inequality, we have1840

〈−∇Rα(θ), θ0 − θ〉1841

≥ 〈−∇Rα0(θ), θ0 − θ〉 − ‖∇Rα(θ) −∇Rα0(θ)‖‖θ0 − θ‖1842

(186)1843

≥ ρ0‖∇Rα0(θ)‖ − Jd(θ)(α−1
0 − α−1)2r, (187)1844

where in (186) we apply Lemma 1 for the first term; for the1845

second term we use the fact that ∇Rα is Jd(θ)-Lipschitz in1846

α−1 as given by (178) and the fact that θ0 − θ ∈ Bd(2r).1847

Continuing from (187), we have that1848

〈−∇Rα(θ), θ0 − θ〉1849

≥ ρ0‖∇Rα(θ)‖ − Jd(θ)(α−1
0 − α−1)2r1850

− ρ0‖∇Rα0(θ) −∇Rα(θ)‖ (188)1851

≥ ρ0‖∇Rα(θ)‖ − Jd(θ)(α−1
0 − α−1)(ρ0 + 2r), (189)1852

where we first apply the reverse triangle inequality in (177)1853

and then we use the fact that ∇Rα(θ) is Jd(θ)-Lipschitz in1854

α−1, i.e., the expression in (178). Rearranging the expression1855

in (189), we obtain 1856

ρ0‖∇Rα(θ)‖ − Jd(θ)(α−1
0 − α−1)(ρ0 + 2r) 1857

= ‖∇Rα(θ)‖
(
ρ0 −

Jd(θ)(α−1
0 − α−1)(ρ0 + 2r)
‖∇Rα(θ)‖

)
(190) 1858

≥ ‖∇Rα(θ)‖



ρ0 −
(ρ0 + 2r)Jd(θ)

‖∇Rα0 (θ)‖
( 1

α0
− 1

α )
− Jd(θ)



 , (191) 1859

where we used the inequality in (185). Thus, we finally obtain 1860

〈−∇Rα(θ), θ0 − θ〉 ≥ ρ‖∇Rα(θ)‖, (192) 1861

where ρ > 0 is given by 1862

ρ = ρ0

(
1 − (1 + 2rρ−1

0 )Jd(θ)
‖∇Rα0(θ)‖(α−1

0 − α−1)−1 − Jd(θ)

)
, (193) 1863

as desired. Therefore by collecting all three parts, we have by 1864

Lemma 1 that Rα is (ε,κ, θ0)-SLQC at θ. 1865

3) Bootstrapping SLQC: Recall that the floor function, 1866

denoted 9·: : R+ → N, can alternatively be written as 1867

9x: = x − q, for some q ∈ [0, 1). 1868

Lemma 5: Fix θ ∈ Bd(r). Suppose that ρ0 > 0 and there 1869

exists gθ > 0 such that ‖∇Rα′(θ)‖ > gθ for all α′ ∈ [α0,∞]. 1870

Given N ∈ N, for each n ∈ [N ] we define 1871

αn = αn−1 +
1
N

, (194a) 1872

εn = εn−1 + 2Ld(θ)
1

αnαn−1

1
N

, (194b) 1873

ρn = ρn−1 −
(ρn−1 + 2r)Jd(θ)

αnαn−1Gn−1 − Jd(θ)/N
1
N

, (194c) 1874

where Gn−1 := ‖∇Rαn−1(θ)‖. If N > Jd(θ)
(
α2

0gθ

)−1
, 1875

then we have that {αn}N
n=0, {εn}N

n=0, and {ρn}N
n=0 are well- 1876

defined. Furthermore, we have that ρn > 0 for all n ≤ 1877⌊
α2

0gθ(1 + 2rρ−1
0 )−1Jd(θ)−1N

⌋
. 1878

Proof: For ease of notation, let J := Jd(θ), L := Ld(θ), 1879

and g := gθ. Observe that {αn}N
n=0 is well defined and so 1880

is {εn}N
n=0. It can be verified that if N > J

(
α2

0g
)−1

, then 1881

αn−1αnGn−1 − J/N > 0 and thus {ρn}N
n=0 is well defined. 1882

Now we show by induction that ρn > 0 for 1883

n <

⌊
ρ0

ρ0 + 2r

α2
0g

J
N

⌋
. (195) 1884

By assumption, ρ0 > 0. For the inductive hypothesis, 1885

assume that ρ0, . . . , ρn−1 are non-negative. Observe that, 1886

by definition, we have 1887

ρk − ρk+1 =
(ρk + 2r)J

αkαk+1Gk − J/N

1
N

. (196) 1888

The previous equation and a telescoping sum lead to 1889

ρ0 − ρn =
n−1∑

k=0

(ρk + 2r)J
αkαk+1Gk − J/N

1
N

. (197) 1890

Since ρk > 0 for all k ∈ [n − 1], we have the following 1891

ordering ρ0 > ρ1 > · · · > ρn and, as a result, 1892

ρ0 − ρn <
(ρ0 + 2r)J
α2

0g − J/N

n

N
. (198) 1893

Authorized licensed use limited to: Lalitha Sankar. Downloaded on October 17,2022 at 00:37:19 UTC from IEEE Xplore.  Restrictions apply. 



6044 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 9, SEPTEMBER 2022

It can be shown that our choice of n in (195) implies that1894

ρn > ρ0 −
(ρ0 + 2r)J
α2

0g − J/N

n

N
> 0, (199)1895

which implies that ρn > 0 as desired.1896

Theorem 4: Let α0 ∈ [1,∞), ε0,κ0 > 0, and θ0, θ ∈ Bd(r).1897

Suppose that Rα0 is (ε0,κ0, θ0)-SLQC at θ ∈ Bd(r) and that1898

there exists gθ > 0 such that ‖∇Rα′(θ)‖ > gθ for every1899

α′ ∈ [α0,∞]. Then, for every λ ∈ (0, 1), Rαλ is (ελ,κλ, θ0)-1900

SLQC at θ where1901

αλ := α0 + λ
α2

0gθ

Jd(θ)
(
1 + 2rκ0

ε0

) , (200)1902

ελ := ε0 + 2λLd(θ)
(
αλ − α0

αλα0

)
α2

0gθ

Jd(θ)
(
1 + rκ0

ε0

) , (201)1903

ελ
κλ

>
ε0
κ0

(1 − λ). (202)1904

Proof: For ease of notation, let J := Jd(θ), L := Ld(θ),1905

and g := gθ. Let λ ∈ (0, 1) be given. For each1906

N >
1 + 2rρ−1

0

1 − λ

2J

α2
0g

, (203)1907

we define1908

Nλ =
⌊
λ

ρ0

ρ0 + 2r

α2
0g

J
N

⌋
. (204)1909

The bootstrapping proof strategy is as follows: 1) For fixed1910

N ∈ N large enough (as given above), we show by induction1911

that Rαn is (εn,κn, θ0)-SLQC at θ with ρn = εn/κn for1912

n ≤ Nλ using Lemma 5 and Theorem 3; 2) We take the limit1913

as N approaches infinity in order to derive the largest range1914

on α and the strongest SLQC parameters.1915

First, we show by induction that Rαn is (εn,κn, θ0)-SLQC1916

at θ with ρn = εn/κn for n ≤ Nλ. By assumption, Rα0 is1917

(ε0,κ0, θ0)-SLQC at θ. For the inductive hypothesis, assume1918

that Rαk is (αk, εk,κk)-SLQC at θ for all k ∈ [n−1]. In order1919

to apply Lemma 5 to show that1920

ρ0 > ρ1 > . . . > ρn > · · · > ρNλ > Cλ > 0, (205)1921

for all n ≤ Nλ and for some Cλ > 0, we first show that the1922

assumptions of Lemma 5 are satisfied. Observe that, by our1923

assumption on N ∈ N, we have that1924

N >
1 + 2rρ−1

0

1 − λ

2J

α2
0g

>
1 + rρ−1

0

1 − λ

J

α2
0g

>
J

α2
0g

, (206)1925

which is the first requirement of Lemma 5. Next, we want to1926

show that1927

n ≤ Nλ <

⌊
ρ0

ρ0 + 2r

α2
0g

J
N

⌋
, (207)1928

which is the last requirement of Lemma 5. This is achieved1929

by observing that1930

Nλ =
⌊
λ

ρ0

ρ0 + 2r

α2
0g

J
N

⌋
= λ

ρ0

ρ0 + 2r

α2
0g

J
N − q, (208)1931

for some q ∈ [0, 1) and that1932

⌊
ρ0

ρ0 + 2r

α2
0g

J
N

⌋
=

ρ0

ρ0 + 2r

α2
0g

J
N − w, (209)1933

also for some w ∈ [0, 1). Note that (207) is equivalent to 1934

(q − w)
1 + rρ−1

0

1 − λ

J

α2
0g

< N, (210) 1935

which holds by the fact that N >
1 + rρ−1

0

1 − λ

J

α2
0g

in (206) and 1936

q − w ≤ 1. Thus by Lemma 5, we have that 1937

ρn > ρ0 −
(ρ0 + 2r)J
α2

0g − J/N

n

N
> 0, (211) 1938

for all n ≤ Nλ. In particular for n = Nλ, we have that 1939

ρNλ > ρ0 −
(ρ0 + 2r)J
α2

0g − J/N

Nλ

N
(212) 1940

> ρ0

(
1 − λ− λJ

α2
0g − J/N

1
N

)
(213) 1941

>
ρ0(1 − λ)

2
, (214) 1942

where the second inequality follows by plugging in Nλ and 1943

adding and subtracting λJ/N in the fraction and the last 1944

inequality follows from N >
1 + 2rρ−1

0

1 − λ

2J

α2
0g

>
1 + λ

1 − λ

J

α2
0g

1945

since 2rρ−1
0 ≥ λ for all λ ∈ (0, 1). Therefore, we have that 1946

Cλ =
ρ0(1 − λ)

2
; in other words, 1947

ρ0 > ρ1 > . . . > ρn−1 > ρn > · · · > ρNλ >
ρ0(1 − λ)

2
> 0. 1948

(215) 1949

Also, observe that 1950

αn − αn−1 =
1
N

<
α2

0g

2J(1 + 2rρ−1
0 (1 − λ)−1)

, (216) 1951

where the inequality follows from the fact that 1952

N >
1 + 2rρ−1

0

1 − λ

2J

α2
0g

>

(
1 +

2rρ−1
0

1 − λ

)
2J

α2
0g

. (217) 1953

In particular, (215) and (216) leads to 1954

αn − αn−1 <
α2

0g

2J(1 + 2rρ−1
0 (1 − λ)−1)

(218) 1955

<
α2

n−1Gn−1

2J(1 + rρ−1
n−1)

, (219) 1956

where we use the fact that αn ≥ α0 and Gn−1 ≥ g. As a 1957

result, we can apply Theorem 3 to conclude that Rαn is 1958

(εn, ρn, θ0)-SLQC at θ with αn, εn and ρn given as in (194a). 1959

In particular by unfolding the recursion, we have that RαNλ
1960

is (εNλ , ρNλ , θ0)-SLQC at θ with 1961

αNλ = α0 + λ(1 + 2rρ−1
0 )−1α

2
0g

J
− q

N
, (220) 1962

εNλ = ε0 + 2L
Nλ−1∑

n=0

1
αn(αn + 1/N)

1
N

, (221) 1963

ρNλ = ρ0

Nλ−1∏

n=0

(
1 − (1 + 2rρ−1

n )J/N

αn+1αn‖∇Rαn(θ)‖ − J/N

)
, (222) 1964

for some q ∈ [0, 1). 1965
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Finally, we take the limit as N approaches infinity in1966

order to derive the largest range on α and the strongest1967

SLQC parameters. Recall that Nλ =
⌊
λ ρ0

ρ0+2r
α2

0g
J N

⌋
=1968

λ ρ0
ρ0+2r

α2
0g
J N − q, for some q ∈ [0, 1). Thus, we have the1969

following relationship1970

1
N

=
λρ0α2

0g

(Nλ + q)(ρ0 + r)J
. (223)1971

Observe that taking the limit as N approaches infinity is1972

equivalent to taking the limit as Nλ approaches infinity.1973

Examining (220) as Nλ approaches infinity, we have that1974

αλ := lim
Nλ→∞

αNλ = α0 + λ(1 + 2rρ−1
0 )−1α

2
0g

J
. (224)1975

Next considering (221), we rewrite to obtain1976

εNλ = ε0 + 2L
Nλ−1∑

n=0

1
αn(αn + 1/N)

1
N

(225)1977

= ε0 +
2L

N

Nλ−1∑

n=0

(
1
α2

n
+

1
N

1
α3

n − α2
n/N

)
, (226)1978

where we used a partial fraction decomposition. Let µNλ be1979

the discrete measure given by1980

µNλ =
1

Nλ

Nλ−1∑

n=0

δαn , (227)1981

where δαn is the point mass at αn. In particular for large N ,1982

we can write (226) as1983

εNλ = ε0 +
2Lλα2

0g

(1 + rρ−1
0 )J

∫
1
x2

dµNλ(x)+O

(
1

Nλ

)
. (228)1984

Let µλ denote the uniform measure over (α0,αλ], i.e., the1985

Lebesgue measure on the interval (α0,αλ]. Note that µNλ1986

converges in distribution to µλ as Nλ goes to infinity. By tak-1987

ing limits, (228) becomes1988

ελ = lim
Nλ→∞

εNλ (229)1989

= ε0 +
2Lλα2

0g

(1 + rρ−1
0 )J

αλ∫

α0

1
x2

dx (230)1990

= ε0 +
2Lλα0g

(1 + rρ−1
0 )J

(
1 − α0

αλ

)
. (231)1991

Finally, we consider (222). Observe that from (199) we have1992

ρNλ > ρ0 −
(ρ0 + 2r)J
α2

0g − J/N

Nλ

N
(232)1993

= ρ0 −
(ρ0 + 2r)J
α2

0g − J/N

λ Nα2
0gρ0

J(ρ0+2r) − q

N
(233)1994

= ρ0 −
[

Nλρ0α2
0g

Nα2
0g − J

− q

N

(
(ρ0 + 2r)J
α2

0g − J/N

)]
, (234)1995

for q ∈ [0, 1), where we plugged in the definition of Nλ and1996

simplified. Thus, taking the limit as Nλ approaches infinity1997

we have that 1998

ρλ = lim
Nλ→∞

ρNλ (235) 1999

> lim
Nλ→∞

(
ρ0 −

[
Nλρ0α2

0g

Nα2
0g − J

− q

N

(
(ρ0 + 2r)J
α2

0g − J/N

)])
2000

(236) 2001

= ρ0(1 − λ). (237) 2002

Thus, we conclude that Rαλ is (ελ,κλ, θ0)-SLQC at θ with 2003

αλ := α0 + λ(1 + 2rρ−1
0 )−1α

2
0g

J
, (238) 2004

ελ := ε0 +
2Lλα0g

(1 + rρ−1
0 )J

(
1 − α0

αλ

)
(239) 2005

ρλ > ρ0(1 − λ). (240) 2006

A change of variables leads to the desired result. 2007

C. Rademacher Complexity Generalization and Asymptotic 2008

Optimality 2009

Lemma 6: If α ∈ (0,∞], then l̃α(z) is Cr0(α)-Lipschitz in 2010

z ∈ [−r0, r0] for every r0 > 0, where for α ∈ (0, 1], 2011

Cr0(α) := σ(r0)σ(−r0)1−1/α; (241) 2012

and, for α ∈ (1,∞], 2013

Cr0(α) :=






(
α−1
2α−1

)1− 1
α
(

α
2α−1

)
er0 ≥ α−1

α ,

σ(r0)σ(−r0)1−
1
α er0 < α−1

α .
(242) 2014

Proof: The proof is analogous to the proof in Propo- 2015

sition 5. In order to show that l̃α(z) is Cr0(α)-Lipschitz, 2016

we take the derivative of l̃α(z) and seek to maximize it over 2017

z ∈ [−r0, r0]. Specifically, we have that for α ∈ (0,∞], 2018

d

dz
l̃α(z) =

d

dz

α

α− 1

(
1 − σ(z)1−1/α

)
(243) 2019

= σ(z)2−1/α − σ(z)1−1/α (244) 2020

= (σ(z) − 1)σ(z)1−1/α (245) 2021

≤ |(σ(z) − 1)σ(z)1−1/α| (246) 2022

= σ(−z)σ(z)1−1/α, (247) 2023

where we used the fact that σ(z) = 1 − σ(−z). If α ≤ 1, 2024

it can be shown that 2025

max
z∈[−r0,r0]

σ(−z)σ(z)1−1/α = σ(r0)σ(−r0)1−1/α. (248) 2026

Similarly if α > 1 and if r0 ≥ log (1 − 1/α), then it can be 2027

shown that 2028

max
z∈[−r0,r0]

σ(−z)σ(z)1−1/α =
(
α− 1
2α− 1

)1−1/α( α

2α− 1

)
, 2029

(249) 2030

where z∗ = log (1 − 1/α). Otherwise for α > 1, if we have 2031

r0 < log (1 − 1/α), we obtain using local monotonicity, 2032

max
z∈[−r0,r0]

σ(−z)σ(z)1−1/α = σ(r0)σ(−r0)1−1/α, (250) 2033
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analogous to the case where α < 1. Thus, combining the two2034

regimes of α, we have the result.2035

Theorem 5: If α ∈ (0,∞], then, with probability at least2036

1 − δ, for all θ ∈ Bd(r),2037

∣∣∣Rα(θ) − R̂α(θ)
∣∣∣ ≤ Cr

√
d (α)

r
√

d√
n

+ Dr
√

d (α)

√
log
(

4
δ

)

n
,2038

(251)2039

where Cr
√

d (α) is given in (52) and (53) and where Dr
√

d (α)2040

is given by Dr
√

d (α) := 4
√

2
α

α− 1

(
1 − σ(−r

√
d)1−1/α

)
.2041

Proof: By Proposition 2, which gives a relation between2042

α-loss and its margin-based form, we have2043

R(lα ◦ G ◦ Sn) = E
(

sup
gθ∈G

1
n

n∑

i=1

σil
α(yi, gθ(xi))

)
(252)2044

= E
(

sup
θ∈Bd(r)

1
n

n∑

i=1

σi l̃
α(yi〈θ, xi〉)

)
.2045

(253)2046

The right-hand-side of (252) can be rewritten as2047

E
(

sup
θ∈Bd(r)

1
n

n∑

i=1

σi l̃
α(yi〈θ, xi〉)

)
2048

= R({l̃α(y1〈θ, x1〉), . . . , l̃α(yn〈θ, xn〉) : θ ∈ Bd(r)}).2049

(254)2050

Observe that, for each i ∈ [n], yi〈θ, xi〉 ≤ r
√

d by the Cauchy-2051

Schwarz inequality since θ ∈ Bd(r) and for each i ∈ [n],2052

xi ∈ [0, 1]d. Further, by Lemma 6, we know that l̃α(z) is2053

Cr0 (α)-Lipschitz in z ∈ [−r0, r0]. Thus setting r0 = r
√

d,2054

we may apply Lemma 3 (Contraction Lemma) to obtain2055

E
(

sup
θ∈Bd(r)

1
n

n∑

i=1

σi l̃
α(yi〈θ, xi〉)

)
2056

= R
(
{l̃α(y1〈θ, x1〉), . . . , l̃α(yn〈θ, xn〉) : θ ∈ Bd(r)}

)
2057

(255)2058

≤ Cr
√

d (α)R ({(y1〈θ, x1〉, . . . , yn〈θ, xn〉) : θ ∈ Bd(r)}) .2059

(256)2060

We absorb yi into its corresponding xi and apply Lemma 42061

to obtain2062

Cr
√

d (α)R({(y1〈θ, x1〉, . . . , yn〈θ, xn〉) : θ ∈ Bd(r)})2063

≤ Cr
√

d (α)
r
√

d√
n

, (257)2064

which follows since we assume that xi ∈ [0, 1]d for each2065

i ∈ [n]. In order to apply Proposition 6, it can readily be2066

shown that for α ∈ (0,∞]2067

max
z∈[−r

√
d,r

√
d]

l̃α(z) ≤ Dr
√

d (α) , (258)2068

where Dr
√

d (α) = α
α−1

(
1 − σ(−r

√
d)1−1/α

)
. Thus,2069

we apply Proposition 6 to achieve the desired result.2070

The following result attempts to quantify the uniform dis- 2071

crepancy between the empirical α-risk and the probability 2072

of error (true ∞-risk); the technique is a combination of 2073

Theorem 5 and Lemma 2. The result is most useful in the 2074

regime where r
√

d ≤ α/
√

n; this prohibits the second term in 2075

the right-hand-side of (259) from dominating the first, which 2076

is the most meaningful form of the bound. 2077

Corollary 3: If α ∈ [1,∞], then, with probability at least 2078

1 − δ, for all θ ∈ Bd(r), 2079

∣∣∣R∞(θ) − R̂α(θ)
∣∣∣ ≤ σ

(
r
√

d
)(2r

√
d√

n
+ 4

√
2 log (4/δ)

n

)
2080

+

(
log σ(−r

√
d)
)2

2α
. (259) 2081

Proof: Consider the expression, R∞(θ) − R̂α(θ). Since 2082

R̂∞(θ) ≤ R̂α(θ) for all θ ∈ Bd(r), the following holds 2083

R∞(θ) − R̂α(θ) ≤ R∞(θ) − R̂∞(θ) (260) 2084

≤ σ
(
r
√

d
)(2r

√
d√

n
+ 4

√
2 log (4/δ)

n

)
, 2085

(261) 2086

where we applied Theorem 5 for α = ∞. Now, consider the 2087

reverse direction, R̂α(θ)−R∞(θ). For any θ ∈ Bd(r), we add 2088

and subtract R̂∞(θ) such that 2089

R̂α(θ) − R∞(θ) 2090

= R̂∞(θ) − R∞(θ) + R̂α(θ) − R̂∞(θ) (262) 2091

≤ σ
(
r
√

d
)


2r
√

d√
n

+ 4

√
2 log

(
4
δ

)

n



+

(
log σ(−r

√
d)
)2

2α
, 2092

(263) 2093

where we apply Theorem 5 for the first term and Lemma 2 for 2094

the second term3 on the maximum value of θ, i.e, ‖θ‖2 = r. 2095

Thus, combining the two cases we have the desired statement 2096

for the corollary. 2097

Theorem 6: Assume that the minimum α-risk is attained 2098

by the logistic model, i.e., (55) holds. Let Sn be a training 2099

dataset with n ∈ N samples as before. If for each n ∈ N, 2100

θ̂α
n is a global minimizer of the associated empirical α-risk 2101

θ 5→ R̂α(θ), then the sequence (θ̂α
n)∞n=1 is asymptotically 2102

optimal for the 0-1 risk, i.e., almost surely, 2103

lim
n→∞

R(fθ̂α
n
) = R∗, (264) 2104

where fθ̂α
n
(x) = 〈θ̂α

n , x〉 for each n ∈ N and the Bayes risk 2105

R∗ is given by R∗ := min
f :X→R

P[Y #= sign(f(X))]. 2106

Proof: We begin by recalling the following propo- 2107

sition which establishes an important consequence of 2108

classification-calibration. In words, the following result assures 2109

that minimizing a classification-calibrated loss to optimality 2110

also minimizes the 0-1 loss to optimality. 2111

3We apply Lemma 2 to the empirical distribution instead of the true
distribution, leading to a bound for the empirical α-risk.
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Proposition 9 (Thm. 3, [6]): Assume that φ is a2112

classification-calibrated margin-based loss function. Then, for2113

every sequence of measurable functions (fi)∞i=1 and every2114

probability distribution on X × Y ,2115

lim
i→∞

Rφ(fi) = R∗
φ implies that lim

i→∞
R(fi) = R∗, (265)2116

where R∗
φ := minf Rφ(f) and R∗ := minf R(f).2117

By the assumption that the minimum α-risk is obtained by2118

the logistic model, we have that2119

min
θ∈Bd(r)

Rα(θ) = min
f :X→R

Rα(f), (266)2120

where Rα(θ) is given in (25) and Rα(f) = E[l̃α(Y f(X))]2121

for all measurable f . Thus, the proof strategy is to show that2122

lim
n→∞

Rα(θ̂α
n) = min

θ∈Bd(r)
Rα(θ), (267)2123

and then apply Proposition 9 to obtain the result.2124

Let θα
∗ be a minimizer of the α-risk, i.e.,2125

Rα(θα
∗ ) = min

θ∈Bd(r)
Rα(θ). (268)2126

Observe that2127

0 ≤ Rα(θ̂α
n) − Rα(θα

∗ ) = In + IIn, (269)2128

where In := Rα(θ̂α
n)− R̂α(θ̂α

n) and IIn := R̂α(θ̂α
n)−Rα(θα

∗ ).2129

After some straightforward manipulations of Theorem 5, (54)2130

implies that, for every ε > 0,2131

P
(
|Rα(θ̂α

n) − R̂α(θ̂α
n)| > ε

)
≤ 4 e

−n
ε−C

r
√

d
(α)2r

√
d/n

4
√

2D
r
√

d
(α)

2

,2132

(270)2133

whenever n is large enough. A routine application of the Borel-2134

Cantelli lemma shows that, almost surely,2135

lim
n→∞

In = lim
n→∞

Rα(θ̂α
n) − R̂α(θ̂α

n) = 0. (271)2136

Since θ̂α
n is a minimizer of the empirical risk R̂α,2137

IIn = R̂α(θ̂α
n) − Rα(θα

∗ ) ≤ R̂α(θα
∗ ) − Rα(θα

∗ ). (272)2138

Again by Theorem 5, for every ε > 0,2139

P
(
|R̂α(θα

∗ ) − Rα(θα
∗ )| > ε

)
≤ 4 e

−n
ε−C

r
√

d
(α)2r

√
d/n

4
√

2D
r
√

d
(α)

2

,2140

(273)2141

whenever n is large enough. Hence, the Borel-Cantelli lemma2142

implies that, almost surely,2143

lim
n→∞

|R̂α(θα
∗ ) − Rα(θα

∗ )| = 0. (274)2144

In particular, we have that, almost surely,2145

lim sup
n→∞

IIn ≤ 0. (275)2146

Plugging (271) and (275) in (269), we obtain, almost surely,2147

0 ≤ lim sup
n→∞

[
Rα(θ̂α

n) − Rα(θα
∗ )
]
≤ 0, (276)2148

from which (267) follows.2149

Fig. 11. A synthetic experiment highlighting the collapse in trained linear
predictors of α-loss for α ∈ {0.65, 1, 4} on clean, balanced data. Specifically,
α-loss is trained until convergence under the logistic model for a 2D-GMM
with mixing probability P[Y = −1] = P[Y = +1], symmetric means
µX|Y =−1 = [−1,−1] = −µX|Y =1, and shared covariance matrix Σ = I2.
Averaged linear predictors generated by training of α-loss averaged over
100 runs. Training data present in the figure is obtained from the last run.

For each n ∈ N, let fθ̂α
n

: X → R be fθ̂α
n
(x) = 〈θ̂α

n , x〉. 2150

Since we have 2151

fθ̂α
n
(x) = σ−1(σ(θ̂α

n · x)) = σ−1(gθ̂α
n
(x)), (277) 2152

Proposition 2, (266), and (267) imply that 2153

lim
n→∞

Rα(fθ̂α
n
) = min

θ∈Bd(r)
Rα(fθ) = min

f :X→R
Rα(f) =: R∗

α. 2154

(278) 2155

Since l̃α is classification-calibrated as established in Theo- 2156

rem 1, Proposition 9 and (278) imply that 2157

lim
n→∞

R(fθ̂α
n
) = min

f :X→R
P[Y #= sign(f(X))] =: R∗, (279) 2158

as required. 2159

D. Further Experimental Results and Details 2160

1) Brief Review of the F1 Score: In binary classification, the 2161

F1 score is a measure of a model’s accuracy and is particularly 2162

useful when there is an imbalanced class, since it is known to 2163

give more precise performance information for an imbalanced 2164

class than simply using accuracy itself [80]. In words, the F1 2165

score is the harmonic mean of the precision and recall, where 2166

precision is defined as the number of true positives divided by 2167

the number of true positives plus false positives (all examples 2168

the model declares as positive) and where recall is defined 2169

as the number of true positives divided by the number of true 2170

positives plus false negatives (all the examples that the model 2171

should have declared as positive). Formally, the definition of 2172

the F1 score is 2173

F1 =
2

recall−1 + precision−1 =
TP

TP + 0.5(FP + FN)
, (280) 2174

where tp, fp, fn denote true positives, false positive, and false 2175

negatives, respectively. In practice, tp, fp, and fn are drawn 2176

from the confusion matrix of the model on test data. Note 2177

that the use of the term “positive”, denoting the class name is 2178

arbitrarily chosen; in practice, one lets “positive” class denote 2179

the imbalanced class. 2180
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TABLE VII

FURTHER QUANTITATIVE RESULTS ASSOCIATED WITH FIG. 3(A) IN SECTION III-C WITH EXACTLY THE SAME EXPERIMENTAL SETUP. VALUES
REPORTED IN THE TABLE ARE THE TEST ACCURACY (IN %) OF A LINEAR PREDICTIVE MODEL TESTED ON 1 MILLION EXAMPLES OF CLEAN,

BALANCED SYNTHETIC TEST DATA. THE LINEAR MODEL WAS LEARNED BY AVERAGING MODELS FOR 100 TRAINING EXAMPLES
OVER 100 RUNS. SUCH MODELS WERE LEARNED FOR DIFFERENT IMBALANCE LEVELS OF THE TRAINING DATA AS SHOWN IN

THE TABLE. WE FOUND THAT THE BAYES ACCURACY OF THIS EXPERIMENT WAS 92.14%. IN GENERAL, WE FIND THAT
α∗ < 1, WHICH ALIGNS WITH OUR THEORETICAL INTUITION. THIS CONTRASTS WITH THE NOTABLE EXCEPTION

OF 1% IMBALANCE, WHERE α∗ > 1, WHICH POINTS TOWARDS THE USEFULNESS OF class upweighting IN
ADDITION TO EMPLOYING α-LOSS FOR SUCH A HIGHLY IMBALANCED CLASS. ALSO OF NOTE, WE FIND

THAT SMALLER α IS NOT ALWAYS BETTER (SEE <5% IMBALANCE), WHICH HINTS AT A TRADE-OFF
BETWEEN EMPHASIZING THE IMBALANCED CLASS AND COMPUTATIONAL INFEASIBILITY

(E.G., EXPLODING GRADIENTS) AS DISCUSSED AFTER PROPOSITION 5. LASTLY,
WE NOTE THE CLOSENESS BETWEEN α = 8 AND 1010 AND ∞; THIS

FOLLOWS OUR THEORETICAL INTUITION DERIVED FROM
THE saturation effect OF α-LOSS AS DEPICTED IN (40)

TABLE VIII

A TWIN TABLE OF TABLE VII, EXCEPT WITH F1 SCORES REPORTED. FOR A BRIEF REVIEW OF THE F1 SCORE, SEE APPENDIX D.1. GAINS OF α∗ < 1
OVER LOG-LOSS (α = 1) ARE MORE EXAGGERATED BY THE F1 SCORE, IN PARTICULAR SEE 2% AND 5% IMBALANCE

2) Experiments for Section III-C: In this section, we pro-2181

vide additional synthetic experiments, which follow the same2182

experiment protocol as Fig. 3. They highlight some of the2183

main themes of the paper, namely, α∗ < 1 in imbalanced2184

experiments, α∗ > 1 in noisy experiments, trade-offs between2185

computational feasibility and accuracy (for both regimes of2186

α), and the saturation effect.2187

3) Commentary on Computational Feasibility of α-Loss:2188

In this section, we provide further commentary regarding the2189

computational feasibility of α-loss. In other words, we provide2190

further reasoning for our choice of α ∈ [.8, 8] as a sufficient2191

search space of α in the experiments in Section VI.2192

For α → ∞, we show through our theoretical landscape2193

analysis (see Section IV, Theorem 4, and for a visual, Fig. 4)2194

that the computational complexity increases because gradients2195

tend to become “flatter”; another (perhaps simpler) way to2196

see that the gradients become “flatter” is through Fig. 1(a),2197

where the loss itself has smaller derivatives as α tends to ∞.2198

Unfortunately, a standard gradient optimizer will get stuck in2199

such flat regions of the landscape and learning ceases. Indeed2200

in deep neural networks, the gradients are “back-propogated”2201

through the network, and if the gradient values are small (as is2202

often the case for the very large α-losses), learning slows down 2203

or even stops. This motivates our choice of α = 8 as the 2204

upper limiting point of our search space, and we argue that it 2205

is sufficient because of the saturation effect (see (40)). 2206

For α→ 0, we see the opposite effect, i.e., that the gradients 2207

explode as α decreases from 1 (see Proposition 5 with follow- 2208

ing commentary and Fig. 6 for a visual). Indeed, this motivated 2209

the choice of the lower limit of α = 0.65 in Fig. 3(a). This 2210

issue was “pseudo-circumvented” in Tables VII, VIII, and IX 2211

because if there was a NaN, the code would disregard that 2212

run of the experiment for that small α and it wouldn’t factor 2213

into that α’s averaged linear predictor. To give a sense for 2214

how many NaNs occurred, for the 5% imbalance experiment, 2215

α = .4 “NaN-ed” out 51 times out of the 100 runs. Thus, 2216

we argue that α = .8 in general is sufficient as the lower 2217

limiting point of the α search space. 2218

For another visual perspective of these considerations, see 2219

Fig. 10 which was obtained using [79] on a ResNet-18 learning 2220

the MNIST dataset. Interestingly, we see exploding gradients 2221

for α = .9, loss of convexity (and increasing flatness) as α 2222

increases greater than 1, and saturation between α = 2 and 2223

α = 8. Thus, this visualization on a deep neural network 2224
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TABLE IX

FURTHER QUANTITATIVE RESULTS ASSOCIATED WITH FIG. 3(B) IN SECTION III-C WITH EXACTLY THE SAME EXPERIMENTAL SETUP (TRAINING DATA
WITH LABEL NOISE). VALUES REPORTED IN THE TABLE ARE PERCENT ACCURACY OF AVERAGED LINEAR PREDICTORS, WHICH WERE TRAINED

ON NOISY DATA, ON 1 MILLION EXAMPLES OF CLEAN, BALANCED SYNTHETIC TEST DATA. SIMILARLY AS IN TABLE VII, WE OBSERVE
A SATURATION EFFECT. FURTHER, NOTE THAT α = ∞ DOES NOT ALWAYS OUTPERFORM THE SMALLER α’S, IN PARTICULAR,

SEE 20% NOISE WHERE α∗ = 8. THIS HINTS AT A TRADE-OFF BETWEEN α AND COMPUTATIONAL FEASIBILITY IN THE
LARGE α REGIME (α > 1), WHICH ALSO FOLLOWS FROM OUR THEORETICAL INTUITION AS STATED AT THE END

OF SECTION IV

TABLE X

MULTICLASS SYMMETRIC NOISY LABEL EXPERIMENT ON
MNIST. SEE TABLE I FOR DESCRIPTIONS OF ACRONYMS

TABLE XI

MULTICLASS SYMMETRIC NOISY LABEL EXPERIMENT
ON THE FMNIST DATASET

hints at the generality of our theoretical results of the α-loss2225

landscape in Section IV.2226

4) Multiclass Symmetric Label Flip Experiments: In this2227

section, we present multiclass symmetric noisy label experi-2228

ments for the MNIST and FMNIST datasets. Our goal is to2229

evaluate the robustness of α-loss over log-loss (α = 1) to2230

symmetric noisy labels in the training data. We generate noise2231

in the multiclass training data as follows:2232

1) For each run of an experiment, we randomly select2233

0-40% of the training data in increments of 10%.2234

2) For each training sample in the selected group,2235

we remove the true underlying label number from a list2236

of the ten classes, then we roll a fair nine-sided die over2237

the nine remaining classes in the list; once we have a2238

new label, we replace the true label with the new drawn2239

label.2240

Note that the test data is clean, i.e., we do not flip the labels2241

of the test dataset. Thus, we consider the canonical scenario2242

where the labels of the training data have been flipped, but the2243

test data is clean.2244

The results of the multiclass symmetric noisy label experi- 2245

ments are presented in Tables X and XI. Note that we use the 2246

same fixed learning rates as the binary symmetric noisy label 2247

experiments in Section VI-A. For the MNIST and FMNIST 2248

datasets with label flips, we find very strong gains in the test 2249

accuracy, which continue to improve as the percentage of label 2250

flips increases, through training α-loss for α > 1 over log-loss 2251

(α = 1). Once label flips are present in these two datasets, 2252

we note that α∗ = 7 or 8 for the CNN 2+2 architecture. 2253
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