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Abstract— We introduce a tunable loss function called «-loss,
parameterized by o € (0, c0], which interpolates between
the exponential loss (o« = 1/2), the log-loss (o« = 1), and
the 0-1 loss (&« = o0), for the machine learning setting of
classification. Theoretically, we illustrate a fundamental connec-
tion between «-loss and Arimoto conditional entropy, verify
the classification-calibration of c-loss in order to demonstrate
asymptotic optimality via Rademacher complexity generalization
techniques, and build-upon a notion called strictly local quasi-
convexity in order to quantitatively characterize the optimization
landscape of «-loss. Practically, we perform class imbalance,
robustness, and classification experiments on benchmark image
datasets using convolutional-neural-networks. Our main practical
conclusion is that certain tasks may benefit from tuning «-loss
away from log-loss (o« = 1), and to this end we provide simple
heuristics for the practitioner. In particular, navigating the «
hyperparameter can readily provide superior model robustness to
label flips (¢ > 1) and sensitivity to imbalanced classes (o < 1).

Index Terms— c-loss, Arimoto conditional entropy, robust-
ness, classification-calibration, strictly local quasi-convexity,
generalization.

I. INTRODUCTION

N THE context of machine learning, the performance of a
classification algorithm, in terms of accuracy, tractability,
and convergence guarantees crucially depends on the choice
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of the loss function during training [3], [4]. Consider a feature
vector X € X, an unknown finite-valued label Y € ), and a
hypothesis h : X — Y. The canonical 0-1 loss, given by
1[A(X) # Y], is considered an ideal loss function in the
classification setting that captures the probability of incorrectly
guessing the true label Y using h(X). However, since the
0-1 loss is neither continuous nor differentiable, its applica-
bility in state-of-the-art learning algorithms is highly
restricted [5]. As a consequence, surrogate loss functions that
approximate the 0-1 loss such as log-loss, exponential loss,
sigmoid loss, etc. have garnered much interest [6]-[16].

In the field of information-theoretic privacy, Liao et al.
recently introduced a tunable loss function called a-loss for
a € [1,00] to model the inferential capacity of an adversary
to obtain private attributes [17]-[19]. For a« = 1, a-loss
reduces to log-loss which models a belief-refining adversary;
for a = oo, a-loss reduces to the probability of error which
models an adversary that makes hard decisions. Using a-loss,
Liao ef al. in [17] derived a new privacy measure called
a-leakage which continuously interpolates between Shannon’s
mutual information [20] and maximal leakage introduced by
Isaa er al. [21]; indeed, Liao et al. showed that a-leakage
is equivalent to the Arimoto mutual information [22]. In this
paper, we extend «-loss to the range « € (0, oo] and propose
it as a tunable surrogate loss function for the ideal 0-1 loss
in the machine learning setting of classification. Through our
extensive analysis, we argue that: 1) since a-loss continuously
interpolates between the exponential (o = 1/2), log (o = 1),
and 0-1 (o« = oo) losses and is related to the Arimoto
conditional entropy, it is theoretically an object of interest in
its own right; 2) navigating the convexity/robustness trade-offs
inherent in the a hyperparameter offers significant practical
improvements over log-loss, which is a canonical loss function
in classification, and can be done quickly and effectively.

A. Related Work

The study and implementation of tunable utility (or loss)
metrics which continuously interpolate between useful quan-
tities is a persistent theme in information theory, networking,
and machine learning. In information theory, Rényi entropy
generalized the Shannon entropy [23], and Arimoto extended
the Rényi entropy to conditional distributions [24]. This led to
the a-mutual information [22], [25], which is directly related
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to a recently introduced privacy measure called a-leakage [17].
More recently in networking, Mo et al. introduced «a-fairness
in [26], which is a tunable utility metric that alters the value of
different edge users; similar ideas have recently been studied
in the federated learning setting [27]. Even more recently in
machine learning, Barron in [15] presented a tunable extension
of the ls loss function, which interpolates between several
known l-type losses and has similar convexity /robustness
themes as this work. Presently, there is a need in the machine
learning setting of classification for alternative losses to the
cross-entropy loss (one-hot encoded log-loss) [28]. We pro-
pose a-loss, which continuously interpolates between the
exponential, log, and 0-1 losses, as a viable solution.

In order to evaluate the statistical efficacy of loss func-
tions in the learning setting of classification, Bartlett er al
proposed the notion of classification-calibration in a seminal
paper [6]. Classification-calibration is analogous to point-
wise Fisher consistency in that it requires that the mini-
mizer of the conditional expectation of a loss function agrees
in sign with the Bayes predictor for every value of the
feature vector. A more restrictive notion called properness
requires that the minimizer of the conditional expectation of
a loss function exactly replicates the true posterior [29]-[31].
Properness of a loss function is a necessary condition for effi-
cacy in the class probability estimation setting (see, e.g., [31]),
but for the classification setting which is the focus of this
work, the notion of classification-calibration is sufficient.
In the sequel, we find that the margin-based form of a-
loss is classification-calibrated for all o € (0,00] and
thus satisfies this necessary condition for efficacy in binary
classification.

While early research was predominantly focused on convex
losses [6], [8]-[10], more recent works propose the use of
non-convex losses as a means to moderate the behavior of an
algorithm [7], [11], [15], [32]. This is due to the increased
robustness non-convex losses offer over convex losses [15],
[32], [33] and the fact that modern learning models (e.g., deep
learning) are inherently non-convex as they involve vast func-
tional compositions [34]. There have been numerous theoreti-
cal attempts to capture the non-convexity of the optimization
landscape which is the loss surface induced by the learning
model, underlying distribution, and the surrogate loss function
itself [32], [35]-[41]. To this end, Hazan et al. [35] introduce
the notion of strictly local quasi-convexity (SLQC) to para-
metrically quantify approximately quasi-convex functions, and
provide convergence guarantees for the Normalized Gradient
Descent (NGD) algorithm (originally introduced in [42]) for
such functions. Through a quantification of the SLQC para-
meters of the expected a-loss, we provide some estimates
that strongly suggest that the degree of convexity increases
as « decreases less than 1 (log-loss); conversely, the degree
of convexity decreases as « increases greater than 1. Thus,
we find that there exists a trade-off inherent in the choice
of a € (0,00], i.e., trade convexity (and hence optimization
speed) for robustness and vice-versa. Since increasing the
degree of convexity of the optimization landscape is conducive
to faster optimization, our approach could serve as an alter-
native to other approaches whose objective is to accelerate
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the optimization process, e.g., the activation function tuning
in [43]-[45] and references therein.

Understanding the generalization capabilities of learning
algorithms stands as one of the key problems in theoretical
machine learning. A classical approach to this problem con-
sists in deriving algorithm independent generalization bounds,
mainly relying on the notion of Rademacher complexity
[4, Ch. 26]. A recent line of research, initiated by the works
of Russo and Zou [46] and Xu and Raginsky [47], aims
to improve generalization bounds by considering the sta-
tistical dependency between the input and the output of a
given learning algorithm. While there are many extensions
and refinements, e.g., [48]-[54], these results are inherently
algorithm dependent which makes them hard to instantiate and
obfuscates the role of the loss function. Hence, in this work
we rely on classical Rademacher complexity tools to provide
algorithm independent generalization bounds that lead to the
asymptotic optimality of a-loss w.r.t. the 0-1 loss.

There are a few proposed tunable loss functions for the
classification setting in the literature [11], [55]-[57]. Notably,
the symmetric cross entropy loss introduced by Wang et al.
in [55] proposes the tunable linear combination of the usual
cross entropy loss with the so-called reverse cross entropy loss,
which essentially reverses the roles of the one-hot encoded
labels and soft prediction of the model. Wang et al. report
gains under symmetric and asymmetric noisy labels, par-
ticularly in the very high noise regime. Another approach
introduced by Amid et al. in [56] is a bi-tempered logistic
loss, which is based on Bregman divergences. As the name
suggests, the bi-tempered logistic loss depends on two temper-
ature hyperparameters, which Amid ef al. show improvements
over vanilla cross-entropy loss again on noisy data. Recently,
Li et al. introduced tilted empirical risk minimization [57],
a framework which parametrically generalizes empirical risk
minimization using a log-exponential transformation to induce
fairness or robustness in the model. Contrasting with this work,
we note that our study is exclusively focused on a-loss acting
within empirical risk minimization. Summing up, the main
distinctions that differentiate this work from related work are
that a-loss has a fundamental relationship to the Arimoto con-
ditional entropy, continuously interpolates between the expo-
nential, log, and 0-1 losses, and provides robustness to noisy
labels and sensitivity to imbalanced classes. Lastly, we note
that a-loss has also been recently studied in the context of
generative adversarial networks [58] and boosting [59].

B. Contributions

The following are the main contributions of this paper:

o We formulate a-loss in the classification setting, extend-
ing it to o € (0, 1), and we thereby extend the result of
Liao et al. in [17] which characterizes the relationship
between a-loss and the Arimoto conditional entropy.

o For binary classification, we define a margin-based form
of a-loss and demonstrate its equivalence to a-loss for
all @« € (0,00]. We then characterize convexity and
verify statistical calibration of the margin-based a-loss
for a € (0, 0o]. We next derive the minimum conditional
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risk of the margin-based a-loss, which we show recovers
the relationship between «-loss and the Arimoto condi-
tional entropy for all o € (0,00]. Lastly, we provide
synthetic experiments on a two-dimensional Gaussian
mixture model with asymmetric label flips and class
imbalances, where we train linear predictors with a-loss
for several values of a.

o For the logistic model in binary classification, we show
that the expected a-loss is convex in the logistic para-
meter for a < 1 (strongly-convex when the covariance
matrix is positive definite), and we show that it retains
convexity as « increases greater than 1 provided that the
radius of the parameter space is small enough. We provide
a point-wise extension of strictly local quasi-convexity
(SLQC) by Hazan et al., and we reformulate SLQC into
a more tractable inequality using a geometric inequality
which may be of independent interest. Using a bootstrap-
ping technique which also may be of independent interest,
we provide bounds in order to quantify the evolution of
the SLQC parameters as « increases.

o Also for the logistic model in binary classification,
we characterize the generalization capabilities of a-loss.
To this end, we employ standard Rademacher complexity
generalization techniques to derive a uniform general-
ization bound for the logistic model trained with «-
loss for @ € (0,00]. We then combine a result by
Bartlett et al. and our uniform generalization bound to
show (under standard distributional assumptions) that
the minimizer of the empirical a-loss is asymptotically
optimal with respect to the expected 0-1 loss (probabil-
ity of error), which is the ideal metric in classification
problems.

o Finally, we perform symmetric noisy label and class
imbalance experiments on MNIST, FMNIST, and CIFAR-
10 using convolutional-neural-networks. We show that
models trained with a-loss can either be more robust
or sensitive to outliers (depending on the application)
over models trained with log-loss (o« = 1). Follow-
ing some of our theoretical intuitions, we demonstrate
the “Goldilocks zone” of o € (0,0¢], i.e., for most
applications o* € [.8,8]. Thus, we argue that a-loss
is an effective generalization of log-loss (cross-entropy
loss) for classification problems in modern machine
learning.

Different subsets of the authors published portions of this
paper as conference proceedings in [1] and [2]. Specifi-
cally, results provided in [1] primarily comprise a subset
of the second bullet in the list above, however, this work
extends those published results to a € (0,1), clarifies the
relationship to Arimoto conditional entropy, and provides
synthetic experiments; in addition, results in [2] primarily
comprise a subset of the third bullet in the list above, how-
ever, this work provides a new convexity result for a > 1,
provides SLQC background material including a point-wise
statement and proof of Lemma 1, and utilizes a boot-
strapping argument which significantly improves the bounds
in [2]. The remaining three bullets are all comprised of
unpublished work.
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Fig. 1. (a) a-loss (2) as a function of the probability for several values of

«; (b) a-tilted posterior (6) for several values of o where the true underlying
distribution is the (20,0.5)-binomial distribution.

II. INFORMATION-THEORETIC MOTIVATIONS OF ov-LOSS

Consider a pair of discrete random variables denoted
(X,Y) ~ Px,y. Observing X, one can construct an estimate
Y of Y such that Y—X — Y form a Markov chain. It is
possible to evaluate the fitness of a given estimate Y using a
loss function £ : Y x P()) — R, via the expectation

Exy [((Y, Py x)] (1)

where V| X ~ Py is the learner’s posterior estimate of Y’
given knowledge of X; for simplicity we sometimes abbreviate
Pf’l X—p S P when the context is clear. In [17], Liao et al.
proposed the definition of a-loss for a € [1,00] in order to
quantify adversarial action in the information leakage context.
We adapt and extend the definition of a-loss to v € (0, o0] in
order to study the efficacy of the loss function in the machine
learning setting.

Definition 1: Let P()) be the set of probability distributions
over ). For a € (0,1) U (1, 00), we define a-loss, denoted by
*: Y xPY)— Ry, as

1y P) = —— (1= Pw)'"). @

a—1

and, by continuous extension, I*(y, P) := —log P(y) and

1=(y, P) := 1= P(y). )

Note that for (y,P) fixed, {“(y, P) is continuous and
monotonically decreasing in cv. Also note that [' recovers log-
loss, and plugging in o = 1/2 yields [}/2(y, P) := P~ (y) —
1. One can use expected a-loss Ex y[I%(Y, Py )], hence
called «-risk, to quantify the effectiveness of the estimated

posterior PY\ - In particular,

Exy [0V Pyp)| = Bx [H(Prix—o, P2 @

where H(P,Q) := H(P) + DxL(P||Q) is the cross-entropy
between P and (). Similarly,

Ex,y[I™(Y, Py x)] = PIY # Y7, “

i.e., the expected a-loss for a = oo equals the probability of
error. Recall that the expectation of the canonical 0-1 loss,
Ex.y[L[Y # Y]], also recovers the probability of error [4].
For this reason, we sometimes refer to [°° as the 0-1 loss.
Observe that a-loss presents a tunable class of loss functions
that value the probabilistic estimate of the label differently
as a function of «; see Fig. 1(a). In the sequel, we find
that, when composed with a sigmoid, 1'/2,1",1°° become the
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exponential, logistic, and sigmoid (smooth 0-1) losses, respec-
tively. While we note that there may be infinitely many ways
to continuously interpolate between the exponential, log, and
0-1 losses, we observe that the interpolation introduced by
a-loss is monotonic in «, seems to provide an information-
theoretic interpretation (Proposition 1), and also appears to
be apt for the classification setting which will be further
elaborated in the sequel. The following result was shown by
Liao et al. in [17] for a € [1,00] and provides an explicit
characterization of the optimal risk-minimizing posterior under
a-loss. We extend the result to o € (0, 1).

Proposition 1: For each « € (0, 00|, the minimal a-risk is

@ (1 . Hﬁ(Y\X))
a—1 ’

min Ex y [[*(Y, Py x)] =

Y|X
(5)

1 o 1/a
T ngz:(EPX,Y(ﬂ?,y) ) 18

the Arimoto conditional entropy of order a [60]. The resulting
unique minimizer, P}, is the a-tilted true posterior

B () — Py x (ylz)*
Falvle) = > Pyx (ylz)e

where HN(Y|X) = a

(6)

The proof of Proposition 1 for a € [1,00] can be found
in [17] and is readily extended to the case where o € (0,1)
with similar techniques. Through Proposition 1, we note
that «-loss exhibits different operating conditions through
the choice of a. Observe that the minimizer of (5) given
by the a-tilted distribution in (6) recovers the true posterior
only if @ = 1, i.e., for log-loss. Further, as « decreases
from 1 towards 0, a-loss places increasingly higher weights
on the low probability outcomes; on the other hand as «
increases from 1 to co, a-loss increasingly limits the effect
of the low probability outcomes. Ultimately, we find that for
o = 0o, minimizing the corresponding risk leads to making
a single guess on the most likely label, i.e., MAP decoding.
See Fig. 1(b) for an illustration of the «-tilted distribution
on a (20,0.5)-Binomial distribution. Intuitively, empirically
minimizing a-loss for o # 1 could be a boon for learning
the minority class (v < 1) or ignoring label noise (o > 1);
see Section VI for experimental consideration of such class
imbalance and noisy label trade-offs.

With the information-theoretic motivations of «-loss behind
us, we now consider the setting of binary classification, where
we study the optimization, statistical, and robustness properties
of a-loss.

ITII. -L0osSS IN BINARY CLASSIFICATION

In this section, we study the role of a-loss in binary clas-
sification. First, we provide its margin-based form, which we
show is intimately related to the original a-loss formulation in
Definition 1; next, we analyze the optimization characteristics
and statistical properties of the margin-based a-loss where
we notably recover the relationship between a-loss and the
Arimoto conditional entropy in the margin setting; finally,
we comment on the robustness and sensitivity trade-offs which
are inherent in the choice of « through theoretical discussion
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and experimental considerations. First, however, we formally
discuss the binary classification setting through the role of
classification functions and surrogate loss functions.

In binary classification, the learner ideally wants to obtain
a classifier h : X — {—1,41} that minimizes the probability
of error, or the risk (expectation) of the 0-1 loss, given by

R(h) = Ph(X) # Y], ™

where the true 0-1 loss given by 1[h(X) # Y]. Unfortu-
nately, this optimization problem is NP-hard [5]. Therefore,
the problem is typically relaxed by imposing restrictions on
the space of possible classifiers and by choosing surrogate loss
functions with desirable properties. Thus during the training
phase, it is common to optimize a surrogate loss function
over classification functions of the form f : X — R, R =
R U {£o00}, whose output captures the certainty of a model’s
prediction of the true underlying binary label Y € {—1,1}
associated with X [1], [3], [4], [6]-[9], [61]. Once a suit-
able classification function has been chosen, the classifier is
obtained by making a hard decision, i.e., the model outputs
the classification h(X) = sign(f(X)), in order to predict the
true underlying binary label Y € {—1,1} associated with
the feature vector X € X. Examples of learning algorithms
which optimize surrogate losses over classification functions
include SVM (hinge loss), logistic regression (logistic loss),
and AdaBoost (exponential loss), to name a few [3]. With the
notions of classification functions and surrogate loss functions
in hand, we now turn our attention to an important family of
surrogate loss functions in binary classification.

A. Margin-Based a-Loss

Here, we provide the definition of a-loss in binary classifi-
cation and characterize its relationship to the form presented
in Definition 1. First, we discuss an important family of loss
functions in binary classification called margin-based losses.

A loss function is said to be margin-based if, for all z € X
and y € {—1,+1}, the loss associated to a pair (y, f(x)) is
given by [(yf(x)) for some function/ : R — R, [6]-[9], [28].
In this case, the loss of the pair (y, f(z)) only depends on the
product z := y f(x), the (unnormalized) margin [61]. Observe
that a negative margin corresponds to a mismatch between the
signs of f(z) and y, i.e., a classification error by f. Similarly,
a positive margin corresponds to a match between the signs
of f(x) and vy, i.e., a correct classification by f. We now
provide the margin-based form of a-loss, which is illustrated
in Fig. 2(a).

Definition 2: For o € (0,1)U(1, c0), we define the margin-
based a-loss, *:R— Ry, as

1%(z) == a (1 - (1+ e_Z)l/a_l) , (8)

a—1

and, by continuous extension, I'(z) = log(1 4+ e *) and
1°°(z) = (1+e*)" " o )

Note that ['/2(z) = e~%. Thus, I'/2, [*, and [* recover the
exponential, logistic, and sigmoid losses, respectively. Navi-
gating the various regimes of « induces different optimization,
statistical, and robustness characteristics for the margin-based
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(a) Margin-based a-loss (b) Minimum Conditional Risk
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Fig. 2. (a) Margin-based a-loss (8) as a function of the margin (z := y f(z))
for € {0.3,0.5,0.77,1,1.44, co}; (b) Minimum conditional risk (14) for
the same values of .

a-loss; this is elaborated in the sequel. First, we discuss
its relationship to the original form in Definition 1, which
requires alternative prediction functions to classification func-
tions called soft classifiers.

In binary classification, it is also common to use soft
classifiers ¢ : X — [0,1] which encode the conditional
distribution, namely, g(z) := Py y(1]z). In essence, soft
classifiers capture a model’s belief of Y|X [1], [4], [34].
Similar to the classification function setting, the hard decision
of a soft classifier is obtained by h(xz) = sign(g(z) — 1/2).
Log-loss, and by extension a-loss as given in Definition 1,
are examples of loss functions which act on soft classifiers.
In practice, a soft classifier can be obtained by composing
a classification function with the logistic sigmoid function
o : R — [0,1] given by

1

7B = T

which is generalized by the softmax function in the multiclass
setting [34]. Observe that o is invertible and o~ : [0,1] — R

is given by
o71(2) = log <1iz) |

which is often referred to as the logistic link [31].

With these two transformations, one is able to map clas-
sification functions to soft classifiers and vice-versa. Thus,
a loss function in one domain is readily transformed into a
loss function in the other domain. In particular, we are now
in a position to derive the correspondence between a-loss in
Defintion 1 and the margin-based a-loss in Definition 2, which
generalizes our previous proof in [1].

Proposition 2: Consider a soft classifier g(z) = Py v (1]2).
If f(z) = o~ *(g(x)), then, for every a € (0, 00},

1°(y, g(x)) =1 (yf (x)). (1)

Conversely, if f is a classification function, then the soft
classifier g(z) := o(f(x)) satisfies (11). In particular, for
every o € (0, 0],

mginEX,y(la(Y, g(2))) = mfinEX,y([o‘(Yf(X))).

©)

(10)

12)

Therefore, there is a direct correspondence between «a-loss
in Definition 1 and the margin-based a-loss which is used in
binary classification.

Remark 1: Instead of the fixed inverse link function (9),
it is also possible to use any other fixed inverse link function,
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or even inverse link functions dependent on «; indeed, it is
possible to derive many such tunable margin-based losses
this way. However, the margin-based a-loss as given in
Definition 2 allows for continuous interpolation between the
exponential, logistic, and sigmoid losses, and thus motivates
our choice of the fixed sigmoid in (9) as the inverse link.

The following result, which quantifies the convexity of
the margin-based a-loss, will be useful in characterizing the
convexity of the average loss, or landscape, in the sequel.

Proposition 3: As a function of the margin, “:R— Ry
is convex for o < 1 and quasi-convex for a > 1.

Recall that a real-valued function f : R — R is quasi-
convex if, for all z,y € R and A € [0,1], we have that
fz+(1-=Ny) < max{f(z), f(y)}, and also recall that any
monotonic function is quasi-convex (see e.g., [62]). Intuitively
through Fig. 2(a), we find that the quasi-convexity of the
margin-based a-loss for a > 1 reduces the penalty induced
during training for examples which have a negative margin;
this has implications for robustness that will also be investi-
gated in the sequel.

B. Calibration of Margin-Based o-Loss

With the definition and basic properties of the margin-based
a-loss in hand, we now discuss a statistical property of the
margin-based a-loss that highlights its suitability in binary
classification. Bartlett et al. in [6] introduce classification-
calibration as a means to compare the performance of a
margin-based loss function relative to the 0-1 loss by inspect-
ing the minimizer of its conditional risk. Formally, let ¢ :
R — R, denote a margin-based loss function and let
Co(n(x), f(x)) = E[p(Y f(X))|X = z] denote its condi-
tional expectation (risk), where 7(x) = Py|x(1|x) is the true
posterior and f : X — R is a classification function. Thus,
the conditional risk of the margin-based a-loss for « € (0, o]
is given by

Ca(n(@), f(z)) = By [*(Y f(X))|X = z].

We say that ¢ : R — R, is classification-calibrated if, for all
x € X, its minimum conditional risk

il Coln(a), /(@)
(@O (@) + (1 = n()d(—f(x)), (14)

13)

f:gliRn
is attained by a f* : X — R such that
sign(f*(z)) = sign(2n(z) - 1).

In words, a margin-based loss function is classification-
calibrated if for each feature vector, the minimizer of its
minimum conditional risk agrees in sign with the Bayes opti-
mal predictor. Note that this is a pointwise form of Fisher
consistency [6], [8].

The expectation of the loss function ¢, or the ¢-risk,
is denoted Ry (f) = Ex[Cy(n(X), f(X))]; this notation will
be useful in the sequel when we quantify the asymptotic
behavior of a-loss. Finally, as is common in the literature
[6], [7], we omit the dependence of n and f on z, and
we also let Cj(n) = Cy(n, f*) for notional convenience.

15)
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With the necessary background on classification-calibrated
loss functions in hand, we are now in a position to show that
1% is classification-calibrated for all o € (0, 00].

Theorem 1: For a € (0, 0c], the margin-based a-loss [ is
classification-calibrated. In addition, its optimal classification
function is given by

it a0 =alo (). (9

See Appendix A for full proof details. Examining the opti-
mal classification function in (16) more closely, we observe
that this expression is readily derived from the a-tilted distri-
bution for a binary label set in Proposition 2. Thus, analogous
to the intuitions regarding the a-tilted distribution in (6), the
optimal classification function in (16) suggests that o > 1 is
more robust to slight fluctuations in 77 and a < 1 is more
sensitive to slight fluctuations in 7. In the sequel, we find
that this has practical implications for noisy labels and class
imbalances.

Upon plugging (16) into (13), we get the next result which
specifies the minimum conditional risk of {* for « € (0, o0].

Corollary 1: For o € (0, 0], the minimum conditional risk
C*(n) of I* is equal to

2 (1= + 1 =n*)Y*) ae(0,1)U(1,+00),

a—1
—nlogn— (1 —=n)log(l—n) a=1,
min{n, 1 — n} a — +00.

A7)

Remark 2: Observe that in (17) for o« = 1, the minimum
conditional risk can be rewritten as

(18)
19)

Ci(n) = —nlogn — (1 —n)log (1 —n)
= H(Y|X = z),

where H(Y'|X = x) is the Shannon conditional entropy for a

Y given X = z [63]. For a € (0,1)U(1, +00), also note that
in (17), the minimum conditional risk can be rewritten as

Ca(n) =

1=+ =] o)

@ [1 _ G%Hé‘(Y\X#)}
a—1 ’

21

where H2(Y|X = z) = 1 log (Zy PY|X(y|$)O‘) is the
Arimoto conditional entropy of order « [60]. Finally, observe
that Ex[C% (n(X))] recovers (5) in Proposition 1.

Finally, note that the minimum conditional risk of the
margin-based a-loss is concave for all a € (0,00] (see
Fig. 2(b)); indeed, this is known to be a useful property for
classification problems [7]. Therefore, since the margin-based
a-loss is classification-calibrated and its minimum conditional
risk is concave for all a € (0, oo], it seems to have reasonable
statistical behavior for binary classification problems. We now
turn our attention to the robustness and sensitivity tradeoffs
induced by traversing the different regimes of a for the
margin-based a-loss.
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Fig. 3. Two synthetic experiments each averaged over 100 runs highlighting
the differences in trained linear predictors of a-loss for v € {0.65,1,4}
on imbalanced and noisy data, which are compared with the Bayes opti-
mal predictor for the clean, balanced distribution. Training data present in
both figures is obtained from the last run in each experiment, respectively.
(a) Averaged linear predictors trained using a-loss on imbalanced data with
2 examples from Y = —1 class per run. Averaged linear predictors for smaller
values of « are closer to the Bayes predictor for the balanced distribution,
which highlights the sensitivity of a-loss to the minority class for oo < 1.
(b) Averaged linear predictors trained using a-loss on noisy data, which is
obtained by flipping the labels of the Y = —1 class with probability 0.2.
Averaged linear predictor for o = 4 is closer to the Bayes predictor for the
balanced distribution, which highlights the robustness of a-loss to noise for
a> 1.

C. Robustness and Sensitivity of Margin-Based a-Loss

Despite the advantages of convex losses in terms of numer-
ical optimization and theoretical tractability, non-convex loss
functions often provide superior model robustness and classifi-
cation accuracy [1], [7], [11], [15], [32], [33], [61], [64], [65].
In essence, non-convex loss functions tend to assign less
weight to misclassified training examples' and therefore algo-
rithms optimizing such losses are often less perturbed by
outliers, i.e., examples which induce large negative margins.

More concretely, consider Fig. 2(a) for « = 1/2 (convex)
and « = 1.44 (quasi-convex), and suppose that z; = —1 and
zo = —b. Plugging these parameters into Definition 2, we find

that 51/2(;1) =el = 2.7, il/Q(ZQ) = 5 ~ 148 4, i1'44(21) ~
1.1, and [1#%(2) ~ 2.6. In words, the difference in these loss
evaluations for a negative value of the margin, which is repre-
sentative of a misclassified training example, is approximately
exponential versus sub-linear. Indeed, this difference appears
to be most relevant for outliers (e.g., noisy or imbalanced
training examples) [7], [61].

We explore these ideas with the following synthetic exper-
iment presented in Fig. 3. We assume the practitioner has
access to modified training data which approximates the true
underlying distribution given by a two-dimensional Gaussian
Mixture Model (2D-GMM) with equal mixing probability
PlY = —1] = P[Y = +1], symmetric means

pxjy=—1=(=1,-1)T = —puxy=1, (22)

and shared identity covariance matrix ¥ = Iy. The first
experiment considers the scenario where the training data
suffers from a class imbalance; specifically, the number of
training examples for the Y = —1 class is 2 and the number
of training examples for the Y = +1 class is 98 for every run.

IConvex losses grow at least linearly with respect to the negative margin
which results in an increased sensitivity to outliers. See Fig. 2(a) for &« = 1 as
an example of this phenomenon.
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The second experiment considers the scenario where the train-
ing data suffers from noisy labels; specifically, the labels of the
Y = —1 class are flipped with probability 0.2 and the labels
of the Y = +1 class are kept fixed. For both experiments we
train a-loss on the logistic model, which is the generalization
of logistic regression with a-loss and is formally described
in the next section. Specifically, we minimize «-loss using
gradient descent with the fixed learning rate = 0.01 for each
a € {0.65,1,4}. Note that o = 0.65 (lower limit) and o = 4
(upper limit) were both chosen for computational feasibility
in the logistic model; in practice, the range of o € (0, 0],
while usually contracted as in this experiment, is dependent
on the model - this is elaborated in the sequel. Training is
allowed to progress until convergence as specified by the
optimality parameter = 10~*. The linear predictors presented
in Fig. 3 are averaged over 100 runs of randomly generated
data according to the parameters for each experiment.

Ideally, the practitioner would like to generate a linear
predictor which is invariant to noisy or imbalanced training
data and tends to align with the Bayes optimal predictor for
the balanced distribution. Indeed, when the training data is
balanced (and clean), all averaged linear predictors generated
by a-loss collapse to the Bayes predictor; see Fig. 11 in
Appendix D.2. However, training on noisy or imbalanced data
affects the linear predictors of a-loss in different ways. In the
class imbalance experiment in Fig. 3(a), we find that the aver-
aged linear predictor for the smaller values of o more closely
approximate the Bayes predictor for the balanced distribution,
which suggests that the smaller values of a are more sensitive
to the minority class. Similarly in the class noise experiment
in Fig. 3(b), we find that the averaged linear predictor for
« = 4 more closely approximates the Bayes predictor for the
balanced distribution, which suggests that the larger values
of a are less sensitive to noise in the training data. Both
results suggest that « = 1 (log-loss) can be improved with
the use of a-loss in these scenarios. For quantitative results
of this experiment, including a wider range of «’s, additional
imbalances and noise levels, and results using the F; score,
see Tables VII, VIII, and IX in Appendix D.2.

In summary, we find that navigating the convexity regimes
of a-loss induces different robustness and sensitivity charac-
teristics. We explore these themes in more detail on canonical
image datasets in Section VI; theoretical investigations of
the robustness of a-loss can be found in [59]. We now turn
our attention to theoretically characterizing the optimization
complexity of a-loss for the different regimes of « in the
logistic model.

IV. OPTIMIZATION GUARANTEES FOR
«-LLOSS IN THE LOGISTIC MODEL

In this section, we analyze the optimization complexity of
a-loss in the logistic model as we vary a by quantifying
the convexity of the optimization landscape. First, we show
that the a-risk is convex (indeed, strongly-convex if a certain
correlation matrix is positive definite) in the logistic model for
a < 1; next, we provide a brief summary of a notion known
as strictly local quasi-convexity (SLQC); then, we provide a
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more tractable reformulation of SLQC which is instrumental
for our theory; finally, we study the convexity of the a-risk
in the logistic model through SLQC for a range of o > 1,
which we argue is sufficient due to the rapid saturation effect
of a-loss as @ — oco. Notably, our main result depends on a
bootstrapping argument that might be of independent interest.
Our main conclusion of this section is that there exists a
“Goldilocks zone” of o € (0, 00] which drastically reduces
the hyperparameter search induced by « for the practitioner.
Finally, note that all proofs and background material can be
found in Appendix B.

A. a-Loss in the Logistic Model

Prior to stating our main results, we clarify the setting
and provide necessary definitions. Let X € [0,1]¢ be the
normalized feature where d € N is the number of dimen-
sions, Y € {—1,+1} the label and we assume that the pair
is distributed according to an unknown distribution Px y,
ie, (X,Y) ~ Pxy. For 6 € R% and r > 0, we let
Ba(h,r) := {# € R? : ||§ — 0] < r}. For simplicity, we let
Ba(r) = Bq(0,r) when 6 = 0; also note that all norms are
Euclidean. Given r > 0, we consider the logistic model and its
associated hypothesis class G = {gp : 6 € By(r)}, composed
of parameterized soft classifiers gg such that

go(x) = o((0,z)),

with 0 : R — [0,1] being the sigmoid function given by
(9). For convenience, we present the following short form of
a-loss in the logistic model which is equivalent to the
expanded expression in [1]. For o € (0, 00|, a-loss is given
by

(23)

(g 90(@) = — [1=golya) /] @4
For a = 1, I' is the logistic loss and we recover logistic
regression by optimizing this loss. Note that in this setting
(yx,0) is the margin, and recall from Proposition 3 that (24)
is convex for o € (0, 1] and quasi-convex for o > 1 in (yz, 6).
For 6 € B,4(r), we define the a-risk R, as the risk of the loss
in (24),

Ra(0) := Ex y [I*(Y, go(X))].

The a-risk (25) is plotted for several values of « in a two-
dimensional Gaussian Mixture Model (GMM) in Fig. 4. Fur-
ther, observe that, for all 0 € B,(r),

Roo(g) = EX,Y[IOO(Ya gG(X))] = ]P)[Y # %]a

(25)

(26)

where Yy is a random variable such that for all z € Ba(1),
P[Yy = 11X = z] = go().

In order to study the landscape of the a-risk, we compute
the gradient and Hessian of (24), by employing the following
useful properties of the sigmoid

o(—z)=1—0(z) and dia(z) =o(2)1-0(2)). 27
z
Indeed, a straightforward computation shows that
1 90(2)) = [~ygoly) (1~ goly))] 20, 28)
907 Y, 90 - Ygoly goly )
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Fig. 4. The landscape of a-loss (Ro for o = 0.95,1, 2,10) in the logistic
model, where features are normalized, for a 2D-GMM with P[Y = —1] =
012, lux‘Y:,1 = (7018,149)1-, lux‘yzl = (7001,016)1-, 2_1 =
[3.20, —2.02; —2.02, 2.71], and X1 = [4.19,1.27;1.27,0.90].

where 67,27 denote the j-th components of # and x, respec-
tively. Thus, the gradient of a-loss in (24) is

Vol*(Y, 90(X)) = F1(, 0, X, Y) X, (29)

where F (o, 0, z,y) is defined as the expression within brack-
ets in (28). Another straightforward computation yields

V2I*(Y,g6(X)) = Fo(e,0,X,Y)XXT, (30)

where F5 is defined as

Fy(a,0,2,y) :=go(ya)' /" go(~yz)
< (o) = (1= 3 Jant-0)) . D)

B. Convexity of the a-Risk

We now turn our attention to the case where o € (0, 1]; we
find that for this regime, R, is strongly convex; see Fig. 4
for an example. Prior to stating the result, for two matrices
A, B € R™? we let > denote the Loewner (partial) order
in the positive semi-definite cone. That is, we write A = B
when A — B is a positive semi-definite matrix. For a matrix
A€ R4 et A (A),...,\a(A) be its eigenvalues. Finally,
we recall that a function is m-strongly convex if and only if
its Hessian has minimum eigenvalue m > 0 [62].

Theorem 2: Let ¥ := E[XXT]. If o € (0, 1], then R, (6)
is Ao, rV/d) Heli% Ai (X)-strongly convex in 6 € B;(r), where

7

Ao, rVd) ==a(rV/d)! =1/
) (0/(“/8) - (1 - é) U(—r\/E)Q) . (32)

Observe that if min;epg Ai(X) = 0, then the a-risk is
merely convex for a« < 1. Also observe that for rd > 0
fixed, A(a, /d) is monotonically decreasing in c.. Thus, R,
becomes more strongly convex as « approaches zero.

While Theorem 2 states that the a-risk is strongly-convex
for all @ < 1 and for any rvd > 0, the following corollary,
which is proved with similar techniques as Theorem 2, states
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that the a-risk is strongly-convex for some range of o > 1,
provided that /d > 0 is small enough.

Corollary 2: Let ¥ := E[XXT]. If rv/d < arcsinh (1/2),
then R, (0) is A(a,rV/d) min;e (g Ai (¥)-strongly convex in
0 € By(r) for a € (0, (e2rVd — e’"\/a)_l}, where

Mo, 7Vd) := o(=rVd)* Y (rVd)

—T‘\/a
x <1 eV %) . (33)

It could be verified that (62“/E - e“/a)’l > 1 whenever
rV/d < arcsinh (1/2). By inspecting the relationship between
convexity and its dependence on v/d, Corollary 2 seems to
suggest that as « increases slightly greater than 1, convexity
is lost faster nearer to the boundary of the parameter space.
Indeed, refer to Fig. 4 to observe an example of this effect for
« increasing from o = 1 to a = 2, and note that convexity is
preserved in the small radius about 0 for a = 2.

Examining the a-risk in Fig. 4 for a« = 2 more closely,
we see that it is reminiscent of a quasi-convex function. Recall
that (e.g., Chapter 3.4 in [62]) a function f : R? — R is quasi-
convex if for all 0, 6, € R?, such that f(6y) < f(6), it follows
that

(=Vf(0),00—0) > 0. (34)

In other words, the negative gradient of a quasi-convex func-
tion always points in the direction of descent. While a-loss
(24) is quasi-convex for v > 1, this does not imply that the
a-risk (25) is quasi-convex for o > 1 since the sum of quasi-
convex functions is not guaranteed to be quasi-convex [62].
Thus, we need a new tool in order to quantify the optimization
complexity of the a-risk for a > 1 in the large radius regime.

C. Strictly Local Quasi-Convexity and Its Extensions

We use a framework developed by Hazan et al. in [35]
called strictly local quasi-convexity (SLQC), which is a gener-
alization of quasi-convexity. Intuitively, SLQC functions allow
for multiple local minima below an e-controlled region while
stipulating (strict) quasi-convex functional behavior outside the
same region. Formally, we recall the following parameteric
definition of SLQC functions provided in [35].

Definition 3 (Definition 3.1, [35]): Let ¢,k > 0 and
0o € R9. A function f : RY — R is called (e, &, 0p)-strictly
locally quasi-convex (SLQC) at § € R? if at least one of the
following conditions apply:

L f(0) = f(fo) <&

2. ||[V£(0)|| > 0 and, for every 6’ € B(0,€/k),

(=Vf(0),0' = 0) > 0. (35)

Briefly, in [35] Hazan et al. refer to a function as SLQC
in 0, whereas for the purposes of our analysis we refer to a
function as SLQC ar 6. We recover the uniform SLQC notion
of Hazan et al. by articulating a function is SLQC at 6 for
every 6. Our later analysis of the a-risk in the logistic model
benefits from this pointwise consideration.

Observe that where Condition 1 of Definition 3 does not
hold, Condition 2 implies quasi-convexity about B(fy,¢/x)
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P
"y

9/

Fig. 5. An illustration highlighting the difference between quasi-convexity
as given in (34) and the second SLQC condition of Definition 3. If f is quasi-
convex, the red angle describes the possible negative gradients of f at 6 with
respect to Op. If f is SLQC, the blue angle describes the possible negative
gradients of f at € with respect to 6y and the given e/x-radius ball.

as evidence through (34); see Fig. 5 for an illustration of
the difference between classical quasi-convexity and SLQC
in this regime. We now present the following lemma, which
is a structural result for general differentiable functions that
provides an alternative formulation of the second requirement
of SLQC functions in Definition 3; proof details can be found
in Appendix B.1.

Lemma 1: Assume that f : R? — R is differentiable,
0o € R% and p > 0. If € R? is such that ||§ — 6| > p, then
the following are equivalent:

1. (=Vf(0),0 —6) >0 for all ¢ € By (6o, p),
2. (=V£(0),60 —0) = p|Vf(O)].

Intuitively, the equivalence presented by Condition 2 of
Lemma 1 is easier to manipulate in proving SLQC properties
of the a-risk as we merely need to control (—V f(0), 60y — 6)
rather than (—V f(60),6 — 6) for every 0’ € B(6y,¢/k).

In [35], Hazan er al. measure the optimization com-
plexity of SLQC functions through the normalized gradient
descent (NGD) algorithm, which is almost canonical gradi-
ent descent (see, e.g., Chapter 14 in [4]) except gradients
are normalized such that the algorithm applies uniform-size
directional updates given by a fixed learning rate 7 > 0. While
NGD may not be the most appropriate optimization algorithm
in some applications, we use it as a theoretical benchmark
which allows us to understand optimization complexity; fur-
ther details regarding NGD can be found in Appendix B.I.
Indeed, the convergence guarantees of NGD for SLQC func-
tions are similar to those of Gradient Descent for convex
functions.

Proposition 4 (Thm. 4.1, [35]): Let f: R? - R, 6; € RY,
and 0" = argmingcpa f(0). If f is (¢, x,6%)-SLQC at 6 for
every € R?, then running the NGD algorithm with learning
rate 7 = ¢/ for number of iterations T > x?2||6; — 0*[|?/€>
achieves f_I{lian(Qt) — f(0") <e

For an (e, R,790)—SLQC function, a smaller € provides better
optimality guarantees. Given ¢ > 0, smaller s leads to faster
optimization as the number of required iterations increases
with 2. Finally, by using projections, NGD can be easily
adapted to work over convex and closed sets (e.g., B(6o,r)
for some 6y € R% and r > 0).
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D. SLQC Parameters of the a-Risk

With the above SLQC preliminaries in hand, we start quanti-
fying the SLQC parameters of the a-risk, R,. It can be shown
that for a € (0,00], Ry is Cq(r, a)-Lipschitz in 6 € By(r)
where, for o € (0, 1],

Ca(r,a) :== Vdo(rvVd)o(—rVd) =1/ (36)
and, for v € (1, o0],
1-1/«
a—1 a rd a—1
Catray = A VA(EE) T () ez o2t

Vdo(r/d)o(—ry/d)1 =1/ erVd < ol
(37)

Thus, in conjunction with Theorem 2, Corollary 2, and a
result by Hazan et al. in [35] (after Definition 3), we provide
the following result that explicitly characterizes the SLQC
parameters of the a-risk R, for two separate ranges of «
near 1.

Proposition 5: Suppose that 3 > 0 and 6y € B4(r) is fixed.
We have one of the following:

o If rv/d < arcsinh (1/2), then, for every € > 0, R, is
(e,Ca(r, a),6p)-SLQC at 6 for every 6 € By(r) when
a e (0, (e2rvVd— e’“‘/g)_l} where Cy(r,a) is given
in (36) and (37);

o Otherwise, for every € > 0, R, is (¢, Cyq(r, ), 69)-SLQC
at 0 for every 6 € By(r) for @ € (0, 1].

Thus, by Proposition 4 and (36), the number of iterations
of NGD, T, tends to infinity as « tends to zero. This conse-
quence of the result seems somewhat counterintuitive because
one would expect that increasing convexity (R, becomes
“more” strongly convex in 6 as « decreases, see Theorem 2
and Fig. 4) would improve the convergence rate. However, the
number of iterations of NGD tends to infinity as « tends to
zero because the Lipschitz constant of R, Cq(r, &) = x blows
up. This phenomenon of the Lipschitz constant worsening
the convergence rate is not merely a feature of the SLQC
theory surrounding NGD. It is also present in convergence
rates for SGD optimizing convex functions, e.g., see Theorem
14.8 in [4]. Therefore, we find that there exists a trade-off
between the desired strong-convexity of R, and the optimiza-
tion complexity of NGD.

Next, we quantify the evolution of the SLQC parameters of
R, both in the small radius regime and in the large radius
regime. Since R, tends more towards the probability of error
(expectation of 0-1 loss) as « approaches infinity, we find that
the SLQC parameters deteriorate and the optimization com-
plexity of NGD increases as we increase «. Fortunately, in the
logistic model, a-loss exhibits a saturation effect whereby
relatively small values of « resemble the landscape induced by
«a = oc. In order to quantify this effect, we state the following
two Lipschitz inequalities which will also be instrumental for
our main SLQC result.
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Fig. 6. An illustration of the saturation phenomenon of a-loss (R. for
a = 10,00) in the logistic model for a 2D-GMM with P[Y = 1] =
PY = —1], uxjy=—1 = (=.91,.50)T, puxjy=1 = (—.27,.20)T,
¥ = [1.38,.55;.55,2.18]. Note the small difference, uniformly over the
parameter space, between R1o and Roo.

Lemma 2: If a, o’ € [1, 0], then, for all 6§ € By(r),

a—o
Ral0) = Re0)] < L) [ 22| 80

a—ao
IVR(0) ~ VRO < Ja@)| @8y

where
2
log (1+ ellélvd

Lq(0) = ( ( 5 )) ; (39a)
Ja(0) i= Vdlog (1+ V) (0] Va).  (39b)

This result is proved in Appendix B.2, and it can be applied
to illustrate a saturation effect of a-loss in the logistic model.
That is, let &« = 10 and o/ = oo, then for all § € By(r),
we have that

L
|Rio(6) — Roo(0)] < (;ff), (402)
Jq(0
IV R10(0) — VR (6)] < jﬂ)), (40b)

where Lg4(6) and Jy(0) are both given in (39). In words,
the pointwise distance between the @ = 10 landscape and
the o = oo landscape decreases geometrically; for a visual
representation see Fig. 6.

The saturation effect of a-loss suggests that it is unnecessary
to work with large values of .. In particular, this motivates us
to study the evolution of the SLQC parameters of the a-risk
as we increase o > 1.

Theorem 3: Let ag € [1,00], €9, ko > 0, and by, 0 € By(r).
If R,, is (eo, Ko,00)-SLQC at 6 and

g ||V R, ()]

0<a—ap< , 41)
2Ja(0) (1+72)
then R, is (¢, s, 0p)-SLQC at 6 with
€ =e€o+ 2Lq(h) (0‘_0‘0>, (42)
aQ
C . (1 + 27@) Ja(0)(a — ap)
S . © (43)
Ko Ko aap||VRa, (0)] — Ja(0) (e — ao)
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The proof of Theorem 3 can be found in Appendix B.2. The
crux of the proof is a consideration of two cases, dependent
on the location of 6 € By(r) relative to the eg-plane. The first
case considers 6 € Bg(r) such that Ry, (8) — Ra, (6o) < €0
and provides the required increase for € to capture such points
as « increases. The second case considers 6 € By(r) such that
Ry (0) — Ray(0p) > € and provides the required decrease
for €/k to capture such points as « increases. The second case
is far more geometric than the first one, as it makes use of
finer gradient information. As a result, the decrease in ¢/x is
more closely related to the landscape evolution of R, than
the corresponding increase in €. From a numerical point of
view, Proposition 4 implies that reducing the radius of the
¢/k ball about 6y increases the required number of iterations
(for optimality), and thus reflects the intuition that increasing
a > 1 more closely approximates the intractable 0-1 loss.
While on the contrary, Proposition 4 implies that increasing
the value of ¢ reduces the optimality guarantee itself.

We note that the bounds provided in Theorem 3 are pes-
simistic, but fortunately, we can improve them by employing a
bootstrapping technique - we take infinitesimal steps in « and
repeatedly apply the bounds in Theorem 3 to derive improved
bounds on «, €, and x. The following result is the culmination
of our analysis regarding the SLQC parameters of the a-risk in
the logistic model. The proof can be found in Appendix B.3.

Theorem 4: Let ag € [1,00), €g, ko > 0, and by, 0 € By(r).
Suppose that R, is (€g, ko, 00)-SLQC at § € B,(r) and that
there exists gp > 0 such that ||[VR, (0)| > go for every
o € [ag, 00]. Then, for every A € (0,1), Ra, is (€x, k. 60)-
SLQC at 6 where

2
ax = ao + A Y096 , (44)
Ja(0) (1+2r2)
_ 2
ex i= €0 + 2\La(6) <0‘A a0> N @5
a0 ) gy(0) (1+r2)
NS Oy, (46)

KX Ko

We now provide three different interpretations and com-
ments regarding the previous result. First regarding the SLQC
parameters themselves, observe from (44) that the bound on
« is improved over Theorem 3 as the factor of 2 in the
denominator in (41) is moved into the parentheses; next, it can
be observed (upon plugging in ) that €y in (45) is linear
in A, which is again an improvement over the first equation
in (42); finally, note that the bound on €y /ky in (45) is vastly
more tractable and informative than the second expression
in (42). Thus, bootstrapping the bounds of Theorem 3 provides
strong improvements for all three relevant quantities, a, e,
and k. Next, regarding the extra assumption for Theorem 4
over Theorem 3, i.e., the existence of a lowerbound gy on the
norm of the gradient ||VR./ ()| for all o/ > «, observe
that this is equivalent to the requirement that the landscape at
6 does not become “flat” for any o’ > «q. In essence, this
is a distributional assumption in disguise, and it should be
addressed in a case-by-case basis. Finally, regarding the effect
of the dimensionality of the feature space, d, on the bounds,
we observe that for § € By(r) and d € N large enough,
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Ja(0) =~ d||0|| as given in (39). Thus in the high-dimensional
regime, the bound on «, i.e., a, is dominated by 1/d. This
implies that the convexity of the landscape worsens as the
dimensionality of the feature/parameter vectors d increases.

While a practitioner would ultimately like to approximate
the O0-1 loss (captured by a@ = 00), the bounds presented
in Theorem 4 suggest that the optimization complexity of
NGD increases as « increases. Fortunately, a-loss exhibits a
saturation effect as exemplified in (40) and Fig. 6 whereby
smaller values of « quickly resemble the landscape induced
by a = oco. Thus, while the optimization complexity increases
as « increases (and increases even more rapidly in the high-
dimensional regime), the saturation effect suggests that the
practitioner need not increase « too much in order to reap
the benefits of the oo-risk. Therefore, for the logistic model,
we ultimately posit that there is a narrow range of « useful
to the practitioner and we dub this the “Goldilocks zone”; we
explore this theme in the experiments in Section VI.

Before this however, we conclude the theoretical analysis
of a-loss with a study of the empirical a-risk, and we provide
generalization and optimality guarantees for all a € (0, o0].

V. GENERALIZATION AND ASYMPTOTIC OPTIMALITY

In this section, we provide generalization and asymptotic
optimality guarantees for a-loss for @« € (0,00] in the
logistic model by utilizing classical Rademacher complexity
tools and the notion of classification-calibration introduced
by Bartlett et al. in [6]. We invoke the same setting and
definitions provided in Section I'V. In addition, we consider the
evaluation of a-loss in the finite sample regime. Formally, let
X €[0,1]¢ be the normalized feature and Y € {—1,+1} the
label as before, and let S, = {(X;,Y;) : i =1,...,n} be the
training dataset where, for each i € {1,...,n}, the samples
(X;,Y;) are independently and identically drawn according to
an unknown distribution Px y. Finally, we let Ra denote the
empirical a-risk of (24), i.e., for each 6 € B,(r) we have

Zl (Y, g0 (Xi)).

In the following sections, we consider the generalization capa-
bilities and asymptotic optimality of a predictor 8 € By(r)
which is learned through empirical evaluation of «-loss (47).
First, we recall classical results in Rademacher complexity
generalization bounds.

(47)

A. Rademacher Complexity Preliminaries

In this section, we provide the main tools we use to derive
generalization bounds for a-loss in the sequel. The techniques
are standard; see Chapter 26 in [4] for a complete discussion.
First, we recall that the Rademacher distribution is the uniform
distribution on the set {—1, +1}. The Rademacher complexity
of a set is as follows.

Definition 4: The Rademacher complexity of a nonempty
set A C R™ is defined as

R(A):=E (Sup l(a, a>) , (48)
acA M
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where ¢ = (01,02,...,0,) with o01,09,...,0, iid.
Rademacher random variables.

In words, the Rademacher complexity of a set approxi-
mately measures the richness of the set through the max-
imal correlation of its elements with uniformly distributed
Rademacher vectors. The notion of Rademacher complexity
can be used to measure the richness of a hypothesis class as
established in the following proposition.

Proposition 6 (Thm. 26.5, [4]): Let H be a hypothesis class.
Assume that [ : X x Y x H — R is a bounded loss function,
i.e., there exists D > 0 such that for all A € H and for all
(x,y) € (X,Y) we have that |l(h, (z,y))| < D. Then, with
probability at least 1 — 6, for all h € H,

- 2In(4/6
Ri(h) — Ri(h)| < 2R(LoH 0 S,) + 4D —f%ll,@%
where R;(h) and R;(h) denote the true risk and empirical risk

of [, respectively, and* [ o H o S,, C R™ which is equal to

{(l(hv (xlvyl))val(ha (xnvyn))) : hGH} (50)

For linear predictors, obtaining a bound on R(l o H o S,,)
is feasible; we now provide two results (in conjunction with
Proposition 6) necessary to derive a generalization bound for
a-loss in the logistic model.

Lemma 3 (Lemma 26.9, [4]): Suppose l~1,...,l~ R —
R are o~ Llpschltz functions with common constant rg > 0.
If I = (ll,... Zn) and A C R™, then R(I(A)) < roR(A),
where [(A) := {(I1(a1),...,ln(an)) : a € A}.

The previous result, known as the Contraction Lemma,
provides an upperbound on the Rademacher complexity of the
composition of a function actlng on a set. For our purposes,
one can think of [ = (I1,...,l,) as a margin-based loss
function acting on a training set with n samples - this will be
further elaborated in the sequel. The following result provides
an upperbound on the Rademacher complexity of the set
comprised of inner products between a given parameter vector
drawn from a bounded space and the n-sample training set.

Lemma 4 (Lemma 26.10, [4]): Let x1., = {@1,...,2Zn}
be a set of vectors each in R?, and define the following
composition H o z1., = {({(0,21),...,(0,zy)) : ||0]l2 < 7}.
Then,

rmaXien) || zifl2
\/ﬁ

With the above Rademacher complexity preliminaries in
hand, we now apply these results to derive a generalization
bound for a-loss in the logistic model.

R(Hoz1m) < &1y

B. Generalization and Asymptotic Optimality of a-Loss

We now present the following Lipschitz inequality for the
margin-based a-loss (Definition 2) and will be useful in apply-
ing Proposition 6. It can readily be shown that the margin-
based a-loss, [* is C., («)-Lipschitz in z € [—rg, ro] for every
ro > 0, where for « € (0, 1],

Cry (@) == o (ro)o(—ro) 71 (52)

In (49) we present the two-sided version of Theorem 26.5 in [4], which
can be readily obtained via the symmetrization technique.
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and, for a € (1, o0],

1—1
a—1 < o 0 a—1
(2a—1) (za—l) e = 55

o(ro)o(—ro)t = e < a1,

Cro () := (53)

That is, for a € (0,00] and z, 2" € [~ro,70], we have that
[1%(2)—=1*(2")| < Cpy()]z—2'|; see Lemma 6 in Appendix C
for the proof. Lastly, note that for any fixed ro > 0, Cy, ()
is monotonically decreasing in «.

With the Lipschitz inequality for [ in hand, we are now
in a position to state a generalization bound for a-loss in the
logistic model.

Theorem 5: If a € (0, 00], then, with probability at least
1 —9, for all € By(r),

oo (4
Ra(0) = Ra(0)| < C, /5 () % +D, () log (5) gn((;)7
(54)

where C|_ /7 () is given in (52) and (53) and where D, /; (@)
is given by D, (a) := 4\/§a « - (1 - O’(—T\/E)lfl/a).

Note that D, /;(«) is also monotonically decreasing in o
for fixed rv/d > 0. Thus, Theorem 5 seems to suggest that
generalization improves as o — co. However, because R, and
Ra also monotonically decrease in «, it is difficult to reach
such a conclusion. Nonetheless, Corollary 3 in Appendix C
offers an attempt at providing a unifying comparison between
the oo-risk, R, and the empirical a-risk, Ra.

Lastly, observe that for the generalization result
in Theorem 5, we make no distributional assumptions
such as those by Tsybakov, et. al in [66], where they assume
the posterior satisfies a margin condition. Under such an
assumption, we observe that faster rates could be achieved,
but optimal rates are not the focus of this work. Nonetheless,
the next theorem relies on the assumption that the minimum
a-risk is attained by the logistic model, i.e., given a € (0, o],
suppose that

min R, (0) = min R, (f), (55)

0€B4(r) f:X—R
where R, (6) is given in (25) and R, (f) = E[*(Y f(X))]
for all measurable f.

Theorem 6: Assume that the minimum o-risk is attained
by the logistic model, i.e., (55) holds. Let S,, be a training
dataset with n € N samples as before. If for each n € N, é‘f;
is a global minimizer of the associated empirical a-risk 6 +—
R, (6), then the sequence (6%)2°, is asymptotically optimal
for the 0-1 risk, i.e., almost surely,

lim R(fég) =R",

n—00

(56)

where f;.(z) = (92, z) for each n € N and the Bayes risk
R* is given by R* := f_rEiBRIP’[Y + sign(f(X))].

In words, setting the optimization procedure aside, utilizing
a-loss for a given a € (0,00] is asymptotically optimal
with respect to the probability of error (expectation of the
0-1 loss). Observe that the assumption in (55) is a stipu-
lation for the underlying data-generating distribution, Px y,
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in disguise. That is, we assume that Px y is separable by a
linear predictor, which is a global minimizer for the a-risk.
In essence, Theorem 6 is a combination of Theorem 5 and
classification-calibration.

With the statistical, optimization, and generalization con-
siderations of a-loss behind us, we now provide experimental
results in two canonical settings for a-loss in logistic and
convolutional-neural-network models.

VI. EXPERIMENTAL RESULTS

As was first introduced in Section III-C, in this section we
further experimentally evaluate the efficacy of a-loss in the
following two canonical scenarios:

(i) Noisy Labels: the classification algorithm is trained on
a binary-labeled dataset that suffers from symmetric noisy
labels, and it attempts to produce a model which achieves
strong performance on the clean test data.

(i1) Class Imbalance: the classification algorithm is trained
on a binary-labeled dataset that suffers from a class imbalance,
and it attempts to produce a model which achieves strong
performance on the balanced test data.

Our hypotheses are as follows: for setting (i), tuning o > 1
(away from log-loss) improves the robustness of the trained
model to symmetric noisy labels; for setting (ii), tuning o < 1
(again away from log-loss) improves the sensitivity of the
trained model to the minority class. In general, we experi-
mentally validate both hypotheses.

In our experimental procedure, we use the following image
datasets: MNIST [67], Fashion MNIST (FMNIST) [68], and
CIFAR-10 [69]. While these datasets have predefined training
and test sets, we present binary partitions of these datasets
for both settings in the main text, in alignment with our
theoretical investigations of a-loss for binary classification
problems; in Appendix D.4, we present multiclass symmetric
noise experiments for the MNIST and FMNIST datasets.
Regarding the binary partitions themselves, we chose classes
which are visually similar in order to increase the difficulty
of the classification task. Specifically, for MNIST we used a
binary partition on the / and 7 classes, for FMNIST we used
a binary partition on the 7-Shirt and Shirt classes, and finally
for our binary experiments on CIFAR-10 we used a binary
partition on the Cat and Dog classes.

All code is written in PyTorch, version 1.30 [70]. Archi-
tectures learning CIFAR are trained with GPUs, while the
architectures learning MNIST and FMNIST are both trained
with CPUs. Throughout, we consider two broad classes of
architectures: logistic regression (LR) and convolutional neural
networks (CNNs) with one or two fully connected layers
preceded by varying convolutional layer depths (2, 3, 4, and
6) such that we obtain the shorthand CNN X-+Y where X is
one of 2, 3, 4, or 6 and Y is one of 1 or 2. For all architectures
learning CIFAR, we additionally use a sigmoid at the last layer
for smoothing. For each set of experiments, we randomly fix a
seed, and for each iteration we reinitialize a new architecture
with randomly selected weights. We use softmax activation
to generate probabilities over the labels, and we evaluate the
model’s soft belief using a-loss on a one-hot-encoding of the
training data.
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All (dataset, architecture) tuples were trained with the same
optimizer, vanilla SGD, with fixed learning rates. In order to
provide the fairest comparison to log-loss (o« = 1), for each
(dataset, architecture) tuple we select a fixed learning rate from
the set {107%,5x107%,1072,5x1073,1072,5x1072,1071}
which provides the highest validation accuracy for a model
trained with log-loss. Then for the chosen (dataset, architec-
ture) tuple, we train a-loss for each value of a using this
fixed learning rate. Regarding the optimization of a-loss itself
which is parameterized by «a € (0, o0], in general we find that
searching over a € [.8,8] for noisy labels and « € [.8, 4] for
class imbalances is sufficient, and we typically do so in step-
sizes of 0.1 or 0.05 (near a« = 1) or a step-size of 1 (when
« > 1). This is in line with our earlier theoretical discussions
regarding the “Goldilocks zone” of a-loss, i.e., the gradient
explosion for very small values of «, the increased difficulty of
optimization for large values of «, and the fact that relatively
small values of a closely approximate the co-loss.

For all experiments, we employ a training batch size
of 128 examples. For all experiments on the MNIST and
FMNIST datasets, training was allowed to progress for
50 epochs; for all experiments on the CIFAR-10 dataset,
training was allowed to progress for 120 epochs - convergence
for all values of o was ensured for both choices. Lastly, for
each architecture we re-run each experiment 10 times and
report the average test accuracies calculated according to the
relative accuracy gain, which we rewrite for our experimental
setting as

|a-loss acc — log-loss acc]
log-loss acc

rel acc gain % = x 100, (57)
where we use acc to denote test accuracy. Also note that o*
is chosen as the « over the search range which maximizes the
average test accuracy of its trained models. For more details
regarding architecture configurations (i.e., CNN channel sizes,
kernel size, etc) and general experiment details, we refer the
reader to the code for all of our experiments (including the
implementation of a-loss), which can be found at [71].

A. Noisy Labels

For the first set of experiments, we evaluate the robustness
of a-loss to symmetric noisy labels, and we generate symmet-
ric noisy labels in the binary training data as follows:

1) For each run of an experiment, we randomly select
0-40% of the training data in increments of 10%.
2) For each training example in the randomly selected
group, we flip the label of the selected training example.
Note that for all symmetric noisy label experiments we keep
the test data clean, i.e., we do not perform label flips on
the test data. Thus, these experiments address the scenario
where training data is noisy and test data is clean. Also note
that during our 10-iteration averaging for each accuracy value
presented in each table, we are also randomizing over the
symmetric noisy labels in the training data.
The results on the binary MNIST dataset (composed of
classes / and 7), binary FMINIST dataset (composed of
classes T-Shirt and Shirt), and binary CIFAR-10 (composed
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TABLE I

SYMMETRIC BINARY NOISY LABEL EXPERIMENT ON MNIST CLASSES
1 AND 7. NOTE THAT ARCH STANDS FOR ARCHITECTURE, LF FOR
LABEL FLIP, LL ACC AND @ ACC STAND FOR LOG-L0OSS ACCU-
RACY AND a-L0OSS ACCURACY FOR a*, RESPECTIVELY, AND
THAT GAIN % Is CALCULATED ACCORDING TO (57). ALSO
NOTE THAT EACH REPORTED ACCURACY IS AVERAGED
OVER 10 RUNS

Arch LF % LL Acc% o* Acc % a* Gain %
0 99.26 99.26 0.95,1 0.00
10 99.03 99.13 6 0.10
LR 20 98.65 99.03 7 0.39
30 97.89 98.96 35 1.10
40 92.10 98.53 8 6.98
0 99.83 99.84 4-8 0.01
10 95.27 99.68 6,7 4.63
CNN 2+2 20 87.41 98.72 8 12.94
30 77.56 87.86 8 13.28
40 62.89 66.10 8 5.12
TABLE II

SYMMETRIC BINARY NOISY LABEL EXPERIMENT ON CLASSES
T-Shirt AND Shirt OF THE FMNIST DATASET

Arch LF% LLAcc% o Acc% «o* Gain %
0 84.51 84.78 1.5 0.32
10 83.80 84.41 2 0.72
LR 20 83.11 83.94 2.5 1.01
30 81.29 83.43 3 2.63

40 74.39 92.02 8 23.69
0 86.96 87.19 1.1 0.27
10 81.14 83.74 5 3.20
CNN 2+2 20 72.96 78.00 8 6.93
30 66.17 69.21 8 4.59
40 57.90 58.56 3 1.15

of classes Cat and Dog) are presented in Tables I, II, and III,
respectively. As stated previously, in order to report the fairest
comparison between log-loss and «-loss, we first find the
optimal fixed learning rate for log-loss from our set of learning
rates (given above), then we train each chosen architecture
with a-loss for all values of « also with this found fixed
learning rate. Following this procedure, for the binary MNIST
dataset, we trained both the LR and CNN 2+2 architectures
with a fixed learning rate of 10~2; for the binary FMNIST
dataset, we trained the LR and CNN 22 architectures with
fixed learning rates of 10~* and 5 x 1073, respectively; for
the binary CIFAR-10 dataset, we trained the CNN 2-+1, 3+2,
4+2, and 6+2 architectures with fixed learning rates of 1072,
1071, 5 x 1072, and 10~', respectively.

Regarding the results presented in Tables I, II, and III,
in general we find for 0% label flips (from now on referred
to as baseline) the extra « hyperparameter does not offer
significant gains over log-loss in the test results for each
(dataset, architecture) tuple. However once we start to increase
the percentage of label flips, we immediately find that o*
increases greater than 1 (log-loss). Indeed for each (dataset,
architecture) tuple, we find that as the number of symmet-
ric label flips increases, training with a-loss for a value of
a > 1 increases the test accuracy on clean data, often
significantly outperforming log-loss. Note that this perfor-
mance increase induced by the new « hyperparameter is
not monotonic as the number of label flips increases, i.e.,
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TABLE III

SYMMETRIC BINARY NOISY LABEL EXPERIMENT
ON CIFAR-10 CLASSES Cat AND Dog

Arch LF% LLAcc% o™ Acc % a* Gain %
0 80.59 80.68 0.99 0.11
10 79.61 79.89 I.1 0.35
CNN 2+1 20 77.01 77.15 0.99 0.19
30 73.67 74.78 25 1.51
40 63.54 68.12 4 7.21
0 85.80 85.80 T 0.00
10 82.92 83.15 0.99 0.28
CNN 342 20 77.61 80.88 3 4.21
30 69.53 76.72 5 10.34
40 59.44 67.19 6 13.04
0 87.49 87.59 0.9 0.12
10 83.65 84.69 1.2 1.25
CNN 4+2 20 78.96 81.39 3.5 3.07
30 69.24 75.56 6 9.13
40 59.12 64.53 8 9.15
0 87.31 87.93 1.2 0.70
10 84.91 85.33 2 0.49
CNN 642 20 78.92 81.80 6 3.64
30 68.38 77.20 7 12.09
40 58.54 65.16 7 11.32

there appears to be a noise threshold past which the per-
formance of all losses decays, but this occurs for very
high noise levels, which are not usually present in practice.
Recalling Section III-C, the strong performance of «a-loss for
a > 1 on binary symmetric noisy training labels can intuitively
be accounted for by the quasi-convexity of a-loss in this
regime, i.e., the reduced sensitivity to outliers. Thus, we con-
clude that the results in Tables I, II, and III on binary MNIST,
FMNIST, and CIFAR-10, respectively, indicate that practition-
ers should employ a-loss for a > 1 when training robust
architectures to combat against binary noisy training labels.
Lastly, we report two experiments for multiclass symmetric
noisy training labels in Appendix D.4. In short, we find similar
robustness to noisy labels for o« > 1, but we acknowledge
that further empirical study of a-loss on multiclass datasets is
needed.

B. Class Imbalance

For the second set of experiments, we evaluate the sensi-
tivity of a-loss to class imbalances, and we generate binary
class imbalances in the training data as follows:

1) Given a dataset, select two classes, Class 1 and Class 2,
and generate baseline 50/50 (balanced) data, i.e., such
that |Class 1| = |Class 2| = 2500 training examples.
For all experiments ensure that |Class 1| + |Class 2| =
5000 randomly drawn training examples.

2) Starting at the baseline (2500/2500) and drawing from
the available training examples in each dataset when
necessary, increase the number of training examples of
Class 1 by 500, 1000, 1500, 2000, and 2250 and reduce
the number of training examples of Class 2 by the same
amounts in order to generate training example splits of
60/40, 70/30, 80/20, 90/10, and 95/5, respectively.

3) Repeat the previous step where the roles of Class 1 and
Class 2 are reversed.
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Note that the test set is balanced for all experiments with
2000 test examples (1000 for each class). Thus, these experi-
ments address the scenario where training data is imbalanced
and the test data is balanced. Also note that during our
10-iteration averaging for each accuracy value presented in
each table, we are also randomizing over the training exam-
ples present in each class imbalance split, according to the
procedure above.

The results on binary FMNIST (composed of classes
T-Shirt and Shirt) and binary CIFAR-10 (composed of classes
Cat and Dog) are presented in Tables IV, V, and VI. For this
set of experiments, note that a* is the optimal a € [0.8, 4]
(in our search set) which maximizes the average test accuracy
of the minority class, and also note that there are slight test
accuracy discrepancies between the baselines in the symmetric
noisy labels and class imbalance experiments because of the
reduced training and test set size for the class imbalance
experiments. For the binary FMNIST dataset, we trained the
LR and CNN 2+2 architectures with fixed learning rates
of 107* and 5 x 1073, respectively; for the binary CIFAR-
10 dataset, we trained the CNN 2+1, 3+2, 442, and 6+2
architectures with fixed learning rates of 1072, 10!, 5x 1072,
and 10!, respectively.

In general, we find that the minority class is almost always
favored by the smaller values of «, i.e., we typically have that
o < 1. Further, we observe that as the percentage of class
imbalance increases, the relative accuracy gain on the minority
class typically increases through training with «-loss. This
aligns with our intuitions articulated in Section III-C regarding
the benefits of “stronger” convexity of a-loss when av < 1 over
log-loss (o = 1), particularly when the practitioner desires
models which are more sensitive to outliers. Nonetheless,
sometimes there does appear to exist a trade-off between how
well learning the majority class influences predictions on the
minority class, see e.g., recent work in the area of stiffness
by Fort et al. [72]. This is a possible explanation for why
a < 1 is not always preferred for the minority class, e.g., 30%
and 40% imbalance in Table V when Dog is the minority class.
Thus we conclude that the results in Tables IV, V, and VI,
on binary FMNIST and CIFAR-10, respectively, indicate that
practitioners should employ a-loss (typically) for o« < 1 when
training architectures to be sensitive to the minority class in
the training data.

C. Key Takeaways

We conclude this section by highlighting the key takeaways
from our experimental results.

1) Overall Performance Relative to Log-Loss: The experi-
mental results as evidenced through Tables I to VI suggest that
a-loss, more often than not, yields models with improvements
in test accuracy over models trained with log-loss, with more
prominent gains in the canonical settings of noisy labels and
class imbalances in the training data. In order to remedy the
extra hyperparameter tuning induced by the seemingly daunt-
ing task of searching over a € (0, o0], we find that searching
over « € [.8, 8] in the noisy label experiments or o« € [.8,4] in
the class imbalance experiments is sufficient. This aligns with
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TABLE IV

BINARY FMNIST LOGISTIC REGRESSION IMBALANCE EXPERIMENTS ON THE 7-Shirt AND Shirt CLASSES. NOTE THAT LL-F; CORRESPONDS TO THE
F1 SCORE OF LOG-L0OSS ON THE IMBALANCED CLASS; SIMILARLY a*-F; CORRESPONDS TO THE F; SCORE OF a™*-L0OSS ON THE IMBALANCED
CLASS. SEE APPENDIX D.1 FOR A BRIEF REVIEW OF THE DEFINITION OF THE F; SCORE. THE RELATIVE % GAIN IS DEFINED AS THE
RELATIVE PERCENT GAIN (57) ON THE AVERAGE MINORITY CLASS ACCURACY (ON TEST DATA) OF MODELS TRAINED WITH LOG-

Loss vs. THE AVERAGE MINORITY CLASS ACCURACY OF MODELS TRAINED WITH c-LOSS. NOTE THAT OV = OVERALL.

LASTLY, OBSERVE THAT FOR THE BASELINE (50% IMBALANCE) EXPERIMENTS, WE PRESENT THE ACCURACY AND

o™ FOR BOTH CLASSES

Log-Loss a-Loss
Imb % Min Min Acc % Ov Acc % LL-Fi MinAcc% Ov Acc% a*-Fp a* Rel Gain %
50 T—Shirt 85.4 84.31 0.8448 85.7 84.17 0.8441 1.5 0.35
Shirt 83.2 84.31 0.8413 83.4. 84.33 0.8418 0.85 0.24
40 T—Shirt 80.0 83.68 0.8306 80.2. 83.73 0.8313 1.1 0.25
Shirt 71.7 83.88 0.8282 77.7 83.90 0.8284 0.99 0.00
30 T—Shirt 72.9 81.89 0.8010 73.0 81.88 0.8011  0.99 0.14
Shirt 70.8 82.04 0.7977 72.3 82.52 0.8053 0.8 2.12
20 T—Shirt 60.9 77.97 0.7344 61.7 78.20 0.7389 0.8 1.31
Shirt 63.1 79.81 0.7576 64.5 80.40 0.7669 0.8 2.22
10 T—Shirt 43.0 70.50 0.5931 452 71.50 0.6133 0.8 5.12
Shirt 55.2 76.97 0.7056 56.0 77.25 0.7111 0.8 145
5 T-Shirt 24.6 61.85 0.3920 26.0 62.54 0.4097 0.8 5.69
Shirt 475 73.52 0.6421 47.6 73.48 0.6422 0.8 0.21
TABLE V

BINARY CIFAR-10 CNN 442 IMBALANCE EXPERIMENTS ON Cat AND Dog CLASSES. NOTE THAT LL-F; CORRESPONDS TO THE F; SCORE OF LOG-
LOSS ON THE IMBALANCED CLASS; SIMILARLY a*-F; CORRESPONDS TO THE F; SCORE OF a*-L.0SS ON THE IMBALANCED CLASS. NOTE THAT
DUE TO OUR CALCULATION OF REL % GAIN THAT DIVISION BY O IS co, AND THUS ABSOLUTE % GAIN FOR THE MINORITY CLASS Cat

AT A 5% IMBALANCE IS 9.6%

Log-Loss a-Loss
Imb% Min MinAcc% OvAcc% LL-Fi MinAcc% OvAcc% a*-F; a* Rel Gain %
50 Cat 83.7 83.48 0.8352 87.2 83.86 0.8438 1.1 4.18
Dog 83.3 83.48 0.8345 86.1 84.06 0.8438  0.99 3.36
40 Cat 79.8 83.34 0.8273 82.7 83.39 0.8327 0.95 3.63
Dog 78.4 83.85 0.8292 82.4 83.20 0.8306 2.5 5.10
30 Cat 73.0 81.98 0.8020 74.6 82.40 0.8000 0.99 2.19
Dog 72.0 82.00 0.8091 74.9 83.18 0.8166 1.2 4.03
20 Cat 64.6 78.96 0.7543 66.2 78.85 0.7579 0.8 248
Dog 63.1 78.94 0.7498 65.0 79.79 0.7628 0.8 3.01
10 Cat 39.1 68.04 0.5502 41.6 68.88 0.5721 0.9 6.39
Dog 42.1 70.03 0.5842 48.5 72.53 0.6384 0.8 15.20
5 Cat 0.0 50.00 0.0000 9.6 54.48 0.1742 0.8 00
Dog 10.0 54.94 0.1816 232 61.31 03749 0.8 132.00
TABLE VI
BINARY CIFAR-10 CNN 642 IMBALANCE EXPERIMENTS ON Cat AND Dog CLASSES
Log-Loss a-Loss
Imb % Min Min Acc % Ov Acc % LL-F, Min Acc %  Ov Acc % a*-Fq a* Rel Gain %
50 Cat 84.4 84.30 0.8432 85.2 84.93 0.8497  0.99 0.95
Dog 84.1 84.30 0.8427 87.0 83.91 0.8439 2 3.45
40 Cat 80.3 83.79 0.8320 82.4 84.87 0.8449 0.8 2.62
Dog 81.2 84.91 0.8433 84.0 84.83 0.8470 0.9 3.45
30 Cat 74.2 82.72 0.8111 78.2 83.32 0.8242 0.8 5.39
) Dog 73.0 82.92 0.8104 772 83.60 0.8248 09 5.75
20 Cat 64.6 78.98 0.7545 64.6 78.98 0.7545 1 0.00
Dog 67.4 81.02 0.7803 70.2 81.75 0.7937  0.99 4.15
10 Cat 38.0 67.69 0.5405 41.8 69.34 0.5769  0.85 10.00
Dog 46.4 72.14 0.6248 50.1 73.53 0.6543 0.9 7.97
5 Cat 1.7 50.80 0.0334 13.6 56.26 02372 0.8 700.00
Dog 23.7 61.44 0.3807 31.0 64.90 04690 0.8 30.80

our earlier theoretical investigations (Section IV) regarding
the so-called “Goldilocks zone”, i.e., most of the meaningful
action induced by « occurs in a narrow region. Notably in the
class imbalance experiments, we find that the relevant region
is even narrower than our initial choice, i.e., a* € [.8,2.5]

(in our search set) for all imbalances. For the noisy label
experiments, we always find that o > 1 and usually «
is not too large, and for the class imbalance experiments,
we almost always find that o < 1. These two heuristics
enable the practitioner to readily determine a very good « in
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these two canonical scenarios. Consequently, a-loss seems to
be a principled generalization of log-loss for the practitioner,
and it perhaps remedies the concern of Janocha ef al. in [28]
regarding the lack of canonical alternatives to log-loss (cross-
entropy loss) in modern machine learning.

VII. CONCLUSION

In this work, we introduced a tunable loss function called a-
loss, a € (0, 00], which interpolates between the exponential
loss (a = 1/2), the log-loss (o« = 1), and the 0-1 loss
(v = 00), for the machine learning setting of classifica-
tion. We illustrated the connection between a-loss and Ari-
moto conditional entropy (Section II), and then we studied
the statistical calibration (Section III), optimization landscape
(Section IV), and generalization capabilities (Section V) of
a-loss induced by navigating the a hyperparameter. Regard-
ing our main theoretical results, we showed that «-loss is
classification-calibrated for all a € (0,00]; we also showed
that in the logistic model there is a “Goldilocks zone”, such
that most of the meaningful action induced by a occurs in a
narrow region (usually « € [.8, 8]); finally, we showed (under
standard distributional assumptions) that empirical minimizers
of a-loss for all « € (0, 00] are asymptotically optimal with
respect to the true 0-1 loss. Practically, following intuitions
developed in Section III-C, we performed noisy label and class
imbalance experiments on MNIST, FMNIST, and CIFAR-10
using logistic regression and convolutional neural networks
(Section VI). Furthermore, we showed that models trained
with a-loss can be more robust or sensitive to outliers (depend-
ing on the practitioner’s choice) over models trained with
log-loss (v = 1). Therefore, we argue that a-loss seems to
be a principled generalization of log-loss for classification
algorithms in modern machine learning. Regarding promising
avenues to further explore the role of a-loss in machine learn-
ing, the robustness of neural-networks to adversarial influence
has recently drawn much attention [73]-[75] in addition to
learning censored and fair representations that ensure statisti-
cal fairness for all downstream learning tasks [76].

APPENDIX

A. a-Loss in Binary Classification

Proposition 2: Consider a soft classifier g(x) = Py y(1]x).
If f(z) =0 1(g(x)), then, for every a € (0,0
1*(y, () = 1*(yf (). (58)

Conversely, if f is a classification function, then the set of
beliefs Py associated to g(x) := o(f(x)) satisfies (11).
In particular, for every a € (0, 0],

minEx,y (I*(Y, g(2))) = m}nEX,Y(Z"(Yf(X)))-

Proof: Consider a soft classifier g and let PY|  be the set
of beliefs associated to it. Suppose f(x) = o~ 1(g(z)), where
9(x) = Py x(1]x). We want to show that

(4, Py ) = °(yf(2)).

(59)

(60)
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We assume that o € (0,1)U(1, 00). Note that the cases where
a =1 and o = oo follow similarly.
Suppose that g(z) = Py y(1]|z) = o(f()). If y =1, then

121, Py (1)) = 12(1, 0(f () (61)
= = [1-o(f@) ] @)
=1*(f(x)) (63)
If y = —1, then

(=1, Py x (—1]z)) = 1%(=1,1 = Py (1]z)) (64)
=1%(-1,1=0o(f(x))) (65)
=1%(=1,0(=f(2))) (66)
= [l —a(=f@)'7*] ©7)
= 1*(=f(2)), (68)

where (66) follows from
o(x)+o(—z) =1, (69)

which can be observed by (9). To show the reverse direction
of (60) we substitute

fl@) =0 g(x)) = 07 (Py x(1]2)), (70)
in %(y f(x)). For y =1,
*(f(x)) = i“(o*( Py (1]2))) (71)

-1 = (oo™ (Pyx (1)) ) (72)

o
= %[1 — Py (1z)' 1] (73)
= (1, Py (1]2)). (74)

For y = —1,
I (75)

[(~f(2)) = (=0~ (Py x (1]2)))
C - o(—0 Py (1)) (76)

a—1
= ol = = oo7 By )=
(77
- %[1 — Py (=1]z)' 1] (78)
= 17(=1, Py x (1)), (79)

where (77) follows from (69).

The equality in the results of the minimization procedures
follows from the equality between [* and [*. As was shown
in [17], the minimizer of the left-hand-side is

Py x (ylz)*

_ 80
SLENUED 80)

P (o) =

Using f(z) = o' (Py x (1)), f*(x) = o7 (Pg,  (1]x)).
O

Proposition 3: As a function of the margin, [* : R — R

is convex for @ < 1 and quasi-convex for o > 1.
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Proof: The second derivative of the margin-based «a-loss
for o € (0, 00| with respect to the margin is given by

P oy D e —a )
dz? N ale? +1)3

Observe that if a € (0,1], then we have that, for all z € R,
2

81)

a2 - -
@Z“(z) > 0, which implies that [* is convex [62]. If we

have o € (1,00], then note that cve® —a+1 < 0 for all z € R
such that z < log (1 — ofl). Thus, the margin-based «-loss,
l~0‘, is not convex for « € (1, 00]. However, observe that
d - _(e—z T 1)1/(162
dzl (z) = EYSE . (82)
Since il~0‘(z) < 0 for a € [1,00] and for all z € R, [®
is monotonically decreasing. Furthermore, since monotonic
functions are quasi-convex [62], we have that 1 is quasi-
convex for o > 1. O
Theorem 1: For a € (0, 00|, the margin-based a-loss [* is
classification-calibrated. In addition, its optimal classification
function is given by

i) =a-o " (n).

Proof: We first show that [ is classification-calibrated
for all a € (0,00]. Suppose that « € (0,1]; we rely on the
following result by Bartlett et al. in [6].

Proposition 7 (Thm. 6, [6]): Suppose ¢ : R — R is
a convex function in the margin. Then ¢ is classification-
calibrated if and only if it is differentiable at 0 and ¢'(0) < 0.

Observe that [* is smooth and monotonically decreasing
for all @« € (0,00], and for o € (0,1], I* is convex by
Proposition 3. Thus, 1« satisfies Proposition 7, which implies
that [* is classification-calibrated for o € (0,1).

Now consider o € (1,00). Since classification-calibration
requires proving that the minimizer of (14) agrees in sign
with the Bayes predictor, we first obtain the minimizer of the
conditional risk for all n # 1/2. We have that

inf, Ca (n, f) = }g&nf“(f) + (1= (=f)

(83)

(84)

_ o 1 <1 — sup {no_(f)l—l/a + (1 _ n)g(—f)l—l/a}> s

@ — fER

(85)

where we substituted [ into (84) and pulled the infimum
through. We take the derivative of the expression inside the
supremum, which we denote g(n, o, f), and obtain

d 1 1
—ﬂm%”Z(“tﬁ(J:EI:ﬁ

df
1 1
X [n(l—i—e_f)“ —(1-n) (1+ef)°‘} :
(86)
(?ine can then obtain the f* minimizing (84) by setting
—fg(n,a, f)=0,ie.,

d
n(1+e—f*)1/a =(1-n) (1+ef*)1/a, (87)
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and solving for f* we have

faln) = alog () = a0 ).

1 (88)

Recall that the Bayes predictor, which is optimal, is given by
hBayes(n) = sign(2n — 1), and notice that the classification
function representation is simply fgayes(n7) = 277 — 1. Observe
that for all 7 # 1/2 and for a € [1,00) (indeed a < 1 as
well), we have that sign( fgayes(77)) = sign(fas(n)). Thus, I* is
classification-calibrated for o € (0, 00). Lastly, if o = 400,
then [* becomes

z

N()O - - e
(z)=1—-0(2) = 5o (89)
which is sigmoid loss. Similarly, sigmoid loss can be shown
to be classification-calibrated as is given in [6]. Therefore, B
is classification-calibrated for all a € (0, o0].

Finally, note that the proof of classification-calibration
yielded the optimal classification function given in (88) for all
a € (0,00]. Alternatively, the optimal classification function
can be obtained from Proposition 1 by Liao et al. Specifi-
cally, substitute the a-tilted distribution (6) for a binary label
Y = {-1,+1} into (10) as stated by Proposition 2. Indeed,
we have that

fr(@) = o7 (PE (< (1]2)) (90)
Py x(1]z)* )
=1 - 91
o8 (PYX(—1|37)a ob
_ _ (@)
alog<1_n(m)>, 92)
which aligns with (16). O

Corollary 1: For a € (0, 00], the minimum conditional risk
C*(n) of I* is equal to

L (= + QA =n)*)"*) ae(0,1)U(1,+00),

a—1
—nlogn — (1 =n)log(1-n) a=1,
min{n, 1 —n} o — —+00.

93)

Proof: For a = 1, we recover logistic loss and we know
from [7] and [1] that the minimum conditional risk is given
by

Ci(n) = —nlogn — (1 —n)log (1 —n). 94

Similarly, for & = oo, we recover the sigmoid loss and we
know from [6] and [1] that the minimum conditional risk is
given by

C%(n) = min{n,1 —n}.

Thus, we now consider the case where « € (0,00) \ {1}. The
conditional risk of [* is given by

Ca(n, £) = nl®(f) + (L = I*(=f) (96)

L= no ()17 = (1= ma(=f) /] |
o7

95)

-1
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where we substituted (8) into (96). We can obtain the mini-
mum conditional risk upon substituting (16) into (97) which
yields

o o (1 . n)a 1-1/«
Cr(n) = — — —_—
(=25 - 200 ()
1-1/«
o ne
— 98
a—1n<n“+(1—n)a) o
o)
- 1= (% + (1 =) 1/“} 99
a—l[ ™+ @ =m*), (99)
where the last equation is obtained after some algebra.

Finally, observe that CT/Q(U) = 24/n(1 —n), which aligns
with [7]. O

B. Optimization Guarantees for a-Loss in the Logistic Model

Theorem 2: Let ¥ := E[XXT]. If « € (0, 1], then R, (6)
is Ao, V/d) m%ﬁ Ai (X)-strongly convex in 6 € B, (r), where
1€

Aa, rV/d) :==a(rv/d)' 1/
) (U/(“/E) B <1 - é) o(—rx/E)Q) |
(100)

Proof: For each o € (0, 1], it can readily be shown that
each component of Fy(«,0,x,y) is positive and monotonic
in (0, ), which implies that Fy (v, 0, z,) > A(a,7V/d) > 0.
Now, consider R, (0) = E[I“(Y, go(X))]. We have

ViRa(0) = Ex vy [V5I*(Y, go(X))] (101)
= Ex.y[Fa(o,0,X,Y)XXT] (102)
= Ao, Vd)E[X XT] (103)
= Ao, Vd)S = 0, (104)

where we used an identity of positive semi-definite matrices
for (103) (see, e.g., [77, Ch. 7]); for (104), we used the fact
that A(c,7/d) > 0 and we recognize that ¥ is positive semi-
definite as it is the correlation of the random vector X € [0, 1]¢
(see, e.g., [78, Ch. 7]). We also note that min,c(q \; (X)>0
(see, e.g., [77, Ch. 7]). Thus, VgRa (0) is positive semi-definite
for every 0 € By(r). Therefore, since Amin(VZRa(6)) >
A, 7v/d) minge(q A; (£) > 0 for every 6 € By(r), which
follows by the Courant-Fischer min-max theorem [77, The-
orem 4.2.6], we have that R, is A(a,rV/d) min;eq Ai (2)-
strongly convex for « € (0, 1]. O

Corollary 2: Let ¥ := E[X XT|. If rv/d < arcsinh (1/2),
then R, (0) is A(a, r/d) min,e(q A; (2)-strongly convex in
0 € By(r) for a € (0, (e2rVd e“/a)’l} , Where

Ao, rVd) =0 (—rVd)*~ 1/
x o(rVd) (1 AR ée"" d) . (105)
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Proof: Let 0 € By(r) be arbitrary. We similarly have that
ViRa(0) = Ex,y [V5I*(Y, g5(X))] (106)
=Ex,y[go(YX)' "1 (gp(Y X)
- <1 - é) go(~YX))XXT]  (107)
= Ex v [g0(Y X)) “g(=Y X)(go (Y X)
- (1 - é) go(—YX)XXT],  (108)

where we recall (102) and factored out go(—Y X ). Considering
the expression in parentheses in (108), we note that this is
the only part of the Hessian which can become negative.
Examining this term more closely, we find that

90(Y X) — (1 - i) 90(=Y X)

1 1 1
S Tqe Xy <1 - a) Tyeovxy (09
1\ 14+ @YX)
1
= go(YX) [1 — (1 — —> e (Y Xﬂ . (111)
(0%
Continuing, observe that
—(0,Y X
1_(1-1 67<9,Yx>:1_67<9,yx>+€< :
(0% (0%
(112)
—rVd
>1-eVip S >0, (113)
(6%

where we lowerbound using the radius of the balls (Cauchy-
Schwarz), ie., (0,YX ) < |V]||0]|| X|| < rVd and the last
inequality in (113) holds if o < e="V4(e"Vd — 1)=1. Thus,
returning to (108), we have that

ViRa(0)
= Exylgo (¥ X)'F gy (Y X) (1~ (1 - 1)~ ®¥ ) xxT)
(114)
1 e_’"‘/a
= o(—rVd)2 wo(rVd) [ 1— eV — | E[XXT]
(115)
—rvd
= a(—r\/a)%ia(r\/g) (1 Vi - ) ¥ =0,
(116)

where in (114) we used (111) and the fact as given in (27)
that o'(z) = o(z)o(—z2), and in (115) and (116) we use
the upper-bound derived above and the same arguments as
Theorem 2, mutatis mudandis. Thus, if we have the following
bound @ < e’“/g(e“/E — 1)1, then we have that R, (f) is
Ao, 7/d) min;eq Ai (3)-strongly convex in 6 € By(r),

Ao, 7Vd) :=o(—rVd)*~V/e
x o (rv/d) (1 —erVa g ofle*“/ﬁ) . (17
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Finally, recall that sinh(z) = (e — e *)/2 and that
arcsinhz = log(x + v22 +1). Observe that if we have
rvd < arcsinh (1/2), then e "Vd(eVe — 1)=1 > 1. Also
note that e~"Vd(erVd — 1)~! is monotonically decreasing in
rv/d and that arcsinh (1/2) =~ 0.48. O

Proposition 5: Suppose that ¥ > 0 and §y € B4(r) is fixed.
We have one of the following:

o If rv/d < arcsinh (1/2), then, for every € > 0, R, is

(e,Ca(r, a),6p)-SLQC at 6 for every 6 € By(r) when

a € (0, (e2rVd— e’“‘/g)_l} where Cy(r,a) is given

in (36) and (37);

o Otherwise, for every € > 0, R, is (¢, Cq(r, ), 69)-SLQC

at 0 for every 6 € B,(r) for @ € (0, 1].

Proof: In order to prove the result, we apply a result by
Hazan, et al. [35] where they show that if a function f is
G-Lipschitz and strictly-quasi-convex, then for all € > 0, f is
(e, G,0p)-SLQC in 6. Thus, one may view x as approximately
quantifying the growth of the gradients of general functions.

First, we show that R, is Cy(r, o)-Lipschitz in 6 € Bg(r)
where for a € (0, 1],

Cy(r,a) == Vdo(rVd)o(—rVd) =1/, (118)
and, for a € (1, o0],
i [ () e
Vo (rv/d)o(—ry/d)l e erVid < el
(119)
Formally, we want to show that for all 6,60" € By(r),
[Ra(0) — Ra(0")| < Cll0— 0", (120)

where C' 1= supyep, () [|VRa(0)]]. Recall from (29) that

VoRa(0) = E[Vl*(Y, go(X)] (121)
= E[Fi (o, 0, X,Y)X], (122)
where from (28) we have
Fi(a,0,2,y) = —ygo(yx)' /" (1 - go(yz)).  (123)
It can be shown that for o < 1,
(a0, 2,9)] = go(y2)' V(1 = go(yr)),  (124)
is monotonically decreasing in (0, z). Thus for o < 1,
C = Vdo(rVd)o(—rvVd)' =V, (125)

It can also be shown that for & > 1, |Fi(«a,6,z,y)| is
unimodal and quasi-concave with the maximum obtained
at (0, 2)* =log (1 — 1/a). If r/d > log (1 — 1/a), we obtain
upon plugging in (A, z)* for o > 1,

\/_ a—1 1-1/« a
¢= d(Qa—l) (2a—1>'

Otherwise, if rvd < log (1 — 1/«), then, using the local
monotonicity of |Fy(a, 0, x,y)|, we obtain for o > 1,

C = Vdo(rVd)o(—rVd)' =V,

(126)

(127)
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which mirrors the o« < 1 case. Thus, combining the two
regimes of « we have that R, is Cy(r, «)-Lipschitz in § €
Bg4(r) for o € (0, 00] where Cy(r, o) is given in (36) and (37).

Finally when R, is strongly-convex, this implies that R,
is strictly-quasi-convex. That is, since ¥ > 0, we merely
apply Corollary 2 to obtain strong-convexity of R, when
a € (0,(e2rVd — VA1) for rv/d < arcsinh (1/2). Sim-
ilarly, we apply Theorem 2 to obtain strong-convexity of R,
for o € (0, 1], otherwise. O

1) Fundamentals of SLQC and Reformulation: In this sub-
section, we briefly review strictly locally quasi-convexity
(SLQC) which was introduced by Hazan et al. in [35]. Recall
that in [35] Hazan et al. refer to a function as SLQC in
0, whereas for the purposes of our analysis we refer to a
function as SLQC at 6. We recover the uniform SLQC notion
of Hazan et al. by articulating a function is SLQC ar 6
for every 6. Our later analysis of the a-risk in the logistic
model benefits from this pointwise consideration. Intuitively,
the notion of SLQC functions extends quasi-convex functions
in a parameterized manner. Regarding notation, for 6, € R?
and r > 0, we let B(0,7) := {0 € R?: |0 — 6| < 7}.

Definition 3 (Definition 3.1, [35]): Let e,k > 0 and 6y €
R?. A function f: RY — R is called (e, &, 6)-strictly locally
quasi-convex (SLQC) at # € R? if at least one of the following
conditions apply:

L f(0) — f(fo) <,

2. |[V£(8)|| > 0 and, for every 6’ € B(0y,¢€/k),

(=Vf(0),0 —0)>0. (128)

Observe that the notion of SLQC implies quasi-convexity
about B(Ay,¢/k) on {6 € O : f(0) — f(0y) > €}; see Fig. 5
for an illustration of the difference between classical quasi-
convexity and SLQC in this regime. In [35], Hazan et al. note
that if a function f is G-Lipschitz and strictly-quasi-convex,
then for all 51,52 € R4, for all € > 0, it holds that f is
(e, G, 9~1)-SLQC at 0y for every 05 € R% this will be useful
in the sequel.

As shown by Hazan et al. in [35], the convergence guar-
antees of Normalized Gradient Descent (NGD, given in
Algorithm 1) for SLQC functions are similar to those of
Gradient Descent for convex functions.

Algorithm 1 Normalized Gradient Descent (NGD)

1: Input: 7" € N no. of iterations, 6y € R initial parameter,
1 > 0 learning rate

2:fort=0,1,...., T —1do £00)
V16,
3. Update: 6,41 =0, —n————
R (O
4: Return 07 = argmin f(6,)
01,....,0T

Proposition 4 (Thm. 4.1, [35]): Let f : R? = R, 6; € R,
and 6% = argmingcpa f(0). If f is (¢, k,0%)-SLQC at 6 for
every 6 € R?, then running the NGD algorithm with learning
rate 7 = ¢/r for number of iterations T > £2(|0; — 0*||?/¢>
achieves t,r{lian(et) — f(0*) <e.
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Fig. 7. A companion illustration for Lemma 1 which depicts the relevant
quantities involved. Note that there are three different configurations of the
angles 0, ¢ and 1. Refer to Fig. 8 for this illustration.

For an (¢, , 0y)-SLQC function, a smaller € provides better
optimality guarantees. Given € > 0, smaller x leads to faster
optimization as the number of required iterations increases
with 2. Hazan, et al. [35] show that if a function f is G-
Lipschitz and strictly-quasi-convex, then for all € > 0, f is
(e, G, 6p)-SLQC in 6. Thus, one may view x as approximately
quantifying the growth of the gradients of general functions.
Finally, by using projections, NGD can be easily adapted to
work over convex and closed sets (e.g., B(6p,r) for some
0o € R? and r > 0).

We conclude this subsection by studying the behavior of
(€, K, 0p)-SLQC functions on the ball B4(0y,€¢/x), which is
articulated by the following novel result.

Proposition 8: Let e,k > 0 and 6y € R?. Assume f is
(€,k,00)-SLQC at § € R If § € By(0o,¢/r), then f(6) —
f(6o) < e. Indeed, if f is (e, k,8p)-SLQC on O, then

By(fo,c/r)NO C {0€0: f(8) - f(By) < e}

Proof: Since f is (e, k,00)-SLQC at # € R? we have
that at least one condition of Definition 3 holds. Suppose that
Condition 2 holds. In this case, we have that ||V f(6)]] > 0
and (—Vf(0),0" —0) > 0 for every 0’ € B(y,€e/k). Since
|10 — 6o]| < €/k, choose ¢ > 0 small enough such that

0" =0+ 0Vf(0) € B(by,c/K). (129)

Thus, we have that
0<(=Vf(0),0" —0) (130)
=(=Vf(0),0 +0Vf(0)—0) (131)
=—6(Vf(0),Vf(0)) (132)
=—3|VIO17 (133)

which is a contradiction since § > 0 and ||V f(0)|| > 0. There-

fore, we must have that Condition 1 of Definition 3 holds, i.e.,

f(0) — f(6y) < e. Finally, a continuity argument shows that

f(8) — f(6o) < e whenever 6 € Bg(0p,¢/k) N O. O
The following is the formal statement and proof of

Lemma 1, which provides a useful characterization of the gra-

dient of (¢, %, 0p)-SLQC functions outside the set B, (6o, ¢/k).

Refer to Fig. 7 for a picture of the relevant quantities.
Lemma 1: Suppose f : RY — R is differentiable, 6, € R?

and p > 0.If § € R? is such that ||§—0y|| > p and ||V f(0)] >

0, then the following are equivalent:

(1) (=Vf(0),0 —0) >0 for all ¢ € By (0o, p);

(2) (=Vf(0),0 —0) >0 for all ¢ € By (0o, p);

() (=VF(8).00—6) > p|VFO)]]
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Proof: Clearly (1) = (2). (2) = (3): Let 8’ be the point
of tangency of a line tangent to B4 (6, p) passing through 6,
as depicted in Fig. 7. We define
0: the angle between 6y — 6 and ¢’ — 0;
¢: the angle between —V f(6) and 6’ — 6,
: the angle between —V f(6) and 6y — 6.
Recall that the inner product satisfies that

(u, 0) = [lulll|v]| cos(u,v), (134)

where ¢, , € [0,7] is the angle between u and v. By conti-
nuity and Condition (2),

VOO — 0] cos(¢) = (=Vf(0),6" —6) >0, (135)

s

which implies that ¢ < 5. Observe that, by construction,
we have ¢ = i + J. In particular, we have that ¢ < 5= d.
Since cos(-) is decreasing over [0, 7], we have that

cos(1)) > cos (g - (5) = gin(0). (136)

Since the triangle A66’0, is a right triangle, we have that

sin(d) = ”90—”79” and thus
P
cos(y)) > ——. (137)
W)= g —a
Therefore, we conclude that
(=V£(0),00 —0) = [[Vf(0)|[160 — 6 cos(v)  (138)
> pVO). (139)

as we wanted to prove.
(3) = (1): For a given 0’ € B,(0y, p), we define ¢, ¢ and
0 as above. By assumption,

IV £6) 1180 — ]| cos() = (~V£(8), 6 — 0)
> p|V£(9)] > 0.

(140)
(141)

Since cos™!(+) is decreasing over [—1, 1], (140) implies that

- P
1 < cos 1 (7) .
160 — 0|

Also, an immediate application of the law of cosines yields

1 (1160 = 6017 + 116" = 6]]* — [16" — 6o]>
- . (14
o= ( 2(|60 —o]lj6" — oI (14

(142)

Since [|§’ — 6p]| < p, we have that

1 (160 = 61> + 116" = 6]]* = p?
§ < cos™? (” .
2[00 — O|l]|6" — 0]

A routine minimization argument further implies that

2
§ < cos! \/1 — (L) = gin~! (L) )
160 — 0 160 — O

(145)

(144)

where the equality follows from the trigonometric identity
cos(sin~!(x)) = V1 — 22. Observe that, in order to prove

(=V1(0),6"=0) = Vf(O)lI¢" = bl cos(¢) >0, (146)
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oV (%

a)

Fig. 8. Three different configurations of the angles J, ¢ and .

it is enough to show that ¢ < 7. Depending on the position
of #’, the angles 4, ¢ and 1) can be arranged in three different
configurations, as depicted in Fig. 8.
a) Since ||«90—p—«9|| > 0, (142) implies that ¢ < Z. Therefore,
6<Tas <.
b) Since m < 1, (145) implies that § <
¢ < 35 as ¢ =<4
¢) Since sin~!(x) + cos™i(z) = %, (142) and (145) imply
that ¢ = + 5 < 3.
Since in all cases ¢ < g, the result follows. O
2) Lipschitz Inequalities in o~ and Main SLQC Result for
the a-Risk:
Lemma 2: If a,a’ € [1, 00, then, for all 6§ € By(r),

N

. Therefore,

[Ra(6) = R (0)] < La(0) | ~——=|.  (147a)
IVRa(0) = VR (0)]| < Ju(0) || (147b)
where,
2
log (1+ elléllva
Lq(0) == ( ( 5 )) , (148a)
Ja(8) = Vdlog (1+e”9W)a(|\e||\/E). (148b)

Proof: Here, we present proofs for both Lipschitz
inequalities.

a) Proof of First Inequality: For ease of notation,
we denote 3 = 1/a. Thus, we have that for @ € [1,00],
ie., 0 €l0,1],

Ro(0) = E[I*(Y, go(X))]
=E [L (1- ge(yfc)l_ﬁ)}

1-p
= Ry(0).

(149)
(150)
(151)
To show that R,, is Lipschitz in a=! = 3 € [0, 1], it suffices
to show %Rg(@) < L for some L > 0. Observe that
50 == 5775

where the equality follows since we assume well-behaved
integrals. Consider without loss of generality the expression
in the brackets; we denote this expression as

(1- ge(yx)l—ﬂ)] . (152)

f(ﬁvovyx) = iL (1 - 99(yx)175) :

B3 (153)

6041
¢ (0
J 5 )¢
9]
It can be shown that
go(yz) P log (go(yx)) | 1 —golyx)' "
0 =
f(ﬁv 7y$) 1_6 (1_5)2 )
(154)
and
2
£(1,6, y) = (o8 g0lwD))” (155)

2

In addition, it can be shown that for any y € {—1,+1},
x € [0,1]%, and 6 € By(r) that f(3,0,yz) is monotonically
increasing in 5 € [0,1]. Therefore, for any 5 € [0,1],
ye€{-1,+1}, 2 €[0,1]% and 6 € By(r),

(8.0, y2) < £(1,0,yz) (156)
_ (log go(yz))” (157
2
2
(1ogr(~l16Va))
< 5 . (158)

b) Proof of Second Inequality: For ease of notation,
we let § = 1/a. Since a € [1,00], # € [0, 1]. Thus, we have
that for a € [1, 00], i.e., § € [0,1],

VR (0) = E[Fi(a,0, X,Y)X]
=E[-Ygp(Y X)' P (1 - go(Y X)) X],

(159)
(160)

and we let Fy(6,0,X,Y) = —Ygo(Y X)' 7P (1 — go(Y X)).
For any 6 € B;(r) we have

IVRa(0) = VR (0)]

S\/E]EH(E(B,H,X,Y)—F1(6’797X7Y))|], (163)

where we used the fact that X has support [0,1]¢ for the
second inequality. Here, we obtain a Lipschitz inequality on
F by considering the variation of F} with respect to (3 for
any 0 € By(r), = € [0,1]%, and y € {—1,+1}. Taking the

derivative of Fi (3,0, x,y) with respect to 5 we obtain

%Fl (3,0,z,y) = %_yge(yx)l‘ﬁ(l —go(yr))  (164)
=y(1 — go(yx))ga(yz)' " log go(yz),
(165)
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Fig. 9. Another illustration highlighting the saturation of a-loss (R for
a = 10, 00) in the logistic model for a 2D-GMM with P[Y = 1] = .5,
Exjy=—1 = [5,.5], pxjy=1 = [1,1], and shared covariance matrix
¥ =11,.5;.5,3].

1—x

d
where we used the fact that d—a =—q'™® log a. Contin-
T

uing, we have

y(1 = go(yx))go(yx)' =" log go (yx)

< log (1+ ) (o)) (l0I1Va) 7 (166)

= log (1 + e“"“ﬂ)a(||0|\\/8)2—5 (167)

< log <1+6”9”‘/E)0(||9H\/8). (168)
Thus, we have that, for any 0 € B,(r),

[VR.(0) = VR ()] < Ja(0)[6 — 5], (169)

where 3,3 € [0,1] (o, o’ € [1,0]). Therefore, we have that,
for any 6 € By(r),

1 1

(07

IVRL(0) — VR (0)| < Ja(8) , (170)

o
where a, o’ € [1, 00]. 0

Theorem 3: Let ag € [1, 0], €9, ko > 0, and 0y, 6 € By(r).
If Ry, is (€0, ko, 0p)-SLQC at € and

g || VRa, (0)

0<a—ap < , (171)
2.74(0) (1 + 7“’2—(?)
then R, is (¢, s, 0p)-SLQC at 6 with
€= ey +2Lq(6) (O‘_%), (172)
[67e 7))
o, (1 n 2@-3) Ja(0)( — ) )
K Ko aag||VRa, (0)]] — Ja() (o — o)

. € €
Proof: For ease of notation let py = 2 and p = —, and
Ko KR

consider the following two cases.
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Surface Plot of Alpha (a=0.9) Loss Landscape

Surface Plot of Alpha (a=1.0) Loss Landscape.

2
» x

b)a=1 losswlandscape

Surface Plot of Alpha (a=10.0) Loss Landscape.

B o

(a) a = .9 loss landscape

Surface Plot of Alpha (a=2.0) Loss Landscape
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o
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(c) oo = 2 loss landscape (d) a = 10 loss landscape
Fig. 10. Loss landscape visualizations obtained using [79] for o € {.9,1,
2,10} training a ResNet-18 on the MNIST dataset. The visualization tech-
nique finds two “principal directions” of the model to allow for a 3D plot.
We note that similar themes as theoretically articulated in Section IV for
the simpler logistic model are also evident here; i.e., exploding gradients
for v too small, a loss of convexity (and increasing “flatness”) as « increases
greater than 1, and also a saturation effect as exhibited by the visual similarity
between the o = 2 and o = 10 loss landscapes. This hints at the generality
of the theory presented in Section IV.

Case I: Assume that R, (0) — Ra,(0o) < €o. Then,

Ra(0) — Ra(60)
= Ra(0) — Ruy(0) + Ray (0)

— Rao (90) + Rao (90) — R, (90) (174)
< La(0) (O‘O;é;"o) + e+ La(6) (O‘a;;“o) . (75

a—QQ

Since ey +2L4(6) ( aar ) = € we have Ry (0) — Ra(00) < e.
Case 2: Assume that Ry, (0) — Ra,(0o) > €. Since
R, is (eg, Ko, 00)-SLQC at 6 by assumption, we have that
IVRa, (0)|| > 0 and (—VR.,(0),8 — 0) > 0 for every
0 e B(eo, po).
Let p = ¢/k be given as in (42). If ||§ — 6y]| > p,
I[VR(6)]] > 0 and

(=V R (0),00 — 0) > p|[VRL()], (176)

then Lemma 1 would imply that R, is (e, &, 00)-SLQC at
0. In order to show these three expressions, we make ample
use of the following three inequalities: The first is the reverse
triangle inequality associated with VR, and VR,,, i.e.,

[VRa,(0) = VR.(0)| = [[VRa(0)]| — [[VRa, (0)]]]-
(177)

The second is that VR, () is J4(6)-Lipschitz in a1, i.e.,

1 1
— — —|Ja(0) = [[VRa,(0) = VR4 (0)]]. (178)
(%)) «
The third follows from a manipulation of (41), i.e.,
VR (0)]| > 2Ja(0) (1 +7py ") (gt —a™")  (179)
> Ja(0)(agt —a™h), (180)
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using the fact that oz% < aay and since rp, 1 > 1. With these
inequalities in hand, we are now in a position to complete the
three steps required to show that R, is (e, &, 0y)-SLQC at 6.

First, we show that |0 — 6y|| > p. Since Ry, is (€0, Ko, 00)-
SLQC at 6 and R,,(0) — Ra,(00) > €9 by assumption,
we have by the contrapositive of Proposition 8 that 6 ¢
B4 (6o, po). Thus, we have that |0 — || > po. Next, note that
p is related to pg by (42). If we can show that pg > p, then
we have the desired conclusion. Rearranging the left-hand-side
of (179), we have that

IVRao(0)|[(ag" —a )" > 2J40) (1 +7py "), (181)

which can be rewritten to obtain

IVRay (0)lI(0g " = a™ )™ = Ja(0) > Ja(0)(1 +2rpy ).

(182)
Since by the right-hand-side of (179) we have that
[VRao(0)]|(ag ' —a™ )™ = Ja(0) > 0, (183)
it follows by (182) that
—1
Ja(0)(1 +2rpy ) (184)

IV Rao )l (ag ' = a=t) =t = Ja(0)

Thus examining (42) in light of (184), we have that py > p,
which implies that |0 — 6y|| > p, as desired.

Second, we show that ||VR.(0)|| > 0. Applying (177)
to (178) we obtain

IVRa(0)l > IV Ray (0)]| = Ja(0)(ag" —a™") >0, (185)

where the right-hand-side inequality again follows by (179).
Thus, we have that ||V R, ()| > 0, as desired.

Finally, we show the expression in (176), i.e.,
(=VR,(0),00 — 0) > p||[VR(0)||. By the Cauchy-Schwarz
inequality, we have

(—=VR,(0),00 — 0)
> (=VRq,(6),00 — 0) = [VRa(0) — VRa, (0)[[160 — 6
(186)

> pollVRay (0)]| = Ja(0)(ag " — a™")2r, (187)

where in (186) we apply Lemma 1 for the first term; for the
second term we use the fact that VR, is J4(6)-Lipschitz in
a~! as given by (178) and the fact that 6 — 6 € B,y (2r).
Continuing from (187), we have that

(=VRa(6),00 — 0)
> pol| VRa(0)] = Ja(0) (gt = H)2r

— po||[VRa, (0) — VR, (0)]
> pol| VR (0)]| = Ja(0) (gt — a™)(po + 21),

(188)
(189)

where we first apply the reverse triangle inequality in (177)
and then we use the fact that VR, (0) is J4(6)-Lipschitz in

a~1, ie., the expression in (178). Rearranging the expression
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in (189), we obtain

pol VRa(0)I = Ja(0)(ag ' — a™")(po + 2r)

al —a ! r
= IVEO) <”° - 0||VRa(9))||(pO = )> (190
> |VRa(0)] (oo + 2r)Ja(6) (191)

PO — )
B - 0

where we used the inequality in (185). Thus, we finally obtain
(=VRu(6),00 — 6) > p|[VRa(6)], (192)

where p > 0 is given by

_ _ (1+2rpy ) Ja(0)
P (1 HVRQO(H)H(O(al — 0471)71 _ Jd(g)) , (193)

as desired. Therefore by collecting all three parts, we have by
Lemma 1 that R, is (¢, k,00)-SLQC at 6. O

3) Bootstrapping SLQC: Recall that the floor function,
denoted [-| : RT — N, can alternatively be written as
|z] =z — ¢, for some ¢q € [0,1).

Lemma 5: Fix 6 € By(r). Suppose that pg > 0 and there
exists gg > 0 such that |VRq (0)| > go for all &’ € [ag, x0].
Given N € N, for each n € [N] we define

1
Qp = Qp—1 + N7 (194a)
1 1
n — €n— 2L4(0 -, 194b
€n = €n_1+ d()anan_1N (194b)
"— 2r)J4(0 1
pu = puy — — Lot 220 Nal0) (194¢)

anan_lGn_l — Jd(e)/NN’

where G, 1 = [|VRa, ,(0)]. I N > Ju(0) (a2gs) ™",
then we have that {a, }2_, {€,}2 ., and {p,} N, are well-
defined. Furthermore, we have that p, > 0 for all n <
|a2g0(1+2rpy ) Ju(6) N .

Proof: For ease of notation, let J := Jy4(0), L := L4(6),
and g := gg. Observe that {a,,}_, is well defined and so
is {€,}2_o. Tt can be verified that if N > J (a2g)” ', then
n—10,Gp_1 — J/N > 0 and thus {p, }}V_, is well defined.
Now we show by induction that p,, > 0 for

2]
po —+ 27’ J
By assumption, py > 0. For the inductive hypothesis,
assume that pg,...,p,—1 are non-negative. Observe that,
by definition, we have

(195)

(pp +2r)J 1
— = —. 196
Pk Piet1 akak+1Gk — J/N N ( )

The previous equation and a telescoping sum lead to
n—1

(pp +2r)J 1
- —. 197
po p kZ:O akak+1Gk — J/N N ( )

Since pr > 0 for all & € [n — 1], we have the following
ordering pg > p1 > --- > p, and, as a result,

(po+2r)J n

—_—— . 198
atg— J/N N (198)

pPo — pPn <
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It can be shown that our choice of n in (195) implies that

(po +2r)J n
n > po— 53— >0, 199
which implies that p,, > 0 as desired. O

Theorem 4: Let ag € [1,00), €9, ko > 0, and 0y, 0 € By(r).
Suppose that R, is (€p, ko, 80)-SLQC at § € B,4(r) and that
there exists gp > 0 such that ||[VR, (0)| > go for every
o € [ag, 00]. Then, for every A € (0,1), Rq, is (ex, ki, 60)-
SLQC at 6 where

2
o960

ax = ag+ A , (200)
Ja(6) (1 + 27«*;—3)
. 2
ex == €0 + 2ALa(0) (O‘A a0> %096 . (201)
o/ gy(0) (1+7r2)
DS gy, (202)
R\ Ko

Proof: For ease of notation, let J := J4(6), L := L4(0),
and g := gg. Let A € (0,1) be given. For each

1+ 27“p61 2J
N>—+“> (203)
1—-X adyg
we define )
Po  Gpg
Ny=|A\————=N|. 204
A { po+2r J J (204)

The bootstrapping proof strategy is as follows: 1) For fixed
N € N large enough (as given above), we show by induction
that R, is (€n,kn,00)-SLQC at 6 with p, = e€,/k, for
n < N) using Lemma 5 and Theorem 3; 2) We take the limit
as N approaches infinity in order to derive the largest range
on « and the strongest SLQC parameters.

First, we show by induction that R, is (€,, kn,00)-SLQC
at 0 with p, = €,/k, for n < Ny. By assumption, R, is
(€0, Ko, 0p)-SLQC at 6. For the inductive hypothesis, assume
that Ry, is (o, €k, £1)-SLQC at 6 for all k € [n—1]. In order
to apply Lemma 5 to show that

Po>p1> ... > pp > > pNy, > Oy >0, (205)

for all n < N, and for some C > 0, we first show that the

assumptions of Lemma 5 are satisfied. Observe that, by our
assumption on N € N, we have that

L+2rpgt 20 _ 1+rpyt J

N > wT > ﬂ_

1-=X ofg

which is the first requirement of Lemma 5. Next, we want to
show that 9
PO apg
n<Ny<|———=N
> A {po + 2 J J )

which is the last requirement of Lemma 5. This is achieved
by observing that

—— 206
1—X adg ~ adg’ (206)

(207)

2 2
Po g Po g

Ny=|A———N| =\———""N— 208
A {p0+2rJ J po+2r J ¢ (208)

for some ¢ € [0,1) and that

2 2
Po Qg Po g

—N| = —N — 209
{po—i—Qr J J po+2r J 0 (209)
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also for some w € [0, 1). Note that (207) is equivalent to

1+7“p51 J
—w)————5 < N 210
(g —w)—— oy <V (210)
L+rpyt J

which holds by the fact that N > —5— in (206) and
gy

1-—AX
q —w < 1. Thus by Lemma 5, we have that
(po +2r)J n
n>po— 5 ———— >0, 211

for all n < Nj. In particular for n = N, we have that
(po +2r)J Ny

- 212

PN> = PO atg—J/N N (212
AJ 1

1-A\————-—— 213

>p0< Oz%g—J/NN> 1)

> @, (214)

where the second inequality follows by plugging in N, and
adding and subtracting AJ/N in the fraction and the last

1+2rp,t 2 1+
inequality follows from N > ﬂTJ L%
1-X ajg 1—-Xagg
since Qrpal > A for all A € (0,1). Therefore, we have that
1—-A
Cy = %; in other words,
1—A
po>p1>...>pn,1>pn>~->pNA>%>0.
(215)
Also, observe that
2
X9
Ap —Qp1 = — < , 216
TN T 201+ 2mp (1= M) (216)
where the inequality follows from the fact that
L+ 2rpy ' 27 2rpg M\ 27
N> —— —. 217
1o a%g> 1—X/ adg @17
In particular, (215) and (216) leads to
2
X9
Ay — Q1 < 218
LT 201+ 2rpg (1= M) (18)
e
ap_1Gn-1 , (219)

2J(1+rp,t))

where we use the fact that a,, > g and G,,_1 > ¢. As a
result, we can apply Theorem 3 to conclude that R, is
(€n, pn,00)-SLQC at § with «v,,, €, and p,, given as in (194a).
In particular by unfolding the recursion, we have that Rq
is (en,, PNy, 00)-SLQC at 6 with

19 g

an, = a0+ A1+ 2rp5 1) 1%_N’ (220)
N>\71 1 1

€Ny = €0 T nz:;) an(an +1/N)N’ ey
Nx—1 -1

(14 2rp;Y)J/N )
_ - n . Q22
S e e M

n=0

for some ¢ € [0, 1).
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Finally, we take the limit as N approaches infinity in
order to derive the largest range on o« and the strongest

SLQC parameters. Recall that Ny = P\po’f%ﬁjﬁ]\fj =
\—Lo

p0+2r4JLN — g, for some ¢ € [0,1). Thus, we have the

following relationship

I Apoady
N (Nx+a)(po+1)J°
Observe that taking the limit as N approaches infinity is

equivalent to taking the limit as N, approaches infinity.
Examining (220) as N, approaches infinity, we have that

(223)

2
)y = th an, = ao+ A1+ 2rpy ) 1209 (224)
A—00
Next considering (221), we rewrite to obtain
N,\ —1
1 1
(225)

RO D ree s Vi B

Ny—1
oL 11 1
o+ = B 226

—oty P (ag +Nag—a%/N>’ (226)

where we used a partial fraction decomposition. Let pn, be
the discrete measure given by

Nyx—1

E 5am
n=0

where d,,, is the point mass at «,. In particular for large N,
we can write (226) as

2L\adg 1 1
0

Let ) denote the uniform measure over (g, ], i.e., the
Lebesgue measure on the interval (o, «y]. Note that pp,
converges in distribution to ) as Ny goes to infinity. By tak-
ing limits, (228) becomes

(227)

ENy = €0

€\ = Nl\linoo €N, (229)
2L\
L / : (230)
(L+rpgHJ ) =
2L\
— o+ 09 (1 - @) . (231)
(L+rpy)J ax

Finally, we consider (222). Observe that from (199) we have
(po +2r)J Nx

PNy > po — 2 _J/N N (232)
aggp
-, (po+2r)J \Jites — g @33)
o atg— J/N N
~ o NXpoadg — q (po+2r)J (234)
" |Na2g—J N\a2g—J/N)|’

for ¢ € [0,1), where we plugged in the definition of N, and
simplified. Thus, taking the limit as N, approaches infinity

6045
we have that
PA = hm PN, (235)
Nx—
: NXxpoagg  q ( (po+2r)J
> 1 — = 55—
e (pO [Nagg —J N\aZg—J/N
(236)
= po(1—\). (237)
Thus, we conclude that R, is (ex, £, 0p)-SLQC at § with
2
ay = a0+)\(1+27“p51)_1a—3g, (238)
2L\
ex =t —0d (1 - @) (239)
(147rpy)J ax
px > po(l —A) (240)
A change of variables leads to the desired result. O

C. Rademacher Complexity Generalization and Asymptotic
Optimality

Lemma 6: If o € (0, 00], then [*(z) is C,, (a)-Lipschitz in
2 € [—rg,ro) for every g > 0, where for o € (0, 1],

Cry (@) == o (ro)o(—ro) 71 (241)
and, for a € (1, 0],
1—1
a—1 o @ T a—1
Cro(a) = (20‘71) (20‘71) ¢ 2 Ca v (242)

o(ro)o(—ro)' =

Proof: The proof is analogous to the proof in Propo-
sition 5. In order to show that 1%(2) is Cp,()-Lipschitz,
we take the derivative of [*(z) and seek to maximize it over
z € [—70,70]- Specifically, we have that for « € (0, o],

70 a—1
e’ < =

d Jo _ d o 1-1/«
TP = = (10 ) 4y
=o(2)?7 Ve — o)tV (244)
= (0(2) = Do(z)' /" (245)
< |(0(2) = Do(z)' 717 (246)
=o(—2)o(2) "V, (247)
where we used the fact that o(z) = 1 — o(—2). If a < 1,
it can be shown that
max o(—2)o(2) Y = o(ro)o(—ro) 7. (248)

z€[—r0,70]

Similarly if & > 1 and if ro > log (1 — 1/«), then it can be

shown that
a—1 1-1/« a
20— 1 2a0—1)"

(249)

max o(—z)o(z) " =
2€[—70,70]

where z* = log (1 — 1/a). Otherwise for o > 1, if we have
ro < log (1 — 1/a), we obtain using local monotonicity,

max o(—z)o(2) Y = o(ro)o(—ro) 7V,
zE€[—T0,T0]

(250)
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analogous to the case where o < 1. Thus, combining the two
regimes of o, we have the result. O

Theorem 5: If a € (0, 00|, then, with probability at least
1 —9, for all € By(r),

Ra(6) = Ra(0)| < C, 5 (o) % +D, () Lgrfﬁ) :
251)

where C|_ /7 () is given in (52) and (53) and where D, /; (@)

is given by D, () := 122 - (1 _ O.(_r\/a)lfl/a).
o —
Proof: By Proposition 2, which gives a relation between

«-loss and its margin-based form, we have

1 n
R(“0GoS,)=E (Sup - Zaila(yi,gg(xi))> (252)

geegnizl
I~ -
=E( sup — ) oil®(yi0,2;)) ] .
D R
(253)

The right-hand-side of (252) can be rewritten as

1~ -
E{ sup — ) oil®(yi(0, i)
<0€]Bd(r) n ;
= RU{I*(y1(0, 1)), ..., 1 (yn 0, 2,)) : 6 € Ba(r)}).
(254)
Observe that, for each i € [n], y;(f, z;) < rv/d by the Cauchy-
Schwarz inequality since 6 € By(r) and for each i € [n],
x; € [0,1]%. Further, by Lemma 6, we know that [%(z) is

C., (@)-Lipschitz in z € [~rg,ro]. Thus setting 7o = r/d,
we may apply Lemma 3 (Contraction Lemma) to obtain

1 n - v .
E <GES]}1;3?T) — ;Uil ({0, z>)>
=R ({1 (6, 21), ., 1 (yn (0, 20)) £ 6 € Ba(r)} )
(255)

Yn (0, xn)) 1 0 € Ba(r)}).
(256)

<C, g (@) R{(y1(0,21),- ..

We absorb y; into its corresponding x; and apply Lemma 4
to obtain

C, va (@) R{(y1(0, 1), - ..

<C, q(a)

syn(0,2n)) - 0 € Ba(r)})
rd
Vi
which follows since we assume that z; € [0,1]? for each

i € [n]. In order to apply Proposition 6, it can readily be
shown that for « € (0, ]

(257)

max 1“(2) <D a), (258)
o @ <D ()
where D 5 («) — (1 - o’(—r\/a)l—l/(y). Thus,
we apply Proposition 6 to achieve the desired result. O
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The following result attempts to quantify the uniform dis-
crepancy between the empirical a-risk and the probability
of error (true oo-risk); the technique is a combination of
Theorem 5 and Lemma 2. The result is most useful in the
regime where rvd < «/+/n; this prohibits the second term in
the right-hand-side of (259) from dominating the first, which
is the most meaningful form of the bound.

Corollary 3: If a € [1,00], then, with probability at least
1 —9, for all 6 € By(r),

‘Roo((’) - Ra((?)‘ <o (r\/a) <27:/\§ +4 %gT(‘L/‘S)>
2

2«

_ Proof: Consider the expression, Roo(0) — R.(6). Since
R () < Ry (0) for all 6 € By(r), the following holds

R (0) — Ra(6) < Roo(8) — Roo(9) (260)
2rvd 2log (4/9)
<o (r\/a) ( \/ﬁ +4 " ) ,
(261)

where we applied Theorem 5 for v = co. Now, consider the
reverse direction, 12, (6) — Roo (). For any 6 € By(r), we add
and subtract R () such that

Ra(0) = Roc(0)

= Roo(0) — Roo () + Ru(0) — Roo(6) (262)
2

oo (4 lo U—T\/E
o o) (22 o 50 Lero®)
(263)

where we apply Theorem 5 for the first term and Lemma 2 for
the second term® on the maximum value of 0, i.e, ||0|2 = 7.
Thus, combining the two cases we have the desired statement
for the corollary. O]

Theorem 6: Assume that the minimum a-risk is attained
by the logistic model, i.e., (55) holds. Let S,, be a training
dataset with n € N samples as before. If for each n € N,
éf{ is a global minimizer of the associated empirical a-risk
0 — R, (0), then the sequence (0%)2, is asymptotically
optimal for the 0-1 risk, i.e., almost surely,

lim R(fég) = R",

n—oo

(264)

where fj, (1) = (9, z) for each n € N and the Bayes risk
R* is given by R* := Jmin, P[Y 7 sign(f (X))

Proof: We begin by recalling the following propo-
sition which establishes an important consequence of
classification-calibration. In words, the following result assures
that minimizing a classification-calibrated loss to optimality
also minimizes the 0-1 loss to optimality.

3We apply Lemma 2 to the empirical distribution instead of the true
distribution, leading to a bound for the empirical a-risk.
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Proposition 9 (Thm. 3, [6]): Assume that ¢ is a
classification-calibrated margin-based loss function. Then, for
every sequence of measurable functions (f;)?°, and every
probability distribution on X x ),

lim Ry(f;) = Ry implies that lim R(f;) = R*, (265)

where R :=miny Ry(f) and R := miny R(f).
By the assumption that the minimum «-risk is obtained by
the logistic model, we have that

min R, (0) = _minRR(y(f), (266)

0€Bqy(r) f: X
where R, (6) is given in (25) and R, (f) = E[I*(Y f(X))]
for all measurable f. Thus, the proof strategy is to show that

lim R,(0%) = min R,(0), (267)
n—00 0B, (r)
and then apply Proposition 9 to obtain the result.
Let 62 be a minimizer of the a-risk, i.e.,
R,(0%) = min R, (0). (268)
0€By(r)
Observe that
0 < Ra(05) = Ra(67) =T, +11,, (269)

where I, := Ry (0%) — Ry (02) and 11,, := R (0%) — Ry (62).
After some straightforward manipulations of Theorem 5, (54)
implies that, for every ¢ > 0,

P (1Ra(8) — Ra(03)] > ) <ae "\ WP
(270)

whenever n is large enough. A routine application of the Borel-
Cantelli lemma shows that, almost surely,

lim I, = lim R,(%) — R,(02)=0.  (271)
Since é‘f; is a minimizer of the empirical risk Ra.,
I, = Ra(02) = Ra(67) < Ra(62) — Ra(62).  (272)

Again by Theorem 5, for every € > 0,

efcrﬁ(um\/ﬁ/n)?

PQmwwﬂwm>a<u”(wmmw

(273)

whenever n is large enough. Hence, the Borel-Cantelli lemma
implies that, almost surely,

lim |Ra(0%) — Ry (62)] = 0. (274)
In particular, we have that, almost surely,
limsupIl,, <0. (275)

n—oo

Plugging (271) and (275) in (269), we obtain, almost surely,

0 < limsup [Ro (6%) — Ra(602)| <0, (276)

n—oo

from which (267) follows.
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Balanced Labels
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XI
Fig. 11. A synthetic experiment highlighting the collapse in trained linear

predictors of a-loss for o € {0.65, 1,4} on clean, balanced data. Specifically,
a-loss is trained until convergence under the logistic model for a 2D-GMM
with mixing probability P[Y = —1] = P[Y = +1], symmetric means
px|y=—1 = [~1,—1] = —px|y=1, and shared covariance matrix ¥ = I.
Averaged linear predictors generated by training of «-loss averaged over
100 runs. Training data present in the figure is obtained from the last run.

For each n € N, let f;. : X — R be f;.(x) = (02, x).
Since we have " "

féz ((E) = O—il(o—(ég : l’)) = O—il(géz (CL’)),
Proposition 2, (266), and (267) imply that

Jim Ra(fge) = é]ﬁ%i?r) Ro(fo) = fgigRRa(f) =: R,,.

(277)

(278)

Since [ is classification-calibrated as established in Theo-
rem 1, Proposition 9 and (278) imply that

lim R(f;.) = min P[Y #sign(f(X))] =: R*, (279)
n— o0 n f:X—R
as required. O

D. Further Experimental Results and Details

1) Brief Review of the F1I Score: In binary classification, the
F score is a measure of a model’s accuracy and is particularly
useful when there is an imbalanced class, since it is known to
give more precise performance information for an imbalanced
class than simply using accuracy itself [80]. In words, the F}
score is the harmonic mean of the precision and recall, where
precision is defined as the number of true positives divided by
the number of true positives plus false positives (all examples
the model declares as positive) and where recall is defined
as the number of true positives divided by the number of true
positives plus false negatives (all the examples that the model
should have declared as positive). Formally, the definition of
the Fy score is

2 TP
Fl fr— 71 T 71 pr—
recall ™" + precision TP + 0.5(FP + FN)

where tp, fp, fn denote true positives, false positive, and false
negatives, respectively. In practice, tp, fp, and fn are drawn
from the confusion matrix of the model on test data. Note
that the use of the term “positive”, denoting the class name is
arbitrarily chosen; in practice, one lets “positive” class denote
the imbalanced class.

, (280)
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TABLE VII

FURTHER QUANTITATIVE RESULTS ASSOCIATED WITH FIG. 3(A) IN SECTION III-C WITH EXACTLY THE SAME EXPERIMENTAL SETUP. VALUES
REPORTED IN THE TABLE ARE THE TEST ACCURACY (IN %) OF A LINEAR PREDICTIVE MODEL TESTED ON 1 MILLION EXAMPLES OF CLEAN,
BALANCED SYNTHETIC TEST DATA. THE LINEAR MODEL WAS LEARNED BY AVERAGING MODELS FOR 100 TRAINING EXAMPLES
OVER 100 RUNS. SUCH MODELS WERE LEARNED FOR DIFFERENT IMBALANCE LEVELS OF THE TRAINING DATA AS SHOWN IN
THE TABLE. WE FOUND THAT THE BAYES ACCURACY OF THIS EXPERIMENT WAS 92.14%. IN GENERAL, WE FIND THAT
a® < 1, WHICH ALIGNS WITH OUR THEORETICAL INTUITION. THIS CONTRASTS WITH THE NOTABLE EXCEPTION
OF 1% IMBALANCE, WHERE a* > 1, WHICH POINTS TOWARDS THE USEFULNESS OF class upweighting IN
ADDITION TO EMPLOYING a-L.OSS FOR SUCH A HIGHLY IMBALANCED CLASS. ALSO OF NOTE, WE FIND
THAT SMALLER o IS NOT ALWAYS BETTER (SEE <5% IMBALANCE), WHICH HINTS AT A TRADE-OFF
BETWEEN EMPHASIZING THE IMBALANCED CLASS AND COMPUTATIONAL INFEASIBILITY
(E.G., EXPLODING GRADIENTS) AS DISCUSSED AFTER PROPOSITION 5. LASTLY,

WE NOTE THE CLOSENESS BETWEEN o« = 8 AND 1010 AND co; THIS
FOLLOWS OUR THEORETICAL INTUITION DERIVED FROM
THE saturation effect OF a-L0OSS AS DEPICTED IN (40)

— a’s —
4 5 .65 8 1 2.5 4 8 1010 0
T 7273 1236 1257 7181 71,19 7246 73.14 7371 7410 74.10
2 7954 7955 7851 77.81 7687 7413 71459 7532 751 7571
5 8422 8377 8348 8278 8224 80.68 8030 80.13 79.71 79.71
0 10 87.86 8754 8755 8730 87.09 8559 8536 85.08 8499 84.99
Imb % ~ 15 89.01 8898 8874 88.66 88.63 8832 88.09 83.14 8797 87.97
1 20 90.09 90.11 89.96 89.88 89.79 89.61 89.59 89.73 89.60 89.60
30 91.55 91.36 91.30 91.27 9124 91.16 91.10 9090 90.75 90.75
40 92.00 9197 9198 9197 9198 92.05 92.07 92.08 92.08 92.08
50 02.08 92.09 92.08 9208 92.08 92.08 9207 9206 92.06 92.06
TABLE VIII

A TWIN TABLE OF TABLE VII, EXCEPT WITH F; SCORES REPORTED. FOR A BRIEF REVIEW OF THE F; SCORE, SEE APPENDIX D.1. GAINS OF o™ < 1
OVER LOG-L0OSS (o = 1) ARE MORE EXAGGERATED BY THE F; SCORE, IN PARTICULAR SEE 2% AND 5% IMBALANCE

— a’s —

4 5 65 8 1 2.5 4 8 1010 oo
I 0.6261 06192 0.6231 0.6084 0.6081 0.6200 0.6338 0.6445 0.6517 0.6517
2 0.7446  0.7448 0.7280 0.7165 0.7007 0.6524 0.6607 0.6739 0.6807 0.6307
5 0.8146 0.8083 0.8040 0.7938 0.7857 0.7619 0.7560 0.7534 0.7467 0.7467
0 10 0.8648 0.8605 0.8606 0.8573 08545 0.8341 0.8309 0.8270 0.8257 0.8257
Imb % ~ 15 0.8800 0.8797 0.8765 0.8755 08751 0.8710 0.8680 0.8687 0.8665 0.8665
1 20 0.8937 08940 0.8920 0.8910 0.8899 0.8876 0.8872 0.8892 0.8875 0.8875
30 09124 09100 0.9092 09089 0.9084 09074 0.9066 09040 0.9021 0.9021
40 09187 00183 09184 009183 09183 09195 09199 09200 0.9201 0.9201
50 0.9207 09207 0.9207 09208 09208 0.9208 09207 0.9206 0.9205 0.9205

2) Experiments for Section III-C: In this section, we pro-
vide additional synthetic experiments, which follow the same
experiment protocol as Fig. 3. They highlight some of the
main themes of the paper, namely, a* < 1 in imbalanced
experiments, o > 1 in noisy experiments, trade-offs between
computational feasibility and accuracy (for both regimes of
«), and the saturation effect.

3) Commentary on Computational Feasibility of a-Loss:
In this section, we provide further commentary regarding the
computational feasibility of a-loss. In other words, we provide
further reasoning for our choice of « € [.8, 8] as a sufficient
search space of « in the experiments in Section VI.

For a — o0, we show through our theoretical landscape
analysis (see Section IV, Theorem 4, and for a visual, Fig. 4)
that the computational complexity increases because gradients
tend to become ‘“flatter”’; another (perhaps simpler) way to
see that the gradients become “flatter” is through Fig. 1(a),
where the loss itself has smaller derivatives as « tends to oo.
Unfortunately, a standard gradient optimizer will get stuck in
such flat regions of the landscape and learning ceases. Indeed
in deep neural networks, the gradients are “back-propogated”
through the network, and if the gradient values are small (as is

often the case for the very large a-losses), learning slows down
or even stops. This motivates our choice of o = 8 as the
upper limiting point of our search space, and we argue that it
is sufficient because of the saturation effect (see (40)).

For o — 0, we see the opposite effect, i.e., that the gradients
explode as o decreases from 1 (see Proposition 5 with follow-
ing commentary and Fig. 6 for a visual). Indeed, this motivated
the choice of the lower limit of @ = 0.65 in Fig. 3(a). This
issue was “pseudo-circumvented” in Tables VII, VIII, and IX
because if there was a NaN, the code would disregard that
run of the experiment for that small « and it wouldn’t factor
into that o’s averaged linear predictor. To give a sense for
how many NaNs occurred, for the 5% imbalance experiment,
a = .4 “NaN-ed” out 51 times out of the 100 runs. Thus,
we argue that a = .8 in general is sufficient as the lower
limiting point of the « search space.

For another visual perspective of these considerations, see
Fig. 10 which was obtained using [79] on a ResNet-18 learning
the MNIST dataset. Interestingly, we see exploding gradients
for « = .9, loss of convexity (and increasing flatness) as «
increases greater than 1, and saturation between o« = 2 and
« = 8. Thus, this visualization on a deep neural network
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TABLE IX

FURTHER QUANTITATIVE RESULTS ASSOCIATED WITH FIG. 3(B) IN SECTION III-C WITH EXACTLY THE SAME EXPERIMENTAL SETUP (TRAINING DATA
WITH LABEL NOISE). VALUES REPORTED IN THE TABLE ARE PERCENT ACCURACY OF AVERAGED LINEAR PREDICTORS, WHICH WERE TRAINED
ON NOISY DATA, ON 1 MILLION EXAMPLES OF CLEAN, BALANCED SYNTHETIC TEST DATA. SIMILARLY AS IN TABLE VII, WE OBSERVE
A SATURATION EFFECT. FURTHER, NOTE THAT a@ = oo DOES NOT ALWAYS OUTPERFORM THE SMALLER «’S, IN PARTICULAR,

SEE 20% NOISE WHERE o* = 8. THIS HINTS AT A TRADE-OFF BETWEEN @ AND COMPUTATIONAL FEASIBILITY IN THE
LARGE o REGIME (v > 1), WHICH ALSO FOLLOWS FROM OUR THEORETICAL INTUITION AS STATED AT THE END
OF SECTION IV

— a’s —
4 5 65 8 1 2.5 4 8 1010 o0

T 9218 92.17 92.16 92.17 92.17 9218 92.16 92.13 92.12 92.12

2 92.06 92.07 92.08 92.09 92.11 92.14 92.14 92.14 92.15 92.15

5 9134 9141 91.61 91.68 91.85 92.11 9212 92.13 92.13 92.13

1T 10 90.41 9034 90.53 90.89 91.29 92.01 92.04 9205 92.06 92.06

Noise % 15 88.45 88.72 89.03 89.53 90.14 9195 92.02 92.02 92.03 92.03

1 20 87.84 86.21 86.52 87.38 8885 91.17 91.53 9191 9146 91.54

30 80.43 80.34 81.48 8236 83.55 90.15 90.68 90.86 9098 90.98

40 75.02 7520 75.11 7538 7589 83.00 8451 8559 85.82 85.82

50 67.66 6745 6726 6722 67.08 70.61 7333 75.67 76.89 76.89
TABLE X The results of the multiclass symmetric noisy label experi-
MULTICLASS SYMMETRIC NOISY LABEL EXPERIMENT ON ments are presented in Tables X and XI. Note that we use the
MNIST. SEETABLE T FOR DESCRIPTIONS OF ACRONYMS same fixed learning rates as the binary symmetric noisy label
Do Aok IF% IL Ace of Acc  oF Can % experiments in Section VI-A. For the MNIST and FMNIST
0 99.16 99.16 1 0.00 datasets with label flips, we find very strong gains in the test
MNIST NN 242 ég 2‘51- ;g gggg 2 155 1056 accuracy, which continue to improve as the percentage of label
0 357 0857 g 397 flips increases, through Fralnlng a-loss fpr a > 1 over log-loss
20 60.99 97.96 3 60.62 (av = 1). Once label flips are present in these two datasets,

we note that a* = 7 or 8 for the CNN 242 architecture.
TABLE XI REFERENCES
MULTICLASS SYMMETRIC NOISY LABEL EXPERIMENT [1] T. Sypherd, M. Diaz, L. Sankar, and P. Kairouz, “A tunable loss function
ON THE FMNIST DATASET for binary classification,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2019, pp. 2479-2483.
Data Arch LF % LL Acc «o* Acc o* Gain % [2] T. Sypherd, M. Diaz, L. Sankar, and G. Dasarathy, “On the a-loss
0 90.45 90.45 1 0.00 landscape in the logistic model,” in Proc. IEEE Int. Symp. Inf. Theory
10 34.60 931 8 6.05 (ISIT), Jun. 2020, pp. 2700-2705.
FMNIST CNN 242 20 7751 80.27 7 15.18 [3] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical
30 67.94 88.10 7 29.67 Learning (Springer Series in Statistics), vol. 1, no. 10. New York, NY,
40 68.28 88.20 8 28.91 USA: Springer, 2001.

hints at the generality of our theoretical results of the a-loss
landscape in Section IV.

4) Multiclass Symmetric Label Flip Experiments: In this
section, we present multiclass symmetric noisy label experi-
ments for the MNIST and FMNIST datasets. Our goal is to
evaluate the robustness of a-loss over log-loss (o« = 1) to
symmetric noisy labels in the training data. We generate noise
in the multiclass training data as follows:

1) For each run of an experiment, we randomly select
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