
BlueScale: A Scalable Memory Architecture for Predictable
Real-Time Computing on Highly Integrated SoCs
Zhe Jiang

ARM Ltd, UK

Kecheng Yang

Texas State University, USA

Neil Audsley

City, University of London, UK

Nathan Fisher

Wayne State University, USA

Weisong Shi

Wayne State University, USA

Zheng Dong
§

Wayne State University, USA

Abstract
In real-time embedded computing, time-predictability and per-

formance are required simultaneously by memory transactions.

However, with increasingly more elements being integrated into

hardware, memory interconnects become a critical stumbling block

to satisfying timing correctness, due to lack of hardware and sched-

uling scalability. In this paper, we propose a new hierarchically

distributed memory interconnect, BlueScale, managing memory

transactions using identical Scale Elements, which ensures hard-

ware scalability. The Scale Element introduces two nested priority

queues, achieving iterative compositional scheduling for memory

transactions, guaranteeing transaction tasks’ scheduling schedula-

bility. Associated with the new architecture, a theoretical model is

established to improve BlueScale’s real-time performance.

ACM Reference Format:
Zhe Jiang, Kecheng Yang, Neil Audsley, Nathan Fisher,Weisong Shi, and Zheng

Dong
§
. 2022. BlueScale: A Scalable Memory Architecture for Predictable

Real-Time Computing on Highly Integrated SoCs. In Proceedings of Pro-
ceedings of the 59th ACM/IEEE Design Automation Conference (DAC) (DAC
’22). ACM, San Frncisco, CA, USA, 6 pages. https://doi.org/10.1145/3489517.

3530612

1 Introduction
In modern real-time systems, integrating an increasing number

of processors and hardware accelerators (HAs) into a System-on-

Chip (SoC) is gaining momentum, driven by the diverse functional-

ities required by modern embedded computing (e.g., image recogni-

tion [10]) and the rapid evolution of manufacturing processes in

the semiconductor industry (e.g., 5𝑛𝑚 ASICs production [1]).

The memory sub-system is a vital shared resource in embedded

computing architecture, as the execution of clients (i.e., processors
and HAs) relies on it heavily [9]. In general, the processing speed

of the memory sub-system (a provider) is slower than most clients;

hence, the real-time performance of memory processing directly

influences the clients’ utilization, performance and predictability,

etc. [9, 20]. As ‘bridges’ connecting the memory sub-system and the

clients, memory interconnects therefore become a dominant factor

when determining the entire system’s real-time performance [9].

Centralized memory interconnect. In conventional computing

architectures, memory interconnects (e.g., AXI-interconnect [2])
often adopt a centralized design (Fig. 1(a)), deploying a monolithic

switch box and a central arbiter to buffer and schedule memory

transactions. With a global view of memory transactions, central-

ized interconnects can achieve near optimal real-time performance

when a system only has a small number of clients, e.g., a quad-core

§
Corresponding author, dong@wayne.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00

https://doi.org/10.1145/3489517.3530612

Reset_Value [31:0]

0x0

0x0

Scheduling
Result[1:0] Mux

00: Idle
01: Client 0
10: Client 1

Scheduling
Parameter

(Θi, Πi)[63:0]

Client ID
[1:0]

CLK

Client 0 Client 1

[63:32]

[31:0]

[P]rogram

[R]esetn_port

[C]lock

[V]alue_portCurrent_Value [31:0] 0x1

Sub

Server: Client 1

Server: Client 0

P-Counter V

P

R

C

B-Counter V

P

R

C

P-Counter V

P

R

C

B-Counter V

P

R

C

BlueScale

μ.0 μ.1 μ.2 μ.3 μ.4 μ.5 μ.6 μ.7

DDR

DDR Controller

Tasks

Scheduler
(Θ1, Π1)
(Θ2, Π2)

Buffer

Interface
Selector

Buffer Buffer

DeMux

Parameter Path Request Path Response Path

Scale Element

Fetcher

Clint ID
+ Task ID

Parameters

Loader

Clint ID +
Task ID +

Parameters

Scratch Pad
(512 B)

A
LU

[63:0]

[65:64]

Scheduling
Parameter
(Θi, Πi)[63:0]

Client ID
[1:0]

Client0/1
Parameters

[73:0]

Task ID

1

2

...

Period

P(1,1)

C(1,1)

...

Execution
Time

C(1,1)

C(1,2)

...

32 bits8 bits 32 bits

1

2

P(2,1)

P(2,2)

C(2,1)

C(2,2)

Clinet
ID

1

1

1

2

2

...2

C
u

st
o

m
iz

ab
le

 D
ep

th

2 bits

Task Parameter Table

Interface Selector Control

Control Path Data Path

Control Path Data Path

Client Port Client Port

Provider Port

Client Port

Provider Port

Memory Sub-system

μ.0

Memory Sub-system

μ.1 μ.2 μ.3 μ.0 μ.1 μ.3 μ.4

Central
Arbiter

Switch Box

Centralized Memory
Interconnect

Local
Arbiter

Distributed Memory
Interconnect

Local
Arbiter

Local
Arbiter

(a) Centralized memory interconnect

Memory Sub-system

Reset_Value [31:0]

0x0

0x0

Scheduling
Result[1:0] Mux

00: Idle
01: Local Client 0
10: Local Client 1

Scheduling
Parameter

(Θi, Πi)[63:0]

Client/VP ID
[1:0]

CLK

Local
Client 1

Local
Client 0

[63:32]

[31:0]

[P]rogram_port

[R]esetn_port

[C]lock_port

[V]alue_portCurrent_Value [31:0] 0x1

Sub

VP1: Client 1

VP0: Client 0

P-Counter V

P

R

C

B-Counter V

P

R

C

P-Counter V

P

R

C

B-Counter V

P

R

C

BlueScale

μ.0 μ.1 μ.2 μ.3 μ.4 μ.5 μ.6 μ.7

Memory Controller

Tasks

Local
Scheduler

(Θ1, Π1)
(Θ2, Π2)

Buffer

Interface
Selector

Buffer Buffer

DeMux

Parameter Path Request Path Response Path

Scale Element

Fetcher

Clint ID
+ Task ID

Parameters

Loader

Clint ID +
Task ID +

Parameters

Scratch Pad
(512 B)

A
LU

[63:0]

[65:64]

Scheduling
Parameter
(Θi, Πi)[63:0]

Client/VP ID
[1:0]

Client0/1
Parameters

[73:0]

Task ID

1

2

...

Period

P(1,1)

P(1,2)

...

Time
Budget

C(1,1)

C(1,2)

...

32 bits8 bits 32 bits

1

2

P(2,1)

P(2,2)

C(2,1)

C(2,2)

Clinet
ID

1

1

1

2

2

...2

C
u

st
o

m
iz

ab
le

 D
ep

th

2 bits

Task Parameter Table

Interface Selector Control

Control Path Data Path

Control Path Data Path

Local Client Port Local Client Port

Local Provider Port

LocalClient Port

Local Provider Port

Memory Sub-system

μ.0

Memory Sub-system

μ.1 μ.2 μ.3 μ.0 μ.1 μ.3 μ.4

Central
Arbiter

Switch Box

Centralized Memory
Interconnect

Local
Arbiter

Distributed Memory
Interconnect

Local
Arbiter

Local
Arbiter

Memory

SE(0,0) SE(0,1)

SE(1,0)

SE(2,0)

SE(0,2) SE(0,3)

SE(1,1)

VP.0 VP.1

(b) Distributed BlueTree

Figure 1: Top-level architecture of centralized and distributed
interconnects with four clients (𝜇.x: client with ID #x).
system [11]. A considerable amount of research, including AXI-

hyperconnect [15] and AXI-interconnect
RT

(AXI-IC
RT
) [11], has

bounded the time-predictability and performance of the central-

ized memory interconnect by modifying its micro-architecture and

scheduling strategies, e.g., allocating memory bandwidth to a client

based on its workload.

However, with an increasing number of clients, the centralized

memory interconnect becomes a critical stumbling block, impeding

the scalability of a real-time system. The reason for this is twofold:

from the hardware perspective, with a growing number of clients,

the logic size of the switch box and the arbiter increases, limiting the

maximum synthesizable clock frequency, leading the interconnect

to become the system’s critical path [9, 16]; meanwhile, the cen-

tralized scheduler has to update the scheduling queue frequently

if software tasks on any client are altered. As more clients are

involved in the system, the scheduling overhead is not affordable.

Distributed memory interconnect. To ensure hardware scal-

ability, distributed memory interconnects have recently been in-

vestigated, including BlueTree [16], GSMTree [8] and their vari-

ants [7, 19, 20]. Unlike the centralized design, a distributed memory

interconnect (Fig. 1(b)) restructures the transaction paths based on

staged pipelines and employs multiple local arbiters through the

pipelines. A local arbiter only manages the memory transactions

in a specific section of the pipeline. Since the local arbiters are

synthesized separately, the distributed memory interconnects are

usually synthesized with a higher clock frequency, achieving better

hardware scalability compared to the centralized memory inter-

connects. However, the distributed design magnifies the issue of

scheduling scalability. Specifically, the memory transactions trans-

mitted through a distributed memory interconnect usually involve

multiple local arbiters. As more memory requests are issued simul-

taneously, contentions increase at each shared arbiter, which may

cause severe performance degradation with a high local transaction

time. On the other hand, the arbitration methods implemented by

the local arbiters are naïve heuristics [20], which do not consider

the software’s real-time requirements. The scheduling decisions

made by each arbiter are entirely independent of the demands of

the memory transactions issued by the software tasks, and cannot

guarantee the transactions’ real-time performance. In summary,

in modern many-core real-time systems, it is important but chal-

lenging to design a memory interconnect to satisfy scalability and

time-predictability simultaneously.

Contributions. In this paper, we propose BlueScale, a new memory

architecture for multi-/many-core systems, the ensure the SoCs’

real-time performance. To this end, we present:

https://doi.org/10.1145/3489517.3530612
https://doi.org/10.1145/3489517.3530612
https://doi.org/10.1145/3489517.3530612

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Zhe Jiang, Kecheng Yang, Neil Audsley, Nathan Fisher, Weisong Shi, and Zheng Dong§

(d) BlueScale with 64 clients(c) Micro-architecture of random access buffer(a) Top-level architecture of BlueScale with 16 clients

Sever task:

Memory Controller

Memory

S E N W

S

μ.0 μ.1 μ.2 μ.3
μ
.4

μ
.5

μ
.6

μ
.7

E

μ.8μ.9μ.10μ.11

μ
.1

2
μ
.1

3
μ
.1

4
μ
.1

5

N

W

SE(1,0)
SE

(1
,1

)SE(1,2)

SE(1,3
)

SE(0,0)

Clients

Local Tasks

1,0

A
 1,0

B
 Local Provider Port

Local Client Port

S

SE(0,0)

Memory Controller

Memory

E N W

SE
(1

,1
)

SE
(2

,5
)

SE
(2

,6
)

SE
(2

,7
)

SE
(2

,4
)

μ
.

1
6

μ
.

1
7

μ
.

1
8

μ
.

1
9

μ
.

2
0

μ
.

2
1

μ
.

2
2

μ
.

2
3

μ
.

2
4

μ
.

2
5

μ
.

2
6

μ
.

2
7

μ
.

2
8

μ
.

2
9

μ
.

3
0

μ
.

3
1

SE(1,0)

SE(2,1) SE(2,2) SE(2,3)SE(2,0)

μ.
0

μ.
1

μ.
2

μ.
3

μ.
4

μ.
5

μ.
6

μ.
7

μ.
8

μ.
9

μ.
10

μ.
11

μ.
12

μ.
13

μ.
14

μ.
15

SE(1
,3

)

SE(2,1
3

)
SE(2

,14
)

SE(2,1
5

)
SE(2,12

)

μ
.

4
8

μ
.

4
9

μ
.

5
0

μ
.

5
1

μ
.

5
2

μ
.

5
3

μ
.

5
4

μ
.

5
5

μ
.

5
6

μ
.

5
7

μ
.

5
8

μ
.

5
9

μ
.

6
0

μ
.

6
1

μ
.

6
2

μ
.

6
3

SE(1,2)

SE(2,9)SE(2,10)SE(2,11) SE(2,8)

μ.
32

μ.
33

μ.
34

μ.
35

μ.
36

μ.
37

μ.
38

μ.
39

μ.
40

μ.
41

μ.
42

μ.
43

μ.
44

μ.
45

μ.
46

μ.
47

S

E

N

W

DeMux

Interface
Selector

Local
Scheduler

(Θ, Π)

Buffer

Local Client Ports Local Client Ports

Local Provider Ports

Parameter Path Request Path Response Path

Scale Element

SE(1,1)

Buf Buf Buf Buf

Local Scheduler

Mem Request 1

Mem Request 3

Mem Request 2

...

T1

T2

T3

...

A
rb

ito
r

Loader

Fetcher#1

#2

#3

...

Queue Bank
Client μ.x

Random
Access
Buffer

(b) Top-level micro-architecture of SE

Figure 2: BlueScale Overview (𝜇.x: client with ID #x; SE: Scale Element; VE: Virtual Element).
• A hierarchically distributed memory interconnect, managing

memory requests using a set of identical Scale Elements (SEs),

which ensures hardware scalability (Section 3).

• A new micro-architecture of SEs, realizing two nested pri-

ority queues to implement iterative compositional schedul-

ing of memory requests, which achieves simultaneous time-

predictability and scheduling scalability (Section 4).

• An interface selection algorithm and the associated analysis

framework to determine the best bandwidth for each server

task in the compositional scheduling at each SE (Section 5).

• Extensive experiments, including real-world use cases exam-

ining overhead, scalability and time-predictability of BlueScale

over state-of-the-art memory interconnects (Section 6).

2 BlueTree: A Distributed Memory Interconnect
Before diving into the newly proposed architecture, we first re-

view a SOTA distributedmemory interconnect with its performance

issues. BlueTree is a distributed real-time memory interconnect pre-

sented by Audsley [3], and implemented and upgraded by Garside et
al. [6], Gomony et al. [7, 8] andWang et al. [19, 20], etc. BlueTree and
its variants have also been integrated into different real-time SoCs,

including T-CREST [16] and BlueVisor [12], to ensure hardware

scalability and achieve a certain level of predictability.

2.1 Basic Architecture.
Fig. 1(b) illustrates a generalized 4-client BlueTree memory ar-

chitecture, containing clients, a BlueTree memory interconnect,

and a shared memory sub-system. A client can be a processor (ei-

ther single-core or multi-core) or an HA, marked as 𝜇.x, where x
is the client’s index. BlueTree employs multiple stages of 2-to-1

multiplexers to create a tree network, connecting multiple clients

at the bottom of the network and the shared memory sub-system

at the top. This design provides a bi-directional memory access

path to each client, i.e., request and response paths. When a client

issues a memory request, the request is transferred using the re-

quest path, while the memory response returns to the client using

the response path. When the number of clients increases, BlueTree

scales with more multiplexer stages. The independent synthesis

and deployment of the multiplexers ensure the hardware scalability.

2.2 Scheduling Strategy and Problems.
In a memory request path, BlueTree introduces a local arbiter in

each multiplexer, deciding which memory request to relay to the

memory direction (potentially the next multiplexer). The arbitration

scheme defines a blocking factor𝛼 , determining that every𝛼 request

from the left-hand side can be blocked by at most one request from

the right-hand side; hence the left-hand side can be considered as

the local high-priority path, and the right-hand side as the local low-

priority path. When 𝛼 is set to 1, BlueTree becomes a distributed

binary tree staging with a local Round-Robin scheme.

Scheduling scalability. As described above, memory transactions

transmitted through BlueTree usually involve multiple local ar-

biters in the request path. As more memory requests are issued

simultaneously, the contentions increase at shared local arbiters,

which may cause severe performance degradation and high local

transaction time [19, 20]. The arbitration scheme depends on the

blocking factor, which is defined during the hardware development

phase. In other words, it does not consider the real-time require-

ments of the software at run-time and simply assumes the priority

for local transaction paths. This results in the scheduling decisions

in BlueTree being completely independent of the memory transac-

tions issued by the software tasks, causing a severe gap between the

hardware design and the system performance. For these reasons,

it is difficult to guarantee the real-time performance of BlueTree’s

memory accesses. As reported by Garside et al. [8] and Wang et
al. [20], in an 8-client BlueTree, the worst-case response time of a

memory transaction is up to 6 times higher than the average case,

leading to significant timing variances of memory accesses. Such

uncertainty is further increased when integrating more clients into

the system, which magnifies the problem of scheduling scalability.
Although research, such as Gomony et al. [7], alleviates the timing

variance during memory accesses by allocating time budgets to

specific transaction paths (i.e., Time Division Multiplexing (TDM)),

they still fail to build links between scheduling and task demands.

Additionally, similar to the centralized real-time memory intercon-

nects (e.g., [11, 15]), this work requires recalculation of the memory

bandwidth of all clients if the software tasks on any one client are

altered, which further degrades the utilization of BlueTree and the

memory sub-system [19].

3 BlueScale: Overview
In coping with the scheduling scalability issue, we present a new

hierarchically distributed real-time memory interconnect named

BlueScale, which employs a set of Scale Elements (SEs) to manage

memory requests. SEs are organized as a Quadtree (see Fig. 2(a) and

Fig. 2(d)), and each SE has an index of SE(𝑥,𝑦), where 𝑥 indicates the

SE’s depth in the Quadtree and 𝑦 represents its order at this depth.

Generally, each SE only needs local information from neighbour-

ing SEs on the request paths (i.e., SE(𝑥 + 1, 4𝑦), SE(𝑥 + 1, 4𝑦 + 1),

SE(𝑥 + 1, 4𝑦 + 2), SE(𝑥 + 1, 4𝑦 + 3)) to determine which memory re-

quest should be processed at each time, while being able to guaran-

tee the real-time performance of the whole system.

3.1 Top-level Architecture
Fig. 2(a) illustrates the top-level architecture of BlueScale, which

is established using distributed 4-to-1 SEs, forming a tree connecting

the clients and the memory sub-system. The clients are the “leaves

of the tree” and the memory sub-system is the “tree root”. An SE

contains four local client ports and one local provider port, which

are connected to its local clients and local provider respectively.

BlueScale: A Scalable Memory Architecture for Predictable Real-Time Computing on Highly Integrated SoCs DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Algorithm 1: BlueScale scheduling under GEDF

input :Ready(𝑡) , which is the ready server task set at time 𝑡
output :Sched(𝑡) , which is the scheduled job at time 𝑡

1 Sched(𝑡) = ∅
2 while (Sched(𝑡) = ∅ & Ready(𝑡) ≠ ∅) do
3 Loop through Ready(𝑡) to find the server task 𝜏𝑋 with the

earliest deadline, where 𝑋 ∈ {𝐴, 𝐵,𝐶, 𝐷 }.
4 if 𝜏𝑋 has local tasks then
5 Loop through all local tasks in 𝜏𝑋 to find the local task 𝜏𝑖

with the earliest deadline

6 if 𝜏𝑖 has a pending job 𝜏𝑖,𝑗 then
7 Sched(𝑡) = 𝜏𝑖,𝑗
8 end
9 else
10 Remove 𝜏𝑖 from 𝜏𝑋

11 end
12 end
13 else
14 Remove 𝜏𝑋 from Ready(𝑡)
15 end
16 end

Based on the locations of an SE, the local client can be a system-

wide client (processors and HAs) or another SE. Similarly, the local

provider can be the memory sub-system as well as a SE. An SE

manages its memory transactions using only local information

between its local clients and the local provider, without requiring a

global view; hence, it can be synthesized independently.

Scale element (SE). Fig. 2(b) describes the high-level micro archi-

tecture of an SE, containing three paths for memory transactions,

the request, parameter, and response paths. In the request path, four

priority queues are deployed to buffer and prioritize the memory re-

quests sent from each local client. A local scheduler is used to decide

from which priority queue the memory requests are transferred to

the local provider, assisted by an interface selector in the parameter

path. In the response path, a demultiplexer is adopted to route the

memory response back to the local clients. Next, we explain how to

achieve scheduling scalability by developing a real-time scheduler

at each SE, based on the hardware design.

3.2 Scheduling Strategy
In each SE, a compositional scheduler is implemented to sched-

ule memory requests in a hierarchical manner [17]. Based on the

proposed architecture, each SE has four local clients. The clients are

viewed as isolated components, with each component having the

illusion of executing on a dedicated Virtual Element (VE). At run-

time, an upper-level scheduler distributes the transaction capacity

of the SE to each component and determines the characteristics of

the VE in each component. Each component then has a lower-level

scheduler to schedule the tasks in that component on that VE. In

order to analyze and certify each component independently, inter-

faces are needed to characterize the supply provided by a VE, i.e.,
the available transaction time units from the physical SE to support

task execution. The periodic resource model [17] is an example of

such a fundamental interface. This characterizes a VE using a pair of

parameters (Π,Θ), with the interpretation that at least Θ time units

of processor time are guaranteed to the supported task set every

Π time units. The quotient Θ/Π is called the bandwidth of the VE.

Practically, server tasks are introduced to realize the compositional

scheduling at each SE, where Π indicates the period of the server

task and Θ represents the server task’s execution time. The periods

and execution times of the server tasks will be determined by an

interface selection algorithm (Sec. 5) based on the parameters of the

local tasks. Fig. 2(a) shows an example system. For SE(1,0), on the

upper-level, four components 𝜇.0, 𝜇.1, 𝜇.2, and 𝜇.3 are supported

by four server tasks 𝜏𝐴
1,0
, 𝜏𝐵

1,0
, 𝜏𝐶

1,0
, and 𝜏𝐷

1,0
, which are scheduled

as four conventional tasks on the SE. Similarly, SE(0,0) also has

four components, SE(1,0), SE(1,1), SE(1,2), and SE(1,3), represented

by four server tasks 𝜏𝐴
0,0
, 𝜏𝐵

0,0
, 𝜏𝐶

0,0
, and 𝜏𝐷

0,0
, respectively. Note that

the server tasks executed on SE(1,0), SE(1,1), SE(1,2) and SE(1,3)

are considered to be local tasks from the point of view of SE(0,0).

Fig. 2(d) shows an example system with 64 clients. Based on the

proposed design, BlueScale has some useful properties which ensure

the scheduling scalability and predictability of the new architecture:

• All the SEs are isomorphic, including the hardware archi-

tecture and the real-time scheduler. Thus, the overhead for

system implementation and integration is light.

• Scheduling decisions depend entirely on the timing require-

ments of local tasks, which are obtained from the task pa-

rameters.

• When a task joins or leaves a client, the system will only

update the parameters of the server tasks on the correspond-

ing memory request path, and all the other server tasks will

remain the same; if multiple tasks join or leave the system si-

multaneously, the SEs involved in the memory request paths

can refurbish the server tasks’ parameters at the same time,

in a distributed manner.

4 Scale Elements: Design
To realize the compositional scheduling (which is described by

Algorithm 1), we implement two nested priority queues in each SE.

In the rest of this section, the hardware architecture of the SE will

be introduced, which supports the proposed scheduling method.

4.1 Random Access Buffers
We implemented the low-level priority queue using random

access buffers. Unlike conventional FIFO queues, random access

buffers have a more complicated micro-architecture (see Fig. 2(c)) to

enable random accesses of the stored contents. This uses a register

chain and register banks to maintain memory requests and their

associated parameters. The register chain is physically connected

to a loader and a fetcher, and the register banks are connected

to an arbiter. The arbiter is implemented using comparators and

multiplexers, where the comparators can read the parameters of

each request and the multiplexers are connected to the requests’

identifiers. At runtime, the comparators continuously check the

request parameters in the register banks, searching for the request

with the highest priority, and controlling the multiplexers to send

the request’s identifier to the fetcher. According to the identifier,

the fetcher then transfers the corresponding request to the local

scheduler.

4.2 Local Scheduler
The local scheduler realizes the upper-level priority queue in an

SE. A local scheduler mainly consists of two elements (see Fig. 3(a)):

Server tasks. Server tasks (i.e., 𝜏𝐴 , 𝜏𝐵 , 𝜏𝐶 , and 𝜏𝐷) are performed us-

ing countdown counters, where a Period counter (P-counter) stores

the server task’s period (Π) and a Budget-counter (B-counter) stores
its execution time (Θ). Note that Π and Θ are determined by the

interface selection algorithms, which are introduced in Sec. 5. The

same micro-architecture is adopted for both counters (see Fig. 3(b)).

A counter has two registers which store the counter’s reset value

and current value. At the counter interfaces, three input ports and

one output port are introduced. The input ports are used to program,

reset, and enable/trigger the counter, and the output port returns

the counter’s current value. During run-time, the counter’s reset

value can be updated by an interface selector using its program

port, and the counter’s current value is reset when its reset port

equals 0. The counter decreases the current value by one when

its enable port meets a clock rising edge. To refresh a server task

(e.g., 𝜏𝑋) every Π𝑋 with Θ𝑋 time capacity, the reset values in P-

counter and B-counter are configured as Π𝑋 and Θ𝑋 , respectively.

The P-counter output is connected to its own reset port and that of

its associated B-counter.

Scheduling circuits. The scheduling circuits prioritize server tasks.
To achieve this, we connected the B-counter output with a constant

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Zhe Jiang, Kecheng Yang, Neil Audsley, Nathan Fisher, Weisong Shi, and Zheng Dong§

(a) Micro-architecture of a local scheduler

VE Param
(Θi, Πi)[63:0]

Mux

[0]: Local Client 0
[1]: Local Client 1
[2]: Local Client 2
[3]: Local Client 3

VE ID[1:0]

CLK

[63:32]

[31:0]

Reset_Value [31:0][P]rogram_port

[R]esetn_port

[C]lock_port

[V]alue_portCurrent_Value [31:0] 0x1

Sub

P/B-Counter

(b) Micro-architecture of P-counter and B-counter

Control Path Data Path

0x0

τB: Local Client 1

P-Counter V

P

R

C

B-Counter V

P

R

C

0x0

τA: Local Client 0

P-Counter V

P

R

C

B-Counter V

P

R

C

0x0

 τC: Local Client 2

P-Counter V

P

R

C

B-Counter V

P

R

C

0x0

τD: Local Client 3

P-Counter V

P

R

C

B-Counter V

P

R

C

Local Clients 0 1 2 3

Fetcher

Clint ID +
Task ID

Parameters

Loader

Clint ID +
Task ID +

Parameters

Scratch Pad
(2 KB)

A
LU

[63:0]

[65:64]

VE Parm
(Θi, Πi)[63:0]

VE ID[1:0]

[73:0]

Task ID

1

2

...

Period

T(0,1)

T(0,2)

...

Execution
Time

C(0,1)

C(0,2)

...

32 bits8 bits 32 bits

1

...

T(1,1)

...

C(1,1)

...

Clinet
ID

0

0

0

1

...

1 T(3,1) C(3,2)3

C
u

st
o

m
iz

ab
le

 D
ep

th

2 bits

Task Parameter Table

Interface Selector Control

Control Path Data Path

Local Client 0

Round-Robin

...
0b11

0b01

0b10

0b00
(Client ID)

Local Client 1

Local Client 2

Local Client 3

Task Parm + ID [71:0]

Figure 3: Micro-architecture of the local scheduler.
0x0 using an XOR gate, which checks whether the server task (𝜏𝑋)
is supplying enough time capacity (Θ𝑋) for its local client. If the

server task has enough time capacity (i.e., Θ𝑋 > 0), a single-bit

“1” is returned, otherwise “0” is returned. The scheduling circuits

store the results from inspecting the server tasks in a 4-bit register

and connect the register to a multiplexer, deciding the memory

request from which the local client can be transferred. If more than

one server task provides enough time budget at the same time, the

memory request with the highest priority is transferred. Note that,

as we designed the scheduling circuits using pure combinational

logic, scheduling decisions are always made in a single clock cycle.

4.3 Interface Selector
The interface selector calculates the characteristics (Π and Θ) of

the server tasks and delivers the calculated results to the interface

selector in the next SE, which consists of two elements (see Fig. 4):

Task parameter table. A task parameter table is implemented

using a register chain, storing parameters of the tasks executed on

local clients. The width of the parameter table is 74 bits, storing

client ID (2 bits), task ID (8 bits), period (32 bits) and execution

time (32 bits). The depth of the parameter table is customizable.

We configured the table depth at 16 for SEs whose local clients are

other SEs, since each local client has up to four server tasks.

Computation circuits. The computation circuits contain both

data and control paths. The data path has an ALU, a fetcher, and a

scratchpad (2 KB). The control path is implemented using a Finite

State Machine (FSM) to manage the data flow in the data path to

perform the interface selection algorithm.

5 Interface Selection Algorithm and Analysis
Since BlueScale is organized as a Quadtree, we index the level of

SE depth from 0 to 𝐿 and there are up to 4
ℓ
SEs at level ℓ (0 ≤ ℓ ≤ 𝐿).

For the sake of a unified analysis framework, we further treat the

Clients as level (𝐿 + 1) and treat the Local Tasks as level (𝐿 + 2).
We define the following interface selection problem at level-

ℓ : The interface selectors in the level-ℓ SEs select the interfaces for the
VEs for level-(ℓ +1) elements, given that the interfaces for level-(ℓ +2)
elements, which are treated as tasks, have been known at this point.
The problem is to select the minimum-bandwidth interfaces for the
VEs while ensuring the real-time schedulability of the tasks.

By resolving the interface selection problems in the reverse order

of levels (i.e., from level-𝐿 to level-0), all interfaces can be deter-

mined. To see this series of problems are well-defined: initially,

the interface selection problem at level-𝐿 is well defined, because

level-(𝐿 + 2) elements are the Local Tasks, of which the parameters

are fixed by the application designer; then, for ℓ from 𝐿 down to 1,

upon the completion of the interface selection problem at level-ℓ
that determines the interfaces of level-(ℓ+1) elements, the interface

(a) Micro-architecture of a local scheduler

VE Param
(Θi, Πi)[63:0]

Mux
0000: Idle
0001: Local Client 0
0010: Local Client 1
0100: Local Client 2
1000: Local Client 3

VE ID[1:0]

CLK

[63:32]

[31:0]

Reset_Value [31:0][P]rogram_port

[R]esetn_port

[C]lock_port

[V]alue_portCurrent_Value [31:0] 0x1

Sub

P/B-Counter

(b) Micro-architecture of P-counter and B-counter

Control Path Data Path

0x0

VE.B (τB): Local Client 1

P-Counter V

P

R

C

B-Counter V

P

R

C

0x0

VE.A (τA): Local Client 0

P-Counter V

P

R

C

B-Counter V

P

R

C

0x0

VE.B (τC): Local Client 2

P-Counter V

P

R

C

B-Counter V

P

R

C

0x0

VE.B (τD): Local Client 3

P-Counter V

P

R

C

B-Counter V

P

R

C

Local Clients 0 1 2 3

Fetcher

Clint ID +
Task ID

Parameters

Loader

Clint ID +
Task ID +

Parameters

Scratch Pad
(2 KB)

A
LU

[63:0]

[65:64]

VE Parm
(Θi, Πi)[63:0]

VE ID[1:0]

[73:0]

Task ID

1

2

...

Period

T(0,1)

T(0,2)

...

Execution
Time

C(0,1)

C(0,2)

...

32 bits8 bits 32 bits

1

...

T(1,1)

...

C(1,1)

...

Clinet
ID

0

0

0

1

...

1 T(3,1) C(3,2)3

C
u

st
o

m
iz

ab
le

 D
ep

th

2 bits

Task Parameter Table

Interface Selector Control

Control Path Data Path

Local Client 0

Round-Robin

...
0b11

0b01

0b10

0b00
(Client ID)

Local Client 1

Local Client 2

Local Client 3

Task Parm + ID [71:0]

Figure 4: Micro-architecture of the interface selector.
selection problem at level-(ℓ − 1) is well-defined. In the rest of this

section, we only need to focus on a general algorithm that resolves

the interface selection problem at level-ℓ as defined above.

In particular, we consider each VE 𝑋 (at level-ℓ + 1) respectively

and determine its interfaces (Π𝑋 ,Θ𝑋) such that the bandwidth

Θ𝑋 /Π𝑋 is minimized while the real-time schedulability of all tasks

(at level-ℓ + 2) that belong to VE 𝑋 is guaranteed. We denote the set

of tasks that belong to VE 𝑋 by T𝑋 and denote the set of all tasks

at level-(ℓ + 2) by Tℓ+2. It is evident that T𝑋 ⊆ Tℓ+2. Each task 𝜏𝑖
is specified by a pair (𝑇𝑖 ,𝐶𝑖), where 𝑇𝑖 is the period as well as the

relative deadline and 𝐶𝑖 is the worst-case execution time.
1
Note

that, we assume discrete time, i.e., 𝑇𝑖 , 𝐶𝑖 , Π𝑋 , Θ𝑋 are integers. The

utilization of 𝜏𝑖 is 𝑢𝑖 = 𝐶𝑖/𝑇𝑖 . We also denote 𝑈𝑋 =
∑︁
𝜏𝑖 ∈T𝑋 𝑢𝑖 and

𝑈ℓ+2 =
∑︁
𝜏𝑖 ∈Tℓ+2 𝑢𝑖 . The supply bound function (SBF) of the VE 𝑋 ,

denoted sbf (𝑡, 𝑋), indicates the minimum processor time dedicated

to VE 𝑋 during any time interval of length 𝑡 . Shin and Lee [17]

have shown that sbf (𝑡, 𝑋) can be calculated by

sbf (𝑡, 𝑋) =
{︂
0 if 𝑡 ′ < 0

⌊𝑡 ′/Π𝑋 ⌋ · Θ𝑋 + 𝜖 if 𝑡 ′ ≥ 0

where 𝑡 ′ = 𝑡 − (Π𝑋 − Θ𝑋),
𝜖 = max

(︁
𝑡 ′ − Π𝑋 ·

⌊︁
𝑡 ′/Π𝑋

⌋︁
− (Π𝑋 − Θ𝑋), 0

)︁
.

Meanwhile, all tasks are scheduled under Earliest-Deadline-First

policy, thus the demand bound function of a task 𝜏𝑖 is denoted by

dbf (𝑡, 𝜏𝑖) = ⌊𝑡/𝑇𝑖 ⌋ · 𝐶𝑖 ,

and the demand bound function for a task set T is

dbf (𝑡, T) =
∑︂
𝜏𝑖 ∈T

dbf (𝑡, 𝜏𝑖) .

According to [17], T𝑋 is schedulable (i.e., all deadlines of tasks

that belong to VE X must be met), if dbf (𝑡,T𝑋) ≤ sbf (𝑡, 𝑋) for all 𝑡 .
Furthermore, the following theorem provides finite bound of 𝑡 to
test, in addition to Θ𝑋 /Π𝑋 > 𝑈𝑋 which is necessarily required.

Theorem 1. If dbf (𝑡,T𝑋) ≤ sbf (𝑡, 𝑋) for all 𝑡 < 𝛽 where
𝛽 =

2Θ𝑋

Π𝑋
(Π𝑋 − Θ𝑋)/(Θ𝑋

Π𝑋
−𝑈𝑋),

then dbf (𝑡,T𝑋) ≤ sbf (𝑡, 𝑋) for all 𝑡 .
Proof. It is equivalent to show the contrapositive that if dbf (𝑡,T𝑋)

> sbf (𝑡, 𝑋) for some 𝑡 , then dbf (𝑡,T𝑋) > sbf (𝑡, 𝑋) for some 𝑡 < 𝛽 .
Observing that dbf (𝑡,T𝑋) ≤ (∑︁𝜏𝑖 ∈T𝑋 𝑢𝑖) ·𝑡 = 𝑈𝑋 ·𝑡 and sbf (𝑡, 𝑋) ≥
Θ𝑋

Π𝑋
(𝑡 − 2(Π𝑋 −Θ𝑋)), dbf (𝑡∗,T𝑋) > sbf (𝑡∗, 𝑋) for some 𝑡∗ implies

that𝑈𝑋 · 𝑡∗ >
Θ𝑋

Π𝑋
(𝑡∗ − 2(Π𝑋 −Θ𝑋)), from which we can conclude

that 𝑡∗ <
2Θ𝑋

Π𝑋
(Π𝑋 − Θ𝑋)/(Θ𝑋

Π𝑋
−𝑈𝑋) = 𝛽 . □

By Theorem 1, we have a schedulability test for given task set T𝑋 ,

and given fixed values of parameters Π𝑋 and Θ𝑋 . It is evident that

for given task set T𝑋 and a fixed value of Π𝑋 , the schedulability is

monotonically non-decreasing as the budget Θ𝑋 increases. We can

use binary search to find the minimum schedulable Θ𝑋 for given

task set T𝑋 and a fixed value of Π𝑋 . The remaining problem is to

1
Note that, for level-(𝐿 + 2) , i.e., Local Tasks requesting memory access, (𝑇𝑖 ,𝐶𝑖) are
given parameters from the real-time system; for level-(ℓ + 2) where ℓ < 𝐿, 𝜏𝑖 is a
server task and therefore 𝑇𝑖 = Π𝑖 and 𝐶𝑖 = Θ𝑖 where (Π𝑖 ,Θ𝑖) are determined via

resolving the interface selection problem at level-(ℓ + 1) with the interpretation that

at least Θ𝑖 time units of transaction time is guaranteed to the supported task set every

Π𝑖 time units.

BlueScale: A Scalable Memory Architecture for Predictable Real-Time Computing on Highly Integrated SoCs DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Table 1:Hardware overhead (RAMunit: KB; power unit:mW).
LUTs Registers DSPs RAMs Power

AXI-IC
RT

3,744 3,451 0 0 46

BlueTree 1,683 2,901 0 0 27

BlueTree-Smooth 2,349 3,455 0 0 41

GSMTree 2,443 3,115 0 8 59

MicroBlaze 4,993 4,295 6 256 369

RISC-V 7,433 16,544 21 512 583

Proposed 2,959 3,312 0 10 67

select Π𝑋 . We give a finite range of feasible choices of Π𝑋 by the

following theorem so that all feasible Π𝑋 can be enumerated.

Theorem 2. To ensure VE 𝑋 ’s schedulability, it is necessary that

Π𝑋 ≤
min𝜏𝑖 ∈T𝑋 {𝑇𝑖 }
2(𝑈ℓ+2 −𝑈𝑋) .

Proof. In order to provide real-time schedulability, the band-

width for each VE clearly must be at least the total utilization of all

tasks that belong to that VE. As a result, the total bandwidth for all

VEs other than VE 𝑋 must be at least
∑︁
𝜏𝑖 ∈Tℓ+2\T𝑋 𝑢𝑖 = 𝑈ℓ+2 −𝑈𝑋 .

Given that the total bandwidth (at each level) cannot exceed 1, the

bandwidth of VE 𝑋 is upper bounded by
Θ𝑋

Π𝑋
≤ 1 −𝑈ℓ+2 +𝑈𝑋 . Ob-

serving that sbf (𝑡, 𝑋) = 0 for 𝑡 ≤ 2(Π𝑋 − Θ𝑋) = 2(1 − Θ𝑋

Π𝑋
)Π𝑋 ,

we see that min𝜏𝑖 ∈T𝑋 {𝑇𝑖 } ≥ 2(1 − Θ𝑋

Π𝑋
)Π𝑋 is necessary for the

schedulability; otherwise, at least the task with the smallest period

must miss its deadlines in the worst case. That is, min𝜏𝑖 ∈T𝑋 {𝑇𝑖 } ≥
2(1 − Θ𝑋

Π𝑋
)Π𝑋 ≥ 2(1 − (1 −𝑈ℓ+2 +𝑈𝑋))Π𝑋 = 2(𝑈ℓ+2 −𝑈𝑋)Π𝑋 is

necessary, which implies that Π𝑋 ≤ min𝜏𝑖 ∈T𝑋 {𝑇𝑖 }
2(𝑈ℓ+2−𝑈𝑋) is necessary. □

Combining all above steps, the schedulable (if any) pair (Π𝑋 ,Θ𝑋)
is found with minimum bandwidth Θ𝑋 /Π𝑋 . To confirm the schedu-

lability, we need to verify that after all interface selection problems

(in the order of level-𝐿 to level-0) are resolved, the level-0 resource

(i.e., the memory controller) is not overutilized (by level-1 server

tasks). That is, we check whether

∑︁
𝜏𝑋 ∈T1 (Θ𝑋 /Π𝑋) ≤ 1 holds.

6 Evaluation
Experimental platform. BlueScale was built and implemented on

a Xilinx VC707 evaluation board, using BlueSpec System Verilog.

Additionally, the experimental platform also had 16/64 MicroBlaze

processor, two DNN HAs [21], and a shared memory sub-system.

The processor was fully-featured, enabling all performance related

functionalities (e.g., pipeline and data cache). We adopted FreeR-

TOS (v.10.4) as the OS kernel for all processors and compiled the

software (OS kernels, drivers and user applications) using a MicroB-

laze GNU tool-chain. The DNN HA is instantiated with the default

settings to execute light-weight DNN tasks. The shared memory

sub-system contains a 4GB DRAMmodule and a memory controller.

The system elements were connected using BlueScale and a 9 ×
9 mesh type open-source NoC [14], enabling memory accesses

and inter-processor communications, respectively. Moreover, We

built baseline systems on similar hardware platforms, replacing

BlueScale with different memory interconnects: AXI-ICRT
is a

centralized real-time interconnect which contains a monolithic ar-

biter [11].BlueTree [3] andBlueTree-Smooth [19] are distributed

memory interconnects, which are introduced in Sec. 2. BlueTree-

Smooth deploys additional buffers compared to BlueTree at memory

access paths in order to smooth transactions [19]. For BlueTree and

BlueTree-Smooth [19, 20], we adopted default settings and config-

ured their blocking factor at 2.GSMTree is a variant of BlueTree [7],
supporting different strategies for memory bandwidth reservation.

Following [7], in GSMTree-TDM, we reserved equivalent band-

widths for all clients; in GSMTree-FBSP, we reserved memory

bandwidths proportional to the maximum workloads on clients.

6.1 Hardware Overhead
Experimental setup. We configured all interconnects to support

16 clients and compared their hardware overhead in terms of Look-

Up-Tables (LUTs), registers, DSPs, RAMs, power. To evaluate the

overhead of BlueScale from a system perspective, we also com-

pared BlueScale against two general-purpose processors (MicroB-

laze and RISC-V). The MicroBlaze processor was fully-featured as

described above. The RISC-V processor was implemented based

on [13], supporting all the functionalities of the MicroBlaze, as well

as multi-branch, out-of-order processing and related functionalities.

All components were synthesized using Vivado (v2021.1) [18].

Obs 1. BlueScale required slightly more resources than distributed

memory interconnects, similar to a centralized interconnect. As

shown in Table 1, BlueScale consumed more LUTs and power than

the other distributed memory interconnects, but similar registers:

BlueTree (175.8% LUTs, 114.2% registers, 248.1% power), BlueTree-

Smooth(126.0% LUTs, 95.9% registers, 163.4% power), and GSMTree

(121.% LUTs, 106.3% registers, 113.6% power). The additional hard-

ware consumption is introduced by the new micro-architecture.

Compared to other system elements, BlueScale required signifi-

cantly less LUTs and registers: AXI-IC
RT

(79.0% LUTs, 96.0% regis-

ters), MicroBlaze (59.3% LUTs, 77.1% registers), and RISC-V (39.8%

LUTs, 20.0% registers). In addition, the BlueScale implementation

only required 8KB RAMs and 0 DSP.

6.2 Hardware Scalability
Experimental setup.We adopted the same method described in

Sec. 6.1 to implement BlueScale and AXI-ICRT
with a scaling number

of clients (MicroBlaze processors). Additionally, we introduced a

scaling factor: 𝜂 to control the number of clients (2
𝜂
). We compared

the scalability of area consumption between BlueScale, AXI-ICRT
,

and the corresponding many-core systems with and without them.

The area consumption was normalized by the total area of the

platform. We then examined the scalability of power consumption,

calculated as the sum of static and dynamic power simulated by the

tool. Lastly, we evaluated the maximum frequency of BlueScale and
AXI-IC

RT
across the legacy systems with different 𝜂.

Obs 2. The area and power consumption of BlueScale were lin-

early scaled by 𝜂. Compared to a centralized memory interconnect,

BlueScale consumed less area, but slightly more power. As shown

in Fig. 5(a), when the system scaled with 𝜂, the area consumption of

legacy system, AXI-IC
RT

, and BlueScale consistently increased. In

all examined cases, the additionally introduced area consumption

was bounded within a small margin – less than 5%. Furthermore,

BlueScale always required less area than AXI-ICRT
, which is aligned

with the evaluation of overhead in Obs 1. Power consumption is

usually affected by voltage, clock frequency, toggle rate and design

area. Since the unified voltage, clock frequency and simulated toggle

rate were assigned to all systems, the design area dominated overall

power consumption. As shown in Fig. 5(b), power consumption is

increased linearly in the systems when 𝜂 increased.

Obs 3. When the system scaled with 𝜂, BlueScale did not affect

the system’s maximum performance. This observation is shown in

Fig. 5(c). When the system hadmore than 32 clients (𝜂 > 5), the max-

imum frequency of AXI-IC
RT

became lower than the legacy system,

which affected the system’s maximum performance. BlueScale effec-
tively avoided such issues, as it always achieved a higher maximum

frequency than the legacy system.

6.3 Interconnect-level Real-time Performance
Experimental setup. We deployed 16/64 traffic generators de-

signed in [20] as clients, simulating memory requests without pro-

cessing any data. The workloads on the traffic generators were

randomly generated offline, with specified periods and implicit

deadlines, bounding the interconnect utilization between 70% and

90% in each experimental trial. Each traffic generator had a fixed

priority scheduler, with the request priority assigned using GEDF.

The synthetic workloads simulated traffic patterns close to practical

applications with intensive memory transactions. The experiments

are executed 200 times to evaluate two metrics: blocking latency

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Zhe Jiang, Kecheng Yang, Neil Audsley, Nathan Fisher, Weisong Shi, and Zheng Dong§

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7

A
re

a
(%

)

Legacy

AXI-IC^RT

BlueScale

Legacy+AXI-IC^RT

Legacy+BlueScale

(a) Area consumption.

0

0.3

0.6

0.9

1.2

1.5

1.8

1 2 3 4 5 6 7

P
o

w
er

 (
W

)

Legacy

AXI-IC^RT

BlueScale

Legacy+AXI-IC^RT

Legacy+BlueScale

(b) Power consumption.

0

100

200

300

400

500

600

1 2 3 4 5 6 7

Fr
eq

u
en

cy
m
ax
(H
Z)

Legacy

AXI-IC^RT

BlueScale

(c) Maximum frequency.

Figure 5: Area, power, and maximum frequency v.s. scaling factor 𝜂.

0%

15%

30%

45%

60%

75%

90%

0

20

40

60

80

100

120

Blocking Latency Deadline Miss Ratio

P
er

ce
n

ta
ge

 (
%

)

Ti
m

e
U

n
it

s
(u

s)

AXI-IC^RT BlueTree

BlueTree-Smoth GSMTree-TDM

GSMTree-FBSP BlueScale

(a) 16 traffic generators.

0%

15%

30%

45%

60%

75%

90%

0

90

180

270

360

450

540

Blocking Latency Deadline Miss Ratio

P
er

ce
n

ta
ge

 (
%

)

Ti
m

e
U

n
it

s
(u

s)

AXI-IC^RT BlueTree

BlueTree-Smoth GSMTree-TDM

GSMTree-FBSP BlueScale

(b) 64 traffic generators.

Figure 6: Synthetic workloads.
and deadline miss ratio. The blocking latency of a request indicates

the duration of time it is blocked by requests with a lower priority.

The deadline miss ratio records the percentage of memory requests

being not completed by the deadlines.

Obs 4.When the systemwas scaled with various numbers of clients,

BlueScale achieved the best real-time performance. This observa-

tion is summarized in Fig. 6: (i) BlueScale always had the shortest

blocking time and the highest success ratio; (ii) BlueScale always
had the least experimental variance. This is because conventional

distributed memory interconnects adopt heuristic-based arbitration

methods, whereas BlueScale and AXI-IC
RT

support hardware-level

prioritization and scheduling of memory requests (see Sec. 3 and 5),

ensuring memory requests are transmitted according to their im-

portance, and the system executes predictably.

6.4 Case Study
We configured all examined systems with 16/64 processors and

2 DNN HAs, then executed two sets of real-world tasks: (i) 10

automotive safety tasks, selected from Renesas automotive use

case database [5], e.g., CRC, RSA32, core-self test; (ii) 10 automo-

tive function tasks, chosen from EEMBC benchmark [4], e.g., fast
Fourier transform, speed calculation, etc.. We employed a hybrid-

measurement approach to obtain Worst-Case Execution Times for

all tasks. Before run-time, the raw data processed by the 20 tasks

was randomly generated and stored in the shared memory sub-

system. At run-time, the clients used the memory interconnect to

fetch the raw data and send the calculated results back to the mem-

ory. Each task had a randomly defined period and implicit deadline,

with overall processor utilization approximately 30%.

Interference tasks. We used two categories of interference tasks

for processors and DNNHAs. The processor interference tasks were

selected from the EEMBC benchmark [4], and could be added into

the system to control overall processor utilization. Task execution

time is affected by diverse factors; hence, adding interference tasks

to a processor only gives it a target utilization. The HA interference

tasks were built on SqueezeNet architectures, and trained using

MNIST, EMNIST and CIFAR-10 training datasets, respectively. The

testing datasets used at run-time were pre-loaded into the memory

sub-system. Executing interference tasks on HAs intensified mem-

ory transactions andmade the system heterogeneous. As bandwidth

reservation was not supported by all interconnects, we configured

the HA to enforce it using only
1

#_𝑜 𝑓 _𝑐𝑙𝑖𝑒𝑛𝑡𝑠
of memory bandwidths.

Experimental setup. We introduced two groups of experimental

setups, which activated 16/64 processors and a HA to execute the

experimental task sets and interference tasks. In each experimental

group, we executed each examined system 200 times under varying

target utilizations [10% − 90%] (at intervals of 5%). Each execution

lasted 300 seconds. For fair comparison, we ensured the data input to

the examined systemswas identical in each execution.We evaluated

the examined systems using success ratio, recording the percentage

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Su
cc

es
s

R
at

io

AXI-IC^RT
BlueTree
BlueTree-Smoth
GSMTree-TDM
GSMTree-FBSP
BlueScale

(a) 16-core system.

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Su
cc

es
s

R
at

io

AXI-IC^RT
BlueTree
BlueTree-Smoth
GSMTree-TDM
GSMTree-FBSP
BlueScale

(b) 64-core system.

Figure 7: System-level case study (𝑥-axis: target utilization).
of trials that executed successfully (i.e., without deadline misses of

any safety or function tasks) under a specified target utilization.

Obs 5. Introducing BlueScale was beneficial. This observation is

given by Figs. 7(a) and 7(b)). In both 16-core and 64-core systems,

BlueScale consistently achieved higher success ratios compared to

the other distributed memory interconnects. BlueScale also outper-

formed the AXI-IC
RT

in most experimental trials, which is aligned

to the experimental results in Obs.4.

7 Conclusion
This paper proposes a new memory interconnect (BlueScale) for

real-time SoCs. It employs a distributed hardware architecture to en-

sure hardware scalability using isomorphic SEs. Each SE adopts two

nested priority queues to realize iterative compositional scheduling

for memory transactions to achieve guaranteed real-time perfor-

mance. An interface selection algorithm is derived to determine the

best bandwidth for each server task in the compositional scheduling

at each SE. Experimental results show that BlueScale outperforms

state-of-the-art interconnects with varying configurations.

References
[1] SEBASTIAN Anthony. 2017. IBM first 5nm chip. Ars Technica (2017).
[2] ARM. 1995. AMBA AXI 5.0. https://developer.arm.com/architectures.

[3] Neil Audsley. 2013. Memory architecture for NoC-based real-time mixed critical-

ity systems. Proc. WMC, RTSS (2013), 37–42.
[4] EEMBC. [n.d.]. EEMBC benchmark. https://www.eembc.org/autobench/.

[5] Renesas Electronics. [n.d.]. Renesas: Automotive Use Cases. https://www.renesas.

com/solutions/automotive.html.

[6] Garside, Jamie and Audsely, Neil. 2013. Prefetching across a shared memory tree

within a network-on-chip architecture. In IEEE Proc. SoCC.
[7] Gomony, Garside, Akesson, Audsley, and Goossens. 2016. A globally arbitrated

memory tree for mixed-time-criticality systems. IEEE TC (2016).

[8] Manil Dev Gomony et al. 2015. A generic, scalable and globally arbitratedmemory

tree for shared DRAM access. In IEEE Proc. DATE.
[9] John L Hennessy. 2011. Computer architecture: a quantitative approach.
[10] ISO. 2018. 26262: Road vehicles-Functional safety. FDIS (2018).
[11] Zhe Jiang et al. 2021. AXI-InterconnectRT: Towards a Real-Time AXI-

Interconnect for System-on-Chips. In IEEE Proc. RTAS.
[12] Zhe Jiang and Neil Audsley. 2018. Bluevisor: A scalable real-time hardware

hypervisor for many-core embedded systems. In Proc. RTAS.
[13] Susumu Mashimo et al. 2019. An Open Source FPGA-Optimized Out-of-Order

RISC-V Soft Processor. In Proc. ICFPT.
[14] Gary Plumbridge. 2014. Blueshell: a platform for rapid prototyping of multipro-

cessor NoCs and accelerators. Computer Architecture News (2014).
[15] Francesco Restuccia, Alessandro Biondi, Mauro Marinoni, Giorgiomaria Cicero,

and Giorgio Buttazzo. 2020. AXI hyperconnect: a predictable, hypervisor-level

interconnect for hardware accelerators in FPGA SoC. In IEEE Proc.DAC.
[16] Martin Schoeberl et al. 2015. T-CREST: Time-predictable multi-core architecture

for embedded systems. Journal of Systems Architecture (2015).
[17] I. Shin and I. Lee. 2003. Periodic resource model for compositional real-time

guarantees. In IEEE Proc. RTSS.
[18] Vivado. [n.d.]. Microblaze. https://www.xilinx.com/download/vivado.html.

[19] HaitongWang et al. 2020. Addressing resource contention and timing predictabil-

ity for multi-core architectures with memory interconnects. In RTAS.
[20] Haitong Wang et al. 2020. Meshed Bluetree: Time-Predictable Multimemory

Interconnect for Multicore Architectures. IEEE TCAD (2020).

[21] Dawei Yang. 2021. Nebula: A Scalable and Flexible Accelerator for DNN Multi-

Branch Blocks. Inform. Process. Lett. (2021).

https://developer.arm.com/architectures
https://www.eembc.org/autobench/
https://www.renesas.com/solutions/automotive.html
https://www.renesas.com/solutions/automotive.html

	Abstract
	1 Introduction
	2 BlueTree: A Distributed Memory Interconnect
	2.1 Basic Architecture.
	2.2 Scheduling Strategy and Problems.

	3 BlueScale: Overview
	3.1 Top-level Architecture
	3.2 Scheduling Strategy

	4 Scale Elements: Design
	4.1 Random Access Buffers
	4.2 Local Scheduler
	4.3 Interface Selector

	5 Interface Selection Algorithm and Analysis
	6 Evaluation
	6.1 Hardware Overhead
	6.2 Hardware Scalability
	6.3 Interconnect-level Real-time Performance
	6.4 Case Study

	7 Conclusion
	References

