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APPROXIMATE COUNTING AND SAMPLING
VIA LOCAL CENTRAL LIMIT THEOREMS

VISHESH JAIN, WILL PERKINS, ASHWIN SAH, AND MEHTAAB SAWHNEY

ABsTRACT. We give an FPTAS for computing the number of matchings of size k in a graph G of
maximum degree A on n vertices, for all £k < (1 — d)m*(G), where § > 0 is fixed and m*(G) is the
matching number of G, and an FPTAS for the number of independent sets of size k < (1—0)ac(A)n,
where ac(A) is the NP-hardness threshold for this problem. We also provide quasi-linear time
randomized algorithms to approximately sample from the uniform distribution on matchings of size
kE < (1—-9)m*(G) and independent sets of size k < (1 — §)ac(A)n.

Our results are based on a new framework for exploiting local central limit theorems as an
algorithmic tool. We use a combination of Fourier inversion, probabilistic estimates, and the de-
terministic approximation of partition functions at complex activities to extract approximations
of the coefficients of the partition function. For our results for independent sets, we prove a new
local central limit theorem for the hard-core model that applies to all fugacities below Ac(A), the
uniqueness threshold on the infinite A-regular tree.

1. INTRODUCTION

Counting matchings and independent sets in graphs are central problems in the study of exact and
approximate counting algorithms. Exact counting of the total number of matchings of a graph, the
number of perfect matchings, the number of matchings of a given size, the number of independent
sets, and the number of independent sets of a given size are all #P-hard problems [43], even for
many restricted classes of input graphs (bipartite graphs, graphs of bounded degree). A singular
exception is the classical algorithm of Kasteleyn for counting the number of perfect matchings of a
planar graph [28].

Turning to approximate counting, a stark difference emerges between matchings and independent
sets. The landmark work of Jerrum and Sinclair gave an FPRAS (fully polynomial-time randomized
approximation scheme) for counting (weighted) matchings in general graphs as well as counting
matchings of any given size bounded away from the maximum matching [26]. For the special case
of bipartite graphs, Jerrum, Sinclair, and Vigoda [27] gave an FPRAS for the number of matchings
of any given size, including perfect matchings. Recent work of Alimohammadi, Anari, Shiragur,
and Vuong [2| provides an FPRAS for the number of matchings of any given size in planar graphs.
On the other hand, for counting (weighted) independent sets and independent sets of a given size,
there is a threshold (in terms of degree, weighing factor, or density) above which the approximation
problems are NP-hard and below which efficient approximation algorithms exist [3,14,44]. We
mention that approximating the number of perfect matchings in general graphs is an outstanding
open problem (see [42]).

Randomization has played a crucial role in the aforementioned algorithmic results, and especially
for matchings, there is a wide gap between what is known to be achievable deterministically and
with randomness. For graphs of maximum degree A, Bayati, Gamarnik, Katz, Nair, and Tetali [5]
gave an FPTAS (fully polynomial-time apporoximation scheme) for the number of matchings and
for weighted matchings with a bounded weighing factor; the running time of their algorithm is
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polynomial in n and 1/e, where € is the desired accuracy and where the exponent of the polynomial
depends on A and the weighing factor. However, it is not known, for instance, how to determinis-
tically approximate the number of near-maximum matchings in bounded degree graphs. Our first
main result addresses this by achieving, for bounded degree graphs, what was previously only known
to be possible with randomness: we provide an FPTAS for the number of matchings of any given
size bounded away from the maximum matching. Let my(G) be the number of matchings of G of
size k and let m*(G) be the size of the maximum matching of G.

Theorem 1.1. Let A >3 and § € (0,1). There exists a deterministic algorithm which, on input a
graph G = (V, E) on n vertices of mazximum degree at most A, an integer 1 < k < (1—-96)m*(G), and
an error parameter € € (0,1), outputs an e-relative approzimation to my(G) in time (n/e)?sa()

Here, by an e-relative approximation to my(G), we mean that the output A satisfies e “my(G) <
A < e‘mi(G).
We next prove the corresponding result for independent sets. Recall that the hard-core model on
a graph G = (V, E) at fugacity A € R> is the probability distribution on Z(G), the independent
sets of G, defined by
s A
MG,)\( ) ZG ()\) s

where Zg(\) = Zlez(c) A1is the independence polynomial of G. For A > 3, let

( A — 1)A—1 .

(A=2)2"
this is the uniqueness threshold for the hard-core model on the infinite A-regular tree. For 0 < A\ <
Ac(A), Weitz gave an FTPAS for Z(\) on the class of graphs of maximum degree A [44]. Sly [39],
Sly and Sun [40], and Galanis, Stefankovi¢, and Vigoda [19] complemented this by showing that for
A > A(A), no FPRAS for Zg(\) exists unless NP = RP.

Recently, Davies and Perkins [14] showed an analogous threshold for counting independent sets

of a given size in bounded degree graphs. Let

Ac(D) (A-1a

TIr AT DNA) (A28 (At (A _1)AT

this is the occupancy fraction (i.e. the expected density of an independent set) for the hard-core
model on the clique on A+1 vertices at the critical fugacity A.(A). They showed that for a < a.(A),
there is an FPRAS for ix(G) (the number of independent sets in G of size k) for any G of maximum
degree A on n vertices and any k < an; conversely, no FPRAS exists for k > an for a > a.(A)
unless NP = RP. The algorithm of [14] uses randomness in an essential way and the authors
conjectured the existence of an FPTAS for ix(G) for k < an where a < a.(A) [14, Conjecture 1].
We prove this conjecture.

Ac(B) =

ac(A)

Theorem 1.2. Let A >3 and 6 € (0,1). There exists a deterministic algorithm which, on input a
graph G = (V, E) on n vertices of mazimum degree at most A, an integer 1 < k < (1 — 0)na.(4A),
and an error parameter € € (0,1), outputs an e-relative approzimation to iy(G) in time (n/e)Ps2().

We remark that a deterministic algorithm for approximating mj and i, via the cluster expansion
is implicit in [13], but only for k£ much smaller than the bounds above.

Next, we turn to the problem of uniformly sampling matchings and independent sets of a given
size. For fixed A > 3, § € (0,1), Davies and Perkins [14] gave an algorithm for e-approximately
sampling (i.e. within € in total variation distance) from the uniform distribution on Zy(G) (the
independent sets of size k in G) for a graph G = (V, E) on n vertices with maximum degree at
most A, for all 1 < k < (1 — §)na.(A). The running time of their algorithm is Osa(n®), where
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the O conceals polylogarithmic factors in n and 1/e. For the more restricted range 1 < k <
(1—=9)n/(2(A +1)), it was already shown by Bubley and Dyer [8] that the down-up walk on Zy(G)
has e-mixing time Ogs(nlog(n/e€)), which is optimal up to constants (see also [1| which gave fast
mixing for a larger range of k in graphs satisfying a spectral condition). The down-up walk is the
following Markov chain on Z;(G): at each step, given the current independent set I € Z(G), choose
a uniformly random vertex v € I and a uniformly random vertex w € V. Let I' = (I \ v) Uw. If
I' € T (GQ), then move to I'; else, stay at 1.

For matchings, a polynomial time algorithm for approximately sampling from the uniform dis-
tribution on matchings of size k, for all 1 < k < (1 — §)m*(G), is present in the work of Jerrum
and Sinclair [26]. The running time of their algorithm scales at least as n"/2. In the case of graphs
of maximum degree at most A, a recent result of Chen, Liu, and Vigoda [11| combined with a
rejection sampling procedure (and Lemma 5.1 below) provides an algorithm for this task running
in time Og A (n%/?).

It was conjectured in [14, Conjecture 2| that the down-up walk on Z;(G) mixes rapidly for all
1 <k < (1-0)na.(A) on all graphs on n vertices of maximum degree at most A. A stronger
conjecture is that the e-mixing time of the chain for this range of k is Osa(nlog(n/e)). While not
resolving this specific conjecture, our next main result provides an approximate sampling algorithm
for 1 <k <(1—-9d)nae(A) (and 1 <k < (1 —)m*(G) in the case of matchings) running in quasi-
linear time, which matches (up to a small polylogarithmic factor) the conjectured mixing time of
the down-up walk.

Theorem 1.3. Let A > 3 and 6 € (0,1). There is a randomized algorithm which, on input a
graph G = (V, E) on n vertices of mazimum degree at most A, an integer 1 < k < (1 — 0)na.(4A),
and an error parameter € € (0,1) outputs a random independent set I € I(G) such that the total
variation distance between the distribution of I and the uniform distribution on Iy (G) is at most €.
The running time of the algorithm is O5 a(nlog(n/e)(logn)? 4+ nlog(n/e)log nlog(1/€)%/?).

There is also a randomized algorithm with the same guarantee and running time for matchings

of size k for all1 <k < (1 —90)m*(G).

A natural extension of the unresolved conjecture of [14] is that the down—up walk for matchings
of size k is rapidly mixing in the setting of Theorem 1.3.

Conjecture 1.4. The down-up walk for matchings of size k mizes in time Op s(nlog(n/e)) for
graphs G of mazimum degree A and 1 <k < (1 —0)m*(G).

1.1. Local central limit theorems. In previous works on approximately counting matchings [26]
and independent sets [14] of a given size, a common approach is followed: sample a matching or
independent set from the monomer-dimer model (i.e. hard-core model on the line graph) or hard-
core model where the fugacity A is chosen so that the average size is close to the desired size k. If
the fugacity A is such that sampling from the corresponding monomer-dimer or hard-core model
can be done efficiently, and if one can further show that the probability of obtaining a matching or
independent set of size exactly k is only polynomially small, then naive rejection sampling gives an
efficient sampling algorithm (which can be converted into an FPRAS for my(G) or ix(G) by standard
self-reducibility techniques). In the proofs of Theorems 1.1 and 1.2, we show how to implement a
version of this idea deterministically.

Recall that a sequence of random variables X,, with mean u,, and variance o
a central limit theorem (CLT) if for all a < b € R,

X, — in 1 /b_2
Pla< —— <b| = — ex/zdx—i—onl.
< <t|-—=] 1)

On

2

=~ is said to satisfy

In particular, central limit theorems provide control on the probability that X, lies in an interval
of length ©(0y,). A much more precise notion is that of a local central limit theorem (LCLT). We
3



say that a sequence of integer-valued random variables X,, with mean p, and variance o2 satisfies
an LCLT if for all integers k,

1
= e
\V2moy,

Returning to the discussion in the previous paragraph, suppose we could deterministically find a
fugacity A such that:

P[X, = k] —(k=pn)?/(207) | (o).

n

(a) The expected size (to the nearest integer) of a matching or independent set drawn from the
monomer-dimer or hard-core model is k.

(b) There is an FPTAS for the the partition function, expectation, and variance of the monomer-
dimer or hard-core model at .

(c¢) The size of a matching or independent set drawn from the monomer-dimer or hard-core model
at A satisfies an LCLT.

Then, from (a) and (c), we have that (as long as o, = wy(1))

me(G)A U o Oepn)?/(202)
ST my(Gax == o) e |
and similarly for independent sets. Together with (b), this immediately gives a deterministic algo-
rithm for approximating my(G,,) or ix(G,) to within a factor of (1 +€)(1+ 0,(1)) in time which is
polynomial in n and 1/e.

For the range of k covered by Theorems 1.1 and 1.2, a fugacity A satisfying (a) and (b) does
indeed exist and can be found deterministically using (b) along with a binary search procedure. In
particular, for the hard-core model, such a A satisfies A < A\.(A). Moreover, by the Heilman—Lieb
theorem [22], the roots of the partition function of the monomer-dimer model are restricted to the
negative real line, from which it follows that the size of a random matching is distributed as the sum
of independent Bernoulli random variables and thus, for A not too small, satisfies an LCLT [20].
However, for the hard-core model, the corresponding LCLT for all A < A.(A) was not known. In
fact, even the much weaker statement that Py[|I| = |ur]] = Qo) (here, the probability Py,
the mean pu), and the variance ai are with respect to the hard-core model with fugacity \) was
unavailable for all A < A.(A) and is precisely the content of [14, Conjecture 3]. A key step in our
proof is the resolution of this conjecture in the much stronger form of an LCLT.

Theorem 1.5. Fix A > 3 and § € (0,1). Then for any sequence of graphs G, on n vertices of
mazimum degree A, and any sequence A, € R so that n\, — 0o and A, < (1 — §)A(A), the size
of a random independent set drawn from the hard-core model on G, at fugacity A, satisfies a local
central limit theorem.

In Section 3, we state and prove a quantitative version of this result (Theorem 3.1). A critical
part in the proof of the LCLT is the existence of a suitable zero-free region (in the complex plane)
for the independence polynomial, which has previously been exploited using Barvinok’s method
(cf. [4]) to devise an FPTAS for the independence polynomial evaluated at A in a certain complex
region containing the interval [0, A.(A)) on graphs of maximum degree A [34,35].

Given the LCLT for A satisfying (a) and (b), the above discussion immediately leads to a (1 4
€)(1 £ o (1))-factor approximation of my(G) or ir(G) in time which is polynomial in n and 1/e,
where the degree of the polynomial is allowed to depend on A and §. As such, this is only an EPTAS
(efficient polynomial-time approximation scheme) since the finest approximation one can achieve
with this method is (1 & 0,(1)) (see Section 4.1 for a more detailed discussion). Nevertheless,
we show that the proof of the LCLT using Fourier inversion can be converted into an FPTAS,
thereby providing a (perhaps surprising) connection between the deterministic approximation of
the matching polynomial or independence polynomial at compler fugacities and the deterministic
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approximation of suitable coefficients of the matching polynomial or independence polynomial. We
note that the computational complexity of evaluating partition functions at complex parameters
has received much recent attention [7,9,21,31,35].

In a nutshell, the idea is the following: given a graph G with maximum degree A, an error
parameter € € (0,1), and k£ as in Theorem 1.2, consider A < A.(A) satisfying (a) and (b). Let
Y = |I| denote the size of an independent set drawn from the hard-core model on G at fugacity A,
let 1 and % denote the mean and variance of Y, and let X = (Y — p)/o. By the Fourier inversion
formula for lattices, for all z € 01 -Z — o7,

1 s

P[X =z] = E[e?X]e~ 2 qt,

210 J_ .o

where the probability and expectations are with respect to the hard-core model with fugacity A.
In order to approximate P[X = z] we consider E[e?*X]. First, observe that

ZG()\eit/o)

E eitX — e—itu/a .
] Za(A)

If t /o is sufficiently small so that Ae~®/7 is in the zero-free region of Zg(\) (viewed as a univariate
polynomial of a single complex variable), then there is an FPTAS for Zg(\e¥/?) by Barvinok’s
method [4,34,35]. However this method does not handle all ¢. But over the range of ¢ sufficiently
large, our proof of the LCLT shows that the integral is bounded by (¢/2)P[X = z]. It turns out
that these two regimes overlap. Therefore using a Riemann sum approximation for the small regime
gives an FPTAS for i (G).

Towards the proof of Theorem 1.3, given k < (1 — 8)a.(A)n, we provide in Lemma 5.1 a Os A (n)
time randomized algorithm for finding A satisfying |E,Y — k| < /Var,Y. As mentioned earlier,
this can be combined with the O~A75(n) mixing of the Glauber dynamics for the hard-core model
at fugacity A [11] and rejection sampling to approximately sample from the uniform distribution
on Zp,(G) in time O s(n%?), since the acceptance probability is Qa 5(1/y/Vary|I]). The main
idea underlying our algorithm is that the one may instead perform rejection sampling with the
base distribution (effectively) being the hard-core distribution conditioned on ¥ = k mod p, with

p = O(v/Var, Y), while still ensuring that samples from the base distribution can be obtained in
time O(n) Given this, the assertion of Theorem 1.3 follows since by the LCLT, the acceptance
probability is now Py\[Y = k]/PA[Y = kmod p] = Qas(1). Thus, the key step is to show that
samples from the hard-core distribution conditioned on Y = k mod p may still be obtained in time
O(n) For this, we use a multi-stage view of sampling from the hard-core model, motivated directly

by the proof of the LCLT.

1.2. Additional results. In Theorems 1.1 and 1.2, we gave an FPTAS for ix(G) and my(G) with
running times of the form (n/e)?a. (1), Now, we provide substantially faster randomized algorithms
for the same problems.

In [14], an FPRAS (fully polynomial-time randomized approximation scheme) for ix(G) was given,
for all 1 <k < (1 — 6)na.(A), with running time Oa 5(n®¢~2). Combining this algorithm with our
near-optimal sampling algorithm improves the running time to OA75(n4e_2). In contrast, it is known
that there is an FPRAS for the independence polynomial Zg(A), for all 0 < A < (1 —d)A(A), with
running time O(n?e~2) (cf. [41]). Our next result provides an FPRAS for i,(G) and my(G) whose
running time exceeds the best-known running time for approximating the independence polynomial
or matching polynomial only by a lower order term.

Theorem 1.6. Let A >3 and 6 € (0,1). There is a randomized algorithm which, on input a graph
G = (V,E) on n vertices of maximum degree at most A, an integer 1 < k < (1 — 0)na.(A) and an
5



error parameter € € (0,1) outputs an e-relative approzimation to ix(G) with probability 3/4 in time
T 4 Oa 5(n*?log nlog(n/e)e?),

where T is the time to find an €/2-relative approzimation to Zg(\) for a given X € [0, (1 —0)A.(A)].

Moreover, there exists a constant Ca 5 > 0 such that the same conclusion holds for my(G) for all
1 <k<(1-90)m*"(Q), where T is the time to find an €/2-relative approzimation to the matching
polynomial Zg(X) for a given X € [0,Ca s].

Remark. For 1 < k < ca+/n (where cp is a sufficiently small constant), the running time may be
improved to

O(klognloglogn) 4+ Oa(ke 2logn).
Moreover, the term n%?2 in Theorem 1.6 may be replaced by O(n) by using similar ideas as in the
proof of Theorem 1.3. However, since the current bounds on T are (n?), we have not pursued this
improvement.

Finally, as an intermediate step in obtaining deterministic approximate counting algorithms, we
need to deterministically approximate the mean and variance of the size of an independent set or
matching drawn from the hard-core or monomer-dimer model respectively. While such algorithms
are obtainable by applying algorithms based on the correlation decay method of Weitz [5,44] to
approximate marginals and joint marginals, we instead provide faster deterministic algorithms by
adapting the method of Barvinok [4] and Patel-Regts [34] to approximate the kth cumulant of the
size of the random independent set or matching.

The kth cumulant of a random variable Y is defined in terms of the coefficients of the cumulant
generating function Ky (t) = logEe’Y (when this expectation exists in a neighborhood of 0). In
particular, the kth cumulant is

k
rr(Y) = Ky(0).
The first and second cumulants are the mean and variance respectively.

Theorem 1.7. Fix A >3, k> 1, and 6 € (0,1). There is an algorithm which, on input a graph
G = (V,E) on n vertices of mazimum degree at most A, 0 < XA < (1 — 0)A(A), and an error
parameter € € (0,1) outputs an e n additive approzimation to ki(Y), where Y is the size of an
independent set drawn from the hard-core model on G at fugacity A\. The algorithm runs in time
On 51(n(1/€)925W) . In particular, this provides an FPTAS for E\Y and VaryY running in time
linear in n.

For claw-free graphs (hence for the size of a random matching Y drawn from the monomer-dimer

model), the same holds for all bounded A > 0.

1.3. Outline. We prove Theorems 1.1 and 1.2 in essentially the same way, given as an input the
existence of a zero-free region for the corresponding partition function in the complex plane. For
matchings, this is provided by the classical Heilmann—Lieb theorem [22], while for independent sets
this is provided by the theorems of Shearer [38] and Peters and Regts [35]. To avoid excessive
repetition (and to gain a slight amount of generality) we work with the larger class of indepen-
dent sets in claw-free graphs (instead of matchings, which are independent sets in line graphs).
The generalization of the Heilmann—Lieb theorem to claw-free graphs is due to Chudnovsky and
Seymour [12].

We record these zero-freeness results in Section 2, along with some results from the geometry
of polynomials on the consequences of zero-freeness, namely a central limit theorem of Michelen
and Sahasradbudhe [33] and a deterministic approximation algorithm for Zg(A) (with A possibly
complex) due to Barvinok [4] and Patel and Regts [34]. We also record a recent result of Chen, Liu,
and Vigoda [11] on the optimal mixing of Glauber dynamics for bounded marginal spin-systems on
bounded degree graphs which is used in our randomized algorithms.
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In Section 3, we prove the local central limit theorem for the hard-core model (Theorem 1.5).
Our proof uses both the aforementioned central limit theorem and a variant of the technique of
Dobrushin and Tirozzi [16] who proved local central limit theorems for spin models on the integer
lattice Z¢.

In Section 4, we prove our deterministic algorithmic results Theorems 1.1 and 1.2.

In Section 5, we prove our randomized algorithmic results Theorems 1.3 and 1.6.

In Section 6, we provide a proof of Theorem 1.5 when A is sufficiently small as a function of A
using the cluster expansion, a tool from classical statistical physics. While not necessary for the
main results, we include this since the proof is simpler and perhaps more intuitive.

Finally, in Section 7, we prove Theorem 1.7.

1.4. Notation. Throughout, we reserve the random variable Y for the size of a random independent
set drawn from the hard-core model on a graph G. We use subscripts to indicate the fugacity,
e.g. E\Y and Var,Y. We let ag(\) denote the occupancy fraction of the hard-core model on

G at fugacity A; that is, ag(\) = %. We let Z be a standard normal random variable and

N (z) = e**/2/\/27 denote its density.
Dependence of various constants on input parameters will often be important; we will write
f(n) = Oa(1), for instance, to mean that f is bounded by a constant that depends only on A.

2. PRELIMINARIES

Definition 2.1. Let z1,20 € C. We say that z; is a d-additive, e-relative approximation of zo if
21 =rezy + 23 for some e < r <ef, 0 €R, |0| < eand 23 € C, |23] <. When 6 = 0, we simply
say that z; is an e-relative approximation of zs.

The following theorem combines results of Shearer [38] on the non-vanishing of the independence
polynomial in a complex disk, Peters and Regts [35] on the non-vanishing of the independence
polynomial in a complex neighborhood of (0, A.(A)), and Chudnovsky and Seymour [12] on the
real-rootedness of the independence polynomial of claw-free graphs (extending the Heilmann—Lieb
theorem on the real-rootedness of the matching polynomial [22]).

Theorem 2.2 ([12,22,35,38]). Let A > 3 and 6 € (0,1). There exists cg 9 = c5a > 0 such that
for any graph G = (V, E) with mazimum degree at most A, the partition function Zg(\) of the
hard-core model does not vanish on the region

Rsan ={z€C:0<RN(2) <(1—=08)A(A),[S(2)] SecsatU{ze€C:|z| < (A- DA /AR

Moreover, if G is claw-free, then all of the roots of Zg(\) are on the negative real axis below
—e/(A+1). In particular, Zg(X\) does not vanish on the region

Car:=C\{zeC:R(2) <—e/(A+1)}.

Next, we record two consequences of the above zero-free regions of the partition function. The
first is an FPTAS for Zg(\), provided that A € C lies in the zero-free region, and follows by using
Barvinok’s method [4] and the work of Patel and Regts [34].

Theorem 2.3 ([4,34]). Let A > 3 and § € (0,1). There exists a deterministic algorithm which,
on input a graph G = (V, E) on n vertices with mazimum degree at most A, a (possibly complex)
fugacity X € Rs.a, and an approximation parameter € € (0,1), returns an e-relative approzimation
of Za(\) in time (n/e)O5a(),
Moreover, if G is claw-free, then the same conclusion holds for any A € CA with running time
(n/e)Pax),
7



The second is a result of Michelen and Sahasradbudhe [33] on converting zero-free regions of
probability generating functions into central limit theorems. We note that in order to establish our
results with slightly worse quantitative dependencies, earlier results of Lebowitz, Pittel, Ruelle, and
Speer [30] are sufficient.

Theorem 2.4 ([33, Theorem 1.2|). Let X be a random variable taking values in {0,1,...,n} with
mean p and variance o* and let fx(z) = Yoo PIX = k]z* denote its probability generating function.
Let 6 = ming¢ |¢ — 1|, where ¢ ranges over the (complex) roots of fx. Then,

sup [P[(X — ) /o < ] — PZ < £]| = o<1°g”>.
teR oo

For our proof of the LCLT for the hard-core model, we will need the following simple lemma.
The precise version we state here appears in work of Berkowitz [6] on quantitative local central
limit theorems for triangle counts in G(n,p) and has been used, for instance, in further work on
local central limit theorems for general subgraph counts in random graphs [37]; we include the short
proof for the reader’s convenience.

Lemma 2.5 (|6, Lemma 3|). Let X be a random variable supported on the lattice L = o+ BZ and
let N(x) = e_m2/2/\/ 2w denote the density of the standard normal distribution. Then

/B . .
sup|BN(z) —P[X =2]| < B [ |E[e"X] — E[ei*Z]|dt + e~/ 5,
xeL —n/B

Proof. Let ¢x(t) = Ee'™X and o(t) = Ee®?. By Fourier inversion on lattices and by Fourier
inversion on R, we have for x € £ that

]P X = = — t (229 t - 1itx t.
X=al=g [ x0T M@ =g [ e
Therefore
ﬁ > —itx /B —itx
BN (@)~ BX =all = 22| [ ot~ [ pxtear
T/ —oo —r/B
<2 7 ot - exonar+ 2| | ity
2m ) _n/p 21 | Jjo)>m/8
/B o o s
<8 lp(t) — px ()]dt + e /5,
—-/B
where we used a standard tail bound on Gaussian integrals in the last line. Taking the supremum
over € L completes the proof. O

For our randomized algorithms, we will make use of recent results of Chen, Liu, and Vigoda [11]
establishing optimal mixing of the Glauber dynamics for bounded-degree spin systems.

Theorem 2.6 ([11]|). Let A > 3 and § € (0,1). For every graph G = (V, E) on n vertices with
mazimum degree at most A and for every 0 < XA < (1 — 0)A(A), the e-mizing time of the Glauber
dynamics for the hard-core model on G at fugacity A is O s(nlog(n/e)).

Moreover, for any C > 0, the same conclusion holds for all line graphs G = (V, E) on n vertices
with mazimum degree at most A and any 0 < A < C, with the implicit constant depending on A
and C.
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3. PROOF OF THE LOCAL CENTRAL LIMIT THEOREM
The goal of this section is to prove the following quantitative version of Theorem 1.5.

Theorem 3.1. Fizx A > 3 and § > 0. Let A € (0, \:(A) — ). Given a graph G on n vertices
with maximum degree at most A, draw a random independent set I from the hard core model u with
fugacity X and let Y = |I|. Let u =E,Y and 0 = Var\Y. Then

og n)®/? 6(1og )2
Sup‘a_l-/\/((t—,u)/a) _PlY =4 ZOA75<min<(l g02) ’%_’_ (logn) >>

teZ g n

Moreover, if G is claw-free, then the same conclusion holds for any A € (0,C), with the implicit
constant depending on A and C'.

Remark. Lemma 3.2 below shows that 0% = ©a(An) (or 02 = ©a c(An) in the case of claw-free
graphs). Thus, for fixed A,d,C and for a sequence of A, in the appropriate region for which
Apn — 00, we see that the right hand goes to 0, thereby establishing the qualitative claim of
Theorem 1.5.

The proof of Theorem 3.1 requires a few steps. First, we use the zero-free regions given by
Theorem 2.2 in order to bound o.

Lemma 3.2. Let A > 3 and § € (0,1). For any graph G = (V, E) on n wvertices with mazximum
degree at most A and for all X € (0, \c(A) — 9), we have

n
(A+1)(1+ M)A

Moreover, if G is claw-free, then for all A > 0,

n
(A +1)(1+ M)A

Proof. The lower bounds follow from [14, Lemma 9|. For the upper bounds, let N = a(G) < n be
the independence number of G (which is also the degree of Zg () as a polynomial in \). Since the
constant term of the polynomial Zg(\) is 1, we can write

N
N =]]a-xy
j=1

where 71, ...,7N are the inverses of the complex roots of Zg(A). Then

Vary Y = X (log Zg(\)” + Alog Za(N\))

_ f: ] LA
N (1—)\7’]) 1—)\T‘j

J=1

N
-
;::1 1—)\7‘]

By Theorem 2.2, |rj| = O(A) and [1/(1 — Arj)?| = Os.a(1) when X € (0, \.(A) — §). In the case of
claw-free graphs, |1/(1 — Ar;)?| = Oa(1) for all A > 0 by Theorem 2.2. Combining these estimates
completes the proof. O

< Var, Y < Csadn.

< Var,Y <Caln.

Next, we control the low Fourier phases of our random variable.
9



Lemma 3.3. Let A > 3 and § € (0,1). For any graph G = (V, E) on n wvertices with mazximum
degree at most A and for any X € (0, \c(A) — ), we have for all t € R that

(|t|(log n)3/2 + log n)>
O_ b

|Mwﬂ—Ewﬁn=@w<

where X = (Y — p)/o.
Moreover, if G is claw-free, then the same conclusion holds for all A > 0 with the implicit constant
depending only on A.

Proof. We prove the statement for general graphs; the proof for claw-free graphs is completely
analogous. By Theorem 2.4 combined with the zero-free region from Theorem 2.2 we have for all
t € R that

MX§ﬂ—MZ§m=oA(b§ﬁ. (3.1)

Let X’ be X convolved with a centered Gaussian of infinitesimally small variance so that X’ has
density with respect to the Lebesgue measure on R; it suffices to prove the claim for X’ and then
pass to the limit. For this, we note that

E[eX] = / e pxi(2)dz

—00

= / e pxi(2)dz £ P[|X| > 7]
|2|<7

_ [eit2< /_ ipx,(z')dz'ﬂ Z__ /_ :z'teit2< /_ ZTpX/(z’)dz’>dzj:IP>[|X’| > 7]

= el — / z’tem(/ pX/(z')dz’> dz £ P[|X'| > 7] — ""P[|X'| > 7]

-7 -7

_ it / ite*P(X’ € [=r, 2]Jdz + P[|X'| > 7] — T B[|X'] > 7]

—T

. T . 1
— it / Z-teztzIP;[X/ c [_7_’ Z]]dZ + it . OA76< ogmn 4 €_T2/4>,
r o
for some 6 € [0,27), where in the last line, we have used (3.1) along with a standard Gaussian tail
bound. Applying the same calculation to Z instead of X’ and taking the difference, we find that

- . logn
‘E[eti ] _E[eth” < ’t’ +OA,6< i Te 2/4>

/7‘ |P[X" € [-7,2]] —P[Z € [-T,2]]| d=

(I7t]| + 1) logn N e‘T2/4> .
o

< Oas (

Since o < n, setting 7 = v/8logn gives the desired conclusion. O

Finally, we control the high Fourier phases of our random variable, following a similar strategy
to that of Dobrushin and Tirozzi [16]. We need the following elementary lemma.

Lemma 3.4. Let G = (V,E) be a graph on n vertices with mazimum degree at most A. Then,
there exists a subset S C 'V of size Q(n/A3) such that all vertices in S are pairwise distance at least
4 with respect to the graph distance. Moreover, there is an algorithm to find such a subset S in time

Oa(n).

Proof. Let vy,...,v, denote an arbitrary enumeration of the vertices. Initialize S = (). Consider the
greedy algorithm which, at each time step, adds the first available vertex to the set .S and removes
10



all vertices within distance 3 of this vertex from consideration. The algorithm stops when there are
no more available vertices. The algorithm runs in time Oa(n) and outputs a set S such that any
two vertices in S have graph distance at least 4. Moreover, since at each time, O(A3) vertices are
removed, it follows that |S| = Q(n/A3). O

Lemma 3.5. Let A > 3 and C' > 1. There exists c3 5(A,C) > 0 satisfying the following. For
any graph G = (V, E) on n vertices with maximum degree at most A and for any A € (0,C], let
X =Y —u)/o. Then, for allt € |[—mo,mo], we have

[E[e™"¥]| < exp(—c35(A, C)Ant? /o?).
Proof. Rewriting the claim, it suffices to prove that for all t € R, |t| <,
IE[e™]| < exp(—ca.cAnt?).

Let S be a 4-separated set of vertices of G of size s = Q(n/A3) coming from Lemma 3.4. Let T
be the set of vertices that are at distance at least 2 from S in G and let G[T] denote the graph on
T induced by G. Let v denote the distribution on Z(G[T]) induced by the hard-core model. We
sample [ by first sampling J ~ v and then sampling from the conditional distribution (induced by
the hard-core model and J) on Z(GJv U N(v)]) for each v € S. The key observation is that these
conditional distributions are mutually independent. In particular, given J, we can write

YL T+ X1+ + X,

where each X is an independent random variable with support in {0,...,A + 1}, a probability
mass at 0 of Qa ¢(1), and a probability mass of Qa () at 1. Note that the implicit constant in
does not depend on the specific realisation of J.

We claim that for all |[t| < 7 and all j € [s], for any realisation of J,

|Ee™#Xi| <1 — eAt?
for some absolute ¢ = ca,c > 0. Indeed, for any realisation of J, letting XJ’» denote an independent
copy of X, we have
\Ee_itXf ‘2 — Eeit(Xj—Xj’.)
A+1
=PIX; = X]]+ > (P[X; — X} = k] + P[X} — X; = k]) cos(kt)
k=1

A+1

<PX; = X))+ ) (PX; — X) = K] + P[X} — X; = k]) + 2P[X; — X = 1] cos(t)
k=2

=1-2P[X; — X} = 1] 4 2P[X; — X = 1] cos(t)
=1-2P[X; — X} = 1](1 — cos(t))

1 1
<1-— ZP[Xj —Xj=1" <1- Z]P>[Xj = 1P[X} = 0t <1 —ca, A,

as claimed.
Finally, we have that for any ¢t € [—7, 7],

[E[e™]] < max [E[e™" | J]

S
_ —itX;
= max H |Ee™ "]
7j=1
< (1 — CA,C)\tz)s/z
11



< exp(—c'nAt?),
for an appropriate ¢ = ¢y » > 0 and the result follows. O
3.1. Finishing the proof. We now prove Theorem 3.1.

Proof of Theorem 3.1. We prove the result for general graphs; the proof for claw-free graphs is
essentially identical. Applying Lemma 2.5 to X = (Y — u)/o € a + BZ, where a = —p/o and
B =1/0, and using Lemmas 3.2, 3.3, and 3.5 we see that for o > 2,

sup |BA/(x) — PIX = o] < = /m [E[e#X] — E[e"Z]|dt + e 7"/

zeLl 0 J_rno
§A76 l /7TO' min <‘t‘(10g n)3/2 —+ logn, 6_03.5)\nt2/02 n e_t2/2>dt n e—7T202/2
0 J—no g
1 [ |t|(10gn)3/2 + logn 2 2/9 2,2 /9
a8 _/ i cemeadt 4 e /2 ) gt e ™o/
0 J_no (o}
1 [Casvioes 1t (logn)3/2 4+ logn 1
a5 o) g, 1
o —Ca,5Vlogo g o
. logn)”

o2

This gives the first term in the minimum in the statement of Theorem 3.1. For the second term,
we may assume that 1 < o < logn. Let X = A/(1+)) and observe that the hard-core distribution at
fugacity A is identical to the product distribution Ber(\)®Y conditioned on the configuration being
an independent set. Here, Ber()\’) is the random variable which is 1 (or occupied) with probability A’
and 0 (or unoccupied) otherwise. A trivial union bound argument shows that a random sample from
Ber(\)®V is an independent set with probability at least 1—A2An = 1-Ox(A2An) = 1-0a (0 /n),
where we have used Lemma 3.2. Therefore, the probability of any configuration under the hard-
core model is within a factor of 1 & Oa(c*/n) of the probability of the same configuration under
Ber(\)®V.

Let Y’ denote the random variable counting the number of 1s in a random sample from Ber(u)®"
and let ¢/ and ¢’ denote the mean and standard deviation of Y’. Then, by the classical DeMoivre-
Laplace central limit theorem (see [36, Chap. VII, Theorem (4)] for the quantitative version used
here), we get that for any integer k,

P[Y’:k]—%/\/’<k;ul>'20<%>.

Moreover, from the comparison between the hard-core model and Ber(\)®Y mentioned above, as
well as the Chernoff bound for the Binomial distribution, we see that

PlY = k] =P[Y' = k] = Oa(c?/n)
p=1'(1+£0a(ctlogn/n))
02 = 0"(1 £ 0Oa(c%(logn)?/n)).

Substituting this in the above gives the desired conclusion. O

4. DETERMINISTIC ALGORITHMS

For our deterministic algorithms, we will need the following preliminary lemma, which allows us

to find a ‘good’ fugacity at which to either apply the LCLT directly or algorithmize its proof.
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Lemma 4.1. Let A > 3 and § € (0,1/2). There exists a constant Cy 1 = Cy 1(A,0) > 1 for which
the following holds.

For any o < (1 —0)a(A), there exists a unique Ay < Ae(A) so that ag, (M) = o Further, for
any graph G = (V, E) on n vertices of mazimum degree at most A and for any 1 < k < an, there
exists an integer t € {0,...,[Cy 1A} such that

InaG(t/(Cy1n)) — k| < 1/2.

Moreover, if G is claw-free, then for any 1 < k < (1—10)i*(Q), there exists an integer t € {0,...,[n-
8(AD/*1Y such that the same conclusion holds.
In either case, such an integer t can be found deterministically in time nCsa()

Proof. For general graphs, the existence of such an integer ¢ and constant Cy 1 follows from |14,
Lemma 5| (upon replacing [14, Lemma 9| by the optimal variance bound Lemma 3.2). For claw-free
graphs, the existence of such an integer t follows similarly as a simple consequence of the following
observations: (i) ag(A) is monotonically increasing in A; (ii) since i*(G) > n/(A + 1), we have that
for all \ > g(A+1)/8

(1-6/2)i*(G)

. 1 n k 1 _ P
P,[Y < (1—6/2)i*(G)] = « 1 ony\a-e2i@)
Y <0027 = 7 2 ()2 < o2
1 )
< 2\l (@ . 2n)\—5n/(2A+2) < &/4
= Za(N) </

from which we see that nag(8A+1D/5*) > (1 — §)i*(G); and (iii) for all A > 0

d 1
—ag(A) = —Var,(Y) < C
o6V = S Van(Y) < Gy,
where the inequality follows from Lemma 3.2.

As for the algorithmic claim, note that for each ¢ in the range, we can deterministically approx-
imate nag(t/(C4 1n)) to within an additive error of 1/4 in time n®2() by Theorem 1.7, so that
we may find a t with the desired property in the stated time. O

4.1. EPTAS from the LCLT. Recall that an EPTAS (efficient polynomial-time approximation
scheme) is a PTAS (polynomial-time approximation scheme) with a running time of the form
f (e)no(l) i.e. the degree of the polynomial in n is independent of the error parameter €. By com-
bining our LCLT with Lemma 4.1 and Theorems 1.7 and 2.3, we immediately obtain an EPTAS for
ir(G), for all k bounded away from the relevant barrier.

Theorem 4.2. Let A > 3 and 6 € (0,1/2). There exists a deterministic algorithm which, on
input a graph G = (V,E) on n vertices of mazimum degree at most A, an integer 1 < k <
(1 = §)ac(A)n, and an error parameter € € (0,1) outputs an e-relative approximation to i(G)
in time n9a(M) exp(Og a(e7/v/n)).

Moreover, if G is claw-free, then the same conclusion holds for any 1 < k < (1 —6)i*(G).

Proof. If k < e 5n/(A + 1), then an FPTAS for i (G) is already implicit in [13]. Therefore, we
may restrict our attention to k > e °n/(A + 1). We may also assume that ¢! < c5 a/n/(logn)?
for a sufficiently small constant c;a > 0; otherwise exp(Osa(e™!/v/n)) > 4" so that exhaustive
enumeration runs in the claimed time.
Fix k > e~®n/(A+1) which also lies in the specified range, let t; denote the corresponding value
of ¢ given by Lemma 4.1, and let A\, = t/Cy | denote the corresponding fugacity. The upper bound
13



on ag;(A) in the proof of Lemma 4.1 shows that A\ = Q5 (1). In particular, py := py,, 0% := oy,
satisfy pig, 07 = Os,a(n). Moreover, since |k — ug| < 1/2, it follows by Theorem 3.1 that
(G
Za(Mk)

=P[Y = k]

= 0 "N ((k — p) /or) £ Oa 5((log n)>/? /n)
= (1 4+ ¢/1000) - o1 "N ((k — px) /ok)
= (14 €/500) - (vV2moy) L.

Therefore, letting Eg(Ak) and o denote €/1000-relative approximations to Zg(A;) and oy, both
of which can be computed deterministically in time (n/ E)O‘S’A(l) by Theorems 1.7 and 2.3, it follows
that

(@) =\ Za(\) - (V2may) !

is an e-relative approximation to ix(G), as desired. O

4.2. FPTAS from the proof of the LCLT. In the previous subsection, we saw how our LCLT
gives an EPTAS for ix(G), for all k& bounded away from the relevant barrier. Extending this
to an FPTAS requires bypassing the error term O(1/02) in Theorem 3.1. For this, instead of
approximating P[Y = k] by o~ *N((k — u)/o), we will directly approximate P[Y" = k] to the desired
accuracy. The key ingredient required for this is the following.

Lemma 4.3. Fizx A > 3, 6 € (0,1/2), and a parameter C > 1. There exists a deterministic
algorithm which, on input a graph G = (V, E) on n vertices of mazimum degree at most A, n=2 <
A< (1= 8)AA(A), an error parameter € € (0,1/y/n), and t € [-C+/log1/e,C+\/log 1/€] outputs an
0-relative, €0-additive approzimation to Ey[e"X] in time (n/e)P52.cM) where X = (Y — py)/ox.

Moreover, if G is claw-free, the same conclusion holds for all X > n~2 with running time
(n/E)OA,C,\M(l)'

Proof. We provide the proof for general graphs; the proof for claw-free graphs follows by straightfor-
ward modifications. For convenience of notation, we denote uy and oy by p and o. By Theorems 1.7
and 2.3, we can compute e'%-relative approximations Z, fi, and & to Zg()), i, and o in time

(n/e)9%.a0) Note that
E}\[eitX] — e—it,u/o . E}\[eitY/o]

Za(Ae''/?)

— —itn/o
Za(N)

We have the following two cases.

Case I: A < ﬁ. In this case, for any t € R, Aeit/? e Rs ., where Rs A is the zero-free region
in Theorem 2.2.

Case II: A\ > —1r. In this case, we may assume that At/ € Rsa for all t € R, |t| <
C+/log 1/e. Otherwise, since 3% = Q5 a(n) by Lemma 3.2, it follows that €1 = exp(Q5.a,c(n)), so
that exhaustive enumeration runs in the claimed time.

Hence, in either case, it follows from Theorem 2.3 that an €
which we denote by Z;, can be computed in time (n/e)05.a1).

We claim that the output

100_pelative approximation to Zg()\eit/ 8),

e—ztu/a .

NHENW
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is an approximation to Ey[e®X] of the desired quality. Indeed, by the assumed upper bounds on ||
and e and the assumed lower bound on A, we have for all n sufficiently large (depending on §, A, C)

that

M i-ofom) _ o
eit/c - - ’ o—ilhi =
for some 6,0’ € R satisfying |6, 0| < ¢?". Therefore, —Zzgi = " for some 0" € R, |0"| < € and
. o~ . n . ~ . n .
|ZG(>\ezt/cr) _ ZG()\eZt/U)| _ Zik(G))\k(eztk/o _ eztk/o) < ZZk(G))\k|elk€ o 1|
k=0 k=0

<) iGN =" Za(N).
k=0

Hence,
Ey[e"X] = (ew”e_“ﬁ/3> . % 4 omitnlo . ZG()\eit/ch_(jG()\eit/G)
= (ei‘g”e_“ﬁ/3> . o E26100 i€l % g
where w; € C with w| < €*, as desired. -

Given the preceding lemma, Theorems 1.1 and 1.2 follow from the proof of Theorem 3.1.

Proof of Theorems 1.1 and 1.2. Again, we provide the details only for general graphs i.e. Theorem 1.2;
the argument for claw-free graphs is essentially the same. Let & > 1 be as in the statement of the
theorem. Moreover, we may assume that € € (0,1/n), since the statement for larger values of e
follows from the statement for € = 1/n. Let ¢ denote the integer returned by Lemma 4.1 and let
X = A, = t/Cy 1 denote the corresponding fugacity. Since p := py, > 1/2, it follows as in the
proof of Lemma 4.1 that A = Qs a(1/n).

Let 0 := oy, X = (Y — pu)/o, and v = min(wo,Cy/log1/e), where C is a sufficiently large
constant depending on A,4§. Let Z . 11,0 be ¢'%-relative approximations to Zg(\), i, o, which can
be found deterministically in time (n/e)?52() by Theorems 1.7 and 2.3.

Let z = (k — p)/o and @ = (k — i)/&. Then, as in the proof of Theorem 3.1, we have

1 O

PA[X =2] = 9 By [eX e dt
To —To
100 1 7 it X, —itx

=z +R Py Ex[e" e " dt
o J_,
€100 g - 100 - 100

— :]:2675 +R Z E}\[eze ZX]e—ze lx
270 (= e 100
€100 L : 100 - 100 g7

— :|:3675 +R Z E}\[eze ZX]e—ze 0z ’
270 (= e 100

where the first line uses the Fourier inversion formula for lattices, the second line uses the definition
of v, Lemma 3.5, and Lemma 3.2, the third line uses the upper bound on € and the lower bound on
A, and the last line uses the lower bound on A.

15



1 —100] 100

Next, for each integer £ € [—ye 109 ~e , let Zg denote an €'%-additive, e!%-relative approx-
'ElOOZX]

imation to Ej[e’ . By Lemma 4.3, these approximations may be found deterministically in
time (n/e)?52(), Then,

iGN i (G)AF

1+eP) 22 = =P)\[X ==z
( ) Z 7o) [ ]
100 e
_ 75 € i€100px ) —4el00g7
=43+ R Cy Z Ex[e le
f=—rye—100
67100
75 14+ R eloo 7 7 —el00g7
=44 —
€+ (1+e€™) 55 Z e
g:_,yg—loo

Finally, since Py\[X = z] = P\[Y = k] = Q5 a(1/0), we have that

—100
i (G\F €100 e . ) N
(1 + 650) k(z\) _ (1 + E50)% e Z de—zelooéw ’
f=—re—100
so that the quantity
—100

100 7€
Y L

2o =100

which can be computed deterministically in time (n/ e)oiA(l), is an e-relative approximation to

in(G). 0

5. RANDOMIZED ALGORITHMS

5.1. A quasi-linear time sampling algorithm. We proceed to the proof of Theorem 1.3. We
will prove the result for independent sets, noting that the proof for matchings follows identically.

We will need the following preliminary lemma, which is an efficient randomized version of
Lemma 4.1.

Lemma 5.1. Let A > 3 and § € (0,1/2). There exists a constant c5 1(6,A) > 0 and a randomized
algorithm with the following property: for any graph G = (V, E) on n vertices of maximum degree
at most A, for any 1 < k < (1 — d)nac(A), and for any € € (0,1), the algorithm outputs X €

(0, (1 = ¢5.1)Ae(A)] satisfying

BAY — k| < \/Var, Y
with probability 1 — €. The running time of the algorithm is Oa s(nlog(n/e)(logn)?).
Remark. If k > n/(3A), then it is easily seen that A > 1/(100A).

Proof. If 1 < k < /n, then it follows from Corollary 6.3 that the deterministic choice A = k/n
satisfies the desired conclusion. Therefore, it suffices to consider the case /n < k < (1 —d)nac(A).
Let A = [n7Y3,(1 — e51)A(A)] N (Z/n?). By Lemma 4.1, there exists A € A satisfying

IE\Y — k| < 1/2.
Further, for any A € A, it follows from Theorem 2.4 and Lemma 3.2 that

[EAY —medy Y| = O5a(1),
16



where med denotes the median. Since Vary Y = ©5a(nA) by Lemma 3.2, it follows that there exists
A € A satisfying

1
|med, Y — k| < Ex/VarAY

and it suffices to output such a A € A.

For any A € A, there is a randomized algorithm to estimate medy Y to within y/Var) Y /2 additive
error which succeeds with probability 1 — (¢/n?®) and runs in time O(nlog(n/¢)(logn)?). Indeed,
by Theorems 2.4 and 2.6, Lemma 3.2 and the Chernoff bound, this may be accomplished by taking
the median of Os a(log(n/e€)) independent runs of the Glauber dynamics, each for ©a s5(nlogn)
steps. Therefore, running binary search with the above primitive takes time O(nlog(n/¢)(logn)?)
and except with probability 1 — €, outputs A € A satisfying the desired conclusion. O

We now present our sampling algorithm. For simplicity of notation, we will restrict attention to
the case k > n/(3A); the case k < n/(3A + 1) is already handled by the down-up walk in [8] with
asymptotically optimal running time. Below, ca 5,CA s, c’A7 5 C’A7 s are constants depending on A,
whose values can be determined using a priori analysis. We will assume that € > exp(—n/C’\ 5);
for smaller ¢, it follows from Theorems 2.6 and 3.1 that rejection sampling for the hard-core model
at the fugacity A given by Lemma 5.1 outputs a distribution within e-TV distance of the uniform
distribution on Zj[G] in time

Os,a(nlog(n/e) - log(n) - v/nlog(1/€)) = Osa(nlog(1/e)*/* log n).
For 1/100 > € > exp(—n/C} ), we use the following algorithm.
e (Preprocessing Step 1) Using Lemma 5.1, find A € A such that

E\Y — k| < y/Var, Y.

e (Preprocessing Step 2) Using Lemma 3.4, find S C V such that |S| = Q(n/A3) and such
that the vertices in S are distance at least 4 apart. Let 7' = {v : v such that dist(v, S) > 2}.

e (Preprocessing Step 3) Find an independent set I of size k using a similar greedy algorithm
as in Lemma 3.4.

e (Initialize Core) Run Glauber dynamics for the hard-core model on G at fugacity A for
Oa s(nlog(n/e))-steps to obtain an independent set I’. Let J =I1'"NT.

e (Set parameters) Fix p = ca 51/n/log(1/€), where ca s > 0 is sufficiently small. For each
v € S and for each K € Z(G[v U N(v)]), use exhaustive enumeration to compute

pok =PA\[INN@)=K |INT=J|.
Let
o = min(py 9, po,x, ),
where K, € Z[N(v)] denotes the independent set with v occupied and all other vertices

unoccupied. Let

¢ = ming,.
For each v € S, let W, be a random variable taking values in Z[N (v)] U {7} which takes on
the value ? with probability 2¢, ) with probability Pup — ¢, Ky with probability p, k, — ¢,
and K ¢ {0, K, } with probability p, k.

e (Resample Neighborhoods Step 1) For each v € S, independently, sample W,,. If W, #7,
then set 7 N N(v) = W,. Let S* = {v: W, =7}. If [S*| < ¢, sn, where ¢y 5 > 0 is
sufficiently small, then proceed to the final step. Else, proceed to the next step.
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e (Resample Neighborhoods Step 2) Let ¢ be the current number of vertices chosen and let
k — ¢ = k. With probability p(‘if‘)2_|s*‘ (here, we use the convention that the binomial
coefficient is 0 is & ¢ [0, |S*|]) sample a random subset of S* of size k¥’ and set INN (v) = K,
for the vertices in the subset and I N N(v) = () for the vertices not in the subset; with the
remaining probability, proceed to the next step.

e Repeat all steps after preprocessing at most at most Ca slog(1/€)
large Ca s > 0; if no valid sample after has been reached, output Ij.

3/2 times for sufficiently

We now show that the above algorithm satisfies the assertion of Theorem 1.3 for k and € in the
specified range.

Proof of Theorem 1.3. Before analyzing the correctness of the algorithm, let us quickly bound its
running time. By Lemmas 3.4 and 4.1, the preprocessing steps take time Oa s5(nlog(n/e)(logn)?).
Note that the Preprocessing Step 3 can indeed be accomplished using the greedy algorithm in
Lemma 3.4 since a(A) < 1/(A +1). Each run of Initalize Core takes time Oa s(nlog(n/e)logn)
since each step of Glauber dynamics takes time Oa s(logn) to implement. The step Set parameters
takes time Oa 5(n). Resample Neighborhoods Step 1 takes time Oa s(n). In Resample Neighbor-
hoods Step 2, we can compute the probability in time O(n(logn)?) by [17] and then sample from
the hypergeometric distribution using sampling without replacement in time O(nlogn). Thus, we
see that the running time of the algorithm is

Os a(nlog(n/e)(logn)® + nlog(n/e)logn log(1/€)3/%).

We now proceed to the proof of correctness. The idea is that the algorithm may be viewed as
implementing rejection sampling where the base sampler outputs I according to the distribution
pia(- | [I| = k mod p) in time Os a(n). This leads to a Osa(n) time algorithm for approximately
sampling from the uniform distribution on Z;[G] since by Lemma 5.1 and Theorem 3.1, Py[|I| = & |
|| = k mod p] = Q5 A(1).

To formalize this, we begin by noting that for all t € {0,...,p — 1} and for all J € Z|G[T]], it
follows from the calculations and notation in the proof of Lemma 3.5 that

1
IP’)\[|I|Etmodp|IﬂT:J]—5

1
IP’)\[X1+---+XSEt—|J|modp]—]—9

p—1

1
<= exp(—Q5a(nl?/p?))
P
€

< T
— 100p
provided that ca s > 0 is chosen to be sufficiently small. Hence, for any J
PyINT =J||I| =kmodp| =Py\[INT = J|(1+¢/50),
so that up to an €/49-TV distance, the distribution of the set J in Initialize Core is pgA[I NT =
| [I] = k mod p].
Next, for any realisation W = (wy)yes of W = (Wy)yes, let S*(w) denote the corresponding

subset and let pz denote the uniform distribution on {0, 1}3*(“7) with 0 denoting unoccupied and
1 denoting occupied. Then, sampling from the conditional distribution pug (- | I NT = J) is

equivalent to first sampling W =@ according to the distribution specified in Set Parameters and
then resampling the 7 according to pgz. For any realisation w of W with |S* ()| > C,A7 5N, it follows
as above that for any ¢ € {0,...,p — 1},

- 1
]P’AHI\Etmodp[IﬂT:J,W:u?]——‘§mtax
p /

P[Binomial(|S*(w)[,1/2) = ¢’ mod p] — E
p
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€
< —7
— 100p

provided that ca s > 0 is chosen to be sufficiently small compared to C,A7 5- Since ¢ = Q5a(1), it
follows by the Chernoff bound that

Py[|S* ()| < c/Aﬁn | INT = J] < exp(—Qa,s(n)) < e/n?
for all sufficiently large n. This shows that

(P1) The probability of moving directly to the final step from Resample Neighborhoods Step 1 is
at most ¢/n3, and

(P2) Up to an €/49-TV distance, the (W, ),es in Resample Neighborhoods Step 1 follow the distri-
bution (Wy)ves | {|I| =k mod p,INT = J}.

Now, we analyze Resample Neighborhoods Step 2. Observe that for any realisation W = & with
|5 (@)] = ¢y 57,

PAllIl =k | INT = J,W = ]
PA[lI|=kmodp | INT = J,W = ]
_ P[Binomial(|S*(&)[,1/2) = k]

(1£€/100)/p
S*(w _1S* (@

Therefore, Resample Neighborhoods Step 2 samples from a distribution within €¢/49-TV distance
to the conditional distribution py [ | INT = J,W =, |I| = k mod p] and rejects the sample if
1] £ k.

So far, we have not used the property of A guaranteed by Lemma 5.1. This will now be used
to show that the probability of the steps Initialize Core through Resample Neighborhoods Step 2
outputting an independent set of size k is Qa 5(1/4/log(1/€)). To see this, note that by taking

the expectation over J and W on both sides in the display equation above and using (P1) and
Theorem 3.1, we have that

PyllI| =k | INT =J,W =&, |I| = k mod p] =

E. -

S* W QO (T */TT
S < : )>p2 SN IS (W)| > dygn| = (1 £ ¢/25)PA[|T] = k | |1| = k mod p]

k/

= Qs.a(p/Vn)
= Qs5a(1/+/log(1/e€)).
If |S*(W)| > c sn, then the quantity inside the expectation is bounded by Osa(1/+/log(1/€)).

Hence, by the reverse Markov inequality, with probability €5 (1) (over the choice of J, W), the
quantity inside the expectation is 25 A(1/4/log(1/€)).

To summarize, we have shown the following: a single run of Initialize Core through Resample
Neighborhoods Step 2 produces an output with probability €5 A(1/4/log(1/€)) and the distribution
of this output is within €/5 in TV-distance from the uniform distribution on Z(G). Therefore, by the
Chernoff bound, repeating this procedure independently Ca slog(1/ 6)3/ 2 times for Ca,s produces
an output from a distribution on Zy(G) which is within € in TV-distance of the uniform distribution
on Zy(G). O

5.2. A faster FPRAS. The FPRAS for it (G) and my(G) is substantially simpler than the sam-
pling algorithm above. As before, we will present the proof only for ix(G) with the proof for my(G)
being similar.
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Proof of Theorem 1.6. We have the following two cases:
Case I: 1 < k < ca/n, where ca > 0 is a sufficiently small constant which can be determined a
priori. Let

Pk = ]P’[J € Ik],
where J is a uniformly random subset of V' of size exactly k. By the union bound, it follows that

k2 1
pk:1—0<nA'm> 25,

provided that ca is sufficiently small. Since

ir(G) = (Z)pk,

it suffices to obtain an e-relative approximation of py. Let Si,...,Sy denote independent samples
from the uniform distribution on size k subsets of V. Then, by the Chernoff bound,

]].[Sl S Ik(G)] +---+ ]].[Sg S Ik(G)]
l
with probability at least 3/4, provided that £ > C/€? for a sufficiently large constant C.
For the running time, note that sampling a uniformly random subset of size k takes time

O(klogn), checking whether it is an independent set takes time Oa(k), and computing the bi-
nomial coefficient (Z) takes time O(klognloglogn), so that the total running time is

= (L +e)p

O(klognloglogn) + Oa (ke 2logn).

Case II: ca 5/n < k < (1 —9)ae(A)n. In this case, we first use Lemma 4.1 to find a suitable .
By Theorem 3.1,

i k
pp = ’fzf()j) — PA[l1] = k] = Qas (\/%)

Let Iy,..., Iy denote independent samples obtained by running the Glauber dynamics for the hard-

core model at fugacity A for Oa s(nlogn) steps. Then, by the Chernoff bound,
1L € Zu(G)| + - - - + 1[Iy € T (G

[ € Zi(G)] . [Lr € Ti( )]:(1:t6/4)pk

with probability at least 3/4, provided that ¢ > CA,5€_2\/ nA, for a sufficiently large constant Cah .

For the running time, sampling each I; takes time O s(n(logn)log(n/e)), finding its size takes

time Oa(n), computing A\* takes time O(klognloglogn) and approximating Zg(\) to within an

€/2-relative approximation takes time T, which gives the desired conclusion. O

6. CLUSTER EXPANSION

In this section, we treat the case of small activities A using the cluster expansion, a classical tool
from statistical physics. The cluster expansion (or Mayer series [32]) is a formal infinite series for
log Z¢(A). For an introduction to the cluster expansion, see [18, Chapter 5|.

We introduce the cluster expansion in the special case of the hard-core model on a graph G. A
cluster T' is an ordered tuple of vertices from G. The size of ', denoted |I'|, is the length of the
tuple. The incompatibility graph of I' = (vy,...,vg), H(T'), is the graph with vertex set {vy,..., v}
and an edge between v;,vj, i # j, if v; € N(v;) U {v;} in G. The Ursell function of a graph H is

the function )
_ E 14l

" ACE(H):(V(H),A) connected
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The cluster expansion is the formal infinite power series

log Zg(A\) = Y ¢(H(T)A,
r

where the sum is over all clusters of vertices from G. In fact, in this setting the cluster expansion is
simply the Taylor series for log Z;(\) around 0, with terms organized by clusters instead of grouping
all terms of order k together.

To use the cluster expansion as an enumeration tool, it is essential to bound its rate of convergence.
We will use the convergence criteria of Kotecky and Preiss [29] (though the zero-freeness result of
Shearer [38] along with the lemma of Barvinok [4] on truncating Taylor series would also work).
This lemma bounds the additive error of truncating the cluster expansion after a given number of
terms.

Lemma 6.1. Let G be a graph of maximum degree at most A on n vertices and suppose 0 < A <

e
A Then

3 (¢(H(F))A\F\ < n(re(A+1))F . (6.1)

I:T|>k

Proof. This is a consequence of the main result of [29]. We can express the hard-core model as a
polymer model in the setting of [29] by defining each vertex to be a polymer with weight A. Taking

a(v) =1 for all v € V(G) and exp(d(v)) = m, we have for all v € V(G),
1
a()+d(v) < (A + De—o = 1.
2 e S R V)
ueN (v)U{v}

Then by the main theorem in [29], for all v € V(G),

|
> |pH@)AT! <m>

I'sv
Restricting the sum to clusters of size at least k and summing over all v € V(G) gives (6.1). O

<1.

The cluster expansion is a very convenient tool for studying the cumulants of the random variable
Y = |I] (see e.g. [10,15,24]). In particular, when the cluster expansion converges, we have the

formula
ke(Y) =Y [TFg(HT))A (6.2)
r

Lemma 6.2. Fiz A > 2,§ > 0 and suppose A < e(lA;fn' Then for all fized k > 1, and all graphs G
of mazimum degree A on n vertices,

D> TN G(H(T)) = nh + Ok 5(nA*A?).
r

Proof. Since the contribution to the left-hand side from clusters of size 1 is nJ, it suffices to show
that

Y TFATG(H(D))] = Op5(nA°A%).

[T >2
Applying Lemma 6.1 ,we have
> TEATGHID)] < n ) tF(Ae(A + 1)) < Crend?(A+1)2. O
i >2 t>2

As in |24, Corollary 23|, we can immediately deduce bounds on the mean and variance and a
central limit theorem from Lemma 6.2.
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Corollary 6.3. Let G be a graph of mazimum degree A. If A < e(lA;fl), then the following hold:
(1) E\Y = n)+ Os(nA\2A?).
(2) Var, Y = n\ + Os(nA2A?).

If in addition An — oo as n — oo, then

(8) The random variable Y satisfies a central limit theorem.
Proof. We prove these statements via the cumulants of Y.

EY =r1(Y) => [TATGH(T)) = nX + 0s(nA>A%).
r

Var, Y = ro(Y) = > [TPATg(H(T)) = nA + O5(nA*A%).
r
Now let X = (Y — E,Y)/v/Var, Y. By definition x;(X) = 0 and x2(X) = 1. All the cumulants
of a standard Gaussian random variable are 0 except for the second which is 1, and so to prove a
central limit theorem it suffices to show that for any fixed k > 3, k;(X) — 0 as n — co. We have

_ LAY
ke (X)] = > ———AFlg(H(T))

— Var(Y)k/2
1
< ———= > [TFATg(H(D))|
Var(Y)3/2 EF:
= (1+0(1)(nA)"Y2 = o(1). O

Note that if An — p > 0 as n — oo, then Lemma 6.2 shows that xx(Y) — p for each fixed k,
which implies that Y converges in distribution to a Poisson random variable of mean p.

Theorem 6.4. Fix A > 3. If G,, is a sequence of graphs of maximum degree A on n vertices and
nlg A< m, then the random variable Y satisfies a local central limit theorem as n — o0o.

Proof. We follow the proof strategy of [25, Theorem 19| that proves a local central limit theorem in
the setting of polymer models satisfying the equivalent of Lemma 6.2.

Let X = (Y —E,Y)/v/Var, Y, and let ¢x(t) = Exe™X be the characteristic function of X (and
¢y the characteristic function of V).

First we prove that there exists ¢ > 0 so that for all t € [—m, 7], |¢x (t)] < e=". Using the cluster
expansion we write

log gy (£) = > ("I — 1) p(H(T)AT,

r

and so

Relog ¢y (t) = > (cos(t|T|) — 1) p(H(T))A

r
= n\(cos(t) — 1) + Z (cos(t|T]) — 1) p(H(T)) A"
I:|T[>2
<D0 S e AT
5 T:|T|>2

t2n\ t2n\ 2n\
_ 4+ — < _ ,
- 5 10 — 10
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where we have used the bounds cos(t) — 1 < —t?/5 and 1 — cos(tz) < (tz)?. Exponentiating then
gives ¢y ()| < e~*"M10 which, along with Corollary 6.3, implies that |¢x (¢)| < e~ for some
c>0.

To finish the proof we will apply Lemma 2.5 with « = EY and § = /Var(Y'), which says

sup |BN(z) —P[X =z]| < B |¢X — bz (t)|dt + o2/ (262)

el

oﬁ)+6/_ |6 () — bz (t)]dt

and so to prove the LCLT it suffices to show that

/_OO |ox(t) — pz(t)|dt = o(1).

By the central limit theorem of Corollary 6.3 we have that ¢x(t) — ¢z(t) as n — oo. Moreover

|<;5 x(t)—¢ g(t)| is an integrable function since it is bounded by e~ +¢=*/2 from the bound above.
Applying dominated convergence completes the proof. O

7. DETERMINISTIC APPROXIMATION OF CUMULANTS IN LINEAR TIME

In this section we prove Theorem 1.7. We prove the theorem first in the regime of cluster expan-
sion convergence, then extend to more general zero-free regions. We prove the theorem for general
graphs, noting that the proof for claw-free graphs is similar.

Lemma 7.1. For all graphs G of maximum degree A, all 0 < A < (A—i—l) and all fized k > 1 there

is a deterministic algorithm to give an eAn additive approzimation to ki(Y). The algorithm runs
in time O g x(n - (1/€)02s0).

Proof. The algorithm will be to compute a truncation of the cluster expansion for k;(Y). Recall
that in the regime of cluster expansion convergence, we have

Z ITF(H(I)AIT

Now let T = 2 _ir|<t [T (H (')A be the truncation keeping only clusters of size less than t.
By (6.2) and (6 1) we have

‘mk(Y) - Tt(k)‘ <n Y i e(A + 1))

>t
By taking t = Q (% + ]g—j), we have that ‘/ik(Y) - Tt(k) < nXe. This truncated cluster
expansion can be computed in time n-exp(O(tlog A)) = O 51 (n-(1/¢)925(1)) using the algorithm

of [23,34]. 0

Next we give a general algorithm when A is not necessarily in the regime of cluster expansion
convergence.

Proof of Theorem 1.7. Since Lemma 7.1 covers the case of A < 1/(2e(A + 1)), we will assume here
that A > 1/(2¢e(A + 1)). The general algorithm is an adaptation of the approximate counting
algorithm of Barvinok and Patel and Regts via an expression for k;(Y') in terms of derivatives of
log Zc(A). The kth cumulant of Y can be written as a linear combination of the first k derivatives
of log Zi(A\) in A, where (for A in the considered range) the size of the coefficients in the linear
combination can be bounded in terms of only k& and A. Hence, it suffices to give an en additive
approximation to log Z¢ () in the stated running time.
23
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Let 6 > 0 be small enough so that A € Rsa. Following Barvinok [4] and Peters and Regts [35],
there is a polynomial f of degree D = D(d, A) that maps the unit circle in the complex plane into
the region Rs A, sending 0 to 0 and 1 to A. Let

A~

Z(y) = Za(f(v))

so that Z(l) = Zg(A). In particular, Z is a polynomial in y of degree N < Dn. Let r1,...,rn
denote the inverses of the roots of Z so that Z(y) = [1i=,(1 = riy). By Theorem 2.2, there is an
n=mn(0,A) € (0,1) so that |r;| <nfori=1,...,N.

The first k derivatives of log Zg(\) with respect to A can be written in terms of the first k
derivatives of log Z (y) with respect to y and those of f with respect to y. Using the chain rule we
obtain

d*log Zg(\ @’ logZ
A Z T Ay

where the coefficients b; depend only on the ﬁrst j derivatives of the bounded-degree polynomial f
and thus are bounded. For instance, we have

dlog Zg(y) 152
d\ A
dy
and
d?log Z dlog Z d?
& log Za(N) - diQZ(y) %@Z(y) ) dJ;(2y)
d\2 Tdw 2
JCT

In particular, it now suffices to compute an en additive approximation to % forj=1,...,k.

We can write

d* logZ d N rk
— o= — 1Y) k—1)! —
~ g &g s T = S
N 00
k—1+s s
= -y ( LT )
i=1 s=0
Now setting
N t
k k—1+s s
Tt():—(k:—l)'erZ< o >
1=1 s=0
we have
d*log Z >
th(k) ng (y) < (k} B 1)'N Z (S + k)k?’ls _ O(m]t),
dy s=t+1
and so for t = Qa s(log(1/€) + k?), the truncation error can be made at most en as desired.

Moreover, using the algorithm of Patel-Regts [34], Tt(k) can be computed in time ne@as(t) —
0A757k(n(1/e)oA75(1)) for this choice of t.
The FPTAS for the mean and variance follow from the additive approximations and Lemma 3.2.

U
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