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Abstract

The ferromagnetic Ising model is a model of a magnetic material and a central topic
in statistical physics. It also plays a starring role in the algorithmic study of approximate
counting: approximating the partition function of the ferromagnetic Ising model with
uniform external field is tractable at all temperatures and on all graphs, due to the
randomized algorithm of Jerrum and Sinclair.

Here we show that hidden inside the model are hard computational problems. For
the class of bounded-degree graphs we find computational thresholds for the approximate
counting and sampling problems for the ferromagnetic Ising model at fixed magnetization
(that is, fixing the number of +1 and —1 spins).

In particular, letting 8.(A) denote the critical inverse temperature of the zero-field
Ising model on the infinite A-regular tree, and 772 5.1 denote the mean magnetization
of the zero-field + measure on the infinite A-regular tree at inverse temperature 3, we
prove, for the class of graphs of maximum degree A:

1. For 8 < B.(A) there is an FPRAS and efficient sampling scheme for the fixed-
magnetization Ising model for all magnetizations 7.

For 8 > B.(A), there is an FPRAS and efficient sampling scheme for the fixed-
magnetization Ising model for magnetizations 1 such that |n| > n} 5.1

. For B > f.(A), there is no FPRAS for the fixed-magnetization Ising model for
magnetizations 7 such that |n| < nX’ 5.1 unless NP=RP.

2111.03033v1 [cs.DS] 4 Nov 2021

.
.
o

arxiv

*Department of Computer Science, University of Colorado Boulder, chca0914@colorado.edu.

fDepartment of Computer Science, University of Colorado Boulder, ewan.davies@colorado.edu.

fDepartment of Computer Science, University of Colorado Boulder, Department of Computer Science and
Engineering, University of California Santa Cruz, alexandra.kolla@colorado.edu. Supported in part by NSF
grant CCF-1452923

$Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago,
math@willperkins.org. Supported in part by NSF grants DMS-1847451 and CCF-1934915.


http://arxiv.org/abs/2111.03033v1

1 Introduction

The Ising model is a mathematical model of a magnetic material, fundamental in the study
of phase transitions in statistical physics. The Ising model is a probability distribution over
cuts in a graph, and its partition function is the weighted sum over all cuts in the graph,
connecting the physics of the model to combinatorial structures in computer science. In the
field of approximate counting in computer science, the ferromagnetic Ising model plays a
special role along with the monomer-dimer model as models for which approximating the
partition function is tractable on all graphs and at all temperatures [JS89| [JS93].

Conditioning on the magnetization of the model corresponds to fixing the balance of the
random cut generated. In particular, at zero magnetization (an equal number of plus and
minus spins), the Ising model is a probability distribution on bisections of the graph. In the
study of spin models on sparse random graphs in physics, it has long been known that condi-
tioning on zero magnetization can turn a ferromagnetic system into a glassy system [MP8&7]
(i.e. fixing the magnetization can drastically change the model and induce slow dynamics).
This suggests that lurking inside the tractable computational problems associated to the Ising
model there may be hard problems accessible by fixing the magnetization.

We make this idea concrete in a complexity-theoretic sense by reducing NP-hard balanced
cut problems to approximating the partition function of the Ising model at fixed magnetiza-
tion. Specifically we find computational thresholds for approximate counting and sampling
in the ferromagnetic Ising model at fixed magnetization on bounded degree graphs. When
the inverse temperature [ is small (smaller that the critical 8 on the infinite A-regular tree)
there are efficient algorithms at all magnetizations. When § is large (larger than the critical
B) then there is a computational threshold: for magnetizations n small in absolute value the
computational problems are hard; for n large in absolute value the problems are tractable.

We first define the Ising model and the relevant properties of the model on the infinite
regular tree, then state our main results.

1.1 The Ising model on graphs and trees

The Ising model on a finite graph G at inverse temperature 8 and activity A is the probability
distribution pg g on g := {£1}V(&) defined by
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The probability distribution pg g,y is the Gibbs measure and Zg (3, \) is the partition func-
tion. When 8 > 0 the model is ferromagnetic, and we will always assume this in what follows.
In statistical physics the activity is often written as A\ = e where h is the external field, and
so we will call the unbiased case A = 1 the zero-field Ising model.



The quantity M (o) is the magnetization of the configuration o. The normalized mean
magnetization of the Ising model is

(M(0))G,x
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where (-)¢ g\ denotes expectation with respect to the Ising model.
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We can also define the Ising model at fixed magnetization. For k£ = |V(G)| mod 2,
k| < |V(G)], let Eg(k) = {0 € g : M(0) = k} be the subset of Ising configurations with
magnetization k. Then the Ising model on G at inverse temperature 8 and fixed magnetization
k is the distribution v g on Xg(k) defined by
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The distribution v gy is simply the Ising model at inverse temperature § (and arbitrary
activity A > 0) conditioned on the event o € ¥ (k). The fixed-magnetization partition
function ng(ﬂ, k) is the coefficient of \¥ when interpreting Zg (3, \) as a Laurent polynomial
in A

The Ising model can be defined on the infinite A-regular tree Ta via the DLR equa-
tions [Dob68l, [LR69] or as a weak limit of Ising models on finite-depth trees with given
boundary conditions. Infinite regular trees are important in computer science as ‘optimal’
expanders, and here we use a known relationship between the Ising model on random regular
graphs and on the infinite tree. Depending on the parameters 3, A there may be a unique
infinite-volume Gibbs measure on T or there may be multiple measures. The critical inverse
temperature is .(A) = log ﬁ: for f < (. there is a unique Gibbs measure for all A and
for f > (. there can be multiple measures if A is close enough to 1 [Lyo89]. We will be
interested in one particular Gibbs measure on T, the ‘+’ measure induced by the weak limit
of finite-depth trees with the all + boundary conditions. We denote this measure :UZ, A By
the FKG inequality /‘X, B stochastically dominates all other Gibbs measures on Ta with the
same parameters.

We let 77157)\ denote the expected value of the spin at the root of Ta under ,uXﬁ)\
(equivalently, the expected value of the spin at any fixed vertex since ,uzﬁ ) is translation
invariant). Then the magnetization of the measure ,uz g s

nk 5. = tanh (L* 4 artanh(tanh L* tanh g)),
where L* is the largest solution to

L* =log A + (A — 1) artanh(tanh L* tanh g)
See Section M for more details and a derivation.

The phase transition on T A manifests itself via the following ‘spontaneous magnetization’
phenomenon [Lyo89):



1. For 8 < B.(A), 77175,1 =0.

2. For 8 > (5.(A), 772571 > 0.

1.2 Computational problems and computational thresholds

There are two main computational problems associated to a spin model like the Ising model.
The approximate counting problem asks for an e-relative approximation to the partition
function Zg; that is, a number Z so that (1 —e)Zg < Z < (14 €)Zg. An FPTAS is
an algorithm that provides such an approximation and runs in time polynomial in |V(G)|
and 1/e. An FPRAS is a randomized algorithm that provides such an approximation with
probability at least 2/3 and runs in time polynomial in [V(G)| and 1/e. The approximate
sampling problem is to output a sample o with distribution i so that ||ug — il|lry < e. An
efficient sampling scheme is a randomized algorithm that satisfies this guarantee and runs in
time polynomial in |V(G)| and log(l/z—:.

Jerrum and Sinclair gave an FPRAS for the ferromagnetic Ising model for all graphs, all
inverse temperatures (3, and all choices of the activity A [J 893J. Via self-reducibility of the
random cluster representation of the Ising model, this gives an efficient sampling scheme as
well [RW99].

On the other hand, for the anti-ferromagnetic Ising model (and the hard-core model of
weighted independent sets), the approximate counting and sampling problems are NP-hard
in general, and for the class of bounded degree graphs precise computational thresholds
are known. The results of Weitz [Wei06], Sly [SIy10], Sly-Sun [SS14], Galanis-Stefankovic-
Vigoda [GSV16], and Sinclair-Srivastava-Thurley [SST14] show that for these models (and
for B large enough in the case of the anti-ferromagnetic Ising model) there is a computational
threshold at some critical activity A\. = Ac(A, 3). In the case of the hard-core model, there
is an FPTAS for Zg(\) for A < A. and graphs G of maximum degree A while for A > A.(A)
there is no FPRAS unless NP=RP.

For the ferromagnetic Ising model there are no such computational thresholds. But one
can ask instead for approximation algorithms for coefficients of the partition function or
approximate sampling algorithms for the Ising model at fixed magnetization.

For 5 > 0 and n € [—1,1], let FIXED-ISING(G, 3,7) be the problem of computing the
partition function ng(ﬁ,k) of the n-vertex graph G, where k is the largest integer such
that kK = n mod 2 and k£ < nn. In other words, k = 2|(n + 1)n/2| — n. The associated
sampling problem is to sample spin assignments from the measure vg gr. The restriction
on the parity of k is simply to ensure that configurations of magnetization k exist. Abusing
notation slightly we will refer to both n and k£ as the magnetization, but it will be clear from
context what is meant.

This is the setting of the Kawasaki dynamics for the Ising model [Kaw66l, Kaw72]: a

ISometimes the required dependence of the running time for an efficient approximate sampler is taken to
be polynomial in 1/¢ instead of log(1/¢); we use the stronger definition here.

2In fact the algorithm works in the case of non-uniform activities, as long as they are consistent: all at
least 1 or all at most 1. The general case of approximating the partition function with non-uniform activities
is #BIS-hard [GJOT].



conservative dynamics with stationary distribution v g that at each step proposes a swap of
nearest-neighbor spins. Understanding the convergence properties of the Kawasaki dynamics
on subsets of Z% is a deep mathematical problem [LY93), [Yau96l, [CCM99, [CM00]. In this paper
we address the problem on general graphs from the perspective of computational complexity.

1.3 Our results

In what follows we always assume § > 0 and A > 3. When 8 < S.(A) we give efficient
approximate counting and sampling algorithms for all magnetizations.

Theorem 1. Let A > 3 and B < B.(A). Then for all n € [—1,1] there is an FPRAS and
efficient sampling scheme for FIXED-ISING(G, B,n) for graphs of maximum degree A.

Theorem [ can be deduced fairly easily from known results, essentially following the
framework of [DP21]. To sample from configurations with a given magnetization, we follow
the standard approach of finding a suitable activity parameter for the Gibbs measure pg g\
so that the probability of hitting the desired magnetization is not too small (at least inverse
polynomial), and then sampling from the Ising model, rejecting samples until we obtain one
with the correct magnetization. Because efficient sampling algorithms for the Ising model
exist for all B, A this approach works provided that a suitable activity parameter exists.
By continuity, there is an activity that gives the correct mean magnetization, and because
the partition function (as a function of \) is uniformly zero-free in a sector in the complex
plane [PR20], the magnetization obeys a central limit theorem [MS19], giving the required
inverse polynomial lower bound.

The main results of the paper are for the supercritical case, 8 > .(A). Here we prove
that there is a computational threshold at an explicit n. = n.(A, 8) € (0,1) so that approx-
imation is hard for |n| < n. but tractable for |n| > n.. In fact, n.(A,B) = 7]1671, the mean
magnetization of the zero-field + measure on Ta.

Theorem 2. Let A >3, 8> [.(A), and n. = 771 8,1

(a) For all n with |n| > n. there is an FPRAS and efficient sampling scheme for FIXED-
ISING(G, B,n) for graphs of mazimum degree A.

(b) Unless NP=RP, for all n with |n| < n. there is no FPRAS for FIXED-ISING(G, 3,7)
for graphs of maximum degree A.

In @ our proof in fact shows that given A, § there is some ¢ > 0 such that unless
NP=RP, there is no polynomial-time algorithm for FIXED-ISING(G, 3,77) which achieves a
multiplicative approximation of e"* on n-vertex graphs G of maximum degree A.

The infinite regular tree plays several roles in the proof of Theorem 2l For the hardness
results, non-uniqueness for the zero-field Ising model on the tree at § > . corresponds to
‘phase coexistence’ of the model on the random A-regular graph [DMI0]. Phase coexistence
allows us to use random graphs as gadgets, as Sly does in establishing a computational
threshold for the hard-core model [Slyl0] (and as is done in subsequent hardness proofs,
e.g. [SS14,IGSV15,ICGGT16]). Our analysis of the hardness reduction requires new techniques



to account for the fixed-magnetization constraint; we give an overview of the approach in the
next section.

For the algorithmic results, the + measure on the infinite regular tree is the solution to
a problem from extremal graph theory that is essential for the proof of Theorem 21

For the ferromagnetic Ising model with activity A > 1, what is the maximum mean
magnetization over all graphs of maximum degree A? We prove that the magnetization of
the + measure on the infinite A-regular tree is an upper bound, and this value is approached
by that of the random A-regular graph in the n — oo limit. The following result is the main
combinatorial result of our paper.

Theorem 3. For all graphs G of mazimum degree A, all A > 1, and all 8 > 0,
ne (B, A) < TIZ,W .

By integrating the mean magnetization from A = 1 to oo, this theorem implies the A-
regular case of a result of Ruozzi which states that the ‘Bethe approximation’ is a lower
bound on the normalized partition function of the ferromagnetic Ising model [Ruol2|. In
combinatorics, results of this type belong to the field of extremal problems for bounded-degree
graphs: maximizing or minimizing observables of statistical physics models over given classes
of graphs, like the occupancy fraction of the hard-core or monomer-dimer models [DJPRI17].
The area is surveyed by Zhao in [Zhal7] and Csikvari describes several cases in which the
optimal bound on a partition function is given by an analogous quantity on an infinite regular
tree [Csil6]. Bounds on observables such as the mean magnetization or occupancy fraction are
stronger than bounds on the partition function, and to the best of our knowledge Theorem Bl
is the first case in which the infinite tree is proved to be extremal for an observable.

Theorem [3] implies the following extremal spontaneous magnetization result, which is
what we use to guarantee the effectiveness of our algorithm. Define

n(A, B) = lim  sup 76 (5, A),

A=1T Gega

where Ga is the class of graphs of maximum degree A. Then n*(A, ) = WZ 51- The lower
bound comes from taking a sequence of random A-regular graphs, while the upper bound
follows from Theorem [Bl We describe in the next section the content of our algorithmic

results for 5 > f.: that n.(A, 8) = n*(A,5) = 773671'

1.4 Overview of the techniques
1.4.1 Algorithms

For the algorithmic results of Theorem 2l we aim to apply the same type of algorithm as in
Theorem [T} find an activity A so the mean magnetization is close to the target magnetization,
and prove that the probability of hitting the mean is not too small. Again by continuity,
there is an activity with the correct mean magnetization, but the distribution may not be
concentrated around its mean. For instance, taking A = 1 gives 0 mean magnetization
by symmetry, but if 5 > S., then hitting 0 magnetization on the random regular graph



is exponentially unlikely. So our question becomes: given an arbitrary graph of maximum
degree A and a desired magnetization 7, is the magnetization under pg g ) guaranteed to
be concentrated around its mean when A is chosen so that the mean magnetization is (close
to) n? The answer to this question is given by the Lee—Yang theorem [LY52] in combination
with Theorem [B] which guarantees that to achieve a mean magnetization n > n*(A, 3) we
can pick an activity A bounded away from 1 independent of n. The Lee—Yang theorem then
gives the zero-freeness result that provides us with the required central limit theorem.

Our proof of Theorem Bl is an extension of an approach used by Krinsky [Kri75] to prove
the result for infinite lattices like Z¢ (or more generally graphs satisfying vertex and edge
transitivity). The theorem (and the paper [Kri75] that inspired it) may be of indepen-
dent interest in combinatorics and algorithms. The proof of Theorem [J relies heavily on
correlation inequalities, namely the GKS inequalities [Gri67, [KS68], and identities due to
Thompson [Tho71]. The techniques are distinct from previous approaches in this area of
extremal graph theory such as the entropy method [KahOl], occupancy method [DJPR17],
and inductive approaches [Csil7, [SSSZ20].

1.4.2 Hardness

To prove a matching hardness result, we must overcome the barrier of the tractability of
approximating the Ising partition function. This rules out the approach used in [DP21] for
proving hardness of approximating the number of independent sets of a given size, namely
reducing approximating the partition function to approximating a fixed coefficient of the
partition function. Instead, we use the fact that imposing the fixed-magnetization constraint
fundamentally alters the behavior of the model. When highly connected components of a
graph are connected with a relatively sparse set of edges, the fixed-magnetization, zero-field
ferromagnetic Ising model exhibits a kind of global anti-ferromagnetic behavior due to the
constraint on the magnetization: the spins on each highly connected component will align, but
the number of components that pick each spin will be essentially determined by the constraint.
This behavior is what allows us to prove hardness. We use a probabilistic analysis of the
fixed-magnetization Ising model to show that a gadget construction based on that of [Sly10]
can be used to reduce an NP-hard cut problem to approximating the fixed-magnetization
Ising partition function. To illustrate our methods we sketch a simplified version of the proof
for zero magnetization.

Similar to previous approaches, our gadget G is essentially a random A-regular bipartite
graph with some edges removed and trees attached to create ‘terminal vertices’ of degree
A — 1. Given an instance H of MIN-BISECTION, we replace each vertex of H by a copy of
the gadget G and then join a number of terminal vertices of the appropriate copies of the
gadget graph for each edge of H. When 8 > ., the Ising model on a single gadget G exhibits
phase coexistence, with a bimodal distribution of either many more 4+ spins than — spins or
vice versa. The phase coexistence property of each gadget is so strong that when we take the
collection of gadgets joined by the crossing edges and condition the Ising model on zero mag-
netization, the phase coexistence property on each gadget persists, and zero-magnetization
is achieved (with high probability) by having an equal number of gadgets in each phase.
Showing this involves proving a local central limit theorem and large deviation results for the
magnetization of a collection of gadgets conditioned on an arbitrary spin assignment to the



set of terminal vertices. This shows that the dominant contribution to the zero-magnetization
partition function is given by configurations whose gadget phase assignments encode mini-
mum bisections of H, and this in turn implies that a good approximation algorithm for the
partition function can recover a minimum bisection.

The proof of the local central limit theorem conditioned on the phases of the gadgets is a
new technical ingredient in our proof. It involves bounding the moments of the magnetization
on a single gadget, conditioned on a phase, and employing a Fourier analytic proof of a local
central limit theorem.

The full proof and the general case of n # 0 are only slightly more complex. Broadly,
the same approach works except we reduce from a generalization of MIN-BISECTION, y-MIN-
EXACT-BALANCED-CUT (7-MEBC), that requires the partition of a vertex set of size N to
have part sizes [yN] and [(1 —«)N]. It is convenient to add to the collection of gadget
graphs some isolated vertices which smooth out certain parts of the analysis. In particular,
it helps in proving the local central limit theorem. We choose v as a function of A, 8, and 7,
and we prove that when the Ising model on the collection of gadget graphs is conditioned to
have magnetization n, with high probability the phases of the gadgets are split in fractions ~
and 1 —~. Then a good approximation algorithm for the n-magnetization partition function
can recover a minimum -balanced cut.

1.5 Related work

The algorithmic problem of sampling configurations of a fixed magnetization (or fixed size, in
the case of independent sets) is the problem of sampling from the ‘canonical ensemble’ in the
language of statistical physics (in contrast to the ‘grand canonical ensemble’ of the usual Ising
or hard-core model). Work on this problem goes back to the very first Markov Chain Monte
Carlo algorithm designed to sample from the canonical ensemble of hard spheres [MRR™53].
Conservative dynamics such as these are still among the most used in current scientific
applications (e.g., [BKWO09]). Grand canonical ensembles are generally more amenable to
mathematical analysis due to their conditional independence properties, and much is known
about both specific algorithms for sampling from these distributions (e.g. Glauber dynam-
ics [MS13], random-cluster dynamics [GJ18]) and about the computational complexity of the
approximate counting and sampling problems for these models.

The computational complexity of approximately counting and sampling independent sets
of a given size in bounded-degree graphs was recently addressed by Davies and Perkins who
proved a computation threshold for these problems [DP21]. As in Theorem 2] the threshold
is given in terms of an extremal graph theory problem: that of minimizing the occupancy
fraction over G € Ga. Faster algorithms and an FPTAS up to the threshold for this problem
were recently given in [JPSS21].

The use of random graphs as gadgets in hardness reductions was pioneered by Dyer, Frieze,
and Jerrum [DEJ02] and used by Sly in identifying the computational threshold for the hard-
core model [SIy10], with further applications in [SS14, |GSV15, [CGGT16l IGSVY16] among
others. In particular, a detailed understanding of the moments of the partition function Zg
for random regular graphs is now known, and, via the small subgraph conditioning method,
concentration results for Zg. We use this understanding extensively in Section Bl



Finally, the Ising model at fixed magnetization has been studied extensively in both math-
ematics and physics, on Z? and on random graphs [MPS87]. Conditioning the ferromagnetic
Ising model on zero magnetization has the effect of introducing ‘frustration’: the impossibility
of satisfying all edge constraints simultaneously.

At zero temperature (5 = 00), the zero-magnetization Ising model is simply the uniform
distribution on min-bisections of a graph; finding the size of the min bisection has long been
known to be NP-hard |[GJS74]. The min-bisection problem is also studied on random graphs
from the perspective of statistical physics [PIGT08, [ZB10, [DSW04, DMS17]. Our work is an
exploration of the worst-case computational complexity of the positive temperature regime
of this problem.

1.6 Questions and future directions

Though we do not pursue it in this extended abstract, it is likely that the techniques of
Jain, Perkins, Sah, and Sawhney [JPSS21] can be used to improve the algorithmic results of
Theorems [I] and 2 in two ways:

1. Obtain an FPTAS (efficient deterministic approximation algorithm) for FIXED-
ISING(G, B,n) for the same range of parameters for which we obtain an FPRAS.

2. Improve the running time of our approximate sampling algorithm to O(n logn).

We have shown here a computational threshold for the fixed-magnetization Ising model.
One can also ask what is achievable with a specific algorithm widely used in scientific ap-
plications, namely the Kawasaki dynamics. We conjecture that the Kawasaki dynamics mix
rapidly on all graphs of maximum degree A for the same set of parameters for which we
provide an FPRAS. In fact there are two versions of the Kawasaki dynamics: the local flip
dynamics in which at each step a swap of spins across an edge is proposed; and the global
flip dynamics in which at each step a swap of arbitrary spins in the graph is proposed. We
conjecture that both versions mix in polynomial time for the parameters above; we further
conjecture that the global flip dynamics mix in time O(nlogn).

Conjecture 1. For < 5.(A), the Kawasaki dynamics mix in time polynomial in n for any
fixed magnetization and any graph G of maximum degree A on n vertices.

For 8 > B.(A) and |n| > n.(A, B) the Kawasaki dynamics mix in time polynomial in n
for any fired magnetization k > nn and any graph G of mazximum degree A on n vertices.

For the global flip dynamics, the mixing time in both cases in O(nlogn).

In the previous uses of random (bipartite) graphs as gadgets in hardness reductions for
approximate counting problems, the gadgets themselves are not in general hard instances for
the given problems. In particular, recent results [JKP20, FLJP20), [CGSVarl [JPPar] show that
for parameters sufficiently deep in the given non-uniqueness regimes, random regular graphs
are tractable instances for approximate counting and sampling. We ask whether for random
graphs there are efficient algorithms anywhere inside the NP-hardness regime.



Question 1. For A > 3, 8 > [B.(A), is there some |n| < n.(A,B) so that there exist
efficient approximate counting and sampling algorithms for FIXED-ISING(G, 3,n) for random
A-regular graphs?

1.7 Organization

In Section [2] we provide some of the results we will use in our algorithms and hardness reduc-
tions. In Section [l we give the hardness reduction. In Section d we prove Theorem [3] solving
the extremal problem that identifies the limit of our algorithmic approach. In Section Bl we
prove the algorithmic results.

2 Preliminaries

Recall that Gao denotes the class of graphs of maximum degree A. We use ug g ) to denote
the Ising model on G at inverse temperature 5 and activity A. We will often drop 8 from the
notation when it remains fixed and we will drop A from the notation in the case A = 1 (so ug =
pa, 5,1 when § is understood from the context). We use the bracket notation (-)g g, to denote
expectations with respect to the Ising model, in part to distinguish these expectations from
expectations over random graphs in Section Bl For a graph G, let ©g = {£1}V(©). Slightly
abusing notation, for U C V(G), let ¥y = {£1}Y. We let M (o) denote the magnetization
of a configuration o and X (o) denote the number of + spins (so M (o) = 2X (o) — |[V(G)]).
We let X denote the random variable X (o) when o is drawn from pg g z.

We now collect a number of results that we will use in the proofs that follow. The first
results are results on zero-free regions for the Ising model partition function, viewed as a
(Laurent) polynomial in .

Theorem 4 (Lee-Yang [LY52]). For 8 >0, A € C, and any graph G, Zg(B,\) = 0 only if
A = 1.

Theorem 5 (Peters—Regts [PR20]). Let A > 3 and f € (0,8:.(A)). Then there exists
0 =0(8) € (0,7) such that for any A € C with |arg(\)| < 6 and any graph G € Ga we have

Za(B,A) # 0.

By the following general result of Michelen and Sahasrabudhe, these zero-freeness results
imply central limit theorems for the magnetization of the ferromagnetic Ising model on graphs
in Ga when 5 < 5.(A) or when A > 1. We apply this result to a random variable counting
the number of +1 spins in a sample from the Ising model; its generating function is a scaling
of Zg(B,\).

Theorem 6 (Michelen—Sahasrabudhe [MS19]). Forn > 1 let X,, be a random variable taking
values in {0, ..., n} with mean p,, standard deviation o, and probability generating function
fn- If the roots C of fn satisfy |arg(C)| > 6, and 0,0, — 00, then (X, — pin)/0n converges in
distribution to a standard normal random variable.

A central limit theorem for the magnetization in fact implies a local central limit theorem,
following the approach of Dobrushin and Tirozzi [DT77] (for spin models on Z%) and the



results of [JPSS21| for the hard-core model. Let X denote the number of +1 spins in a
sample from the Ising model.

Proposition 7. Fiz A > 1 and 8 > 0. Then for any graph G € GA on n vertices and any
non-negative integer £,

1 /— (X 2
papr (X =1) = ————=—exp —M

+o(n1?),
27 var(X) 2 var(X) o(n )

where var(X) = (X% g g~ <X>2G,B,>u and where the implied constant in the error term depend
only on A, B, \. The same holds for 5 < ., A\>1, and any G € Ga.

Moreover, under the conditions above var(X) = O(n) where again the implied constants
depend only on A, B, \.

We prove Proposition [7 in Appendix [Al the proof of the local central limit theorem is
analogous to that of [JPSS21, Theorem 1.5] and the proof of the variance bound is analogous
to that of [DP21, Lemma 9] and [JPSS21 Lemma 3.2].

For the hardness results, we reduce an NP-hard cut problem to the problem of approximat-
ing the Ising model at fixed magnetization. The v~-MIN-EXACT-BALANCED-CUT (7v-MEBC)
problem is the problem of finding the minimum of |E(S, S¢)| over all S C V(G), |S| = |an],
where n = |V(G)|. For stronger inapproximability in Theorem we apply an inapprox-
imability result due to Bui and Jones [BJ92], though this is not essential to our method: we
can reduce from exactly solving y-MEBC instead.

Theorem 8 (Bui-Jones [BJ92]). Let v be a rational number in (0,1) and let € > 0. Then
v-MEBC is NP-hard to approzimate within an additive error n?>=¢ on n-vertex graphs.

A key ingredient in the algorithmic results are the efficient approximate counting and
sampling algorithms for the ferromagnetic Ising model provided by Jerrum and Sincalir and
Randall and Wilson.

Theorem 9 (Jerrum-Sinclair [JS93], Randall-Wilson [RW99]). For all inverse temperatures
B and all activities A, there is an FPRAS and efficient sampling scheme for the Ising model
for all graphs G.

3 Hardness

3.1 The reduction and its properties

Given A > 3, 8 > [.(A) and n € [0,7,), our goal is to reduce yv~-MIN-EXACT-BALANCED-CUT
to approximating a fixed-magnetization Ising partition function, for some rational number
v e ((1+n/n.)/2,1). (By symmetry we need only consider > 0).

For the reduction we require a gadget G = G(A, n,0,1) where 0,¢ € (0,1/8) are constants
that can be determined later in terms of A, 3. The gadget is identical to the constructions
in [Sly10}, IGSVY16|, which is a balanced bipartite graph on ng = (2 + o(1))n vertices. The
majority of the vertices have degree A, and m = O(n?) vertices on each side of G are
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designated terminal vertices of degree A — 1. We detail the construction of the gadget and
state its properties after showing how it is used in the reduction.

Let H be a graph on h = [n%*/(A —1)] vertices, which is the input for 7-MEBC. Given
G as above and an integer s, we construct a graph HS of maximum degree A on N := hng+s
vertices as follows:

e We include a copy G of G for each vertex z € V(H).
e We include s isolated vertices.

e For each edge zy € F(H), we include a matching of size k = [n%%/*| between the left
terminals of G* and left terminals of GY and a matching of size k& between the right
terminals of G* and right terminals of GY. We do this in such a way that each terminal
is used at most once (which is possible since kh < m).

For reference, our parameter choices are listed here. The parameters A, 3 are fixed and
we can compute 7). from them (to arbitrary precision). The parameter 7 is fixed and satisfies
the conditions of the theorem. From these parameters we compute an arbitrary rational
number ~ such that

L+ n/ne
2

which is possible because n € [0,7,). Suitable choices of 8,1 € (0,1/8) can be made in terms
of A, 5 (see Lemmal[ITl). We are then given an instance H of y-MIN-EXACT-BALANCED-CUT
on h vertices with h sufficiently large, and we choose an n large enough that h < nf/4 J(A=1).
Let hy = |yh] and h— = [(1 — v)h] so that the 7-MIN-EXACT-BALANCED-CUT problem is
to find the minimum of |E(S, S¢)| over S C V(H) with |S| = hy. We insist that h is large
enough that min{h4,h_} > 1. Now let

<7y <1,

e m = (A _ 1)\_9103A71 n| _ O(nl/S)’

o m/ = (A — 1)lf1o8a 1 nJ+[Ylors 1] — o(p1/4)

nG = 2(n +m’ +m((A — D¥Esn _1)/(A —2)) = 2+ o(1))n
k= I_n3€/4J7

e s be a non-negative integer such that

2n(hy — h_)n. — nlhng + ]| < Vnh, (1)
and s = O(nh),
e N = hng + s,
o M*=hy—h_,

e § > 0 be small enough as a function of v and 7,

0=|Nn+1)/2].
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The parameters m,m’,ng, k relate to the gadget construction that we detail below. There
exists an s satisfying (Il) with s = ©(nh) which can be found in time polynomial in h because
our parameter choices mean that (as h — 00)

2n(hy — h_Yne = (2 + o(1)) - (2y — L. - b,

and
nlhng +s] = (2+o(1)) - n - nh + O(s).

Since (27 — 1)n. > n, for some non-negative integer s = O(nh) the latter can be made within
an additive term O(1) of the former (and hence within v/nh). Finally, N is the number
of vertices in the graph HS which we construct in the reduction, M* is the magnetization
of the cuts considered for the 7-MEBC problem on H, and ¢ is such that on HS FIXED-
ISING(G, 3, n) asks for configurations o with X (o) = ¢ (and the desired fixed magnetization
is thus 2 — N).

Throughout this section there are many absolute constants (depending only on A, 3, 1)
used and defined. For ease of reading we will make ample use of O(-) and €(-) notation as
well as reusing constants C, ¢ etc.

The main result of this section is the following.

Theorem 10. Given e € (0,1) there exists ¢ > 0 such that there is a randomized, polynomial-
time algorithm to construct a graph G as above so that with probability at least 2/3 the

following holds: given an eN* relative approximation to Z%XG(ﬁ, 20 — N) one can compute, in

time polynomial in h, an additive h>~¢ approzimation to the y-MIN-EXACT-BALANCED-CUT
of H.

Theorem [I0] together with Theorem [§ immediately gives Theorem 2{(b)]

3.2 The gadget

We use the same gadget construction as in [Sly10, GSVY16]. The construction is defined by
the maximum degree A, an integer n and constants 0, € (0,1/8) which then determine the
parameters m, m’, ng, k listed above. To construct G = G(A,n,0,1), let G' = G'(A,n,0,1))
be a random bipartite graph with n+m’ vertices on each side obtained by choosing A perfect
matchings between the sides uniformly at random, and from the final matching removing m’
of the edges. With high probability the matchings will be pairwise disjoint sets of edges, so
G’ is a simple graph. Let Uy be the set of vertices of degree A in G’, and Wy be the set of
vertices of degree A — 1.

To form G from G’, on each side partition the m’ vertices of degree A — 1 into m equal-
sized sets, and attach the leaves of a copy of a (A — 1)-ary tree of depth |1 logs_; n] to each
set. Then each side of G’ has had m trees each of which contains O(n¥) vertices added. The
roots of these trees are now the only vertices of degree A — 1 in G, and there are m roots
that were added to each side. These are the terminal vertices which allow us to connect the
gadgets together. Let V) be the vertex set of G, and Ry be the terminal vertices.

Constructed in this way, we want to show that various properties of G’ and G hold with
sufficiently high probability. Many of these properties were verified in [Sly10], (GSVY16], but
we require additional control of statistics of the number of +1 spins.
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Throughout this entire section we fix the inverse temperature § > (5. and take A = 1.
Recall that X denotes the number of +1 spins in a sample from the Ising model. We will
condition on various phases of the Ising model on G and on HY. For G, given an Ising
configuration o € X, we say the phase is + if Zver oy > 0 and — if Zver op < 0. If
the sum is 0 then we take the phase to be the spin of some distinguished vertex u; € Uy
fixed in advance (arbitrarily). Note that neither the spins of Wy nor the spins of the trees
added to G’ in the construction of G appear in the definition of the phase. By symmetry,
the probability under ug of each phase is exactly 1/2. We denote the Ising model on G
conditioned on the + phase and — phase respectively by pg + and pg,—. We use ()¢ + and
(-)a,— to denote the corresponding conditional expectation operators. For a spin assignment
T € ¥R, to the terminals of GG, we include an additional subscript 7 to denote conditioning
on the event {op, = 7} (that is, o restricted to Ry is equal to 7).

Let Zg, be the contribution to the partition function Zg of the Ising model on the
random gadget G from spin assignments in which there are precisely 2an vertices in Uy of
spin +. Let Zg 4 and Zg — be the contributions from the + and — phase respectively to Zg.
We have )

ZG+ = Z ZG.a+ §ZG,1/27
1/2<a<1

because all contributions with & > 1/2 belong to the + phase, but for « = 1/2 we break the
tie symmetrically so that half the contribution Zg 1/, goes to the + phase. Usually, it suffices
to use the upper bound on Zg 4 obtained by taking the entire contribution from o = 1/2 to
the phase at hand.

We now state some results from [Sly10] GSV15, GSVYlGJ which are obtained by sophis-
ticated versions of the first and second moment methods and an application of the small
subgraph conditioning method [RW94l, [Jan95]. We will state the results for the + phase, the
— phase is completely analogous. Let ot = (1 +17.)/2, = = (1 —n.)/2, and

B (atef +1—at)A1 @)
1= (atef +1—at)A 1+ (af + (1 —at)ef)r-17

which means ¢ is the probability that the root of a (A — 1)-ary tree gets spin +1 in the
zero-field ‘+ measure’ on the infinite (A — 1)-ary tree (defined analogously to the + measure
on the infinite A-regular tree). Note that 1/2 < ¢ < a™. We use Q¥ (+) to denote the product
measure on Xg that assigns probability ¢ to 4+1 spins and probability 1 — ¢ to —1 spins, and
vice versa for Qg ().

The following lemma collects previous results on the gadget, most notably the near inde-
pendence of the terminal spins conditioned on a phase.

Lemma 11 ([SIyl0, Proof of Theorem 2.1], [GSV15, Proof of Lemma B.3], [GSVY16]
Lemma 22|). Let G be the random graph described above with parameters 6,7 € (0,1/8).
Then there exists ¢ > 0 so that for all o € [1/2,1],

EZG@ < ge—cn(a-i-oﬁ)z’
]EZG7+ - \/7_1
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and for all o € [0,1/2]
EZg .o C 2
) < -
EZG,_ - \/ﬁ
Moreover, there exist choices of constants 6,1 € (0,1/8) and C' > 0 so that for large enough
n, with probability at least 9/10 over the choice of G, all of the following hold simultaneously:

—cn(ata™)

(i) Conditioned on phase +, the terminal spins are approximately independent:

MG7+(0RO = T)

—1| < n=20.
Qf, (1)

max
TEERO

(ii) There exists B C Xy, so that

o g +(ow, € B) < eXp(_nze)
e For every tw, € Xw, \ B,

e |16+ (TRo =+TRO\UW0 =) < 03
TRy €X R QRO (TRo )
(iii)
1
ZG7+ > HEZG’-i_ .

The same also hold with + replaced by —.

In previous works [SIy10,IGSVY16] a version of with 1/C" replaced by a function o(1)
as n — oo is used (along with the fact that this weaker bound holds with high probability), but
the stated version follows from the small subgraph conditioning method used therein [RW94],
Jan95]. In order to handle the fixed-magnetization constraint in our reduction, we show that
certain additional properties hold with good probability.

Lemma 12. For sufficiently large n, with probability at least 8/10 over the choice of the
gadget G described above, the following hold simultaneously, for all choices of T € ¥ g, (and
for + replaced by — as well):

<|X - 2na+|>G,+;f = O0(Vn)

(IX - 2na+\2>G’+7T =0(n)
©) 3 3/2
<|X —2na’t| >G7+’T =0(n / )
(d) For § > 0 as specified above and to = §/(2¢coh) for some constant co > 1/4,
<eto(X—2o¢+n)>G7+’T < ecotgn
and
<eto(2a+n—X)>G’+7T < ecot%n‘

We prove Lemma [I2]in Section
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3.3 Proof of Theorem [10

Here we prove Theorem [0 given Lemmas [I1] and Let G be a gadget which satisfies
the conclusions of these lemmas, and let HSG denote the graph constructed from H, G and
isolated vertices as above. Let H & denote the same graph but without the edges between
gadgets (so HS consists of h disjoint copies of G and s isolated vertices). We write € for the
set of edges E(HS) \ E(HS) that lie between gadgets.

Given o € Xpyg, let Y (o) € Xy be a vector denoting the phases of the gadgets G*,
x € V(H). We will call such a Y a phase vector. For a given Y € X let prc,y be the Ising
model on HY conditioned on {Y (o) = Y}. Let (-) m¢,y be the corresponding expectation
operator. Define 6 , and (-) e,y analogously. For z € V(H) let R* be the set of terminals
in the gadget G*, and let R be the union of the terminal vertices in all the copies of the
gadget. For a spin assignment 7 € Y to the terminals, we include an additional subscript 7
to indicate conditioning on the event that {or = 7}.

We need two probabilistic results before proving Theorem [I0l The first is a large deviation
bound for X conditioned on any phase vector Y and any assignment of terminal spins 7. The
second is a local central limit theorem for p I?E,YJ(X = /) when M(Y) = M*, and for an
arbitrary terminal spin assignment 7.

Lemma 13. Assume the gadget G satisfies the conclusions of Lemma [I2. Then for any
phase vector Y, any T € Xy, with

_ S Y
V= B + 2n Z a'®,
xeV(H)

we have
iy (X = v] 2 0n) < exp(~Q(n/m) .

where § > 0 is a constant defined above.

Proof. Note that to leading order v is the mean (X) 5¢ -

We prove the bound on the upper tail; the proof for the lower tail is identical. Let
X, ~ Bin(s, 1/2) be the number of + spins among the s isolated vertices. Then (el (Xs=5/2)) <
est/4 < g0ty gince co > 1/4. Using this along with Lemma [I2] we can bound the moment
generating function,

to(X—v)\ | cot nh
<€ ( )>HG YT <e

for some constant ¢ > 0. Then we have

(X >4 571) < e—t05n<eto(X—u)>

PRAg v HS YT

2 [
< e—t06n+ct0nh — e—ﬁ

since tg = 0/(2ch). O

The next lemma is a local central limit theorem for X with respect to pge y .-
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Lemma 14. Assume the gadget G satisfies the conclusions of Lemma [I2. Then for any
phase vector Y € Xy with M(Y) = M*, any T € Sw, and any integer t,

1 (t—(X) ey, 1
/JJEISG7Y,7- (X = t) = \/m exp [_ 2/@2 +o <\/T_h> ;

= vargS'G’Y’T(X). In particular,

iy (X =0) = © (\/Ln_]) .

Proof. We have s = ©(nh), and by the independence of disjoint gadgets and the second
moment bound in Lemma [I2], we have x? = ©(nh). Moreover, by our choice of s and the fact
that M(Y) = M*, we have ‘<X>H§,Yﬂ' — | = O(v/nh), and so the second statement follows
from the first.

The proof of the first statement is similar to that of Proposition [Tl in Appendix [Al but
here things are especially simple because of the presence of s = ©(nh) isolated vertices.

where K>

We start by proving a central limit theorem with the standard method of characteristic
functions. Let X = (X — <X>ﬂ§",YJ) and ¢x(t) = <eltX>H8G7Y,T' Then

_ L ett/n —t/(2K) ’ X (X) 6, v rpr)
o= (L2 o) 1 i

z€V (H)

t* ) t* varg v, e (X) -3,3/2
—<1—W+O(/¢ )) H (1— 512 —|—O</£ n )>

z€V(H)

_ e_t2/2 _’_0(1)7

since hn3/2k=3 = O(h~='/?) — 0. Here we used the bound on the third moment of X in a
gadget given by Lemma This proves that X = N(0,1).

Let £ denote the lattice (X) 4y, +Z/k. Let N(x) = \/%—We_“"/j/? We want to show that

suB Khgey, (X =12) = N(z)| =o(l),
Te

since k = ©(vnh). Using Fourier inversion (as in Appendix[A]), we have for any K > 0,

27 sup |k g (X =) — N (z)|
xeLl

/ (bi(t)e—it:c dt — / e—t2/2—it:c dt‘

—TKR

= sup

zeL
dx(t) — e‘tm‘ dt+/ e P2 gt

K
S /
—TK [t|>mk

K

S/ ‘qsf(t)—e—tz/?( dt+/ e_t2/2dt+/ o5 (t)| dt
~K t>K 1> K

=: A; + Ay + Az
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Because ¢ (t) = e /2 4 o(1), applying the bounded convergence theorem gives that
A1 — 0 as n — oo for any fixed K, so we can choose n large enough to guarantee A; < /3.
We can pick K large enough to ensure Ay < £/3. For As, we use the fact that the portion of
the characteristic function coming from the isolated vertices has nice behavior. In particular,

it/k 5
b (1)] < <1+Tee—t/(2n))

+2
< e_ 4N§ = e_Q(tz)

since s = O(x?). Then by choosing K large enough again we can make Az < ¢/3 as well. [
With these ingredients we can prove Theorem [0l

Proof of Theorem [I0. Recall that we assume A > 3, f > .(A), and that n € [0,7.). Let
G be the gadget graph that satisfies the conclusions of Lemmas [I1] and 12}, and recall the
notation of Section 3.1 which includes the graph HS on N vertices formed from copies of G
and s isolated vertices.

Let b be the value of ~-MEBC on the graph H, and let ¢ > 0. We will obtain upper and
lower bounds on b in terms of ZgXG (8,2¢ — N) such that for suitably small ¢, an eV *_relative

approximation to ZgXG (8,2¢ — N) constrains b to an interval of length at most h2~¢.

Since 8 and the magnetization 2¢ — N are fixed, we will write ZgXG for ZgXG (8,20 — N).
Moreover, for a phase vector Y € Y, we write Z?{XG(Y) for the contribution to ZIﬁ{XG from
spin assignments with phase vector Y. For 7 € ¥ we write ngg (Y, 7) for the contribution

to ngc (Y') from spin assignments o which agree with 7 on the terminals R. Similarly, since
we only consider the usual Ising model with no external field we write Z ¢ for Z5¢(8,1).

We start by bounding the partition function ZIf;XG from above. The first step is to split
the partition function into sums over Y according to whether M (Y) = M*. We have

Zge= Y Zye(V)= Y ZgeM)+ D Zga(Y).
YeXy Y:M(Y)=M* Y:M(Y)#M*

For an arbitrary phase vector Y we split ngg (Y) into a sum over spin assignments 7 € X
to the terminals and pull out the factor of the summand contributed by edges in &, giving

X X éTuTv
ZRY) =Y Z%E(Y,T) IT =™

TEXR uveE

To handle the fixed-magnetization constraint, observe that when o is drawn from the Ising
model p ¢y we have

ZIﬁiG(Y: T) = Zﬁg(K 7—) : MﬁSG,Yﬂ—(X = 6)7
which we can control with Lemmas [I[3] and [I4l In the case M(Y) = M* we have

25 (V,m) = Zga(Y,7) - Q1 V),

17



and in the case M(Y) # M* we use

28 (V.r) = Zyg (Yo7) - exp(—Qn/h)).
For the sum over Y with M (Y) = M* this means for some constant C' > 0,

> A<= Y 2 [ b ®

Y:M(Y)=M* TEXR uvel

Now we can apply the phase-conditioned, nearly-independent terminal spins property of the
gadget. Using Lemma [[IJQ)] for the inequality (and the fact that (1+O(n=2%))" =1+ o(1)),
we have

Zs (Vo) = Zgo (V) - igey (or = 7) < (1+ 0(1) Ze (V)QJ (7).

where Q) (7) is the probability measure on X g such that

H QRI TRz

z€V (H)

Continuing from (3)) and absorbing factors into the constant, we have

>z = > 2 3 @i [L A

Y:M(Y)=M* Y:M(Y)= TESR wee

and the final sum over 7 can be expressed in terms of the number cut(Y’) of edges of H
which are cut by the phase vector Y. This observation appears in [Slyl0] and is precisely
why nearly-independent phase-correlated spins are important in reductions such as these.

Recall ¢ defined in (2). For every edge zy € E(H) cut by Y, there are precisely 2k
edges in &£ such that the measure Q%,/V gives one endpoint spin +1 with probability ¢ and
the other endpoint spin +1 with probability 1 — g. Such edges are monochromatic with
probability 2¢(1 — ¢). Similarly, for every edge xy € E(H) not cut by Y there are precisely
2k edges in £ which are monochromatic with probability ¢> + (1 — ¢)?. Then for constants
O = 2¢(1—q)eP/? + (*+(1- q)z)e_ﬁ/2 and T = 2¢(1 — q)e P2 + (*+(1- q)2)eﬁ/2 we have

Z QY H ezTuTv o F2k\E’ (@/F)2kcut(Y)

TEXR uveE

Note that © < I so that smaller cuts give larger quantities above. Finishing the upper bound
started in (3)), we have

> Z?I’;(Y)éi Z ngG(Y)F%‘E l(©@/1r)2keut(¥)

Y:M(Y)=M* VIR y =
C
< I‘2k|E(H)‘ o/T 2kaA ,
SN (©/T)Zye

because the -MEBC b of H gives the largest contribution (©/T')2¢¢u(Y) "and the partition
function Zp¢ is an upper bound on 2y M(Y)=M* Zge (Y).
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For phase vectors Y with M(Y) # M* it suffices to consider the worst-case contribution
from edges between gadgets. For such Y, ‘% +2n ZmeV(H) a¥e — 6‘ > dn, and so we can
apply Lemma [T3] to give

Yoo ZB)<2e i Y Zpe(Vir) [ ernm

Y:M(Y)£AM* TEXR uvel

UMl 5 7,

TEXR
< SHBUDI-00v/) 7

S

because |€| = 2k|E(H)|. Our construction ensures that k|E(H)| < kh? = o(n/h) so that this
is a negligible fraction of Z ;. Combining these bounds, for all large enough n we have

75 < < th%E (@ /T)2kb 4 (kI EH )|—Q(n/h)> Zpe.

S

The term T2FEE(Q /)2 is smallest when b = |E(H)|, but even in this case it is still
at least e PRIEMH)] a5 © > ¢7A/2. Thus, we can absorb the ‘error’ term arising from phase
vectors Y with M (Y') # M* into C:

Z[ﬁ;:G \/Z_hIQkE (@/r)2kaHG (4)

To give a lower bound on ZgXG it suffices to consider a single phase vector Y* with
cut(Y) = b that corresponds to the -~-MEBC of H. Then M(Y*) = M* and for some
constant C’ > 0 (which will absorb (1 + o(1)) factors in the calculation below), we have

* X * BT
Zhe > Zpa(Y*) = Zzgg(Y,T)Hezuv

TEXR wel
HG *77—) H egTuTv
TEE wveE
> C 7. (V* Y* gTuTv
> =2y v) 3 Q) [ ¢
n TEXR uveE

_ hZﬁG(Y*)P2k|E(H)\(@/F)2kb’
A //"L S

where we apply Lemma [I4] to obtain the second line and the lower bound in Lemma m
to obtain the third. Finally, since we have perfect symmetry between the phases we have
Zaa(Y*)=2""Z 5 and

c'2=h
Zix > 2K EH)] (@ /T 2ka

The upper bound from (@) and the lower bound above combine to give

cr2h 2%|E(H))| 2kb Zﬁx C onEH 2hb.
T —7T (O/T) < — ZAG < \/n_hr o)
HS
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which provides the bounds

log(2"/C") log C
- L I Hh<L< T+ —"—
2klog(T/0) = =" T log(T/0)

on the min-bisection b of H, where

log(Z 0 /Zf5) + 2k|E(H)|log T — log vk
- 2k log(T'/O) ‘

We can approximate Z; to within an absolute constant factor in (randomized) time

polynomial in N (Which is p(jlynomial in h) by Theorem [0 For the theorem we suppose that

N¢

we have a relative e —approxnnatlon of Z8x, and hence if T is given by the definition of T

HGa
above with Z ;¢ and Z HG replaced by these approximate values, we have [T —T| < O(N¢/k)

- ¢ N ¢
T—O<N ]:h) Sb<T+O<£>.

Since k = ©(h?3), this constrains b to an interval of length O(Nh™3). Using N = O(nh) with
n = O(h?/*), it suffices to choose ¢ small enough in terms of # and ¢ that (144/6)¢ < 5 —«¢.

and hence

Note that we could reduce from solving min-bisection exactly at the cost of weaker inap-
proximability for Z%¥ in the proof. If ¢ is chosen such that (1 +4/6)¢ < 3 then the bounds
constrain the integer b to an interval of length o(1) and hence for large enough h we can find
b exactly. O

3.4 Proof of Lemma

We prove the lemma in the case of the + phase as the — phase is the same. Note that we
can ignore the contribution of vertices in Ry and the attached trees to X in the bounds since
there are o(n'/?) of these vertices. So for this section X and X (o) will refer to the number
of + spins in the vertices of G’.

We first prove the three bounds of the lemma without conditioning on {ogr, = 7}. We
will show that for large enough n, with probability at least 8/10 over the choice of gadget,
we have the following bounds:

(IX - 2na+]>G7+ =0(v/n (5)
(IX —2na*| 2>G7+ =O0(n) (6)
(|IX = 2na™ 3>G7+:O( 2) (7)

< to(X—2atn) >G7+ <e O(t2n) ) (8)

Let £ : R — R be a non-negative function that satisfies £(z) < el for some constant ¢ >
0. We aim to prove bounds on (¢(X — 2a™n))g 4+ for four choices of functions &: &(z) = ||
for k € {1,2,3}, and &£(z) = elo®.

20



For such a function &, we can write

Yas1/2€(2an — 20 n) Zg q
G+

(X —2a"n))g+ <

(this is an inequality instead of an equality simply because we include all configurations with
a=1/2).

By of Lemma [I1l we have Zg > %EZG;F with probability at least 1 — 1/10. By
Markov’s inequality we have

Z £(2an — 20" n) Zg o < 100 Z £(2an — 20 n)EZg 4
a>1/2 a>1/2

for all four choices of £ with probability at least 1 — 4/100. Thus with probability at least
1—-1/10 —4/100 > 8/10 we have

Y as1/2€(2an — 20" n)EZG 4
EZq .+ ’

(¢(X —2atn))g .+ < 100C

2an—20+tn)EZg.0 ..
so to prove (@), (@), (@), () it is enough to show that Laz1/28( ggg +a nEZo, satisfies the

desired bounds.

Now using the bound

o O(n—1/2)e—ﬂ(n(a—oﬁ)2)

from Lemma [IT] we can bound

> as1/2€(2an — 20 N)EZG o . )
o> < —-1/2 —Q(/n)
o <o Y e @ 4o

n(l—2at)<l<2n(1—at)

2n(1—a't) )
= O(n_l/2)/ €(u)e™ /) gy,
n(1—2at)

2(1—a™) )
= O(n1/2)/ (un)e” %) 4y
1

—2at

=0 <n1/2/ £($n)e_ﬂ("x2)dx> .

/ \xn\ke_g(”mz) dr = O(n(k_l)/z)

Since

and

oo
/ eton:ce—ﬂ(n:cz) dr = eO(t(z)n)
—00
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we obtain ([H), (@), (@), ().

Now we transfer these bounds to the measure conditioned on {og, = 7}. For the moment
generating function we have

URo:T>G,+

<et0 (X—2atn) 1

<eto (X—2a™n) >G7+,7— _

HG -+ (URO = T)

<et0 (X—2atn) >G7+

<
T Qi (1)1 = O(n=%))
< (OlRol) O(t3n)

— eO(t(z)n) ,

where we used that t2n = O(nh=2) = O(n'=%2) and |Ro| = O(n?) = o(n'~%/2).
For the kth moment,
X —2nat|F 1,5, —r
<]X—2na+\k>G+ - < Fo >G’+
T G4+ (0ry = 7)
(1X = 200 Loy )

+{|X —2nat|*. 1‘7W063>G,

< Gyt +
- Qg (T)(1 = O(n=2))
- (IX = 2nat|k - Lop,=r" ]'UW()EBC>G,+ + (2n)F exp(—n?Y)
- Qp, (T)(1 = O(n=2))
_ (IX —2na* k15, _r - 1UWOE,5,C>GHr + o)
Qg (T)(1 = O(n=2))
_ ZUGEG ‘X(U) - 2na+‘k10R0:T ) 1UW()€BC : MG7+(U) + 0(1)
- Qp,y (T)(1 = O(n=%))
_ ZJEEG |X(0) - 2no¢+|k,u(030 = 7_|0-VV0) ’ ]'UWOEBC ) MG7+(O-) I 0(1)

Qo (T)(1 = O(n=%))
B QEO(T)(l + O(n_ge))<|X — 2nat|F. IUWOGBC>G7+
a Qp, (T)(1 = O(n=2))
< (1+0(n™?)(IX = 2na™ "), +o(1)
= 0(n*=17%),

+0(1)

where we have used from Lemma [IT] that for all my, € B¢,

1G4+ (ORy = Tlow, = Tw,) = QEO(T)(l +0(n=%),

and we have used the fact that conditioned on ow,, X(0) and op, are independent (using
here that in this section X (o) only counts + spins to the vertices of G’).
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4 Extremal bounds on the mean magnetization

The proof of Theorem Blis based on that of Krinsky in [Kri75] which applies to lattices such
as Z%. We require some simple calculus facts recorded in the following lemma.

Lemma 15. Let 3 > 0, hi(z) = artanh (tanhz tanh g), and let ha(z,y) = tanh (z +

artanh(tanhytanhg)). Then hy is strictly concave on (0,00), hg is strictly concave when
x,y € (0,00), and ha(x,x) is an increasing function of x.

Proof. For the first statement, note that
B () = — 2sinh (3 sinh(2x) .
(cosh 8 + cosh(2x))?

Now let ¢ = artanh. For the second statement, note that the Hessian matrix of hs has
determinant

sinh 8 sinh(2y) tanh (2 + g(tanh y tanh g))

> 0,
cosh? (g — y) cosh? (g + y) cosh? (a: + g(tanh y tanh g))
and
52 2sinh (g(tanh y tanh g) + x)

cosh? (g(tanh y tanh g) + 3:)

This means that the Hessian is negative definite when z,y € (0, 00). Finally, observe that

0 sinh 8 9 3
- = 1 h h h& . O
o ho(x, x) <cosh5 T cosh(22) + ) sech” (z + g(tanhz tanh 5)) > 0

Proof of Theorem[3. Let G = (V, E) be a graph and consider the ferromagnetic Ising model
with partition function

Za(BN) = Y eF Duen fuouou M)

Sl

where we allow each edge uv € F to have its own inverse temperature parameter (5,,. Spe-
cializing to By, = § for all edges uv, we recover the definition used elsewhere in this work.

When S and A are understood from context, given a function f with domain X¢, let (f)g
be the expected value of f with respect to the Ising model on G. We also write (f)G—wo
for the expected value of f with respect to the Ising model on the graph formed from G by
removing the edge uv, which is equivalent to setting the parameter 3,, to zero. We extend
this notation to (f)c_r when we want to remove some set F' of edges.

A key feature of the ferromagnetic Ising model with non-negative external field is the
following list of Griffiths’ inequalities |Gri67], also known as the GKS inequalities after Kelly
and Sherman who generalized Griffiths’ work [KS68]. For A C V, let 04 = [[,c4 0v. Then
we have for any graph G = (V, E), A,B C V, and wv € E,

(0a) >0 (9)
(oaop) —(oa)(op) >0 (10)
(04) = (04)G-uv = 0. (11)
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In fact, (I0) implies (II)) by considering the derivative of (04) with respect to By,. With
B = {u,v} we have

aguv (04) = 5(405) — 5(oa} (o8} = 0,

2 2
where the inequality is by (I0]).

We will apply Griffiths’ inequalities during some careful manipulation of expectations
using the following identities. For s = +1 and any 3 we have

35 = <1 + stanh g) cosh g, (12)

which follows from the definitions of the hyperbolic functions in terms of exponential func-
tions. We also use the addition formula

artanh < Tty > = artanh x + artanh y.
1+ay

From now on, we work with (,, = ( for all wv € E. Let u € V and v,w € N(u) with

B
v # w. Applying [I2) to the term e27“?" which occurs in both the numerator and the
denominator of (o,) gives

<UU>G—uv + <O-U>G—uv tanh g

(ou) = (13)
' 1+ (0400) G—uw tanh &
and the same identity applied to the edge uw in G — uv gives
<Uu>G—uv—uw + <‘7w>G—uv—uw tanh g
<Uu>G—uv = 3 . (14)
1+ <0u0w>G—uv—uw tanh b)
To each of these we apply (I0) to the expectation in the denominator, giving
—uw _uptanh £
<O‘u> § <O'u>G uv <O'U>G wp tan 25’ and (15)
1 + <0U>G—UU <O-U>G—uy tanh )
o ~wo—uw tanh &
(00)6 oy < ~ZWG=w=uw F (Ow)G—ur-uw tanh 5 (16)

1+ <Uu>G—uv—uw <Uw>G—uv—uw tanh g .
Applying g = artanh to both sides of (I5]) and using the addition formula, we obtain
9({ow)) < 9({ou)G—uv) + 9({0v)G—uv tanh g) (17)

Doing this again with (I6]), we also use (II]) with the edge uw in the graph G — wv, giving
<0w>G—uv—uw < <0w>G—uw and hence

g(<0u>G—uv) < g(<0u>G—uv—uw) + g(<0w>G—uw tanh g) (18)

Observe that we can iterate the process used to obtain (I8]) over each w € N(u) \ {v} in
turn to obtain

g(<0'u>G—uv) <log A + Z g(<0w>G—uw tanh g), (19)
weN (u)\{v}
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where we have used the fact that removing the set Fy, := {uv : v € N(u)} of edges incident

to u we have
A=At

A+ AL

because u is an isolated vertex in G — F,,.

(ow)G-F, = = tanh(log \)

At this point, Krinsky assumes that G is both edge and vertex transitive so that for some
L > 0 and for all uv € E we have

<0'u>G—uv = <UU>G—uv = tanh L.
In this special case, (I9) becomes
L <log A+ (A — 1)g(tanh L tanh g),

where A is the degree of a vertex in (G. This implies that L is bounded above by the largest
solution L* to
L* =log A+ (A — 1)g(tanh L* tanh g) (20)

Plugging this into (I7) and observing that for any vertex-transitive graph (o) is the mean
magnetization ng, we have

ne < tanh (L* + g(tanh L* tanh 5)).

The right-hand side is precisely 773 B the mean magnetization of the + measure on the
infinite A-regular tree, which one can derive from first principles (as in, e.g., [Bax82]). In fact,
it suffices to observe that every inequality we applied to obtain this bound holds with equality
in the tree. That is, in the infinite A-regular tree (04,04)G—uww = (Ou)G—uv(0v)G—uv Since
removing uv leaves u and v in different connected components so ¢, and o, are independent.
Similarly, we have (04,04)G—ww—uw = (Ou)G—1wv—uw (Tw)G—uwv—uw and since w is in a different
component from the edge uv after uw is removed, (04)G—wv—uw = (Ow)G—uw. The tree
is edge and vertex transitive, proving that the derived upper bound is given by the mean
magnetization of some measure on the tree. As the + measure stochastically dominates all
other translation-invariant measures on the tree, it corresponds to the largest solution L*

to (20).

We now will apply this argument to a finite graph G that is not necessarily vertex or edge
transitive. First, we observe that we can reduce to the case that G is regular by a well-known
construction. Suppose that G has maximum degree A but minimum degree § < A — 1. We
construct a graph H with minimum degree § + 1 such that ng < ny. Let Hg be formed
from the disjoint union of two copies of G, so that the mean magnetization of Hy is equal
to that of G, For ¢ > 0, if there is a vertex w of degree d in H; let H; 11 be formed from H;
by connecting w to its copy in the other copy of G. The inequality (II) shows that ngy, is
non-decreasing as ¢ increases because adding the edge can only increase any term (o), and
the mean magnetization is the average of these terms over all vertices v. When the process
terminates at some H, the minimum degree of H is § + 1, and we cannot have decreased the
mean magnetization. Iterating this construction, we can obtain a A-regular graph H whose
mean magnetization is an upper bound on the mean magnetization of G, hence it suffices to
prove the theorem in the case of a A-regular graph.
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In a A-regular graph, careful averaging and applications of Jensen’s inequality allow us
to recover the result obtained for edge and vertex transitive graphs. We can interpret (I9])
as a property of an oriented edge w0, and average over all edges incident to u oriented away
from u. Let Lz be given by tanh Ly = (0y)G—uw, so that averaging (I9) over v € N(u) gives

1 A—-1 3
A Z Lo <log A+ A Z g(tanh L tanh 5). (21)
vEN (u) vEN (u)

By Lemma [I5, the function z — g( tanhz tanh g) is concave on (0,00). This means that
([2I) and Jensen’s inequality give

Z L <log A+ (A — 1)g<tanh { Z Lm} tanh 5 ) (22)

vEN (u) vEN (u

To clean this up, we define

1
Z Lz, By = A Z L,
vEN (u) vEN (u)
so that [22)) gives
A, <logA+(A—-1)g <tanh B, tanh g) . (23)

This we average over a uniform random w € V and again appeal to concavity. Here we finally
obtain the desired equation because the averages satisfy

Z::ﬁZ(LerL = Z Z L = Z Z L,

weFR uGV vEN (u uGV vEN (u

so an application of Jenssen’s inequality gives for L what we had for L in the case of a
transitive graph,
L <log A+ (A — 1)g(tanh L tanh g)

As before, this means that L < L*.

To conclude the argument in the A-regular case, we apply the same averaging trick to (7).
For any edge uv € F,

9((ow)) < 9({0u)G-w) + 9((00)G—uw tanh 5),

so fixing u and averaging over v € N (u) gives

9((0u>)S% Z g(<0u>G_uv)+% Z g((av>c_uvtanh§).

vEN (u) vEN (u)
Applying Jensen’s inequality again, we have
g({oy)) < A, + g(tanh B, tanh g),

and so
(o) < tanh(A, + g(tanh B, tanh g)) (24)
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By Lemma [I5] the right-hand side is concave as a function of A, and B,. Averaging (24])
over u € V and applying Jensen’s inequality, we conclude

1 _ —
e = - Z(au> < tanh(L + g(tanh L tanh g))

ueV
< tanh(L* + g(tanh L* tanh g)) = 77Z B

using the fact that x — tanh (m+g(tanh x tanh g)) is non-decreasing proved in Lemma[3 O

5 Algorithms

In this section we prove Theorems [ and By symmetry, it suffices to consider the
case when n > 0. We can exclude the trivial case n = 1 since there is just a single spin
configuration in that case.

We will use several ingredients from Section 2l Fix 3,7, A satisfying the conditions of
either theorem, and let G be a graph of maximum degree A on n vertices. Let £ = L#nj
so that our goal is to sample an Ising configuration o with X (o) = £.

Since we can efficiently sample from pg gy for any A via Theorem [, we can perform a
binary search on values of A, estimating (X) 5.1, to find a A so that

[(X)e,80 — € = o(vn). (25)

Given such an activity A, we will approximately sample from pug g ) until we sample a con-
figuration o with X (o) = ¢ and then output o. For this algorithm to be efficient we must
ensure that the probability of hitting this value is not too small; in fact, we will show that it

is O(n~1/2).

For Theorem [ this follows immediately from Proposition [7l which provides a local central
limit theorem and ©(n) variance for X for 5 < 5.(A) and any activity .

For Theorem [2] we need to ensure that we can find X satisfying (25)) that is bounded away
from 1 independently of n so we can apply Proposition[7l This is guaranteed by the extremal
result, Theorem [3] and the conditions of the Theorem 2l In particular, because n > 14 (5, A)
(and by continuity of the magnetization of the + measure on the tree) there is some Api, > 1
so that n = 7717 Bl Theorem [3] then says that to achieve mean magnetization n on any
G € Ga we must take A > Ay, thus giving the required uniform bound away from 1.

In what follows we give the details of the approach. We note that the running time of
our algorithm could certainly be improved by using a faster Ising sampler (e.g. [MS13]) or
by using the techniques of [JPSS21], but here we will not try to optimize the running time
beyond finding polynomial-time algorithms.

The existence of the efficient sampling schemes in Theorems [1 and are proved in
Theorem [I8] in Section The existence of approximate counting algorithms follows from
the sampling algorithms via a standard reduction. We provide the details in Appendix [Bl
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5.1 Bounds on the activity

Here we prove a lemma guaranteeing the existence of a good activity A for use in our sampling
algorithms. We write )\glﬁ(n) for the value of A such that 77;5 A = 7. In particular, when

n > n+(B,A) we have )\g’lﬁ(n) > 1.
Lemma 16. Let A > 3, 8 < B.(A), and n € [0,1) be fized. Let Apin = 1 and Apax =
1/ %ZeﬁA/z. Then for any G € Ga on n vertices, there exists an integer t € {0, ..., | (Amax —
Amin)n |} so that for ¢ = L%lnj and \¢ = Amin + % we have
[(X)asan — 4 =0(Q), (26)

where the implied constant depends only on A,B,n. The same holds for 8 > B, and n €
(n4(8,A), 1) with Amin = A3'5(n) > 1 and Apax = |/ 752eP2/2,

Before we prove Lemma[I6] we need one simple bound on the magnetization of a bounded-
degree graph.

Lemma 17. For all A>1, >0, n€[0,1), and any G € Ga, the value of A such that the
mean magnetization ng (B, \) is exactly n satisfies

1<A< /H_neBA/Q.
I—n

Proof. The lower bound follows from symmetry of the Ising model. For the upper bound, let
o € ¥ be drawn from pg g and suppose that n = ng(8,A). Let v be a uniform random
vertex of G, and let Y = M (o (,)) be the magnetization of the neighbors of u. That is, when
u has exactly j neighbors with spin +, Y = 25 — deg(u). Then a direct computation in the

Ising model gives
AesY — A lemsY <)\2 - 6_5Y>
Ae2Y 4 A-lem3Y G A+ e P G

Since Y > —A and the function of Y inside the expectation is increasing for 8 > 0, we

immediately obtain
M2 — PR 147
> <= A< _— BA/2. |
T= 21 efh “Vi1i- 176

We now prove Lemma

Proof of Lemma (16l By Theorem Bl and Lemma [I7, the value of A such that ng(5,\) = n
satisfies Amin < A < Amax. A standard calculation gives that

3} 2
5%(5’ A) = = var(X) .
Then by Proposition [7l, we have a%ng(ﬁ, A) > 0 and %Ug(ﬁ,/\) = O(1). This means that

na(B,A) and hence (X)q g,x are strictly increasing as functions of A, and that (X)g g\ can
increase by at most O(1) on any interval of length 1/n. O
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5.2 The sampling algorithm

Our algorithm is the combination of a simple binary search on values of A and repeated
sampling from distributions fig y that approximate the usual Ising model pg g x.

Algorithm: Sample-k

e INPUT: A, 3,1m,e and G € Ga on n vertices.

e OUTPUT: o € Xg(k) distributed within e total variation distance of the fixed-
magnetization Ising model v g, where £ is the largest integer such that k =n mod 2
and k < nn.

1. Let Amin, Amax be as given in Lemma

2. For t =0,..., | (Amax — Amin)7], let Ay = Amin + t/n.
3. Let Ag={ M\ :t=0,..., [ (Amax — Amin)7] }-

4. FORi=1,...,Clogn,

(a) Let A be a median of the set A;_;.
(b) With N = C'n?log (10%), take N independent samples oy,..., oy from a distri-
RIS - _ 1
bution fig g ) on X such that ||,uG,57>\ — ,u(;ﬂ,)\HTV <¢e = CONTogn*
(c) If there exists j € {1,..., N} so that M(o;) = k, then output o; for the smallest
such j and HALT.

(d) Let k= £ 3%, M(0;).
(e) Ifk <k,let A; ={N € Aj_1: N > A} Ifinstead k >k, let A; = {N € A;_1: N <
A}

5. If no spin assignment of magnetization k has been obtained by the end of the FOR loop
(or if Aj = 0 at any step), output a spin assignment of magnetization k by taking the
first (k 4+ n)/2 vertices in an arbitrary ordering on V(G) and setting their spins to +
and remaining spins to —.

Theorem 18. Let g g be the output distribution of the algorithm Sample-k. Then for n
large enough,

L oGk — vapskllry <e.
2. The running time of Sample-k is polynomial in n and log(1/e).
This proves the approximate sampling portions of Theorems [Il and 2{(a )]
Proof of Theorem [18. We first give the proof under the assumption that each fig ) is precisely

the Ising model ug g ), and subsequently we will reduce the general case that fig  is close to
ta,p,x to this case with a standard coupling argument.

We say a failure occurs at step ¢ in the FOR loop if either
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(1) |nmg(B,A) — k| > 1/4, or

(2) |nna(B,A\) — k| < 1/2 but none of the samples o1, ...,0x have magnetization exactly
k and so the algorithm did not HALT on line (d).

Note that avoiding means that the sample mean k of the N spin assignments sampled
is close to the true mean nng(S, A), and avoiding means that in the case that the true
mean magnetization is close to k, we successfully sample a spin assignment of the desired
magnetization k. To establish that the probability of a failure occurring at any step is at
most £/2, it suffices to establish that the probability of each type of failure in a given step
is at most £/(4C'logn). Consider an arbitrary step i with the value of A assigned for that
step in line (a), and note that k is the mean of N independent samples from fig x. Under
the assumption that fig x = pg g,x, we have Ek = nne(B, ), so by Hoeffding’s inequality we
have
P(|nna(B,A) — k| > 1/4) < 2~ N/(32n%),

This is at most the desired £/(4C logn) when N > Q(n?log(log(n)/e)).

For the second type of failure, we suppose that the current value of A means that
Inna (8, ) —k| < O(1), but that none of the N samples from fig  give a state with magnetiza-
tion exactly k. Each ‘trial’ to get a state of magnetization k is independent at succeeds with
probability p > Q(1/y/n) by Lemma [l Then we have no successful trials with probability
(1 — p)¥, which is at most £/(4C logn) when N > Q(y/nlog(log(n)/e)).

The above lower bounds on N show that the value given in line (b) suffices. With a bound
of £/2 on the probability of any failure, we now show that the output state has distribution
within total variation distance /2 of vg g on X(k). If no failure occurs then the algorithm
must reach a value of A such that |nng (5, A)—k| < 1/2. This is because the starting search set
Ag contains such a value by Lemma[I6] and by binary search structure of the algorithm. Note
that if there is no failure then k is an accurate representation of nng(3,\), so we continue
searching in the larger half of the search set when k < k—1/4 and so nng(8,\) < k+1/4 < k.
The case that k > k + 1/4 is similar. The desired total variation distance now follows from
the fact that for any N, v gy is precisely ug g conditioned on getting a spin assignment
of magnetization exactly k. Under the assumption that fig x = pg gz, this means that if the
algorithm outputs a state on line (d) during the FOR loop, then the output distribution is
precisely vg g ;. Since we have proved that a state is output on line (d) of some step with
probability at least £/2, this is equivalent to showing that when figx = pag gy the output
distribution is within total variation distance /2 of vg g .

We do not need to assume access to efficient algorithms for sampling from pg g exactly,
we can make do with good approximate samplers given by Theorem [@l A standard inter-
pretation of total variation distance is that when each fig ) has total variation distance £
from pg .2, there is a coupling between the measures such that the probability they disagree
is at most £&. Then to prove Theorem [I§ in general we can add a third failure condition:
that any sample from any fig ) disagrees with pg g ) under this coupling. We make at most
CNlogn calls to any approximate sampling algorithm, so by a union bound this type of
failure occurs with probability at most €/2 when we have the stated total variation distance
¢ < e/(2CNlogn). Now, with the above proof in the case of exact samplers we output a
state distributed according to vg g with probability at least 1 —e/2, and with approximate
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samplers as described we get the same output unless the third type of failure occurs. That
is, with probability at least 1 — e we output a state distributed according to vg g . In terms
of total variation distance, this is an e-approximate sampler for vg g with running time

O(Nlogn -

T(n,¢€)) as desired. O
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A Proof of Proposition [7]

First we prove the variance bound.

Proof. Fix A, 8, X satisfying the assumptions of the proposition, and let G € Ga be a graph
on n vertices. For the lower bound, fix an independent set J in G of size at least n/(A + 1),
let U =V(G)\ J, and let oy, be o restricted to U and J respectively. Then var(X) >
(var(X|oy))a,gx by the law of total variance. But conditioned on o7, the spins of the vertices
in J are independent, and moreover, the conditional marginal probability of each spin taking
+ is bounded away from 0 and 1 independently of n. That is, conditioned on oy the indicator
random variable X, = 1, -1 for v in J are mutually independent Bernoulli random variables
with
1

(Aegyu,f + A—le%ﬁyu,f)2 ’

var(X,|7) =

where Y, - is the magnetization under oy of the neighbors of v (so Y, ; = 2j —deg(v) when v
has j neighbors with spin + under oy7). Since we have § > 0 and A > 1, it is straightforward
to prove that var(X,|r) is minimized when Y, , = deg(v), and is a decreasing function of
deg(v). We conclude that

var(Xloy) = Y var(Xolov) > [J|—x =
veJ ()‘
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For the upper bound, we proceed as in [JPSS21, Lemma 3.2]. Let Zg(,@, t) = N"Za(B,\)
with ¢ = v/A. That is,

ZG(ﬁ’t) = Z egz(uvv)eE(Gv ouow 4 X(a)
UEEG

This defines the same Ising model, but will be slightly easier to work with since with /3 fixed,
the partition function Zg(ﬁ,t) is a polynomial in ¢ of degree n. Let &,...,&, denote its
complex roots. The assumptions of Proposition [7] along with Theorems 4 and [B, imply that
there exists some § > 0, depending only on A, 3, and A so that for each 7,

& —t] >0 (27)

with | - | denoting distance in the complex plane. We write

Za(B,t) = [1(1 = 1/€)

J=1

and then

%log Zg(B,t  dlog Za(B,t
__ 42 ) )
var(X) =t TR +t pr

1
—t; &L=t/

n

From Theorem @ we have |;| = 1 for all j and from [27) we have |1 —t/&;|72 < 672, giving
var(X) < ”(;QA O

Next we prove the local central limit theorem. As remarked above, this essentially follows
from the method of [DT77], as it is straightforward to generalize their proof from Z¢ to
general bounded-degree graphs.

Proof. Again fix A, 8, A satisfying the assumptions of the proposition, and let G € Ga be a
graph on n vertices. We let (-) denote expectation with respect to ug g .

Let ¢x(t) = (¢"X) denote the characteristic function of X, and let x? = ((X — (X))2) be
the variance of X. Let X = (X — (X))/k, and let ¢5(t) be the characteristic function of X.

Let £ denote the lattice (X) + Z/k. Let N(x) = \/%e_IQ/Q. We want to show that

_ 1
sup |pe,a (X = ) — =N (2)| = o(n™/?),
zel K

sup ke (X =) = N(2)| = o(1),
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since k = O(y/n). Using Fourier inversion we have

27 sup |kpcp (X =) — N(z)|
TE
= sup / dx(t)e " dt — / et /2ita dt'
ZE€£ —TK —00
< / Px(t) — e‘tQ/Q‘ dt +/ e /2 gt
—TTK [t|>7k

K

S/ ‘qﬁi(t)—e—tz/z‘ dt+/ e—t2/2dt+/ | o5 (t)] dt
-K t>K 1> K

=: A1+ Ay + Aj.

It is enough to show that for every € > 0, there is n large enough so that A; + Ay + Az < e.
To do this we will choose K large enough as a function of ¢.

Because lim,, o ¢ (t) = e=t*/2 for every fixed ¢ (by the central limit theorem of Theo-
rem [6] and the zero-freeness results supplied by the conditions of the proposition and Theo-
rems [ and [l), applying the bounded convergence theorem gives that A; — 0 as n — oo, so
we can choose n large enough to guarantee Ay < ¢/3.

We can pick K large enough to ensure As < £/3. Similarly, if we can show that there
exists some ¢ > 0 so that for every t € R, |¢x(t)| < e~ then we can choose K large enough
to ensure Ag < £/3, as desired.

To show this, it is enough to prove that |(¢X)| < e="*. To do this, we proceed as in

the proof of the variance lower bound as above. Let J C V(G) be an independent set of size
at least n/(A+1) and let U = V(G) \ J. We will again use the fact that conditioned on oy,
the spins of the vertices in J are independent with bounded marginals. Let X = Xy + X5
where Xy, X ; are the number of + spins in the vertices in U and J respectively. Then

[(e"%)]

|<eitXU eitXJ >|
(| (e oy)])

("X our)])

max |<eitX‘I|JU =17)|.
TU

INIA TN

We will show that for all spin assignments 77 to U, (€% |0y = 717)| < e=e™*. This follows
from the independence and bounded marginals properties of the spins in J conditioned on
oy. In particular, there exists ¢ > 0 so that [(e?(F7)/2|gy; = 77)| < e over all v € J
and all choices of 7. Then by independence, [(e?X7|op_r, )| < e=¢nt?/(A+1) and the claim
follows by taking ¢ = ¢/ /(A +1).

O
B Approximate counting via sampling

In this section we fix A > 3, 5 € (8.(A),1), n € [0,1), an n-vertex graph G € Ga, and k
such that 0 < k < nn and n = k mod 2. Since G and k remains fixed we freely drop them

37



from notation such as Z(ﬁ;x(ﬁ ,k) and vg g . Reducing approximate counting to approximate
sampling is a well-studied area, and a standard simulated annealing approach lets us do this
for ng(ﬁ) and vg. For simplicity, we present only a basic form of the argument. More
sophisticated cooling schedules exist that could be used to improve the running time of the
reduction. The key observations behind this application of simulated annealing are that
Z8(1) = ((n J:;g) /2), and for any valid magnetization k and any parameters 3, 3’ we have

2B _ <e5'255(“>> : (28)
B,k

Z%(B)

where §(0) = >_,,cp(q) Ouov and (-)gx represents an expectation over v gy. These facts
follow straightforwardly from the definition of Z%%(3). Given a cooling schedule

1=By<pr<---<Br=05,

. . Bir17Pi sy
and the independent random variables R; = e~ 2 i

) . -1
Z™(B) = <(n N k)/2> [T(R) s

=0

where o; ~ vg,, we have

Moreover, by (28) we can estimate (R;)g ) by taking S repeated independent samples from
a §-approximate sampler 7; for vg;, and setting R; to be the mean of the S samples. For the
cooling schedule to be useful in an FPRAS, we need to determine suitable S and £ so that

J4
P ((1 — &) Z8(B, k) < <(n +”k)/2> [[ai<a+ a)ng(/a,k)> > 3/4. (29)
=0

An important consideration for a cooling schedule is the quantity

(R?) 3 1 _ 728,41 — B;) Z8(53:)
(Ri)% 1 Z%(Bi11)? ’

and when this is bounded above by a constant B for all 0 < i < ¢ we say the schedule is
B-Chebyshev. A particularly simple cooling schedule has 8; = ilog(1+1/n) for i < £, so that
for some length ¢ = ©(n) we have a schedule where ;11 — ; < log(1+ 1/n). Then from the
fact that when 7 > 1 we have Z%(8 4 r) < r27/2Z8x(3), it is straightforward to show that
1< R; <eP/? and
(R?) 5,k
<Ri>2g7k

meaning that the simple cooling schedule is -Chebyshev. A second-moment argument,
given for example in [SVV09, Section 2] and in [JS97] (but originating in [DF91]), gives that
some S = Q(¢/e?) and & = O(e/¥) suffice for (29)) (where the implied constants can depend
on A). By the algorithm from Section [5 we can obtain such &-approximate samples in time
polynomial in n and log(1/¢). The total running time for the approximate counting algorithm
is therefore polynomial in n and 1/e, meaning we have the desired FPRAS.

< (1 + 1/n)An/2 < eA/Z7

e
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This simple cooling schedule works in great generality, but there are a few well-known
ways of improving the efficiency of the method. The first is to use a more complex (in fact,
adaptive) but shorter schedule, as given in [SVV09]. A second improvement makes use of
warm starts, which is essentially a strategy of reusing randomness when a Markov chain is
the basis of the approximate samplers ©; which are used to obtain R;. These improvements
are combined in [SVV09, Section 7].
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