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SPACE OF RICCI FLOWS (II)—PART B: WEAK
COMPACTNESS OF THE FLOWS
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Abstract

Based on the compactness of the moduli of non-collapsed
Calabi—Yau spaces with mild singularities, we set up a structure
theory for polarized Kéahler Ricci flows with proper geometric
bounds. Our theory is a generalization of the structure theory
of non-collapsed Kéahler Einstein manifolds. As applications, we
show the convergence of the Kéhler Ricci flow in an appropriate
topology and prove the partial-C°-conjecture.
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1. Introduction

This paper is the continuation of the study in ([27]) and ([30]).
In [27], we developed a weak compactness theory for non-collapsed Ricci
flows with bounded scalar curvature and bounded half-dimensional cur-
vature integral. This weak compactness theory is applied in [30] to show
the convergence of the Kahler Ricci flow in complex dimension 2 and its
geometric consequences. However, the assumption of half dimensional
curvature integral is restrictive. It is not available for high dimensional
anti-canonical Kéahler Ricci flow, i.e., Kéhler Ricci flow on a Fano mani-
fold (M, J), in the class 2mc; (M, J). In this paper, by taking advantage
of the extra structures from Ké&hler geometry, we drop this curvature
integral condition.

The present paper is inspired by two different sources. One source is
the structure theory of Kahler Einstein manifolds which was developed
over last 20 years by many people, notably, Anderson, Cheeger, Cold-
ing, Tian and more recently, Naber, Donaldson and Sun. The recent
progress of the structure theory of Kéhler Einstein manifolds supplies
many additional tools for our approach. The other source is the semi-
nal work of Perelman on the Ricci flow (c.f. [49], [55]). Actually, it was
pointed out by Perelman already that his idea in [49] can be applied to
study Kahler Ricci flow. He wrote that

“present work has also some applications to the Hamilton—
Tian conjecture concerning Kdahler—Ricci flow on Kahler
manifold with positive first Chern class: these will be dis-
cussed in a separate paper”.

We cannot help to wonder how far he will push the subject of Ricci flow
if he continued to publicize his works on arXiv. Although “this separate
paper” never appears, his fundamental estimates of Kahler Ricci flow on
Fano manifolds is the base of our present research. Besides Perelman’s
estimates, we also note that the following technical results in the Ricci
flow are important to the formation of this paper over a long period of
time: the Sobolev constant estimate by Q.S. Zhang ([76]) and R. Ye
([75]), and the volume ratio upper bound estimate by Q.S. Zhang ([78])
and Chen-Wang ([31]). Some other important estimates can be found
in the summary of [26].

Our key observation is that there is a “canonical neighborhood” the-
orem for anti-canonical Kéahler Ricci flows. The idea of “canonical
neighborhood” originates from Theorem 12.1 of Perelman’s paper [49].
For every 3-dimensional Ricci flow, Perelman showed that the space-
time neighborhood of a high curvature point can be approximated by
a k-solution, which is a model Ricci flow solution. To be precise, a
k-solution is a 3-dimensional, k-noncollapsed, ancient Ricci flow solu-
tion with bounded, nonnegative curvature operator. By definition, it
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is not clear at all that the moduli of k-solutions has compactness un-
der (pointed-) smooth topology (modulo diffeomorphisms). Perelman
genuinely proved the compactness by delicate use of Hamilton—Ivey es-
timate and the geometry of nonnegatively curved 3-manifolds. In light
of the compactness of the moduli of k-solutions, by a maximum princi-
ple type argument, Perelman developed the “canonical neighborhood”
theorem, which is of essential importance to his celebrated solution of
the Poincaré conjecture (c.f. [41], [45], [5]).

The idea of “canonical neighborhood” is universal and can be applied
in many different geometric settings. In particular, there is a “canon-
ical neighborhood” theorem for the anti-canonical Kéahler Ricci flows,
where estimates of many quantities, including scalar curvature, Ricci
potential and Sobolev constant, are available. Clearly, a “canonical
neighborhood” should be a neighborhood in space-time, behaving like
a model space-time, which is more or less the blowup limit of the given
flow. Therefore, it is natural to expect that the model space-time is
the scalar flat Ricci flow solutions, which must be Ricci flat, due to the
equation %R = AR + 2|Ric|?, satisfied by the scalar curvature R. For
this reason, the model space and model space-time can be identified,
since the evolution on time direction is trivial. It is also natural to ex-
pect that the model space has a Kahler structure. In other words, the
model space should be Kéahler Ricci flat space, or Calabi—Yau space.
Now the first essential difficulty appears. A good model space should
have a compact moduli. For example, in the case of 3-dimensional Ricci
flow, the moduli space of k-solutions, which are the model space-times,
has compactness in the smooth topology. However, the moduli space
of all the non-collapsed smooth Calabi—Yau space-times is clearly not
compact under the smooth topology. A blowdown sequence of Eguchi—
Hanson metrics is an easy example. For the sake of compactness, we
need to replace the smooth topology by a weaker topology, the pointed-
CA'OO-CheegerfGromov topology. At the same time, we also need to en-
large the class of model spaces from complete Calabi—Yau manifolds
to the Calabi—Yau spaces with mild singularities (c.f. Definition 2.1),

which we denote by HS (n, k). Similar to the compactness theorem of
Perelman’s k-solutions, we have the compactness of % .7 (n, k).

Theorem 1.1 (Compactness of model moduli, Chen-Wang [29]).
H S (n, k) is compact under the pointed—é"o—C’heegerfGromov topology.

In other words, for each sequence of (X, x;, g;) € %(n, k), by taking
subsequence if necessary, we have

O~ _
(1.1) (Xi,w4,9:) — (X, 7,9),

for some (X,%,5) € %(n, K).
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Note that the convergence topology in (1.1) was stated as “pointed-
Cheeger—-Gromov” topology previously in literature, for example, in
Chen—Wang [27]. We now use extra term C° to indicate it deals with
singularities. Let us say a few more words for its precise meaning. In
fact, (1.1) first means that (X;,x;,d;) converges to a pointed-length-
space (X, Z,d), where d; is the distance structure induced by g;. The
second meaning of (1.1) is that X has a regular-singular decomposition
X = R(X)US(X), where the regular part R(X) is a smooth manifold
equipped with a smooth metric g, the singular part S(X) is a measure
(2n-dimensional Hausdorff measure) zero set. Locally around each reg-
ular point, the metric structure determined by g is identical to d. The
regular part R(X) has an exhaustion U372, K by compact sets K. For
each compact set K = K for some j, one can find diffeomorphisms ¢x ;
from K to ¢x(K), a subset of R(X;) such that

di((pK,i(y)awi) _>d(y7'f)7 VyeK;

©k.i(9i) Sy oK.
Although in general the global distance structure induced by g may not
be the same > as d, this difference does not happen whenever the limit
space X € .7 (n,k) since R(X) is weakly geodesic convex. Clearly,
oo can be replaced by general positive £ and the convergence in the
pointed—CA'k—CheegerfGromov topology can be defined similarly. So we

k A~
use < to denote the (pointed)-C*-Cheeger-Gromov topology, i.e., the
convergence is in the (pointed)-Gromov-Hausdorff topology, and can
be improved to be in C*-topology (modulo diffeomorphisms) away from

singularities. For simplicity of notation, we use PG 45 denote the

convergence in pointed-Gromov—-Hausdorff topology, use “H ¢o denote
the convergence in Gromov—Hausdorff topology.

The strategy to prove the compactness of . (n, k) follows the same
route of the weak compactness theory of Kahler Einstein manifolds, de-
veloped by Cheeger, Gromoll, Anderson, Colding, Tian, Naber, etc.
However, the analysis foundation on the singular spaces need to be
carefully checked, which is discussed in a separate paper [29]. Theo-
rem 1.1 is motivated by section 11 of Perelman’s seminal paper [49],
where Perelman proved the compactness of moduli space of k-solutions
and showed that k-solutions have many properties which are not obvious
from definition. o

By trivial extension, each X € J#.7(n,k) can be understood as a
space-time X X (—o0, 00) satisfying Ricci flow equation. Intuitively, the
rescaled space-time structure in a given anti-canonical KéhlerfPti/cci flow
should behave similar to that of X x (—o0, 00) for some X € # . (n, k),
when the rescaling factor is large enough. In order to make sense that
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two pointed-space-times are close to each other, we need the pointed-
CA’OO-CheegerfGromov topology for space-times, a slight generalization
of the pointed-C’OO—Cheeger—Gromov topology for metric spaces. When
restricted on each time slice, this topology is the same as the usual
pointed—C’OO-Cheeger—Gromov topology. Between every two different
time slices, there is a natural homeomorphism map connecting them.
Therefore, the above intuition can be realized if we can show a blowup
sequence of Ricci flow space-times from a given Kahler Ricci flow con-
verges to a limit space-time X x (—o0, 00), in the pointed-CA"’o-Cheegerf
Gromov topology for space-times. However, it is not easy to obtain
the homeomorphism maps between different time slices in the limit.
Although it is quite obvious to guess that the homeomorphism maps
among different time slices are the limit of identity maps, there ex-
ists serious technical difficulty to show the existence and regularity of
the limit maps. The difficulty boils down to a fundamental improve-
ment of Perelman’s pseudolocality theorem (Theorem 10.1 of [49]). Re-
call that Perelman’s pseudolocality theorem says that Ricci flow cannot
“quickly” turn an almost Euclidean region into a very curved one. It
is a short-time, one-sided estimate in nature. We need to improve it
to a long-time, two-sided estimate. Not surprisingly, the rigidity of
Kahler geometry plays an essential role for such an improvement. The
two-sided, long-time pseudolocality is an estimate in the time direction.
Modulo this time direction estimate and the weak compactness in the
space direction, we can take limit for a sequence of Ricci flows blown
up from a given flow. Then the canonical neighborhood theor/e\rg can be
set up if we can show that the limit space-time locates in % . (n, k),
following the same route as that in the proof of Theorem 12.1 of [49].

From the above discussion, it is clear that the strategy to prove
the canonical neighborhood theorem is simple. However, the techni-
cal difficulty hidden behind this simple strategy is not that simple.
We observe that the anti-canonical Kéahler Ricci flow has many ad-
ditional structures, all of them should be used to carry out the proof
of the canonical neighborhood theorem. In particular, over every anti-
canonical Kéahler Ricci flow, there is a natural anti-canonical polariza-
tion, which should play an important role, as done in [30]. Although
it can be studied in a more general setting, in this paper, however,
we shall focus on the flow with pluri-anti-canonical polarizations. We
call LM = {(M",g(t),J,L,h(t)),t € (=T,T) C R} a polarized Kéhler
Ricci flow if

o M = {(M"g(t),J]),t € (=T,T)} is a Kahler Ricci flow
solution.

e L = K,/ is a pluri-anti-canonical line bundle over M, h(t) is a
family of smooth metrics on L whose curvature is w(t), the metric
form compatible with ¢(¢) and the complex structure J.
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Clearly, the first Chern class of L is [w(t)], which does not depend on
time. So a polarized Kahler Ricci flow stays in a fixed integer Kahler
class. The evolution equation of g(¢) can be written as

0
(1.2) 5% = ~ i + Agij
where A = ccll((]\g)). Since the flow stays in the fixed class, we can let
wi = wo + v/ —100p. Then ¢ is the Ricci potential, i.e.,
(1.3) V—100¢p = —Ric + \g.

Note the choice of ¢ is unique up to adding a constant. So we can
always modify the choice of ¢ such that sup ¢ = 0. For simplicity, we
M

denote # (n, A) as the collection of all the polarized Kéahler Ricci flows
LM satisfying the following estimate

T >2
1.4 - .
(14 { Cs(M) + gy + 1¢lenan + [R — ndlcoqan < 4,

for every time ¢ € (=7,T). Here Cg means the Sobolev constant, A
is a uniform constant. In this paper, we study the structure of polar-
ized Kéhler Ricci flows locating in the space .# (n, A). The motivation
behind (1.4) arises from the fundamental estimate of diameter, scalar
curvature, C'-norm of Ricci potential, and Sobolev constant along the
anti-canonical Kéhler Ricci flows (c.f. [55], [76], [75]). Every polar-
ized Kahler Ricci flow solution in ¢ (n, A) has at least three structures:
the metric space structure, the flow structure, the line bundle struc-
ture. Same structures can be discussed on the model space-time in
A7 (n, k). All the structures of a flow in % (n, A) can be modeled by

the corresponding structures in HS (n, k), which is the same mean-
ing as the “canonical neighborhood theorem”. We shall compare these
structures term by term. Note that s is the uniform non-collapsing con-
stant determined by the Sobolev constant bound in (1.4). The choice of
 follows from the notation of the famous no-local-collapsing theorem
of Perelman [49]. More details can be found in Remark 3.32.

Under the pointed—CA’OO—CheegerfGromov topology at time 0, let us
compare the metric structure of a flow in J# (n, A) with a Calabi-Yau
conifold in ji//\g”(n, k). We shall show that ¢ (n, A) and %(n, K)
behaves almost the same in this perspective. Intuitively, one can think
that the weak compactness theory of Ricci-flat manifolds and Einstein
manifolds are almost the same.

Theorem 1.2 (Metric space estimates). Suppose LM; € H (n,
A). By taking subsequence if necessary, we have

15) (M, 20, i(0) s (M, 7, 5).
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The limit space M has a classical reqular-singular decomposition R U S
with the following properties.

e (R,g) is a smooth, open Riemannian manifold. Moreover, R ad-
mits a limit Kdhler structure J such that (R,g,j) 18 an open
Kahler manifold.

e S is a closed set and dimp S < 2n — 4, where dimyg means
Minkowski dimension (c.f. Definition 2.2 of [29]).

e Every tangent space of M is an irreducible metric cone.

e Let v be the volume density, i.e.,

(1.6) v(y) = limsupwy, =" B(y, )|,

n
r—0

for every point y € M. Then a point is regular if and only if
v(y) = 1, a point is singular if and only if v(y) < 1—20¢, where dy
is a dimensional constant determined by Anderson’s gap theorem

(c.f. Lemma 3.1 of [1]).

By definition, we call a point being regular if it has a neighborhood
with smooth manifold structure and call a point being singular if it is not
regular (c.f. Proposition 4.2 and Remark 4.3). It is important to note

the difference between %(n, k) and J# (n, A). We use %(n, k) to
denote the space of possible bubbles, or blowup limits. Therefore, every
metric space in it is a non-compact one. However, each time slice of flows
in ¢ (n, A) is a compact manifold. The limit space M of Theorem 1.2

maybe compact and does not belong to % (n, k). Note also that the
weak convexity of R(M) is not known without further conditions.

In the study of the line bundle structure of J# (n, A), the Bergman
function plays an important role. Actually, for every positive integer k
large enough such that L* is globally generated, we define the Bergman
function b*®) as follows

Ny,
(1.7) b*) (2, 1) = log Z HSi(k)Hi(t) (z,t),

Ny
~are orthonormal basis of

where N, = dim¢ H°(M, Lk) -1, {Si(k)}

0

H°(M, L*) under the natural metrics w(t) and h(t). Theorem 1.2 means
that the metric structure of the center time slice of a Kahler Ricci flow in
# (n, A) can be modeled by non-collapsed Calabi—Yau manifolds with
mild singularities. In particular, each tangent space of a point in the
limit space is a metric cone. The trivial line bundle structure on metric
cone then implies an estimate of line bundle structure of the original
manifold, due to delicate use of Hémander’s O-estimate, as done by
Donaldson and Sun (c.f. [37]).
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Theorem 1.3 (Line bundle estimates). Suppose LM € J# (n, A),

then

inf b (2. 0) > —

P02 e,
for some positive number ¢y = co(n,A), and positive integer ko =
ko(n, A).

In other words, Theorem 1.3 states that there is a uniform partial-
CP-estimate at time ¢ = 0. This estimate then implies variety structure
of limit space, as discussed in [66] and [37]. Theorem 1.3 can be under-
stood that the line bundle structure of % (n, A) is modeled after that
of XS (n, k).

Theorem 1.2 and Theorem 1.3 deal only with one time slice. In order
to make sense of limit Kéahler Ricci flow, we have to compare the limit
spaces of different time slices. For example, we choose x; € M;, then we
have

C> Coo
(M;, i, 9i(0)) — (M,%,5), (Mj,zi,9i(—1)) — (M', 7, 7).

How are M and M’ related? If Z is a regular point of M, can we say &’
is a regular point of M’? Note that Perelman’s pseudolocality theorem
cannot answer this question, due to its short-time, one-sided property.
In order to relate different time slices, we need to improve Perelman’s
pseudolocality theorem to the following long-time, two-sided estimate,
which is the technical core of the current paper.

Theorem 1.4 (Time direction estimates). Let LM € J# (n, A)
Suppose xo € M, Q = Bgyo)(wo,7), ¥ = By (o, 5) for somer € (0,1)
At time t = 0, suppose the isoperimetric constant estimate

I(Q) > (1 —60)I(C")
holds for 69 = dp(n), the same constant in Theorem 1.2. Then we have
IVERm|(z,t) < Ck, YkeZ2, zeQ, tel-1,1],

where C is a constant depending on n, A,r and k.

Theorem 1.4 holds trivially on each space in % (n, k), when re-
garded as a static Ricci flow solution. Therefore, it can be understood
as the time direction structure, or the flow structure of LM € J# (n, A)

is similar to that of £ .7 (n, k). Theorem 1.4 removes the major stum-
bling block for defining a limit Kahler Ricci flow, since it guarantees that
the regular-singular decomposition of the limit space is independent of
time. Therefore, there is a natural induced Kahler Ricci flow structure
on the regular part of the limit space. We denote its completion by
a limit Kahler Ricci flow solution, in a weak sense. Clearly, the limit
Kahler Ricci flow naturally inherits a limit line bundle structure, or a
limit polarization, on the regular part. Moreover, the limit underlying
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space does have a variety structure due to Theorem 1.3. With these
structures in hand, we are ready to discuss the convergence theorem of
polarized Kahler Ricci flows, which is the main structure theorem of
this paper (c.f. section 4.5 for meaning of the notations).

Theorem 1.5 (Weak compactness of polarized flows). Suppose
LM; € X (n,A), z; € M; satisfying diamg, o) (M;) < C uniformly or
sup y, |[R| — 0. By passing to subsequence if necessary, we have

(1.8) (ﬁMZ,lm) g (m, .Q_?) 5

where LM is a polarized Kdihler Ricci flow solution on an analytic nor-
mal variety M, whose singular set S has Minkowski codimension at
least 4, with respect to each g(t). Moreover, if M is compact, then it is
a projective normal variety with at most log-terminal singularities.

Let us explain a few words of the meaning of (1.8). The limit low LM
exists on M x (—T,T), whose regular part supports a line bundle (L, h)
such that the curvature form of h(t) is @(t). Built on the convergence
of the time slices at ¢t = 0 (c.f. (1.5)), for each compact set K C R(M),
we can find diffeomorphisms g ; such that

ici(9:(0)) <> 5(0).

Via the same diffeomorphisms, (1.8) means that we further have
<P7(1(Jz) g J;
Picilai(t) > g(t). Ve (=T.7)
(¢realLill i hi®) S (L] h®), Ve (=T,7).

For more details, see the discussion from (4.37) to (4.42).

As it is developed for, our structure theory has applications in the
study of anti-canonical Kéahler Ricci flows. Due to the fundamental
estimate of Perelman and the monotonicity of his p-functional along
each anti-canonical Kahler Ricci flow, we can apply Theorem 1.5 directly
and obtain the following theorem.

Theorem 1.6 (Weak compactness of flows). Suppose that the
spacetime {(M™,g(t)),0 <t < oo} is an anti-canonical Kdhler Ricci flow
solution on a Fano manifold (M, J). For every s > 1, define

9s(t) = g(t + s),
Mg 2 {(M", gs(t)), —s < t < s}

Then for every sequence s; — 0o, by taking subsequence if necessary, we
have

oo}

(1.9) (Mswgsi) B (M’g)’
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where the limit space-time M is a Kéhler Ricci soliton flow solution on
a Q-Fano normal variety (M,.J). Moreover, with respect to each G(t),
there is a uniform C independent of time such that the r-neighborhood
of the singular set S has measure not greater than Cr?.

Theorem 1.6 confirms a long-standing conjecture (sometimes called
Hamilton—Tian conjecture) concerning the convergence of the Kéhler
Ricci flow. This conjecture dates back to Hamilton and it was refined
by Tian (c.f. Conjecture 9.1. of [65] for the precise statement). In fact,
Theorem 1.6 provides more information than that was conjectured since
it deals with the convergence of the “space-times”, rather than time
slices of the flow. Historically, the two dimensional case was confirmed
by the authors in [27]. We note that in a recent paper [70], another
approach to attack this conjecture in complex dimension 3, based on
L*-bound of Ricci curvature, was presented by Z.L. Zhang and G. Tian.
Their work in turn depends on the comparison geometry with integral
Ricci bounded, developed by G.F. Wei and P. Petersen ([50]). For other
important progress in Kahler Ricci flow, we refer interested readers to
the following papers (far away from being complete): [54], [76], [75],
[69], [77], [57], [69], [56], [51], [71], [60], as well as references listed
therein.

Theorem 1.6 can be used to study the relationship between the exis-
tence of Kahler Einstein metrics and the K-stability of the underlying
manifolds. By the work of Chen, Donaldson and Sun (c.f. [19], [20], [21]
and [22]), a long standing stability conjecture, going back to Yau (c.f.
Problem 65 of [74]) and critically contributed by Tian (c.f [65]) and
Donaldson (c.f. [36]), was confirmed. Theorem 1.6 can be applied to
provide an alternative proof of the original solution of the stability con-
jecture by Chen—Donaldson—Sun. Moreover, the convergence limit in
Theorem 1.6 is unique, i.e., does not depend on the choice of s; — oc.
Such results are proved in a subsequent work Chen-Sun—Wang [24].

Theorem 1.7 (Limit uniqueness and stability, Theorem 1.2
of Chen—Sun-Wang [24]). Suppose {(M",¢(t)),0 <t < oo} is an anti-
canonical Kdhler Ricci flow solution on a Fano manifold (M, J). There
is a unique Gromov—Hausdorff limit M of (M, g(t)), as a Q-Fano vari-
ety endowed with a weak Kahler—Ricci soliton metric. Moreover, if M
is K-stable, then M is isomorphic to M endowed with a smooth Kdhler—
Einstein metric. In particular, M admits a Kdahler—Einstein metric if
it 1s K-stable.

As corollaries of Theorem 1.6, we can affirmatively answer some prob-
lems raised in [30].

Corollary 1.8. FEvery anti-canonical Kdhler Ricci flow is tamed, i.e.,
partial-C?-estimate holds along the flow.
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Corollary 1.9. Suppose {(M™,g(t)),0 <t < oo} is an anti-canonical
Kahler Ricci flow on a Fano manifold M. Then the flow converges to a
Kahler Finstein metric if one of the following conditions hold for every
large positive integer v.

° a1 >
n

¢ Qy2 > n+1

and w1 > 51—

(n+1)oy, o

Corollary 1.9 gives rise to a method for searching Fano Kéhler Ein-
stein metrics in high dimension, which generalize the 2-dimensional case
due to Tian (c.f. [62]). The quantities oy, ) are some algebro-geometric
invariant. The interested readers are referred to [62] for the precise
definition.

Our structure theory can be applied to study a family of Kahler Ricci
flows with some uniform initial conditions. In this perspective, we have
the following theorem.

Theorem 1.10 (Partial-C°-conjecture). For every positive con-
stants Rg, Vjy, there exists a positive integer kg and a positive constant
co with the following properties.

Suppose (M,w,J) is a Kdhler manifold satisfying Ric > Ry and
Vol(M) > Wy, [w] = 2mc1(M, J). Then we have

; (ko) _
xlg]\f/fb (x) > —co.

Theorem 1.10 confirms the partial-C%-conjecture of Tian (c.f. [64],
[66]). The low dimension case (n < 3) was proved by Jiang ([40]),
depending on the partial-C?-estimate along the flow, developed by Chen
and Wang ([27], [30]) in complex dimension 2 and Tian-Zhang ([70]) in
complex dimension 3. In fact, a more general version of Theorem 1.10
is proved (c.f. Theorem 5.12). As a corollary of Theorem 1.10, we have

Corollary 1.11. (c.f. [61]) The partial-C°-estimate holds along the
classical continuity path.

Following Corollary 1.8, we obtain the following result, which was
originally proved by G. Székelyhidi (c.f. [61]) along the classical conti-
nuity path.

Corollary 1.12. Suppose (M, J) is a Fano manifold with Aut(M,J)
discrete. If it is stable in the sense of S. Paul (c.f. [46]), then it admits
a Kahler Einstein metric.

Because of the solution of stability conjecture by Chen—Donaldson—
Sun, we now know a Fano manifold is K-stable if and only if it admits
Kahler Einstein metrics. Using the theorem of Székelyhidi (c.f. [61]),
one can obtain the equivalence of the K-stability and Paul’s stability,
whenever the underlying manifold has discrete automorphism group. In
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light of Theorem 1.7 and Corollary 1.12, we obtain a Ricci flow proof of
this equivalence.

Let us quickly go over the relationships among the theorems. Theo-
rem 1.1 is the structure theorem of the model space #.%(n, k). The-
orem 1.2, Theorem 1.3 and Theorem 1.4 combined together give the
canonical neighborhood structure of the polarized Kahler Ricci flow in
A (n, A), in a strong sense. The main structure theorem in this paper is
Theorem 1.5, the weak compactness theorem of polarized Kahler Ricci
flows. It is clear that Theorem 1.6 and Theorem 1.10 are direct appli-
cations of Theorem 1.5. The proof of Theorem 1.5 is based on the com-
bination of Theorem 1.2, Theorem 1.3 and Theorem 1.4. These three
theorems deal with different structures of J# (n, A), including the Ricci
flow structure, metric space structure, line bundle structure and variety
structure. The importance of these structures decreases in order, for
the purpose of developing compactness. However, all these structures
are intertwined together. Paradoxically, the proof of the compactness of
these structures does not follow the same order, due to the lack of pre-
cise estimate of Bergman functions. Instead of proving them in order,
we define a concept called “polarized canonical radius”, which guar-
antees the convergence of all these structures under this radius. The
only thing we need to do then is to show that this radius cannot be
too small. Otherwise, we can apply a maximum principle argument to
obtain a contradiction, which essentially arise from the monotonicity of
Perelman’s reduced volume and localized W-functional.

This paper is organized as follows. In section 2, we quote some re-

sults from [29] of the model space HS (n, k) and the canonical radius
with respect to this model space. In section 3, we first set up a forward,
long-time pseudolocality theorem based on the existence of partial-C°-
estimate. Motivated by this pseudolocality theorem, we then refine the
“canonical radius” to “polarized canonical radius” and discuss the con-
vergence of flow structure and line bundle structure under the assump-
tion that polarized canonical radius is uniformly bounded from below.
Finally, at the end of section 3, we use a maximum principle argument
to show that there is an a priori bound of the polarized canonical ra-
dius. In section 4, we prove Theorem 1.2-1.5, together with some other
more detailed properties of the space £ (n, A). At last, in section 5,
we develop the structure theory of the anti-canonical Kéhler Ricci flows.
Applying the structure theory, we prove Theorem 1.6 and Theorem 1.10.

List of notations

e qur: asymptotic volume ratio. Defined in (2.2).
e b: Bergman function of L = K. Defined in (3.1).
e b®): Bergman function of L¥. Defined in (1.7).
e cr: canonical radius. Defined in Definition 2.9.
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cvr: canonical volume radius. Defined in Proposition 2.10.
dimy: Hausdorff dimension. First appears in Proposition 3.19.
dim: Minkowski dimension. First appears in Theorem 1.2.

D,: points on M where the volume radius is strictly less than r.
Defined in (2.12).

E: upper bound of the density estimate of model space. First
appears in Theorem 2.7.

Fr: points on M where the volume radius is at least r. Defined in
(2.12).

K(n,A): Kahler Ricci flow satisfying (1.4). Defined in Defini-
tion 3.14.

K(n, A;r): Kéhler Ricci flow satisfying (1.4) and per > r in the
central period. Defined in Definition 3.14.

A (n): the class of all the complete n-dimensional Calabi-Yau
H/IE_IEfOldS. Stated before Proposition 2.2.

A (n):the class of all n-dimensional Calabi-Yau manifolds with
njilg singularities. Defined in Definition 2.1.

A 7 (n, k): the model space, which is the class of all n-dimensional
Calabi—Yau manifolds with mild singularities and at least x as-
ymptotic volume ratios. Defined in Definition 2.1.

e [: Perelman’s reduced distance. First appears in (2.5).
e [: The line bundle polarizing M. First appears in the paragraph

before (1.2).

e [: Lagrangian of space-time curves. First appears in (2.4).
o LM: Polarized Kéhler Ricci flow solution. First appears in the

® po: a constant very close to 2. It is chosen as py = 2 —

paragraph before (1.2).

M: Kahler Ricci flow solution. First appears in the paragraph
before (1.2).

Mt the time t slice of the Kéhler Ricci flow M. First appears in
Proposition 3.12.

pcr: polarized canonical radius. Defined in Definition 3.10.
Theorem 2.7.

R: regular part of the limit space. Defined in (2.23).

S: singular part of the limit space. Defined in (2.24).

v: volume density. Defined in (2.1).

V: Perelman’s reduced volume. First appears at (2.7).

vr: volume radius. Defined in Proposition 2.2.

Z,: r-neighborhood of the points where |[Rm| > r~2. Defined in
the paragraph before Proposition 4.30.

a, 3,~: bold symbol Greek letters mean space-time curves. First
appears in the discussion before (2.4).

a, B,7v: Greek letters mean space curves. First appears in the
discussion before (2.4).
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[0: Heat operator d; — A. First appears in Lemma 3.2.
e [0*: Conjugate heat operator —9; — A + (R — n\). First appears
in Lemma 3.1.
c> ~
e ——: Convergence in smooth pointed-C*°-Cheeger—Gromov
topology. First appears in the discussion after Theorem 1.1. It

is generalized in the discussion after Theorem 1.5. Similar nota-
Ak

C
tion — is also defined there.
P.G.H.
e ——: Convergence in pointed Gromov-Hausdorff topology.

First appears in the discussion after Theorem 1.1. Similar no-

G.H.
tation —— is also defined there.

2. Preliminary results

In this section, we collect important results from [29].

Definition 2.1. Let 7.7 (n, k) be the collection of length spaces
(X, g) with the following properties.

1) X has a disjoint regular-singular decomposition X = RUS, where
R is the regular part, S is the singular part. A point is called
regular if it has a neighborhood which is isometric to a totally
geodesic convex domain of some smooth Riemannian manifold. A
point is called singular if it is not regular.

2) The regular part R is a nonempty, open Ricci-flat manifold of real
dimension m = 2n. Moreover, there exists a complex structure J
on R such that (R, g, J) is a Kéhler manifold.

3) R is weakly convex, i.e., for every point x € R, there exists a mea~
sure (2n-dimensional Hausdorff measure) zero set C, O S such that
every point in X\C, can be connected to x by a unique shortest
geodesic in R. For convenience, we call C,, as the cut locus of x.

4) dimpa S < 2n — 3, where M means Minkowski dimension.

5) Let v be the volume density function, i.e.,

oy 1B@T)]

21
1) v(w) 2 lim =0

for every x € X. Thenv=10on R and v <1—20g on S. In other
words, the function v is a criterion function for singularity. Here
dop = dp(n) is the Anderson constant.

6) The asymptotic volume ratio avr(X) > k. In other words, we have

B
L 1B )

r—00 anr2n

(2.2) avr(X) = > K,

for every z € X.
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Let # .7 (n) be the collection of metric spaces (X, g) with all the above
properties except the last one. Since Euclidean space is a special ele-
ment, we define

AT () £ A S W\(C" g2)}.
H S (n,k) 2 H S (0, kK)\{(C", g5)}.
Note that J#.%(n) is the class of all the complete n-dimensional

Calabi-Yau (Kahler—Ricci-flat) manifolds, where the classical Cheeger—

Colding theory works well. The space .7 (n) is an extension of J#.% (n )
by including Calabi-Yau manifolds with mild singularities. In [29], w

develop the structure theory of H S (n). In the study of H S (n), the
volume ratio plays a key role. In particular, we have the following prop-
erties.

Proposition 2.2 (Euclidean space by vr). Suppose X € %(n)
and vr(zg) = oo for some xy € X, then X is isometric to the Fu-
clidean space C™. Here vr(zg) is the supreme of all radii v such that
w2 | B(xg, )| > 1 — 8.

n

Proposition 2.3 (Rigidity of volume ratio). Let X € ﬁ(n)
If for two concentric geodesic balls B(xo,m1) C B(xo,r2) centered at a
regular point xg, we have

(2.3) wy 2" B(xo,m1)| = way 3 2| B(wo, 72),

then the ball B(x,12) is isometric to a geodesic ball of radius ro in C™.
Furthermore, if X € % (n), then we can further conclude that X is
FEuclidean.

A main result of [29] is the following compactness theorem.

Theorem 2.4 (Compactness, c.f. Theorem 1.1 of [29]). %(n, K)
is compact under the pointed-C°-Cheeger—Gromouv topology.

Moreover, the combination of the 6 defining properties of V5% (n, k)
is sufficient to improve the regularity of J#.%(n, k).

Theorem 2.5 (Space regularity improvement, c.f. Theorem 1.1
of [29]). Suppose X € H# .7(n,k), then R is strongly convezr, and

dimp S < 2n — 4. Suppose xg € S, Y is a tangent space of X at
xo. Then'Y is a metric cone in & . (n, k) with the splitting

Y =C"* xC(2),
for some k > 2, where C(Z) is a metric cone without lines.

Every space X € V5% (n, k) can be regarded as a trivial Ricci flow
solution. Therefore, Perelman’s celebrated work [49] can find its role



16 X. CHEN & B. WANG

in the study of X. Let us briefly recall some fundamental functionals
defined for the Ricci flow by Perelman.

Suppose {(X™,¢(t)), =T <t < 0} is a Ricci flow solution on a smooth
complete Riemannian manifold X of real dimension m. Suppose z,y €
X. Suppose = is a space-time curve parameterized by 7 = —t such that

’Y(O) - (%,O), ’7(77-) = <y7 _77-)'
Let v be the space-projection curve of «. In other words, we have
v(1) = (y(7), =7).
By the way, for the simplicity of notations, we always use bold symbol
of a Greek character to denote a space-time curve. The corresponding
space projection will be denoted by the normal Greek character. Fol-

lowing Perelman, the Lagrangian of the space-time curve - is defined
as

(2.4 £o) = [ VER+BE),

Among all such 4’s that connected (z,0), (y, —7) and parameterized by
T, there is at least one smooth curve ¢ which minimizes the Lagrangian.
This curve is called a shortest reduced geodesic. The reduced distance
between (x,0) and (y, —7) is defined as

(2.5) ((2,0),(y, -7)) =

Let V = &. Then V satisfies the equation

L(a)
2T

V VR

which is called the reduced geodesic equation. It is easy to check that
& =V = VI. The reduced volume is defined as

(2.7) V((x,0),7) = /X (477) % e Ldv.

It is proved by Perelman that (4777)_%e_ldv, the reduced volume ele-
ment, is monotonically non-increasing along each reduced geodesic em-
anating from (z,0).

Suppose the Ricci flow solution mentioned above is static, i.e., Ric =
0. Then it is easy to check that

La) = & (ay)

2T 2
(. 0). (y. ) = vt
(2.8) VvV + 27_ =0,

6% = !V\Q = |VIJ? =
2
V((2,0),7) = [y (4nT) "2 ef%dv.
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Now we assume X € J?gﬁ(n, k). By a trivial extension in an extra
time direction, we obtain a static, eternal singular Kahler Ricci flow
solution. Since distance structure is already known, we can define re-
duced distance, reduced volume, etc, following equation (2.8). Clearly,
this definition coincides with the original one when X is smooth. The
following theorem is important to bridge the Cheeger—Colding’s struc-
ture theory to the Ricci flow theory.

Theorem 2.6 (Volume ratio and reduced volume). Suppose

X e %(n, k), x € X. Let X x (—o0,0] have the obvious static space-
time structure. Then we have

(2.9) avr(X) = Tli_}n(glo V((z,0),7).
(2.10) v(z) = 71_12?(1) V((x,0),7).

The compactness of the moduli S (n, k) also implies the following
uniform estimates.

Theorem 2.7 (A priori estimates in model spaces, c.f. Theorem

1.5 of [29]). Suppose (X, xzo,g) € Ji/;;”(n, K), T is a positive number.
Then the following estimates hold.

1) Strong volume ratio estimate: r < wy,'r~2"|B(zo,7)| < 1.
2) Strong regularity estimate: r***|VERm| < ;2 in B(xo,car) for
every 0 < k <5 whenever vr(zg) > r.

3) Strong density estimate: r2P0~2" vr(y)Pdy < E.
B(zo,r)
4) Strong connectivity estimate: Every two points y1,y2 C B(xzg,r) N
Fa CbT(X) can be connected by a shortest geodesic v such that

100
v C Fepr(X).
Here, the constants cg,cp,€p all depend on k and n, the constant pg
depends only on n and it is very close to 2, say py = 2 — the
constant E depends on k, n and py.

1
1000n’

Note that pg can be chosen as arbitrarily close to 2. We set pg =
2 — ﬁ here just for simplicity of notations. The set F,.(X) is the
collection of points y satisfying vr(y) > r. See (2.12) for precise def-
initions and keep in mind that cr(X) = co. Among all the estimates
listed in Theorem 2.7, we emphasize the following one, originally due to

Cheeger—Naber [14] for smooth non-collapsing Einstein case.

Proposition 2.8 (Density estimate of regular points). For ev-
ery 0 < p < 2, there is a constant E = E(n,k,p) with the following
properties.
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Suppose (X, z,g) € yg’(n, K), T s a positive number. Then we have
(2.11) p2p—2n / vr(y)~?dy < E(n, 5, p).
B(a,r)

Note that the estimates in Theorem 2.7 hold for each positive r. For
a general smooth manifold M, we design a scale to describe how similar
a manifold is to the model space.

Definition 2.9. We say that the canonical radius (with respect to
model space .7 (n,k)) of a point g € M is not less than r¢ if for
every r < 1o, we have the following properties.

1) Volume ratio estimate: & < wy'r=2"|B(xo,7)| < k1.

2) Regularity estimate: r?**|V¥Rm| < 4c¢;? in the ball B(zg, 3cqr)

for every 0 < k < 5 whenever wy 'r=2"|B(zq,7)| > 1 — .
3) Density estimate: 7-2P0~2" vr(”) (y)?Pody < 2E, where pg =
B(zo,r)
1
2~ To00m-
4) Connectivity estimate: B(xq,r) ﬁ]-"(i) (M) is gepr-regularly con-

50CbT
nected on the scale r. Namely, every two points in B(zg,r) N

F(i)CbT(M) can be connected by a shortest geodesic v C fgr) (M).
50

ST
Then we define canonical radius of xy to be the supreme of all the ry
with the properties mentioned above. We denote the canonical radius
by cr(zp). For subset  C M, we define the canonical radius of  as
the infimum of all cr(z) where z € Q2. We denote this canonical radius
by cr(Q).

According to Definition 2.9, the canonical radius of a Kéahler—Ricci-
flat smooth manifold with asymptotic volume ratio at least x is oo.
More generally, we can also define the canonical radius on spaces with
mild singularities. Then it is not hard to see that cr(z) = oo for each
x € X whenever X € ¥ . (n, k).

For each r € (0,cr(M)), one can decompose the manifold M into
r-regular and r-singular part as follows:

(2.12) Fp & Fes) - p A (F Y,
where we recall that the set f;cr(M) ) is

{zeMm }there exists p € (r,cr(M)), wy, p 2"|B(z, p)| > 1 — o}

Based on such decomposition, a rough weak compactness can be easily
established whenever we have global uniform lower bound cr > 1. Let
us first list some properties needed to setup the weak compactness. Note
that from Proposition 2.10 to Proposition 2.12, we have the common
condition that cr(M) > 1.
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Proposition 2.10. There is a constant K = K(n,k) with the fol-
lowing properties.
For each x € M, let cvr(z) be the supreme of all radius p € (0, cr(x))
such that
Wyl o 2 B(w, )| 21— .

If r = evr(z) < &, then for every y € B(z, K~'r), we have

(2.13) K™ 'r <evr(y) < K,
1
(214) w27n1p_2n|B(y7p)| >1- ﬁ.Oé‘Ov Vpe (OvK_1T)>
(2.15) |Rm|(y) < K?r—2,
(2.16) inj(y) > K 'r.

Proposition 2.11. For every r < 1, two points z,y € F,. can be
connected by a curve y C F1 . with length |y| < 3d(z,y).
2

Proposition 2.12. For every 0 <r < pg <1, zg € M, we have
(2.17) |B(xo, po) N Dy| < 4Ep(2)n_2p0r2p°,
(2.18) |B(z0, po) N Fr| > </€0.)2n - 4Er2p°p0_2p°> P
In particular, there exists at least one point z € B(xg, po) such that

(2.19) cvr(z) > cppo,
1
where ¢, = (&) 20 .

Then we can easily obtain a rough weak compactness theory. Suppose
(M;, gi, J;) is a sequence of Kéhler manifolds satisfying cr(M;) > ro. Let
d; be the length structure induced by g;. It follows from ball-packing
argument that

P. _ _
(220) (M’Hxladl) — (Maj7d)?

for some length space (M, d), by taking subsequence if necessary. For
each r < rg, define

(2.21) R, 2 {y eM ‘There exists y; € M; such that

y; — g and liminf cvr(y;) > 7“} )
71— 00
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Theorem 2.13 (Rough weak compactness). Suppose cr(M;) >
ro > 0 uniformly and (2.20) holds. Then we have the regular-singular
decomposition M = R US with the following properties.

e The reqular part R is an open, path connected C*-Riemannian
manifold. Furthermore, for every two points x,y € R, there exists
a curve vy connecting x,y satisfying

(2.25) YCR, hl<3dz,y).
o The singular part S satisfies the Minkowski dimension estimate
(2.26) dimag S < 2n — 2pyp.

Proposition 2.14 (Volume convergence). The volume (Hausdorff
measure of dimension 2n) is continuous under the convergence (2.20),
i.e., for every fived pg > 0, we have

|B(Z, po)| = lim [B(z;, po)|-
71— 00

Note that the convergence regularity was improved on R(M). There-

fore, by abuse of notation, we now improve the convergence (2.20) as
¢t

(2.27) (Mi, i, 9i) — (M, 2, 9),
which means (2.20) together with the extra information that the conver-
gence on R(M) happens in C*-topology modulo diffeomorphisms. It is
important to note that the length structure of d is not necessarily
equivalent to the length structure induced by g. Instead, only
a rough equivalence (2.25) is known. However, they will be equivalent
when we know that R is weakly geodesic convex. To show the weak
convexity of R, one needs other conditions for (M;,g;) such like the
Ricci flow condition. The furthermore improvement of this type will be
discussed in the next section.

3. Polarized canonical radius(pcr)

In this section, we shall improve the regularity of the limit pace M
in Theorem 2.13, under the help of Kéhler geometry and the Ricci flow.
The Ricci flow has reduced volume and local W-functional monotonic-
ity, discovered by Perelman. These monotonicities will be used to show
that each tangent space is a metric cone, and the regular part R is
weakly convex, under some natural geometric conditions. However, the
weak-compactness we developed in last section only deals with the met-
ric structure. On M, we cannot see a Ricci flow structure. In order
to make use of the intrinsic monotonicity of the Ricci flow, we need
a weak compactness of Ricci flows, not just the weak compactness of
time slices. However, along the Ricci flow, the metric at different time
slices cannot be compared obviously if no estimate of Ricci curvature is
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known. This is one of the fundamental difficulty to develop the weak
compactness theory of the Ricci flows. We overcome this difficulty by
taking advantage of the rigidity of Kéahler geometry.

3.1. A rough long-time pseudolocality theorem. Suppose LM =
{(M™,g(t),J, L, h(t)),t €I CR}is a polarized Kahler Ricci flow. Let
b be the Bergman function with respect to w(t) and h(t), i.e.,

N
(3.1) b(z,t) =log > Skl
k=0

where N = dim(H(L)) — 1, {Sk}\, are orthonormal holomorphic
sections of L in the sense that

/ <Sk, Sl>w(t)” = 5kl-
M
By pulling back the Fubini—Study metric through the natural holomor-
phic embedding, we have
O = 1" (wps) = w +V—190b.
Let wy = w(0),bg = b(0). Then
w(t) = wo + V—100p, @(t) = wo+ v—109(¢ + b).

Clearly, ¢(0) = 0.
In this section, we focus on polarized Kéhler Ricci flow LM satisfying
the following estimate

(3.2) 1llcoary + 1ollcoary + 1Rl coary + A + Cs(M) < B,

for every time ¢ € I. Let b®) be the Bergman function of the line
bundle L* with the naturally induced metric. Then a standard argument
implies that

(33) Illooqan + [Py, + IR leoqan + 1N +Cs) < B,

for a constant B*) depending on B and k. Define

) 1 *
ok A . (gk)) (wrs),
FO 26,0 =n-A (e -bl").

In this section, the existence time of the polarized Kéahler Ricci flow is
always infinity, i.e., I = [0, 00).

Lemma 3.1 (Integral bound of trace). Suppose LM is a polarized
Kahler Ricci flow satisfying (3.2). Suppose u is a positive, backward heat
equation solution, i.e.,

O = (-0 — A+ R—n\u=0,
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and fM udv = 1. Then for every tg > 0, we have
to
(3.4) / / F®udvdt < (n n QB(k)) to +2B%).
0 JM
Proof. For simplicity of notation, we only give a proof of the case
k =1 and denote F = F(1). Note that b = b)), B = B, The proof

of general k follows verbatim.
Direct calculation shows that

/Oto /M Pudv = nto — /Oto /M{A(cp ~ bo) budv

=nto— [ [ (o= bo)sue

to
:nt0+/ /(go—bo)(u—Ru—F)\nu)dv
0o Jum

— nto+ /0 v L;lt ( /M(ga - bo)uch)) - /M @Ldv] dt

to to
= nty + / (¢ — bo)udv —/ / pudvdt.
M 0 0 M

Note || < Bty at time tg, then (3.4) follows from the above inequality
and (3.3). q.e.d.

We shall proceed to improve the integral estimate (3.4) of F®*) to
point-wise estimate, under local geometry bounds. Before we go into
details, let us first fix some notations. Suppose LM is a polarized Kéhler
Ricci flow solution satisfying (3.2), zp € M. In this subsection, we shall
always assume

Q= Bg(O)('xOvTO)a
(3.5) Q' £ By (wo, (1 = d)ro),
= B0y (o, (1 — 25)70).

Then we define

(3.6) mé¢( !

where d = dy((70,-), ¢ is a cutoff function, which equals one on
(—00, 1], decreases to 0 on (1,2). Moreover, (¢')? < 10¢. Note that

such ¢ exists by considering the behavior of e~ s around s = 0. Clearly,

wq satisfies

2(d—1+25)>’

[V < Bwo,
(3.7) wp=1, on
wo =0, on ()°.
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Lemma 3.2 (Pointwise bound of trace). Suppose LM is a polar-
ized Kdahler Ricci flow satisfying (3.2), xo € M, Q' is defined by (3.5).
Suppose %wo < d)(()k) < 2wp on Y. Let w be a solution of heat equation
Ow = (% — A) w = 0, initiating from a cutoff function wy satisfying
(3.7). Then for every tog > 0 and yo € M, we have
(38) F(k) (y07t0)w(y07t0) S C)
where C' = C(B, k,d,to).

Proof. For simplicity of notation, we only give a proof for the case
k=1 and denote F = F(), B=BW H = ?—8. The proof of general k
follows verbatim.

Note that 0 < wg < 1, since w is the heat solution, it follows from
maximum principle that 0 < w < 1. On the other hand, according to
the choice of wy, we have |Vw|?> — Hw < 0 at the initial time. Direct
calculation implies that

O {e’\t ([Vw|* - Hw)} = —M{|VVuw|? + [VVw]* + Hw} <0.
Therefore, |Vw|? — Hw < 0 is preserved along the flow by maximum
principle. In other words, we always have

w|Vlogw|2 <H, 0<w<l,
on the space-time M x [0,00). In light of parabolic Schwarz lemma
(c.f. [58] and references therein), we obtain
Olog F < BF — \.
Note that

w(t) =wo+ v —186(,0 =wg + Vv —185((,0 — bo) =wo + V —183(,5,
where we denote ¢ — by by ¢ for simplicity of notation. It is obvious
that @ = ¢. Direct calculation shows that

O(log FF — Bp) < B(n — @) = A < B(n+ [|@llco(pg) + 1A < C.

Let u be the solution of 0*u = 0, starting from a d-function from (yo, to)-
Then we calculate

4

dt Jas

:/ D(Fe_B¢w)udv—/ Fe Béw*udv
M M

Fe B%wudv

:/ O(Fe BPw)udv
M

- / Fe Beyw {Dlog(Fe_B%u) — ]V]og(Fe_B¢w)\2} udv
M
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IN

Fe~ 5%y {Olog(Fe P%w)} udv

Fe P%w {Olog(Fe P?) + Ologw} udv

J,
J,

- / Fe~B%w {Olog(Fe P?) + |Vlogw|*} udv
M

SC/ FeB“?’wudv—i-H/ Fe BPudv.
M M

It follows that

d -
— {eCt/ FeB“”wudv} < HeCt/ Fudv.

Integrating the above inequality and applying Lemma 3.1, we have

e~ F(yo, to)w(yo, to)e~BPWo:to)

to
+H/ / Fuduvdt
t=0 0 M

+C
t=0

+C <C.
t=0

g/ Fe BPwudv
M

<C Fudv
Q/

<C udv
Q/

Therefore, (3.8) follows directly from the above inequality. q.e.d.

Lemma 3.3 (Lower bound of heat solution). Suppose LM is a
polarized Kdhler Ricci flow satisfying (3.2), xo € M, notations fized by
(3.5) and (3.6).

Suppose Q" C By (wo,r) for some t > 0 and r > 0. Then in the
geodesic ball Byy(zo,7), we have

w(y,t) > c,
for some constant ¢ = c¢(n, B, k,0,79,7,1).

Proof. By the construction of wy and maximum principle, it is clear
that 0 < w <1 when ¢ > 0. Let P be the heat kernel function, then we
can write

(3.9)
w(zo,t) = / P(zo,t;y,0)wo(y)dvy > [ P(z0,t;y, 0)wo(y)dvy.
M Q//
In light of the Sobolev constant bound and scalar curvature bound, one
has the on-diagonal bound

1
6t_” < P(z,t;2,0) < Ct™ ™,
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which combined with the gradient estimate of heat equation (c.f. The-
orem 3.3 of [77]) implies that

1
P 715, ’O >7t_na
(2,:9,0) = =

where C' = C(B,dy)(z,y)). Plugging this estimate into (3.9) implies
that

|€2"]

ctr

Note that C's bound forces |©”| is bounded from below. Since 0 < w < 1,
then (3.9) follows from the above inequality and the gradient estimate
of heat equation. q.e.d.

’U)(Qj‘o, t) >

The following two lemmas show that Kéahler geometry is much more
rigid than Riemannian geometry.

Lemma 3.4 (Fubini-Study approximation). Suppose LM is a
polarized Kdhler Ricci flow satisfying (3.2), xo € M, notations fized by
(3.5) and (3.6).

Suppose |Rm| < 7“0_2 i Q at time t = 0. Then there exists an integer
k = k(B,r9,06) such that

(3.10) Lo <a®

5 < 2wp
on V.

Proof. This follows essentially from the peak section method of Tian.
We give a proof here for the convenience of the readers. Further details
can be found in [63] and [43].

Fix arbitrary x € ', V € Tél’O)M with unit norm. In order to prove
(3.10), it suffices to show that

1
(3.11) 5 < s wv,av) <2

Around z, we can always choose a normal coordinate (K-coordinate,
c.f. [43]) chart around x such that

v o 5 op1tp2t-+pn 0
T oy 9i5(x) = b;5, e 9i5(x) =0,

for any nonnegative integers p1,p2, - , pp With p = p1+po+p3+-- - pp >
0. Moreover, there exists a local holomorphic frame ey, of L around x
such that the local representation a of the Hermitian metric A has the
properties

Op1tp2t+pn

P1 D2 n
021'0zy° -+ 0zp

for any nonnegative integers p1, p2, -+ , pp With p = p1+po+p3+-- - pp >
0.

a(z) =1, a(z) =0,
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Suppose {SE,--- S]]‘{,k} is an orthonormal basis of HO(M, L¥), where
N, = dime HO(M, L*) — 1. Around x, we can write
k k k
So = f(’f@L,"' SN, = fneL-

Rotating basis if necessary (c.f. [63]), we can assume

fi@)y=0, Vix>1,

k
g‘g (x)=0, Vi>j+1.
J
Recall that
N JH :E\/jlaalogzvj’
7=0
So we have
2 N, k12 ofk 9
(3.12) 50 v vy = L1080 T o]

% 821521 N k‘|f(]f|2
Because of (3.11) and (3.12), the problem boils down to a precise esti-
k
mate of g% and fF.
As pointed out by Tian in [63], the peak section method is local in

nature. The global information of the underlying manifold is only used
in the step of Hormander’s estimate. However, in our case, we have

Ric(h) =g, /—190¢ + Ric = \g, X > 0.
It then follows that
Ric(h) + Ric(g) ++v—100¢ = (1+ N)g > g.

Therefore, Hérmander’s L2-estimate (c.f. Proposition 5.1. of [62] or
Proposition 3.1. of [31]) applies and we have

/ |u|?e™Puw" </ |Ou|?e%w™.

By the uniform bound of ¢, we can replace the e ¥w™ by w” in the
above inequality, up to adjusting a multiplicative constant. Due to the
uniformly bounded geometry (up to C2?-norm of g) inside Q' and the
uniform bound of \/—180¢ + Ric on the whole manifold M, Lemma 1.2
of [63] follows directly and can be written as follows.

For an n-tuple of integers (p1,p2,--- ,pn) € ZL and an integer p’ >
p = p1+p2+ -+ Dn, there exists a ko = ko(n, B,r0,9) such that
for k > ko, there is a unit norm holomorphic section S € H°(M, LF)
satisfying

1
d <
/M\{ng(logkk)z} (SR8 -
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Then the same argument as in [63] implies that (c.f. Lemma 3.2 of [63])
(3.13)

n+k)! 1
f5(@) - ( ol ) {1+M(R($)—”2—n)}‘

C
< ﬁ’
(3.14)
off (n+k+1)! 1
RSN VAR s [
9 ) 7 Kl M Ty
C
< ﬁ’
for some C = C(n, B,ro,0). Here R is the complex scalar curvature.

Plugging the above estimate into (3.12), we obtain (3.11), whenever k
is larger than a big constant, which depends only on n, B,rg,d. q.e.d.

(R(z) —n? —3n—2)}‘

Lemma 3.5 (Liouville type theorem). Every complete Kdihler
Ricci flat metric g on C™ must be an FEuclidean metric if there is a
constant C such that
1
C

Proof. The original proof of this lemma goes back to the famous pa-
per of E. Calabi [3] and Pogorelov [52] on real Monge Ampeére equation.
For complex Monge Ampere equation, this is initially due to Riebesehl—
Schulz [53] where higher derivatives are used heavily. We say a few
words here for the convenience of the readers, using the Schauder esti-
mate of Evans—Krylov.

Actually, it is not difficult to see that the problem boils down to the
study of a global pluri-subharmonic function w in C" such that

det ( ) =1,
o 2 () <t

In order to show the metric g is Euclidean, it suffices to show that u
is a global quadratic polynomial. Without loss of generality, we may
assume that u(0) = Du(0) = 0. For every positive integer k, we can
define a function u(® in the unit ball by

u®(2) = u(:zz)

Clearly, u(®) satisfies (3.16). Note that Hu(k)HCQ is uniformly bounded,
in the unit ball B(0,1). By standard Evans-Krylov theorem, there

(3.15) 0;7(2) < g;5(2) < Co;5(2), VzeCm
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exists a uniform constant C such that
2, (k)
(D] apo,1)) < €

for every k. Putting back the scaling factor, the above inequality is
equivalent to

[Dzu]ca(B(O’g)) < Ck™?, V k=1,2---.

Let k — oo, we have [DQU]CQ(@) = 0. Therefore, D?u is a constant
matrix, u is a quadratic polynomial. So we finish the proof. q.e.d.

Proposition 3.6 (Ball containing relationship implies regu-
larity improvement). Suppose LM is a polarized Kéhler Ricci flow
satisfying (3.2), xy € M, notations fized by (3.5) and (3.6). Suppose
|Rm| <ry? in Q at time t = 0. Moreover, we assume

(3.17) ' c Bg(t) (330,7“) C Q/,

for every 0 <t <ty. Then the following estimates hold.

e In the geodesic ball By)(zo,7), we have
1
(3.18) oW S wr S Cwo,

for some constant C = C(n, B, k,0,70,7,t0).
e In the geodesic ball By (wo,r — &), we have

(3.19) |Rm|(z,1)¢* < C,
for each small & and some constant C = C(n, B, k,0,r9,7,t0).

Proof. Note that Perelman’s strong version of pseudolocality theo-
rem, i.e., Theorem 10.3 of [49], can be modified and applied here. In
fact, the almost Euclidean volume ratio condition in that theorem can be
replaced by k-noncollapsing condition. Since one has injectivity radius
estimate when curvature and volume ratio bounds are available, thanks
to the work of Cheeger, Gromov and Taylor, in [13]. By shrinking the
ball to some fixed smaller size, one can get back the condition of almost
Euclidean volume ratio. Up to a covering argument, we can apply this
strong version pseudolocality theorem to show that |Rm| is uniformly
bounded on £’ x [0, 7] for some positive n = n(n, k, ). Then (3.18) and
(3.19) follows trivially. For this reason, we can assume tg > 7.

We first prove estimate (3.18). Due to Fubini-Study metrics’ ap-
proximation, Lemma 3.4, it is clear that one can regard wg and d)(()k)
as the same metric on €'. Therefore, it follows from the combination
of Lemma 3.2 and Lemma 3.3 that F*) is bounded from above, which
implies A,,wp < C. Recall that the volume element wi and wj’ are
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uniformly equivalent, due to the uniform bound of |R| 4+ |\| and the
evolution equation

9., .n
alogwt =nA—R.

Consequently, (3.18) follows. We remind the readers that condition
(3.17) is used in the above discussion.

We proceed to prove inequality (3.19). Fix L very large. If (3.19) does
not hold uniformly, then we can find some space-time point (g, sp) such
that yo € By(sy) (0,7 — &) and Qo 2 |Rm|(yo, s0) > 100L2¢72 is very
large. Set py = dg(so)(y(];x(])' On one hand, pg < r — £ by the choice
of (yo,50). On the other hand, sy > 7 for some uniform 1 due to the
application of Perelman’s pseudo-locality, as discussed above. Search
whether there is a point (z,t) satisfying

_1
|Rm|(z,t) > 4Qo, x € By <$0,P0 + LQ, 2> , t€ [to—Qyl.to] .

If there exists such a point, we denote it by (yi1,s1) and continue the
above searching. Inductively, we can find (yg, sx). In fact, if (yr_1, Sx—1)
is defined, then we shall denote |Rm|(yx—_1,Sk—1) by Qr—1, and denote
dg(sp_1)(T0, Yk—1) by pr—1 and search point (z,t) satisfying

_1
]Rm|(ac,t) > 4Qk717 HAES Bg(t) (x()apkl + LQkfl) )

t€ [t — Qply tha] .
If there is no such point, we stop the process. Otherwise, we denote

such a point by (y, sx) and continue the process. Clearly, we have
Qr = 4"Qo > 100L%¢ 2,
_1 _1 _1
pr < po+ L <Q02 +~--Qk21> < po+4LQy* <r—0.5¢,
62
50L2
Since the process happens in a compact space-time domain with
bounded geometry, it must stop after finite steps. Let k be the last
(yk, sk)-  We denote it by (y,s) and set Q = |Rm|(y,s) and p =
dg(s)(y, xo). Then we have
(3.20)
Q > 100L%¢72,
p<r—0.5¢,
s > 0.57m,
|[Rm|(z,t) < 4Q, ¥V x € By (o, p + LQ*%), te[s—QLs].

so — sk| =80 — sk < Qp  + Q7+ Q. <2Qp" <

<< .
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By its choice, we have dy)(zo,y) = p. We observe that y will stay
in By (wo,p + 2Q_%) whenever t € [s — ﬁ, s]. This is an applica-
tion of section 17 of Hamilton [38], or Lemma 8.3 of Perelman [49].
Actually, let 6y be the largest positive number such that y fails to lo-
1

cate in Byu_gyg-1y(To, p + 2Q~2). Then for each t € [s — 0oQ 1, 5],
triangle inequality implies that By (y, Q_%) C By (wo,p + 3Q_%).
Consequently, we have

1
’Rm’<$7t) < 4@7 Ve Bg(t)(@/ini)?
[Rm|(2,8) <4Q, ¥ @ € By (z0,Q %),
It follows from Lemma 8.3 (b) of Perelman [49] that

d
Zd(@o.y) > ~10nQ2,

1
= dy(s)(20,y) — dy(s—po0-1) (w0, y) > —10nQ= - Q.

According to the choice of g, the left hand side of the second inequality
1
is —2QQ72. It follows that 6y > sin Now we know that y stays in

By (o, p + 2Q7%) for each t € [s — %, s]. In view of (3.20) and the
fact L >> 1, the triangle inequality implies that

1 1
|[Rm|(z,t) < 4Q, Vz € Byy)(y,0.5LQ72), te {s - M,s} .

Let §(t) = Qg(Q~'t + s). We have

|[Rml(y,0) =1,
|[Rm|(x,t) <4, Vx € Byy(y,05L), te| L 0].

— %50

Note that [—%,O] is a fixed time period. The application of Perel-
man’s pseudo-locality guarantees the existence of such a time period
(c.f. (3.20)). Now let L — oo, we can use the compactness theorem
of Hamilton [39] to obtain a limit Ricci flow solution, which is non-
flat, Kahler Ricci-flat and non-collapsed on all scales. We remark that
the discussion above is nothing but repeating the argument of Claim
1 and Claim 2 in the proof of Perelman’s pseudo-locality theorem, i.e,
Theorem 10.1 in [49]. Similar argument was also used in the distance
estimate of the work of Tian and the second named author [67].
Notice that

1
By(s)(y,0.56LQ"2) C By(s)(xo, — 0.5¢)
C By(s)(xo, 1) C Q' = By(g)(wo,1 = 9).

Therefore, by the same scale blowup at (y,0), we obtain nothing but
C™. Recall we have (3.18), so we obtain a nontrivial Kéhler Ricci flat
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metric g;; on C" such that (3.15) holds for some C'. This contradicts
Lemma 3.5. q.e.d.

The rough estimate (3.18) and (3.19) can be improved when |R|+ ||
is very small. When curvature tensor is bounded in the space-time,
one can estimate the Ricci curvature in terms of scalar curvature. Let
|R| + |A| tend to zero, we see that the Ricci curvature tends to zero
at the space-time where |Rm| is bounded. By adjusting £ if neces-
sary, we obtain that in the limit, By (zo, (1 — §)r) is isometric to
Byoy(zo, (1 = &)r) for every 0 < t < to. By adjusting £ and apply-
ing Perelman’s pseudolocality theorem, we see the convergence at time
t = to is also smooth since curvature derivatives are all bounded in
the ball Byq,)(zo, (1 — &)r) at time #o. Further details will appear in
Proposition 3.7 and Theorem 3.8.

Proposition 3.7 (Volume element derivative small implies
ball containing relationship). For every ro,T and small &, there
exists an € with the following property.

Suppose LM is a polarized Kdhler Ricci flow satisfying (3.2), xo €
M, notations fized by (3.5) and (3.6). Suppose |Rm| < rg? in Q at
time t = 0. If sup(|R| + |\]) < €, then for every t € [0,T] we have

M

3
' c Bg(t) <x0, <1 — 25) 7"0) - Q/,

(1-8w(0) <w(®) <(1+&w(0), nQ".

Proof. If the statement was wrong, we can find a tuple (n, B,d,79,T)
and ¢; — 0 such that the property does not hold for every ¢; — 0.
Without loss of generality, we can assume ry = 1.

For each ¢;, let t; € [0, T] be the critical time of a flow g;(t) such that
the properties hold on [0,¢;]. In other words, for every ¢t € [0,¢;], we
have

(321) Q;’ C Bgi(t) <:EZ', 1- 25) C Q;,
(3.22) (1= &) wi(0) < wi(t) < (1+€)wi(0), in QL.

However, for each time ¢ > ¢;, at least one of the above relations fails
to hold. Related to (3.5), here we set

Q; = By, 0)(wi; 1), o2 By, () (@i, 1 =9), o = By, (0)(2i, 1 = 20).
We shall show that ¢; cannot locate in [0, 7] for large i and, therefore,
obtain a contradiction.

Note that [Rmlg, ) < 1 at time ¢ = 0 in the ball By, (s, 1). By the
strong version of Perelman’s pseudolocality theorem, i.e., Theorem 10.3
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of [49], one can find a uniform small constant 7 such that

(328) |Rmly,(x,0) < oo
The existence of 17 can be obtained by a contradiction blowup argument.
Since metrics evolve by —Ric+ \g, it follows from (3.23) and the choice
of t; that n? < t; < T. Recall that we have the relationship (3.21) by
the choice of t;. Therefore, Proposition 3.6 can be applied to obtain a
uniform C, independent of ¢, such that

1
C

Ve Bgi(O)(wiv 1- 77)7 te [07772]

(3.24) 9i(0) < gi(t;) < Cyg;(0)

in the ball By, (wi, 1 — 376) Furthermore, the inequality (3.19) in
Proposition 3.6 yields that

C 3
|Rm|gi(x,t) < ﬁ’ JJEBg(t) <l‘i,1—25—¢>, 0<t<ty,

where 9 is a small constant ¥ << §, to be determined. Note that we
are in a setting where each geodesic ball’s volume ratio is bounded from
below, due to the bounds in (1.4). Consequently, injectivity radius has
a lower bound (c.f. [13]), by shrinking the ball if necessary. Therefore,
we can apply Theorem 3.2 of [73] to obtain

(3.25) sup |Ric|g,(x,t) = 0, asi— oo,
N2 <t<ti,dg, ¢)(2,2:)<1—36—2¢

where 7 is the constant in (3.23). Alternatively, one can apply Lemma
2.1 of [31] to obtain the above estimate, with the fact that geodesic balls
at different times can be compared due to the Riemannian curvature
bound and the evolution equation of the Ricci flow: the metrics evolve
by —Ric+ Ag. Since t; is uniformly bounded by 7T, the above equation
implies (up to a maximum principle type argument of the first violating
time if necessary) that

3 3
(326) Bgi(nz) <£CZ', 1- 5(5 - 51,[)) C Bgi(t) (l’i, 1-— 5(5 - 4¢>
C Bgi(UQ) <.’L’Z‘, 1-— 26 — 31/1) , Vte [T]Q,ti).

Combining the above relationship with (3.25), we obtain that

(3.27) sup |Ric|g,(x,t) = 0, asi— oo.
P<t<tidy, 2) (@) <1553

By (3.23) and |R|+|\| — 0, we see the metric at g;(0) and g;(n?) are al-
most isometric to each other on the ball By, ) (i, 1 — %5) Consequently,



SPACE OF RICCI FLOWS (II)—PART B 33

we have

7
Q;/ = Bgi(o) (zi,1—26) C Bgi(??Q) (xi’ 1= 45>

7 3
C Byi(u) (xi, 1= 15 + “J)) € By, () (xi, 1- 25) ,

where € means “compactly contained”. We claim that we also have

3
Bgi(ti) <$i, 1- 25) S Q;

For otherwise, by the choice of ¢;, the boundary of B, (x,-, 1-— %6)

touches the boundary of Q) at time ¢;. Therefore, we can find a point
yi satisfying

3
dg,(t) (i, yi) = 1 — 55, dg,(0)(Ti,yi) = 1 — 6.

Let ~; be a shortest unit-speed geodesic connecting x; and y;, with
respect to the metric g;(t;). Let ;(0) = x; and (1 — 36) = y;. By
previous estimates, we see that

Yi <1 — 25 — 100’(/)) C Bgi(O) <a;z~, 1-— gé — 50¢> .

Let a; be the part of ;, connecting z; = v;(0) and v;(1—25—100¢). Let
Bi be the remainded part of +;, i.e., the part connecting ~;(1— %5— 100%))
and y; = 7;(1 — 36). Using |- | to denote the length of curves. It is clear
that |B;]4,(:,) = 100). Note that a; locates in By, ;) (i, 1 — 36 — 100¢)).

lgi(
It follows from (3.26), (3.27) and (3.23) that
: . £
sup |Ric|(z,t) = 0, asi— oo; sup |Rm|(z,t) < ——n"".
il ] i 0.77] 100n?

Together with |R|+ |A| — 0 as i — 0o, we can compare the length of «o;
at time ¢t = ¢; and t = 0.

3 3
| ilgy(t) = 1= 50 = 1009, ailg) <1 - 50

However, since dg, o) (@i, ;) = 1 — §, we have

3
1 =0 < [ilg,0) = levlgi0) + 1Bilgi0) < Bilgu0) +1— 50

It follows that [B;]g, ) > 0. Recall that |Bilg:(t:) = 100¢. Therefore,
by mean value theorem, we must have

<V, V)gi(O) %5 1)
>

ViV g — 100y 2009
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at some point z; € 3;, where V' is the unit tangent vector (with respect
to gi(ti)) of B; at z;. Since z; € By, () (wi, 1 — 36), one can apply (3.24)
to bound the left hand side of the above 1nequahty by V/C, where C is
the constant in (3.24). It follows that C' > 4000%2,
if we choose 1 small enough. Therefore, for i large, we must have

which is impossible

3

Then we can apply (3.23), (3.25) and the fact that |R| + |A| — 0 to
obtain that

(1 - 130) wi(0) < wi(t) < (1 + 1(“‘;0> i(0), in QY

whenever i large enough. Here Q0 = By, (o) (%, 1 —20). This means that
for large i, we have both (3.21) and (3.22) hold for a short while beyond
the time ¢;. This contradicts to the choice of time ;. q.e.d.

By further applying the argument in Proposition 3.6, the following
theorem follows directly from the combination of Proposition 3.6 and
Proposition 3.7.

Theorem 3.8 (Rough long-time pseudolocality theorem for
polarized Kéahler Ricci flow). For every group of numbers 6,&, 19, T,
there exists an € = e(n, B, §,§,r0,T) with the following properties.

Suppose LM is a polarized Kdhler Ricci flow satisfying (3.2), xo €
M. Suppose |Rm| < r5? in Q at time t = 0, where Q = B oy(z0,70)-
If sup(|R| + |A|) < €, then for every t € [0,T] we have

M

(3.28) Bg(t) (:L'(), (1 — 25)1"0) C Q,
(3.29) |Rm|(-t) < 2rg%,  in Byyy(wo, (1 — 26)rg),
(3.30)  (1=8)g(0) <g(t) < (14+&)g(0), in Byu)(wo, (1 —28)ro).

3.2. Motivation and definition of pcr. In previous subsection, we
see that the assumption (3.2) helps a lot to relate different time slices
of the Kéahler Ricci flow solution. However, why is this assumption
reasonable? This question will be answered in this subsection.

Proposition 3.9 (Weak continuity of Bergman function). There
is a big integer constant ko = ko(n, A) and small constant € = €(n, A)
with the following property.

Suppose (M, g, J, L,h) is a polarized Kihler manifold, taken out from
a polarized Kdhler Ricci flow in # (n,A) as a central time slice. In
particular, we have

(3.31) Oscyp+ Cs(M) + [N\ < B,
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where B = B(n, A). If cr(M) > 1, then
(3.32) sup b®(z) > —ko,

1<k<ko
whenever dpar((M,xz,q),(M,%,§)) < € for some space (M,%,§) €
H L (n,K).

Proof. Note that the model moduli space % (n, k) has compact-
ness under the pointed Gromov—Hausdorff topology. Actually, this fol-
lows from the proof of Theorem 1.1, where the topology can be further
improved to the pointed—CA’OO—CheegerfGromov topology. This compact-
ness property will be used in the following argument.

Suppose the statement was wrong, then there is a sequence of polar-
ized Kahler manifolds (M;, z;, g;) satisfying (3.31) and spaces (M;, &3, §;)
in # (n, k) with the following properties:

dPGH((Mi7xi7gi)7 (Mu-%ugz)) <€ — 07

sup b (z;) = —o00, ki — 0.
1<j<k;

In light of the compactness of the moduli inf?(n, k), i.e., Theorem 1.1,
by taking subsequence if necessary, we can find a space (M,Z,g) €

%(n, k) such that
ili)rgodch((Mi,ﬂﬁi,gi), (M,z,g))

Consequently, we have

(3.33)
P.G.H.

(M, zi, ;) — (M, %,9); sup bW (z;) = —o0, ki — 0.
1<j<k;

Then we shall use the argument of the proof of Theorem 3.2 of [37]
by Donaldson—Sun to find positive integer ¢ = ¢(z), and real numbers
r =r(z), C = C(z) such that

(3.34) inf b@(y) > —C.

yEB(z;,r)

Note that the proof of Theorem 3.2 [37] is based on a blowup argu-
ment. The essential ingredients there are the convergence theory, the
Homander’s estimate, and the fact that each tangent space in the limit
space is a good metric cone. By “good” we mean the singular set of
the metric cone has Hausdorff codimension strictly greater than 2. It
is important to observe that whether the limit space M is compact or
not does not affect the argument. Basically, this is because of the lo-
cal property of the Homander’s estimate. Actually, no matter whether
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M is compact or not, every tangent space of a point on M must be
non-compact. The contradiction is obtained from the convergence to
the good tangent metric cone. With the argument of Theorem 3.2
of [37] in mind, we now check the conditions available to us in the
current case. Firstly, the canonical radius assumption makes sure that
the topology of the convergence can be improved to the pointed—é’4—
Cheeger—Gromov topology. Secondly, by the uniform bound of Sobolev
constant and |[|¢]|co, the general Hormander’s estimate (c.f. section 3
of [30] and section 5 of [72] for this particular case) can be applied.
Thirdly, we know each tangent space at T is a good metric cone, by
Theorem 2.5 since (M, Z,g) € #.7(n, k). Therefore, we can use a con-
tradiction blowup argument, like that in Theorem 3.2 of [37], to obtain
(3.34). Consequently, we have

b(‘I)(m) >-C, = sup b(j)(aci) > —C,
J<ki

which contradicts (3.33), the assumption. q.e.d.

Proposition 3.9 means that the Bergman function has a weak con-
tinuity under the pointed—C’4-Cheeger—Gr0m0V convergence if the limit
space is the model space. Inspired by this property, we can define the
polarized canonical radius as follows.

Definition 3.10. Suppose (M, g, J, L, h) is a polarized Kéhler man-
ifold satisfying (3.31), x € M. We say the polarized canonical radius of
x is not less than 1 if

e cr(z)>1.
e sup b(])(:r) > —2ko.
1<j<2ko
For every r = %, j € Z", we say the polarized canonical radius of z is

not less than r if the rescaled polarized manifold (M 52, J, LI R ) has
polarized canonical radius at least 1 at the point . Fix z, let per(z)
be the supreme of all the r with the above property and call it as the
polarized canonical radius of x.

We can define the polarized canonical radius of a manifold as the
infimum of the polarized canonical radii of all points in that manifold.
Similarly, we can define the polarized canonical radius of time slices of a
flow. Note that from the above definition, pcr is always the reciprocal
of a positive integer. It could not be zero because of (3.13) in the proof
of Lemma 3.4 and the fact that every compact smooth manifold has
bounded geometry and positive cr. One can also repeat the argument
in the proof of Proposition 3.9 to obtain that the pcr is always pos-
itive. Note that a blowup sequence of (M, g, J, L, h) at a given point
x € M always converges in smooth topology to the standard Euclidean
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space (C",gg,Jg,Lg,hg) with Lg being the trivial line bundle and
hg = e~1#”. For each sequence of positive integers K — oo and the
sequence (M, k2g,J, Lk, hk), we have b¥)(z) — bF)(z) = C,, > —2k.
Therefore, for large k, we must have b(*) (x) > —2kp. Consequently, the
per(z) of (M, k%g, J,L* h*) is at least 1. This means that the pcr(z)
of (M,g,J,L,h) is at least % > 0.

Under the terminology in Definition 3.10, the continuity of Bergman
function implies the following corollary.

Corollary 3.11 (Weak equivalence of cr and pcr). There is a
small constant € = e(n, B, k) with the following property.

Suppose (M, g, J, L, h) is a polarized Kdahler manifold satisfying (3.51)
and cr(M) > 1. Then

(3.35) per(z) > 1,

whenever dpay (M, z,9),(M,%,§)) < € for some space (M,%,§) €
H S (N, K).

3.3. Kahler Ricci flow with lower bound of pcr. Suppose the
polarized canonical radius is uniformly bounded from below, then the
convergence theory is much better than that in section 3. This is ba-
sically because of the rough long-time pseudolocality theorem, Theo-
rem 3.8.

Proposition 3.12 (Improving regularity in forward time di-
rection). For every ro > 0, r € (0,79) and Ty > 0, there is an
e =€(n, A,ro,r,Ty) with the following properties.

If LM is a polarized Kihler Ricci flow satisfying (1.4) and

(3.36) per(MY > 1, Vit e[0Tyl

then

(3.37) Fr(M0)C () Fu(M,1),
0<t<Typ

whenever sup(|R|+|\|) < €. Here K is the constant in Proposition 2.10,
M
Mt is (M, g(t)), the time t slice of the flow M.

Proof. 1t follows directly from Theorem 3.8, the long time pseudolo-
cality theorem for polarized Kéhler Ricci flow with partial-C-estimate.
q.e.d.

Proposition 3.13 (Improving regularity in backward time
direction). For every ro > 0, r € (0,79) and Ty > 0, there is an
e =¢(n, A,ro,r,Ty) with the following properties.
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If LM is a polarized Kdhler Ricci flow satisfying (1.4) and (3.36),
then

(3.38) U 701t c Fo(m,0),

0<t<Tp

whenever sup(|R| + |A|) < e.
M

Proof. At time 0, F(M,0) C Fr(M,0) trivially. Suppose to > 0
is the first time such that (3.38) start to fail. It suffices to show that
to > Ty whenever € is small enough. Otherwise, at time o € (0, Ty, we
can find a point g € (0F = (M,0)) N (0F(M,to)). In other words, we

have
r

=% cvr(xg,tg) = 7.

cvr(xo,0)

In particular, we have

(3.39) ’Bg(o) (xo, %) ‘0 — (1 — ) wan (%)%

Let £ be a small number which will be fixed later. Let Q¢(xo,%0) be
the subset of unit sphere of tangent space of T,,(M,g(ty)) such that
every geodesic (under metric g(tp)) emanating from zy along the di-
rection in €¢(xo,tp) does not hit points in D¢(M,0) before distance
%- By canonical radius assumption, |Rm)| g(to) 1s uniformly bounded
in By, (70, ). By long-time pseudolocality theorem (c.f. Proposi-
tion 3.13), By, (70, %5) has empty intersection with D¢(M,0) when
§ << 3. Note that every geodesic (emanating from z() entering
D¢(M,0) must hit D¢ (M, 0) first, where cvr(-,0) = £. So every point
in 0D¢(M,0) will be uniformly regular at time to, in light of the long-
time pseudolocality. At time tg, observing from x(, the set which stays
behind 9D¢(M,0) must have small measure. Since By)(zo, %) has
uniformly bounded curvature, it is clear that Q¢ (zo,to) is an almost full

measure subset of S?"~1. Actually, we have
Q¢ (20, to)| > 2nway, - (1 — CE¥0),

whenever € is sufficiently small. On the other hand, we see that ev-
ery geodesic (under metric g(fp)) emanating from Q¢(xo,%p) is almost
geodesic at time ¢ = 0 (under metric ¢(0)), when € small enough. There-
fore, |By(0) (70, % )lo is almost not less than |By, (7o, % )|t,- Note that
the volume ratio of By,)(zo, %) is at least (1 — %)wgn. Suppose we
choose ¢ small (according to dp) and € very small (based on &, dg, A4, Tp),

we obtain
‘Bg(o) (xo, %) ’0 > <1 - 620> Wan <%)2n,

which contradicts (3.39). q.e.d.
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Definition 3.14. Let % (n, A) be the collection of polarized Kahler
Ricci flows satisfying (1.4). For every r € (0, 1], define

H(n, Asr) 2 {LMILM € H (n, A),per(M x [-1,1]) >} .
Clearly, we have
H (n, A) D A (n,A;r1) D K (n, A;re),

whenever 1 > ro > r; > 0. Since every polarized Kéahler Ricci flow
LM € #(n,A) has a smooth compact underlying manifold, we see
LM € H (n, A;r) for some very small r, which depends on LM. There-

fore, it is clear that
U H(n,A;r) = (n, A).
0<r<1

Fix r > 0, we shall first make clear the structure of J# (n, A;r) under
the help of polarized canonical radius. Then we show that the canonical
radius can actually been bounded a priori. In other words, there exists
a uniform small constant / (Planck scale) such that

K (n, A) = A (n, A; ),
which will be proved in Theorem 3.44.

Proposition 3.15 (Limit space-time with static regular part).
Suppose LM; € H (n, A) satisfies the following properties.

e per(M; x [-T;,T;]) > ro for each i.
e lim sup(|R| +|A|]) = 0.
1—00 Ml

Suppose x; € M; and lim cvr(x;,0) > 0, then

1— 00
c>
(3.40) (M;, i, 9:(0)) — (M, 2,9).
Moreover, we have
Ce

for every t € (=T, T), where T = lim T; > 0. In particular, the limit
1— 00
space does not depend on time.

Proof. 1t follows from the combination of Proposition 3.12 and Propo-
sition 3.13 that the limit space does not depend on time. From the
definition of canonical radius, the convergence locate in 6’4—topology for
each time. However, this can be improved to C'Oo-topology. Actually,
if § is a regular point of M (c.f. the definition in Theorem 2.13), then
we can find y; € M; such that y; — y and cvr(y;,0) > n uniformly for
some 1 > 0, in light of the definition of regular points in Theorem 2.13
and its proof. It follows from Proposition 3.13 that
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inf cvr(y;,t) > K ',
te[—1,0]
for all large 7. By second property, or regularity estimate of canonical
radius (c.f. Definition 2.9), we know

‘Rszvt) < CK_477_27 Vze Bgi(t)(yiaK_2n)7 te [_170]

Note that R — 0, which implies |Ric| — 0 when we have |Rm|-bound
in a bigger ball (c.f. the |Ric| < \/|Rm||R|-type estimate in [73]). In

particular, we have

By,(0)(yi» 0.LK ) C By, (yi, K1),
for all t € [-0.5,0]. Hence, we obtain
(3.42) |Rm|(z,t) < CK ~*n~2,

for every z € By, o) (i, 0.1K2p), t € [~0.5,0]. Then we can apply Shi’s
estimate to obtain that |V¥Rm| < Cy on By, (0)(yi, 0.01LK ~2n) for each
positive integer k. This is enough to set up a uniform sized harmonic co-
ordinate chart around y; (with respect to metric g;(0)) and all the metric
tensor and its derivatives are uniformly bounded (c.f. Hamilton [39]).
Clearly, the convergence around 7 happens in the pointed-C'°°-topology.
Since 7 is an arbitrary regular point, we see that the convergence to M
is in pointed—C’OO-Cheeger—Gromov topology.

Note that we currently do not know whether M locates in the model
space R/Sﬂ(n,/ﬂ). However, we do know that M = R(M) U S(M).
The regular part is a smooth Ricci-flat manifold, due to the smooth
convergence and |Ric| — 0 on regular part. The singular part satisfies

the Minkowski dimension bound (c.f. (2.26) in Theorem 2.13):
<2n—4+ 2

n —_— ———
1000n 2n —1’

where we used the fact that pg is very close to 2.

(3.43) dimpm S <2n—2pg<2n—4+

Claim 3.16 (Good version of Lipschitz function). Every bound-
ed function f € Ny> (M) with finite IV £l oo iy and Lipschitz on R(M)

has a good version f such that

(3.44) f(x) = f(z), VaeR(M),
(3.45) s;dpwﬂ < IV Fll o iy

where the inequality (3.45) can be understood as
@) = FOI < IV Fllpooiary - dla,y), ¥ a,y € M.

This is a flow property, so we assume A = 0 without loss of generality.
For simplicity of notation, we also assume that ||V f[| ;) = 1 and the
support of f is contained in B(Z,1). Note that these assumptions can
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always be achieved up to rescaling argument. Let . = qﬁ(@) be the
cutoff function where ¢ is a smooth cutoff function such that ¢ = 1
on (2,00) and ¢ = 0 on (—o0,1) and |[V¢| < 2, ¢' < 0. Then x.f
is a Lipschitz function with compact support. By the smooth conver-
gence away from singularity (c.f. Proposition 3.13 and the discussion
around inequality (3.42)), we can regard x.f as a Lipschitz function on

(M;, gi(=9)), denoted by fc;, where § = e Starting from f;, we solve
the heat equation until time ¢ = 0 and obtain a function h.; = f;(0),
together with the metric evolving by the Ricci flow. Then we have

heilz) = /M w(z,y, —0) fosy)dv,, Ve M,

where w is the fundamental solution of *w = (0 — A + R)w = 0.
Recall that [, wdv =1 and |f;| < C uniformly, we have

(3.46) |he il () = ‘ /M_ w(z,y, —0) fei(y)dvy

< sup | / w(z,y, —8)dvy = sup|feil < C.
M; M, M;

Direct calculation shows that
OVfeil® = (8; — A) |[Vfil> = —2|VV > <o0.
It follows that

VheiP@) — [ wley—0) V1P,

0
= —2/ / w(x,y,t)|VVf6,i|2dvydt <0.
-6 J M;

Consequently, we have

(347)  [Vheil(@) < /M w(@,y, —8)|V fesl(y)dv,
_ / w(z,y, —8)|V foil2(y)dv,
Qi\Ai

+[4 w(xuya _5)’vf5,i’2(y)dvy7

where A; is the set where the pull back of x. achieves values in (0,1),
(); is the support of the pull back function f;. Note that |V fe;|(z) <
1 + £ for arbitrary small, but fixed &, whenever i is large enough and
z € Q;\A;. On A;, we have |Vf. ;| < Ce! for some universal constant
C. Note that Q; C By, (i, 1), the canonical assumption then implies
the density estimate |A;| < Ce?P0. Recall that we have the heat kernel
(hence, conjugate heat kernel estimate) estimate w(z,y, —9) < Co~"
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for some universal constant C'. Plugging these inequalities into (3.47),
we obtain

Vhe,l(x)
S/ w(z,y, —5)|er,i|2(y)dvy+/ w(z, y, =0)|V feil*(y)dv,

< (1+§)/ w(z,y, —8)dv, + Ce 2 - Co™™ - |4
Q\A;

<(1+¢) / w(z,y, —8)dv, + CePo257"
M;

<(1+€)+Ce?0 25 < 1+ ¢+ Ce2 505",

where we used the fact € < 1 and inequality (3.43) in the last step.
Recall that § = e and let = el =5 << V€, we then have

(3.48) |Vheil*(x) <14 e

Moreover, if Z is a regular point of M, i.e., z € R(M). Let z; € M; and
z; — z. Then we have

’hel zz) fe l(zl)|
‘ / 200 —0) Lfei () — fos(z2)} duvy

< / Cwzi gy —0) | feily) — foilz)|duy

By, (0)(2i,6%)

+ / w(zi gy —0) | fei(y) — foalz)| doy,
M, \Bg (0)(21,51)

Note that z is regular, we can assume that the regularity scale (for
example, cvr) of each z; is much larger than § = e%, if we choose € small
enough. Clearly, Bgi(o)(zi,(ﬁ) N A; = (), which implies the Lipschitz
constant of fe; on By, (o)(zi,d i) is uniformly bounded by C. Recall that
| M, wdv = 1. Therefore, we have

(3.49) |hei(z) — fei(z)| < €61 +C - w(zi,y,—8)dv,.
Mi\By,(0)(#i,01)

The last term of the above inequality is a small term which can be
absorbed in O91. Actually, let 1 be a cutoff function such that ¢ = 0
on By, (2, 0.5(5&), Y =1 on M;\By,o)(2;, ﬁ). Moreover, we have

VY2 + |Ag] < C5 3.

This can be done since 61 is much less than the regularity scale of z;.
Now we extend 1 to be a function on space-time by letting ¥ (x,t) =
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1 (x). Due to Proposition 3.13 and the discussion before (c.f. inequality
(3.42)), we obtain |V|? +|Ag| < C672 on M; x [—d, 0]. Consequently,
we obtain

d R

7 /M. Yy, w(zi,y, t)dvy = / .(qup —pO"w)dv, = —/ .wAwdvy.
As w converges to the d-function at z; as ¢t approaches 0, ¥(z;,0) = 0,
we have

0 - / w(ya _5)w(zi7 Y, _5)dvy
M;

0 0
- - / / wApdv,dt > —C5™ 2 / / wdvydt = —C52,
—6 JM; —0 J M;

which implies that

/ 1 w(% —(S)UJ(Z“ Y, _5)dvy
Mi\Bgi(O)(Zi,(szxr)

< / Wy, —8)w (2, y, —8)dv, < C*.
M;

Plugging the above inequality into (3.49), and noticing that 6 = si, we
obtain

(3.50) hei(z) — foi(z)| < €61 < Cean,

It follows from the combination of (3.46), (3.48) and (3.50) that there
is a limit function h, on M. Let e = 27¢ — 0, up to a diagonal sequence
argument, we can assume that hy—:; converges to a limit function h,
which satisfies

sup|h| < C, sup|Vh| <1=[[Vf| 0001
M M

h(z) = f(z), Vze&R(M).

In particular, h is a good version of f. We finish the proof of Claim 3.16.

Based on Claim 3.16, the proof of (3.41) follows from the standard
technique used in the proof of the Cheeger—Gromoll splitting lemma
in [29]. Actually, for each t # 0, we already know that (M, z;, gi(t))
converges in the pointed Gromov—Hausdorff topology to some (M’, ', g').
We only need to show that M’ is isometric to M. By Proposition 3.13
and the fact |R|+|\| — 0, we know that there is a natural identification
map between R(M) and R(M'), which contain a common point z. In
the following discussion, we shall show that this identification map can
be extended to an isometry between M and M’.

Let §,% be two regular points of M. Clearly, 7 and Z can also be
regarded as regular points on M’. We omit the identification map for
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the simplicity of notations. Suppose dg(y,%2) = D > 0. We can construct
a function x on M’ as follows

(3.51) x(z) = {maX{D —dg(x,9),0},  if zeR(M),

0, if xeS(M).

Fix point z € R(M’)\By (¥, 3D), every smooth curve connecting z and
¢ has length as least 3D. In light of inequality (2.25) in Theorem 2.13
(applying to both g and g’), we know that

min{d&?(m7 ?j); ds?' (‘757 g)} > D,

which implies that x(z) = 0 by definition equation (3.51). We remark
that inequality (2.25) together with the high codimension of & implies
that x € Nol’z(]\_l’) and we have

IV o iy = 19X oo iy = 19X iy = 1-

Then we can apply Claim 3.16 to obtain a good version y of x. In
particular, we have

(3.52) dg(y,z) = D = |x(y) — x(2)| = [x(%) — x(2)|
< dg (4, 2) [V Xl oo (1) < dg (7, 2)-

Similarly, by reversing the role of g and § when we choose the test
function, we obtain that

(3.53) dg (9, 7) < dg(y, 2).

By the arbitrary choice of 7, z, we know the identity map between R (M)
and R(M’) is an isometry map by (3.52) and (3.53). Since R(M) is
dense in M, R(M’) is dense in M’, we obtain M and M’ are isometric
to each other by taking metric completion. Consequently, (3.41) follows
from (3.40). q.e.d.

In Proposition 3.15, we show that the limit flow exists and is static in
the regular part, whenever we have |R|+ |A\| — 0. It is possible that the
limit points in the singular part S are moving as time evolves. However,
this possibility will be ruled out finally (c.f. Proposition 4.23).

3.3.1. Tangent structure of the limit space. In this subsection, we
shall show that the tangent space of each point in the limit space has a
metric cone structure, provided polarized canonical radius is uniformly
bounded below. Basically, the cone structure is induced from the local-
ized W-functional’s monotonicity. Up to a parabolic rescaling, we can
assume A = 0 without loss of generality.

Proposition 3.17 (Local W-functional). Let LM; € # (n, A;ro)
and sup rq, (|R| + |A]) — 0.



SPACE OF RICCI FLOWS (II)—PART B 45

Let u; be the fundamental solution of the backward heat equation
[—% A R} u; = 0 based at the space-time point (x;,0). Then w;
converges to a limit positive solution u on R x (—1,0], i.e.,

0 _

Moreover, we have

)
(3.54) // 20t| [Ric + VY F + 2| advgat < €,
Rx(—1,0] 2t

where C' = C(n, A), 4 = (4r|t]) e .

Proof. This is a flow property and has nothing to do with polarization.
So we can assume A = 0 for simplicity.

Fix r > 0. Choose a point § € R, and a time ¢ < 0. Without
loss of generality, we assume that there is a sequence of points (y;, t;)
converging to (y,t). Note that dg,)(yi, 2;) is uniformly bounded. It is
not hard to see that u; is uniformly bounded around (y;,¢;). Actually,
let w; be the heat equation Tw; = (9, — A)w; = 0, starting from a
d-function at (y;,t;). Then by the heat kernel estimate of Cao—Zhang
(c.f. [7]), we obtain the on-diagonal bound

1 _ _
5|ti| "< wi(yi, 0) < Ot ™",

for some uniform constant C. Then the gradient estimate of Cao—
Hamilton-Zhang (c.f. [77], [6]) and the fact dg,()(yi,7:) < C implies
that | log w;(x;,0)| is uniformly bounded. Note that w;(x;,0) = u;(y;, t;)
since the integral [  wividp does not depend on time. Therefore, we
have

(3.55) !

C
where C' depends on |t;| and d,)(yi, 7:). It clearly works uniformly
for a fixed-sized space-time neighborhood of (y;,t;), where curvatures
are uniformly bounded. Then standard regularity argument from heat
equation shows that all derivatives of u; are uniformly bounded around
(yi, t;). Therefore, there is a limit positive solution @ around (7,t). By
the arbitrary choice of r,7,t. It is clear that there is a smooth heat
solution @ defined on R x (—1,0).
By Perelman’s calculation, for each flow g;, we have

< ui(yi, ti) = wi(z,0) < C,

0 12
(3.56) / / 2|1 ‘Ricgi LYV + git widvg, dt
—1JM
= —u(M;, gi(t;), 1) < C,

since Sobolev constant is uniformly bounded. By passing to limit, (3.54)
follows. q.e.d.
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Theorem 3.18 (Tangent cone structure). Suppose LM, is a se-
quence of polarized Kdhler Ricci flow solutions in & (n, A;rg), x; € M;.
Let (M,,g) be the limit space of (M;,z;,9;(0)), § be an arbitrary point
of M. Then every tangent space of M at § is an irreducible metric cone.

Proof. Suppose Y is a tangent space of M at the point 7, i.e., there
are scales rp — 0 such that

(357) (Y,@,Q) (M7377gk)7

where g, = r,;2§. By taking subsequence if necessary, we can assume

= lim
k—o0

(Y,g,g) as the limit space of (M;, , yi,, Gi,) where g;, = r;Qgik (0). De-
note the regular part of ¥ by R(Y). Then on the space-time R(Y) x
(=00, 0], there is a smooth limit backward heat solution u. Recall that
4 is positive by Proposition 3.17. For every compact subset K C R(Y)
and positive number H, it follows from Cheeger—Gromov convergence
and the estimate (3.56) that

2

udvdt = 0.

// 21| ‘Ric+VVf+g
K x[—H,0] 2t

L2
Note the scaling invariance of udv and |¢| }Ric +VVf+ %‘ dt. Actu-

ally, if the above equality fails for some K and H, then by definition
of tangent space and the integral accumulation, we shall obtain the left
hand side of (3.56) is infinity and obtain a contradiction. Then by the
arbitrary choice of K and H, we arrive

/] 2t
R(Y)x(—00,0]

Note that R(Y) is Ricci flat. So there is a smooth function f defined
on R(Y) x (—o00,0] such that

2
udvdt = 0.

~

. 0
ch+VVf+2t

(3.58) vV + % = 0.

The above equation means that V f is a conformal Killing vector field,
when restricted on each time slice ¢ < 0. It follows from the work of
Cheeger—Colding (c.f. [10]) that there is a local cone structure around
each regular point. We shall show that a global cone structure can be
obtained due to the high co-dimension of the singular set S and the
Killing property arises from (3.58). The basic techniques we shall use
in our proof is very similar to that in the proof of Lemma 2.31, Lemma
2.34 of [29] and Proposition 3.15.

Let’s first list the excellent properties of f . Recall that f satisfies the
following differential equation on R x (—o0,0) from the limit process.

(3.50) Jo= A+ VP - R T = VP
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On the other hand, it follows from (3.58) that
v (t\vﬂ? +f) = 2tHess(Vf,) +Vf=-Vf+Vi=o.

So we have t|V |2+ f = C(t), whose time derivatives calculation yields
that

C'(t) = [VI2+2t (V,Vfi) + fi = 29112 + 2 (VF, VIV I2)
=2V ]2 + atHess (VF, V) =2V f12 =2V f12 =0,

where we repeatedly used (3. -59) and (3. 58). Therefore, t|{Vf2+f=C

on 7§ X (—o0 ; ,0). Replacing f by f + C if necessary, we can assume that
tVI*+ f= O, which implies that

(3.60) (¢f), = F+tfe=F+ 8V =

Consequently, we have

(3.61) fat) = %f(x, “1), VaeR(Y),

(3.62) ‘V flz,t)| = TR

We remark that the above discussion is nothing but the application of
general property of gradient shrinking solitons (c.f. Chapter 4 of Chow—
Lu-Ni [32]), in the special case that Ric = 0.

Intuitively, a space which is both Ricci-flat and is a gradient shrink-
ing soliton must be a metric cone. This can be easily proved if the
underlying space is smooth. In our current situation, due to high codi-
mension of S, the cone structure can be established using the technique
developed in section 2. Suppose Y is a metric cone based at 7, then we
should have

(3.63) f= &

Alt|’

where d is the distance to the origin. This will be confirmed in the fol-
lowing discussion. The cone structure of ¥ will be established together
with equality (3.63). The basic idea to prove (3.63) is to compare the
level sets of f with geodesic balls, with more and more preciseness. Note
that similar ideas to estimate distance will be essentially used in section
5.3 (c.f. Lemma 4.20). We remark that our proof could be much simpler
if we use Lemma 3.23, which is independent (c.f. Remark 3.24). For
example, the application of Lemma 3.23 directly implies that f must
achieve minimum only at base point § (see step 3 below), since f is
a strictly convex function in regular part R and can be regarded as a
continuous function on Y (c.f. step 1 below). Here we want to give a
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self-contained proof, using only the good property of f to improve the
regularity of Y.
We divide the proof of (3.63) into four steps.

Step 1. f s a nonnegative, continuous, proper function which achieves
minimum value 0 at .
_ Let us focus our attention on time slice ¢ = —1 for a while. Denote
f(z,—1) by f(z) for simplicity of notation. It is not hard to observe
that f (x) is weakly proper. In other words, we have
(3.64) lim  f(z) = 0.
R(Y)>z—00
For otherwise, we can find a sequence of points z; € R(Y) such that
d(z;,9) — oo and f(zz) < D for some positive number D. Note that f
is uniformly bounded from below in the ball B(z;,1). Actually, for every
smooth point x € B(z;, 1), we can find a smooth curve v connecting  to
z; such that |y| < 3d(z, z;). This is an application of inequality (2.25)
in Theorem 2.13. Note that the canonical radius is very large in the
current situation. Parametrize v by arc length and let v(0) = z; and
v(L) = x. Then |y| = L < 3. Along the curve v, by (3.62), we have
A - A 1
Vi = (Wise) < |[vyi -5

Integration of the above inequality implies that

2

. . 1 . 2 1 .

@63 fo) = Jaw) < (3r+foo) = (3r+ )
< (1.5+ D)*> <2(1+ D).

The above inequality holds for every regular point = € B(zi,1). In

particular, we know [ B(i1) e~fdv is uniformly bounded from below by

some C~!. Consequently, we have

/ udv = (47r)"/ e fdv > l,
B(zi,1) B(zi,1) C

for some uniform constant C' depending on x and D. Up to reselecting
a subsequence if necessary, we can assume that all B(z;,1) are disjoint
to each other. Then we have

CZZ/B udv > 0o,
i—1 7 B(

which is impossible. This contradiction establishes the proof of (3.64).
Note that in the above discussion, we already know that the function f is
bounded on B OR(Y) for each fixed geodesic ball B, by the application
of the proof of (3.65). Consequently, we have uniform gradient estimate
of f in BAR(Y) by (3.60), since t = —1. The locally Lipschitz condition
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guarantees that f can be extended as a continuous function on whole
Y. Actually, let Z be a singular point on Y. Suppose a; and by are two
sequences of regular points in R(l}) converging to z. Clearly, d(ay, bx) —
0. By inequality (2.25) in Theorem 2.13, we can find a smooth curve
v € R(Y) connecting ay, by such that || < 3d(ag,bx) — 0. The
bound of |V f| then implies that |f(az) — f(bx)| — 0. So we can define

f(z) = 7limR(Y) f(y) without ambiguity (c.f. Proposition 2.29 of [29]
Yy—zZ,ye

for similar discussion). Therefore, from now on we can regard f as
a continuous function on Y, rather than only on R(Y) Clearly, the
previous discussion implies that f is proper. Namely, we have
(3.66) Clim f(z) = oo.

Y3z—o0
Consequently, the minimum value of f can be achieved at some point Z.
The above discussion can be trivially extended for the function f (-, 1)
for each ¢ € (—o0,0). So we know f(-, ) is a continuous proper function,
which achieves minimum value at % also, by (3.61). Furthermore, it is
also clear that (3.61) and the first part of (3.60) can be extended to hold
on whole Y x (—o0,0). Then we observe that

(3.67) f(@,t) = min f(z,t) =0, Vte (—o0,0).

zeY
Actually, following the discussion around inequality (3.55), we can use
the on-diagonal estimate of Cao—Zhang and the gradient estimate of
Cao—Hamilton—Zhang to obtain that

(i) e 1 E0=C =G, ) > L Ve B (3, V) NRE),

where we used the fact that we adjusted f globally by adding a constant
to obtain (3.60). By the continuity of f, the above inequality implies
that

S = f(g,) <0, = f(§,-1) < CJt, Vite (—o0,0).

This forces that f (y,—1) = 0. Recall that f is a nonnegative function

by (3.60), so we obtain min f(z, —1) = 0. Then (3.67) follows from the
€Y
extended version of (3.61). So we finish Step 1.

Step 2. Unit level set off 1s comparable with unit geodesic ball cen-
tered at .
For each nonnegative number a, we define

O 2 {z € Y|f(x,—1) < a®}.
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According to this definition, we immediately know that § € Q5. Fur-
thermore, by (3.61), it is clear that

Qo ={z € Y|f(x,t) <|t|ra?}, Vi€ (—o0,0).

Note that Q7 is bounded by the properness of f() = f(-,—l). For
simplicity, we assume that 3 C B(y,0.5H) for some H > 0. On the

other hand, applying the gradient estimate of \/} , 1.e., (3.62), and the
smooth curve length estimate (2.25), we have

Viw < yf@y + 541 <21, vaeB@.H),

which means that B(g, H) C Qap. Let D = 2H, we have the following
relationships in short:

(3.68) 4 C B(9,0.25D) C B(y,0.5D) C Qp.
Equation (3.68) can be regarded as the first step to improve (3.66) and

(3.67). In order to obtain the estimates of general level sets of f , we
need to use the conformal Killing equation (3.58). We observe that the
space-time vector field (—V £, %) = (—g%, %) = (—0.570;,0;), as the
“lift” of the conformal Killing vector field —V f (c.f. (3.58)), has many
excellent properties. First, direct calculation (c.f. (3.59)) shows that

(3.69) Lf=fi-1vir=o,

along the integral curve of this space-time vector field. Second, it follows
from (3.58) that

(3.70) L(fvf,%) {Itlg} =0,

where L means Lie derivative. Now we can regard R(Y) x (—00,0) as
a Riemannian manifold, equipped with metric [t|§(t) + dt? (c.f. section
6 of Perelman [49]). Then (—V f, %) is really a Killing vector field.

Step 3. f and d(g,-) have the same unique minimum value point §.

In other words, the infimum of f must be 0 and it is only achieved
at base point §. We shall use Killing vector field to generate quasi-
isometric diffeomorphisms. Then an application of the technique, i.e.,
bounding distance by choosing good Lipschitz functions, used in the
proof Lemma 2.31, Lemma 2.34 of [29] and Proposition 3.15 will imply
the diameter bound for general level sets 2,. For small a, we shall
show that diam (), is also small. Then €y has diameter 0 and consists
of only one point ¢, which is of course the unique minimum point of
d(yg,-). Actually, if one only want to show Q¢ = {g}, then there is a
shortcut by using the uniform convexity of f on R(f/) (i.e., equation
(3.58)), the homogeneity of f in time direction (i.e., equation (3.61)),

the fact ff, e fdv < C and the application of Lemma 3.23. We leave
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the details to interested readers. In the following paragraph, we shall
show Qg = {g} together with the construction of the cone structure.

Killing vector property together with high codimension of & implies
metric product rigidity, as we have done in Lemma 2.31, Lemma 2.34
of [29]. We repeat the discussion here again for the convenience of the
readers. Fix each positive integer k. We claim that there is a bounded
closed set E, C Y satisfying dimpq(E)) < 2n—2. Furthermore, for each
t € [-27%, —27¥], we have a family of smooth diffeomorphism k¢ from
Qp\Ek to Q Zk\t|D\Ek with

(371) ¢h(9)(=) =2 a(=), Vie[-27F-2H, 2eQ s \By

The set Ej can be constructed similarly as the set Ej in the proof of
Claim 2.32 of [29]. Now the Killing vector field Vb™ is replaced by the
space-time “Killing” (c.f. (3.70)) vector field (—V f,d;). Let’s describe
more details about the construction of Ej. Actually, fixing a small
positive number &, we define the set Ek_ ¢ to be

(3.72)  {z € Qp|flow line of (—Vf, ;) passing through (z, —27%)
hits D at some t € (—2%, —27F)}.

The minus sign in F;_ ¢ indicates that we are flowing backward along

the space-time integral curve of (—V f, O;), since —27% > t for each
t € (2%, —27%). Note that the intersection point to D¢ locates in a
uniformly bounded set. This can be simply proved as follows. Let
(y, —7) be the first point on D¢. By (3.69) and (3.61), we have

~

f(y;_l) = f(y,—7) = f(e,—277) = 2F f(z, —1) < 2F . D?,

= f(y,—1) < 2"rD? < 4*D?,

which means that y € Qg p, a uniformly bounded set by the properness
of f . By high Minkowski codimension of S and the application of the
Killing condition (3.70), similar argument for equation (2.54) in Claim
2.32 of [29] implies that

|Ej| < g1,

where pg is the constant appeared in (3.43), i.e., dimyp S < 2n — 2po,
C may depends on € also. Let { — 0 and define E_ = ﬂfilEk_’g. We
obtain a measure-zero closed set £, . Moreover, same as (2.55) in the
proof of Claim 2.32 of [29], the {-neighborhood of £, is contained in
Ey c¢ for some uniform constant C'. Then the above volume estimate
implies that dima E, < 2n —2pg + 1 < 2n — 2. Now we reverse the
direction. Similar to the definition of E . in (3.72), we can define E,:E
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as follows:
{ € Qi p|flow line of (—V f, d;) passing through (z, —2%)
hits D at some t € (—2%, —27%)}.

Clearly, the plus sign in E,jg indicates that we are flowing forward

along the space-time integral curve of (—V f ,0), since t > —2F for
each t € (—2%,—27%). Suppose we start from (z,—2%) outside D¢
and the flow line of (~Vf,d;) enters D¢ at some (y, —7). We know
f(y, —7) = f(:v, —2F) since the flow preserves f-value. Then we have

fy,—1) =7f(y,—7) = 7f(x, —2%) =27F7 f(z, -1) < f(2,-1) < 4¥D?.

Consequently, y € Qyrpp. Therefore, the forward flow is also restricted
in a bounded domain when we start from a point (z, —2%) satisfying
x € Qqrp. Applying high codimension of S and Killing condition again,
we know EI:E, has volume bounded by C¢?P0=1=¢ Let & — 0 and set
E,j to be ﬂ;’ilEZ ¢ We know E,j is a bounded closed set satisfying

dim g E,j < 2n — 2. Now we define
(3.73) E, £ EfUE,.

Then each Ej is a closed bounded set satisfying dimaq Fr < 2n —
2. According to their definitions and the above discussion, we know
that there is a family of diffeomorphism ¢y, parametrized by ¢ €
[—2F, —27F] from Qp\E; to Q 2k|t|D\Ek’ generated by the integral

curve of (=Vf,d,). It is clear that (3.71) follows from the integration
of (3.70). The above argument is almost the same as that in the proof
of Claim 2.32 in Lemma 2.31 of [29]. In particular, the argument for
the proof of equation (2.53) of [29] is more or less repeated here. We
remind the readers that weak convexity of R is not used in the proof of
equation (2.53) of [29]. Only the high codimension of S and the Killing
vector properties are used.

Now we are ready to use the existence of the diffeomorphism (c.f.
discussion around (3.71)) ¢y _or @ Qp\Ep — Qorp\E} to relate the
estimate of general 2, to (3.68). We are particularly interested in the
sets ), for small a’s. Without loss of generality, let a = 27%. Fix some
points z,y € Qy-\Eg. Denote p = d(z,y). Similar to (3.51) in the
proof of Proposition 3.15, we choose a function

(3.74) X = max{p — d(-,z),0}.

Note that z,y € Qs C Q1 C B(9,0.25D) by (3.68), which forces that
p =d(z,y) < 0.25D. Also by (3.68), we know that y is supported in
B(z,p) C B(x,0.25D) C B(y,0.5D) C Qp. Let ¢ be the diffeomor-
phism generated by integrating (—Vf, o) from t = —27% to t = —2F,
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In other words, ¢ = ¢, _5-«. Using ¢, we can push forward the function
X to obtain

P (0(2) X7 (2): V2 € Qip\Ep
Clearly, ¢.(x) is supported on Qo p\ Ey with

HVSO*()U”LOO(Y) < 2_k||v)2||Loo(f/) = 2_k,

in light of (3.71) and t = —2*. By the high codimension of Ej, we
know that ¢.(X) is an N ?_function, which has a good version such that
supy |V« (X)| < [V (X )||L°° ¥y due to the high codimension of S (c.f.

Claim 3.16). For simplicity of notation, we still denote the new version
of x by x. Note that the values of x(z) and x(y) are independent of the
different versions, since x,y are away from Ej. Recall that x,y € Qg «.
Integration of (3.69) implies that

fla, =28y = 27F f(a,—1) = 47" f(2,27%) <4aF . 47F =1,

Therefore, p(z) € Q. Similarly, we also know ¢(y) € ;. Combining
the previous inequalities and use (3.68) again, we obtain that

05D > dip(a). oly)) > 2 EEE) — (D))

supy [V (X))
S 12s (0 (p(2)) — (X)W o [X(2) = x(y)|
- IVeu O Lo 1) -2
Recall that x(z) = p and x(y) = 0 by (3.74). It follows from the above

inequality that
(3.75) p=d(x,y) <05D -27%F=271"kp,

which is independent of the choice of z,y € Qy\E;. Recall that
Oy« \E} is dense in Qy-. So we have

diam Q- = diam{Q,-x\F},} <2717%D.

Consequently, klim diam(Qy-x) = 0. Since Qy = (Vj<peoo P2k, We
—00 -

know that €y consists of only one point {g}.

Step 4. The level sets off coincide the geodesic balls centered at g.
Define

(3.76) (z) £ \/4f1: -1) \/4f (z) 2 d(z,9).

Recall that in the standard Euclidean case, f = dZ and 7 = d. Our
destination (3.63) is equivalent to the equation 7 —d = 0. Clearly, we
have |V7| = % = 1. Recall that (c.f. (3.73)) each Fj is a bounded
closed set with dimpg By, < 2n — 2. Let I/ = UpZ, E. Then it is clear

that F is measure-zero and Y\ E is dense in Y. Note that Y'\E has a
cone structure, as every point z € Y\E can be flowed to ¢ along the
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integral curve of V f = %f&: without hitting singularities (c.f. Section
1 of [10]). Let z € R(Y) and a = #(z) > 0, we can find z;, € R(Y)\E
approaching y. Every point x; can be flowed to a point nearby ¢. So
we obtain

(3.77) d(z) =d(z,y) < lim d(zg,y) < lim 7(z) < 7(x).
k—o0 k—o0
On the other hand, we can construct a function y as
x(z) £ max{a — #(x),0},

which is supported on a bounded set g5, Clearly, x is Lipschitz.
By the high codimension of &, by replacing x with a new version if
necessary, we can assume supy |Vx| < [|[Vx||; () < 1. Note the values
at = and y does not depend on the choice of versions since they are
regular points. Therefore, we have

d(z,y) > x(x) = x@) o _ Ix(z) = x(v)|

supy (Vx| 7 IVXlpoo (v
= |x(x) — x| = IxW)| > a—[7(y)l,

for every y € R(Y). Let y approach  in R(Y)\E, we obtain
d(z) > a = (z),

which together with (3.77) yields that

(3.78) d(z) = 7(z),

for arbitrary = € R(}A/)\{g)} Since both d and # are uniformly Lipschitz,
equation (3.78) holds for every y € Y by continuity and density reason.
In particular, the relationship (3.68) can be improved to the following
one:

Q= B(9,2a), Va>0.

This confirms our expectation. Clearly, (3.63) follows from the combi-
nation of (3.76) and the extended version of (3.78). The proof of (3.63)
is complete.

From the discussion in Step 4 of the proof of (3.63), we already know
that Y\{E U {§}} has a local cone structure, which induces the global
cone structure of Y by taking completion. In view of (2.25) in Propo-
sition 2.13, we know R(Y) is path connected. Therefore, the cone Y
is irreducible, i.e., Y\{§} is path connected. Therefore, we obtain the
global cone structure from the local cone structure, due to the high co-
dimension of the singular set S and the Killing property arisen from
(3.58), as we claimed. q.e.d.
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3.3.2. Improved estimates in 7 (n, A;rg). In this subsection, we
shall improve the limit space structure by the fact that every tangent
space is a metric cone. For simplicity, we assume rg = 1 if we do not
mention otherwise.

Proposition 3.19 (Improvement of codimension estimate of
S). Suppose LM, is a sequence of polarized Kéhler Ricci flow solutions
in H (n, A; 1), x; € M;. Let (M, z,g) be the limit space of (M;, xi, g;(0)).
Let S be the singular part of M. Then

(3.79) dimay S < 2n —2pg, dimy S < 2n —4,

where dimp, is the Minkowski dimension, dimy is the Hausdorff dimen-
ston.

Proof. The Minkowski dimension estimate follows from Theorem 2.13.
Recall that we are in a situation where canonical radius is uniformly
bounded from below. Therefore, there is a gap between local behav-
ior of singular point and regular point. In particular, if one tangent
space is Euclidean space, then the base point has a neighborhood with
smooth manifold structure. This follows from the volume convergence
(c.f. Proposition 2.14) and the regularity estimate in the definition of
canonical radius (c.f. Definition 2.9). One can find the detailed ar-
gument in the proof of Proposition 4.2, where only polarized canonical
radius lower bound is used. Note that each iterated tangent space (away
from vertex) is also a tangent space, and, hence, force a tangent cone
with more splitting directions. Consequently, we can use induction to
show that every tangent cone’s singularity has an integer Hausdorff
dimension (c.f. [11]). However, the Minkowski dimension of singular-
ity is at most 2n — 2pg. This forces that every tangent cone’s singu-
larity has Hausdorff dimension 2n — 4 at most, which in turn implies
dimy S < 2n —4. q.e.d.

After we set up the tangent cone structure, we can improve Proposi-
tion 2.11.

Proposition 3.20 (Improvement of regular curve estimate).
Same conditions as in Proposition 3.19.

For every two points x,y € R and every small positive number ¢ > 0,
there exists a rectifiable curve connecting x,y such that

® 7 locates in R.
o Y <1+ e)dz,y).

Proof. The proof is very similar to the proof of Proposition 2.11.
The basic idea is to use the tangent cone structure, i.e., Theorem 3.18
to improve Proposition 2.11.
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First, every point in M has a cone-like neighborhood.

To be more precise, fix € > 0, for every point z € M, there is a radius
r,, depending on z and €, with the following property:

For every point v € B(z,r,), one can find a curve « such that

e Initial point of « locates in B(z,ed(v, z)), end point of « locates
in B(v,ed(v, 2)).

e aCR, |of<(1l+e€)d(v,z).
The existence of , can be obtained by application of Theorem 3.18 and
a contradiction blowup argument. Actually, if for some z such r, does
not exist, we can find v; — z such that corresponding a; does not exist.
Blowup by d~2(v;, z), we obtain a tangent cone M, with vertex zs, and
a point vy, on the unit sphere of the cone. By the density of regular
part in the tangent cone, we have a regular point 05 € B(v, 0.5¢). The
cone structure guarantees that the shortest geodesic connecting v to
Zs0, which we denote by 2000, has regular interior (c.f. (3.78)). Denote
the intersection of zoUoo and Moo\ B(200,0.5€¢) by aioo. Then a is a
compact curve and locates in the regular part of M,,. By the uniform
convergence around ., we obtain a curve «; with the desired property
before we arrive limit. Contradiction.

Second, we can find a good covering of each shortest geodesic by cone-
like neighborhoods.

Fix any two points z,y € R. Let 8 be a shortest geodesic connecting
x,1y. Since Uzeﬂ B(z, irz) is a cover of a compact curve [, we can find a
finite covering. Starting from this finite covering, by deleting redundant
extra balls from = to y (e.g., using the “greedy algorithm”), we obtain
a covering UfilB (2, %rzi) with the following properties.

e z;’s are ordered by their distance to .

e Each point on S locates in at most two balls. If a point on  is
contained in two balls, then these two balls must be “adjacent”.
In other words, if z € N B(zy, irk) N B(z, irl), then |k —[| = 1.

e Every pair of “adjacent” balls have nonempty intersection, i.e., if
|k — 1| =1, then B(z, 1r%) N B(z, 111) # 0.

Third, based on the good covering, one can construct approrimation
curve.

Now we have a covering of 8 by UN_ B(z, %rk) with the property
mentioned in the second step. Without loss of generality, we further
assume zg = x,zy = y. For each 0 < k < N — 1, let B; be the part of
B connecting zp and zx11, let di be the length of 8;. Then we have

di, = d(zg, 2k41) < irk + irkﬂ < %max{rk,rk_i_l}.
Hence, either z;y; locates in the cone-like neighborhood of zy, or zj

locates in the cone-like neighborhood of zj,;. No matter what case
happens, we can find an approximation curve ap C R, whose two ends
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locate in the edy, neighborhood of z; and 2y 1, satisfying |ag| < (14€)d.
According to this choice, the end point of a_1 and the initial point of
oy have distance bounded by €(dy + di_1), whenever 1 < k < N — 1.
So they can be connected by a curve v, C R with |y,| < 3e(di + di—1),
due to Proposition 2.11. For the boundary case, it is not hard to see
that zg = x can be connected to the initial point of ag by 79 C R and
|70] < 3edp. Similarly, zy = y can be connected to the end point of
an—1 by yv C R and |yn| < 3edy—_1. Concatenating all the curves ay
and -, we obtain a curve v C R connecting x,y and satisfying

N—-1 N
= lewl + > bl
k=0 k=0

N-1 N—2
< <Z (1+ G)dk> + <3€d0 + Z 3e(dy + di41) + 36dN_1>
k=0 k=0
N—-1 N-1
=(1+€ > dp+6€> dp=(1+7¢)|8| = (1+Te)d(x,y).
k=0 k=0

Replacing € by 0.1¢ at the beginning, we then find a curve v satisfying
the requirement. q.e.d.

Lemma 3.21 (Rough estimate of reduced distance). There is
an € = €(n, A) with the following properties.

Suppose LM € K (n, A;1), z,y € M and r = do(z,y) < 1. Suppose
y € .7:%1,7,(M, 0). Then we have

(380) l((ﬂ?, 0)7 (ya _TQ)) < 1007
whenever sup \((|R| + |A]) < e.

Proof. Let yg = y. According to the construction in Proposition
3.14 of [29], there exists a point y1 € 0B, )(z,5) N Far (M,0) and
4

a curve 7y, C ]:ﬁT(M’O) connecting yo, y1, with length less than %r.
8

Suppose |R| + || is small enough, then v, C ﬂ Fa,

—r2<t<o 16

(M7 t) So 71

can be lifted as a space-time curve connecting (y1, —%) and (yo, —12).
Reparameterizing v; by 7, after a proper adjustment, we have

7n2
/T2 VT2 ydr < 1001
4

Following the same procedure, we can find 2 connecting y; to yo €
OBy (w, 7) N f%(]\/l, 0) with v C ﬂ ]:Eir(M’ t). By a proper

32
—2<4<0
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reparameterization of 7, we can regard 72 as a space-time curve con-
. 2 2 . . .
necting (y1, —'7) and (y2, —1g), and it satisfies the estimate

2
4 X r
16

Note that there is no need to choose a new € because of the rescaling
property of |R|+ |\|. Repeating this process, we can find curve 7 con-
necting (yk,—Z—i) and (ykt1, —41:%). Concatenating all ~,’s together,
we obtain a space-time curve + connecting (z,0) and (y, —r?) such that

7,2 (o.9]
) T
/0 VTR pydr < 100;:0 o = 2007

It follows that
2007

2V/r?

Lemma 3.22 (Most shortest reduced geodesics avoid high
curvature part). For every group of numbers 0 < £ <np <1< H,
there is a big constant C = C(n,A,n, H) and a small constant ¢ =
e(n, A, H,n, &) with the following properties.

Suppose LM € K (n,A;1), x € F,(M,0). Let Q¢ be the collection
of points z € M such that there exists a shortest reduced geodesic (3
connecting (x,0) and (z,—1) satisfying

1((z,0), (y, —r%)) < = 100. q.e.d.

(3.81) BN De(M,0) # 0.
Then
(3.82) |By(oy(z, H) N Fy(M,0) N Q| < CEX>o
whenever sup \((|R| + |A]) < e.
Proof. This is a flow property, we assume A = 0 without loss of
generality.

From the argument in Lemma 3.21, it is not hard to obtain the fol-
lowing bound

(3.83) I((7,0),(2,-1)) < C, Vz € Byql(x, H) N Fy(M,0),

where C' = C(n, H). Suppose z € By (z, H) N F,;(M,0), B is a short-
est reduced geodesic connecting (x,0) and (z,—1). Let 8 be the corre-
sponding space curve. Note that  and z, the two end points of 3, locate
outside of D¢(M,0). Therefore, if z € €, then (3.81) is satisfied. In
other words, the shortest reduced geodesic connecting (z,0) and (z, —1)
cannot avoid the “high curvature” part D¢(M,0). By continuity, we
have

BNOFe(M,0) =N IDe(M,0) # 0.
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Let 7, be the first time 3 escape from Fp-1,, 7 be the last time such
that B(7) re-enter Fp-1,, when we move along backward time direction.
Here K is the constant defined in Proposition 2.10. To be more precise,
we define

Ta Zsup {7|B(s) € Fr-1,, Vs (0,7)},
7 = inf {7 |B(s) € Fx-1,, Vse(r,1)}.

By the choice of x and z, it is clear that 0 < 7, < 7, < 1. We can
further estimate 7, and 7, uniformly. Actually, since [ is achieved by (3
and is bounded by C, it follows from the definition of [ (c.f. equation
(2.4) and (2.5)) that

(3.84) /01 VT (R + |B|2)g(77) dr < C.

Note that (1) € F,(M,0) whenever 7 € (0,7,) U (75,1). In view of
Proposition 3.15, we have the metric equivalence

059(3:70) < g(:L’, _T) < 29(:670)7

for all z € Fg-1,(M,0) and 7 € (0,1). Recalling that [R| is uniformly
small. Then (3.84) implies that

Ta . 1 .
0 Tb

It follows from Proposition 2.10 and the above inequality that

(3.85) g<dg(o>(x,ﬁ(fa))§/0 1Blyoydr

1 1
Ta . 3 Ta ] 2 1
< V7|82 d¢> < / dT> < Cr1d,
</0 | |g © 0o VT

1 .
(3.86) %<dg(0)(6(7b)72) S/ |Blg(oydr

([ i) ([ ) vt

where C'= C(n, H, K). Consequently, we have

N |=

L A= (1= VA L+ VA) > 1 - 7 >

Tg >

Q%

4

This means that [74, 7] C [%, 1-— %] Define 7 as

(3.87) 7 £ max{7|B(1) € De(M,0)}.
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Clearly, we have 3(7) € 9D¢(M,0) = 0F¢(M,0). Since & < K1, we

have T € [1,4, 7] for continuity reason. Consequently, we know

772

C )

for some C = C(n, H, K), whenever ¢ < K~ and |R| very small.
Beyond the estimate of 7, there are more estimates around 3(7). In

light of the choice of 7, we have (7) € F¢(M,0) for each 7 € [7,1].

By (3.83), we have uniform rough bound of the reduced distance from

(x,0) to (z,—1). Noting that R may be negative and |R| is very small,

we have

n

(3.88) G <T<1l-

1

/;ﬁ(R—i—'B’Q)g(T) dr < 1+/0 \E(RWLWQ) dr < C(n, H).

g(—7

)
Following the route of (3.85), noting that metrics g(0), g(—7) and g(—1)
are all uniformly equivalent on §(7) whenever 7 € [T, 1], we have

1 1
dy0) (22 B(7)) < / Blyoydr <2 / 1Bly(nydr
1

1 , 3/ 1 3
<2 </T \E\B\f](l)d7> </T %d’]’) <C.

Note that dy(2,z) < H. Triangle inequality then implies that
(389) dg(()) (6(’7__)>$) < F,

for some F' independent of £ when |R| + |A| small enough.
The purpose of this paragraph is to estimate §(7). Recalling the
reduced geodesic equation (2.6):
VR

1% .
ViVt oo+ 2Rie(V, ) + - =0,

where V = . It follows that along the reduced geodesic 3, we have

. . . . . ] 2 . . .
132 = 20v,8.8) + 2mic(3.8) = ~ I~ amie(s, )~ (VR.B),

diT {T!B\Q} =7 {2Ric(6,ﬁ') + (VR, B)} :

Note that §(7) € F¢(M,0) for each 7 € [7,1]. By Proposition 3.12, we
can assume (1) € Fy-1¢(M,—7). It follows that |Ric| and |VR| are
uniformly small whenever |R| globally very small. Therefore, the above
equation implies

(3.90)

T

d (71812 + 1)‘ <o(rIB?+1), Vre(r),
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for some small constant 6 depending on ¢ and sup,, |R|. Moreover,
6 — 0 if sup, |R| — 0 and & is fixed. Integrating (3.90) and using
(3.88), we obtain

B2+ 1> e (FBR ) +1).

It follows that

/ VRIBE e

/f7|5’g(7d7 /1 |5’g(f )—1}d7

=BT =7) + (e = 1)1 - 7).

In view of (3.84) and the fact that |R| is very small, we know the left
hand side of the above inequality is bounded above by C = C(n, H).

Since 6 is very small, T € [ ,1— —] by (3.88), the above inequality
yields that

(3.91) ‘ B(i’)’ <
9(—=7)

where C'= C(n, H, K) is independent of {. Note that 3(7) = (8(7), —71),
the space-time tangent vector of 3 is (5, —1). Intuitively, (3.91) can be
understood that the “angle” between the space-time tangent and the
space tangent form a positive “angle” which is uniformly bounded be-
low.

Note that the reduced volume element (477) "e~!dv is decreasing
along 8. Up to a perturbation, 0F¢(M,0) can be regarded as a smooth
hypersurface in M satisfying

< C§2p0*17

(392) ‘afg(Mv 0) N Bg(O)(x7F)"H2n—1 =

for some C = C(n, A, F), F = F(n, H) is the constant in (3.89). Con-
sequently, 0F¢(M,0) x [~1,0] can be regarded as a hypersurface in the
space-time. Recall that (¢ is the collection of points z € M such that
there exists a shortest reduced geodesic B connecting (x,0) and (z, —1)
satisfying (3.81). By reduced geodesic theory (c.f. Section 7 of [49] and
the corresponding sections in [41] for more details), the following results
are known.

(a). For every z € M, (z,—1) can be connected to (z,0) by a shortest
reduced geodesic.

(b). For every z € M\E, (z,—1) can be connected to (x,0) by a unique
shortest reduced geodesm where F is a measure-zero set and is
called the L-cut-locus.
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Therefore, we can define a projection map ¢ as follows.

¢ : Byoy(z, H) N Fp(M,0) N {Q\E} — 0F¢(M,0) x [-1,0],
(3.93) z = B(7T).
For simplicity, let Q = By (x, H) N F,(M,0) N {Q\E}. The reduced
distance bound (3.83) and the entering-time bound (3.88) implies that
the reduced volume element (477) "e~!dv along B is uniformly equiv-
alent to dv, whenever 7 € [7, 1]. Since (477) "e!dv is monotone along

B3, we can regard dv as almost monotone, up to multiplying a uniform
constant C. Therefore, we have

|20 :/ 1dv < C/ e @y, S/ %_”e_l(y)dvy < C/ dvy,
Q Q () ()

where y = ¢(z). Note that inequality (3.91) can be regarded as an
“angle” bound, since 8 = (ﬁ ,—1). The uniform bound of | B | guarantees
that dvy, < Cldoy A dt| where doy, is the “area” element of 0F¢. Then
we have

Qe < c/ ldoy Adt] < C \dory A d|
w(0 {0Fe(M,0)NB (o) (z,F) } x[~1,0]

=C Haff(M? 0) N Bg(O)('x: F)} X [_17 0] "HQn

S C ‘8‘FE(M7 0) N BQ(O) (x7 F) ‘/HQn—l )
where we used the almost product structure of 0F¢ x [—1,0] in the last
step. Note that C = C(n, H,K) = C(n, A,n, H) since K is determined
by n, A (c.f. Proposition 2.10). Recall that

Q= Bg(O) (x, H)N fn(M, 0) N {Qg\E} .

Plugging (3.92) into the above inequality, we obtain (3.82). q.e.d.

Note that in Lemma 3.22, for every point
z € {Bg(O) (:C, H) N fn(M, 0)} \{Qg U E},
there is a unique shortest reduced geodesic connecting (z, —1) to (z,0)
and avoiding D¢(M,0). If z € { By (z, H) N F,(M,0) N E} \Q, then
every shortest reduced geodesic connecting (z, —1) to (x,0) must avoid

D¢(M,0). However, we may not have uniqueness.
Now we pass Lemma 3.22 to limit and have the following property.

Lemma 3.23 (Rough weak convexity by reduced geodesics).
Suppose LM; € K (n, A;1) satisfies

1 1
94 lim =
(3.94) iS00 <n * Vol(M))

Suppose x; € M;. Let (M,z,g) be the limit space of (M;,x;,gi(0)), R

be the regular part of M and T € R. Suppose t < 0 is a fized number.

+ sup(|R| + |)\|)> =0.
M;
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Then every (Z,t) can be connected to (Z,0) by a smooth reduced geodesic,
whenever Z is away from a closed measure-zero set.

Proof. Without loss of generality, let ¢ = —1 and A = 0. We use g(0)
as the default metric on the limit space.

Since T € R, it locates in R, for some 7y € (0,1), where we used
the notation defined in equation (2.21). Fix n € (0,79). Let E, ¢ be the
closure of the limit set of By, () (zi,n™) N Fy(M;,0) N Qe(M;), which
we denote by ng(Mz) for simplicity. Suppose z € E, ¢ is the limit of
some sequence z; € Egg(M,) Then it is easy to see that

z € B(Z,n 1) NR,(M).
For each i, there is a shortest reduced geodesic B; connecting (z;,0)
to (z;, —1) and passing through D¢(M;,0). Let 8 be the limit of 3;.
Note that 3 may pass through singularity. The largest 7 such that 3(7)
comes out of S¢ (c.f. equation (2.22) for notations) is denoted by 7 (c.f.

equation (3.87)). By (3.88), i.e., % <T< 1—%, we know 7 is uniformly
bounded away from 0 and 1. Moreover, d(z, (7)) is uniformly bounded
by some constant F' (c.f. inequality (3.89)), the value |3(7)| is uniformly
bounded by inequality (3.91). By taking limit on M, we see that for
every point Z (no matter whether it is a limit of points in E] ((M;)),
we can find a shortest reduced geodesic 8 connecting (z,0) and (z, —1),
with 7 satisfying (3.88) and /(7) locating in B(z, F') for some uniform
constant F, and |3(7)| uniformly bounded by C. Note that both C' and
F are independent of &.
As a closure, E, ¢ is clearly a closed set. Note that

Eye C B(z,n 1) N R, C B(Z,2n7") N Rosy,

which is an open smooth manifold. Therefore, E, . is measurable.

Suppose Zg, Zp are two points in En,f- Tracing their origin and use
the shortest property, it is clear that 3, and B, have no intersection
except (Z,0), where 3, is a shortest reduced geodesic connecting (z, 0) to
(Za4,—1), By is a shortest reduced geodesic connecting (Z,0) to (zp, —1).
Similar to (3.93) in the proof of Lemma 3.22, we now define a multi-
valued projection map ¢ from E, ¢ to OR¢ as follows:

gﬁ : E777§ — 8735 X [—1,0],
z+— {B(z), B is a shortest reduced geodesic connecting

(z,—1) to (z,0) with 8 NS¢ # 0}.

Following the argument at the end of the proof of Lemma 3.22, we have

|E777§|H27L = / 1d'U § C/ e_l(z)dvz S / %_ne_l(y)dvy,
Fn.g En.e ¢(Ene)
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where (y, —7) = B(7) for some 3 connecting (z,0) to (z, —1) satisfying
BNSe # 0. Note that the last inequality holds even if ¢ is multi-valued.
Starting from the above step, the remainder argument exactly follows
from the proof of (3.82). Consequently, we have

(3.95) |Eye] < CEPOY

for some C independent of . Note that E,, ¢, C E,, ¢, whenever
0<& <&, 0<mn<mn.

Then we define

(3.96) E,2 () Enpe
£e(0,m)

In light of (3.95), we see that E,, is a closed subset of B(Z,n~1) N R, (M)
with measure zero. Suppose

ze{B@n " )NR,(MINE, = |J {{B@n")NRy(M)}\Eye},
£€(0,m)

then z € B(z,n"') N R,y (M)\E, ¢ for some £ € (0,1). By the smooth
flow convergence on F¢(M;,0) x [—1,0] (c.f. Proposition 3.15) and the
definition of E, ¢, we obtain that (Z, —1) can be connected to (z,0) by
some shortest smooth reduced geodesic contained in R¢(M) x [—1,0].
Moreover, every smooth shortest reduced geodesic connecting (z,0) and
(z,—1) are uniformly ¢-regular. To be more precise, every point z €
{B(z,n ') N R, (M)} \E, satisfies the following property:

(2,—1) can be connected to (z,0) by a shortest smooth reduced geo-
desic 3. In other words, for every other smooth reduced geodesic vy with
the same ends, we have L(y) > L(3).

Now we define

(3.97) E2 ] By {B(E,Qk 2 *1)0732 m%}.
ke{1,2,--}

The 7y above is some fixed positive number. According to this definition,
every regular point locates in finitely many closed sets

E2_k7]0\ {B(a? 2k 2 )ﬂng 2y }

The reason we choose to define E in the way of (3.97) is to obtain
the closedness of £ U S. Note that if we simply define E to be the
union of all Fy—x, , then £ US may not be closed set. It is possible to
obtain points in Ey-x,  converging to a regular point. However, from
the discussion in the above paragraph, it is clear that for every regular
point, one can find a small closed ball regular neighborhood B where
every point (with time ¢ = —1) can be connected to (z,0) away from a
closed set E5 = E, N B, where n depends on B. Taking a countable,
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locally finite cover of R by such B’s and let E’ be the union of such Eg.
Then E’ is measure zero and relatively closed in R. The choice of E in
(3.97) follows the same idea, with the covering of R being written down
explicitly.

It follows from (3.97) that E' is the union of countably many measure-
zero sets. Consequently, E' is measure-zero. Fix arbitrary z € R\FE.
Because z € R, we see that z € B(z,n~') N R, (M) for some n > 0.
Accordingly, we can find kg very large such that

z € B(z,2%n5") N Ry, (M).
Now using z ¢ E and the decomposition of E in (3.96), we have

z ¢ EQ—kOnO\ {B( 2k0 2 ) ﬂRQ k0+2 }

S A {B(i’, 2k0_27]0_1) N R2k0+2n0} \E2—k0770,

= e {B(fc,z’%ngl) mRZ_kom} \Eyrop,.

Then it follows from our discussion in the previous paragraph that
(z,—1) can be connected to (Z,0) by a shortest smooth reduced ge-
odesic in R(M) x [-1,0].

It is not hard to see that K U S is a closed set, which will be proved
in this paragraph. Suppose z; is a sequence of points in E. Without
loss of generality, we can assume

zj € EQ—knO\{B(.T k= 2 )ﬂRQk 2y },

where k = k(). Let z be a limit point of z;. There are two possibilities
(by taking subsequence if necessary):
e zcS.
e 2 € R. Then z € Ry, N B(,0.5n71) for some n > 0. Therefore,
we can assume z; € R, N B(Z,n~ ') for large i. This forces that
k(i) is uniformly bounded. By taking subsequence if necessary,

we can assume that 2; € Fy—x, \ { B(, 2k=2p) )ﬂT\’,Qk 2 } for

a fixed k. By closedness of each E,, we see that
Z€E2—kn0\ {B( 2k 2 )OR2I€ 2 } CE

Therefore, we conclude that z € EUS. Note that S is a closed set and
has measure (2n-Hausdorff measure) zero. Then we obtain EUS is a
closed measure-zero set.

Clearly, away from the closed measure-zero set £ U S, every point
zZ € M satisfies the following property: (z,—1) can be connected to
(z,0) by a shortest smooth reduced geodesic. q.e.d.
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Remark 3.24. The development from Lemma 3.21 to Lemma 3.23
is parallel, or independent to the development from Proposition 3.17 to
Proposition 3.20. Our key observation is that the limit space has weakly
convex regular part, which essentially arises from the weak convexity of
R x [—1,0] in terms of reduced geodesics. Actually, there exists an
independent proof of Proposition 3.20 in Appendix C of [28].

By natural projection to the time slice ¢ = 0, we obtain the following
property.

Proposition 3.25 (Weak convexity by Riemannian geodesics).
Same conditions as in Lemma 3.23. Then away from a measure-zero
set, every point in R can be connected to T with a unique smooth shortest
geodesic. Consequently, R is weakly convex.

Proof. Fix T € R and let E be the measure-zero set constructed
in the proof of Lemma 3.23. Therefore, (y,—1) can be connected to
(z,0) by a smooth shortest reduced geodesic 3, with space projection
curve (3, whenever § € R\E. For our purpose of weak convexity, it
suffices to show that each g is a smooth shortest geodesic connecting z
and g. Actually, it follows from reduced geodesic equation on Ricci-flat

1
manifold (c.f. equations (2.8)) that £L(3) = §|ﬁ\2, where |3 is the length

of 5. Since both Z and g are regular, for each small ¢ > 0, we can find
a smooth geodesic v such that |y| < do(Z,y) + €, by Proposition 3.20.
Because the limit space-time is static, we can lift v to be a space-time
- b
- 2

curve v such that £(v) . Using the shortest property of 3 and

the construction of ~, we have

18I _

2y < o = 2 < D@D T

: DL = 1Bl <dol@) + e

Since € can be chosen arbitrarily small, we have || < dy(Z,y), which
means || = do(z,y) and S is a shortest Riemannian geodesic.

By adjusting F to a bigger measure zero set E’ if necessary, we obtain
the uniqueness of geodesics from 3 to T for each § € R\ E’. This follows
from standard Riemannian geometry argument since E'\F C R. q.e.d.

By the correspondence between smooth Riemannian geodesic and
smooth reduced geodesic (c.f. the discussion in Section 2.7 of [29]), it
is clear (from the proof of Proposition 3.25) now that most smooth re-
duced geodesics obtained in Lemma 3.23 are shortest among all smooth
reduced geodesics. Furthermore, the rough estimate in Lemma 3.21 can
be improved as the following proposition.

Proposition 3.26 (Continuity of reduced distance). Same con-
ditions as in Lemma 3.23. Suppose (y;,t;) € M; converges to (g,t),
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which is reqular and t < 0. Then we have

205 o
(3.98) tim 1((z1,0), (5. 1)) = DD _ 3z, 0), (7.5)),

i—00 - 4|f|

where | is Perelman’s reduced distance. Therefore, reduced distance is
continuous function under Cheeger—Gromouv topology whenever y is reg-
ular.

Proof. Without loss of generality, we assume t; = —1, do(x;,y;) = 1.
We first show

(3.99) lim I((zi,0), (yi, t:)) <

1—00

|

If x; are uniformly regular, then there is a limit smooth geodesic con-
necting Z and ¢, which can be lifted to a smooth reduced geodesic con-
necting (z,0) and (7, —1) with reduced length . Then (3.99) follows
trivially. So we focus on the case when T is a singular point. Choose a
smooth point z very close to Z, say d-away from Z under metric g(0).
From Lemma 3.21, the reduced length from (z;,0) to (2;, —62) is uni-
formly less than 100. So we have space-time curves «; connecting these
two points such that
52
VTl 2dr < 2000.

Note that (2, —42) and (7, —1) can be connected by a space-time curve
3 such that

1
, 1
/ VT|B2dr < = + 1006,
52 2

if § is small enough. So for large i, we have space-time curve 3, con-
necting (z;, —6%) and (y;, —1) such that

1
: 1
/ VT|BiPdr < 5+ 2000.
52

Concatenating o; and B; to obtain -y, such that
! 1
/ VTP < 5 +4005,
62

which implies I((2;,0), (y;, —1)) < 1 + 2008 for large 4. Thus, (3.99)
follows by letting ¢ — oo and § — 0.

Then we show the equality holds. Otherwise, there exists a small €
such that

lim I((z5, 0), (s, 1)) < i e

i—00
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Note that (y;, —1) is uniformly regular. So we can find small 0 such that

1 1
(24,0, (2, -1 — %)) < 17 3% V z € By_1_52)(yi, €6).
By Lemma 3.23, we obtain a point (2, —1 —§2), which can be connected
o (%,0) by a smooth reduced geodesic, with reduced length smaller
than % — %6. Projecting this reduced geodesic to time zero slice, we

obtain a curve connecting z and z with

1 1
d3(z,7) < 4(1 +62) - (4 — 26> = (1+6%)(1—2¢) <1—¢
if we choose § sufficiently small. This is impossible since do(Z,y) = 1.
Therefore, we have

lim ((z1,0), (yi, —1)) = ~. qed.

1—>00 4
Since singular set has measure zero, it is clear that
71— 00

where the “lim” of the right hand side of the above inequality should
be understood as “limsup”. We shall improve the above inequality as
equality.

Lemma 3.27 (Major part of reduced volume). For every posi-
tive n and H, there exists an € = €(n, A,n, H) with the following prop-
erties.

Suppose LM € H (n, A), x € F,(M,0). Then we have

(3.101) < 2a(H),

V((,0),1) — (47)~" / Ly

Bg(O) ('IvH)

whenever sup v (|R| + |A|) < €. Here a is a positive function defined as

(3.102) a(H) 2 (4@‘”/ 5 du.

{|w|>£}cR2n
100

Proof. The line bundle structure is not used in the following proof.
So up to a parabolic rescaling if necessary, we can assume A\ = 0.

For every y € M, there is at least one shortest reduced geodesic
~ connecting (z,0) and (y,—1). By standard ODE theory, the limit
lig% V7Y (7) is unique as a vector in T, M, which is called the reduced

tangent vector of 4. Away from a measure-zero set, every (y, —1) can be
connected to (z,0) by a unique shortest reduced geodesic. For simplicity
for our argument, we may assume this measure-zero set is empty, since
measure-zero set does not affect integral at all. So there is a natural
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injective map from M to T, M, by mapping y to the corresponding
reduced tangent vector w. We define

Q(H) £ {y € M||w| > H}.

It follows from the monotonicity of reduced element along reduced ge-
odesic that

/ (4m) e Ldw S/ (4m) e T dw.
Q(H) {|w|>H}CR2"

Choose ¢ < n, with size to be determined. Suppose ~ is a reduced
geodesic connecting (x,0) to (y, —1) for some y € M. It is clear that
7(0) is in the interior part of F¢(M,0). Let 7 to be the first time such
that v(7) touches the boundary of F¢(M,0). Then we see that v([0, 7])
locates in a space-time domain with uniformly bounded geometry, Ricci
curvature very small. In particular, the reduced distance between (z,0)
and (1) is comparable to the length of @, which is the reduced tangent
vector of v at (x,0). If || < H, then we see that

N 2
P do@ )y an’
4 4 4T 1007’ 25H2"

Note that v([0,7]) is in a space-time region where Ricci curvature is
almost flat, geometry is uniformly bounded. So the lower bound of 7
and the upper bounded of |@] imply an upper bound of dg)(x, (7))
Say dg(o) (@, (7)) < H'.

Around «, there is a natural projection (induced by reduced geodesic)
from the space-time hypersurface 0F¢(M,0) x [—1, —%—ZZ], to the time
slice M x {—1}. At point (7), v has space-time tangent vector (7', —1),
with 7|y/(7)|? is almost less than HTQ. Together with the lower bound
of 7, we obtain an upper bound of |7/(7)|. Up to a constant depending

on H,n, the volume element of dF¢(M,0) x [—1, —265%1322] is compara-
ble to the reduced volume element (477)~"e~! of M, around the point
~(7). Note that the reduced volume element is monotone along each re-
duced geodesic. This implies that the projection map mentioned above
“almost” decreases weighted hypersurface volume element, if we equip
{B(x, H')NOF¢(M,0)} x [~1, — ;=] with the natural weighted volume
element e~!|do Adt|. Let Q¢ be the collection of all y’s such that (y, —1)
cannot be connected to (z,0) by a shortest reduced geodesic v which
locates completely in F¢(M,0) x [—1,0]. Then we have

1
/ e l(drr) v < 0/2 ) / e ldodr
Q; ity J B(z, H')NOF¢(M,0)

< c/ do < CEo1,
B(x,H")NOFe (M.0)
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where C' = C(n,H,H',n) = C(n,H,n). By choosing ¢ small enough,
we have

(3.103) / e (amr) o < (4m)"a(H).
3

Note that

Quoorr N By(o (z, H) C Q, M\ (% U By(oy (2, H)) C Q.

100

Therefore, recalling the definition of reduced volume (2.7), we have

(477)"V((x,0),1):/ e ldv

M

:/ eldv+/
M\(Q4UB (o) (z.H)) Q

||
S/ e 4 dw—i—/
|| > 2 Q

100

e ldv + / e tdv
¢ By (o) (=, H)\

e tdv + / e tdv
Bg(O) (va)

’
13

@2
< / e_l : dw + Cg?Po~t +/ e ldv
|@1> 105 Bg(o)(z,H)
< 2(4m)"a(H) +/ e ldv.
Bg(O) (LL’,H)
Then (3.101) follows from the above inequality directly. q.e.d.

Lemma 3.27 is related to Corollary 6.82 of [45].

Lemma 3.28 (Uniform continuity of reduced volume). Suppose
M = {(M,g(t)),—7 <t < 0} is an unnormalized Kdihler Ricci flow
solution. Suppose x,y are two points in M, d = dgq)(z,y). Then we
have

(3.104) V((z,0),7) —V((y,0),7)| < (4n + 1)(eg —1).

In particular, the reduced volume changes uniformly continuously with
respect to the base point.

Proof. Recall the definition of reduced volume (2.7):

V((z,0),7) = (4%7)_”/ e ldv.
M
Let x move along a unit speed Riemannian geodesic «, with respect to
the metric g(0). Let x = «(0), s be parameter of a, @ = o/. For sim-
plicity of notation, we denote V((a(s),0),7) by Vs. It can be calculated
directly the first variation of [ is (i, W) where w0 is the tangent vector of
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the reduced geodesic at time ¢ = 0. Therefore, we have

%V((O‘(s)v 0)7 T)

_ ‘(4777)—71/M< Byeldv| < (4m T)—n/M L 1,

1 1 4 3|2
:V+/ 2" Jdw < v+( ™™ / @2e "5 dw,
2 RQn R2n

2 2

where J is the Jacobian determinant of the reduced exponential map,
which is always not greater than 1, due to Perelman’s argument in
Section 7 of [49]. Plugging the identity

ik
(471')”/ 72e~ " dw = 4n,
R2n
into the above inequality implies !%V‘ < %V + 2n, which can be inte-
grated as
(=Vo+4n)(1—e72) < Vs — Vo < Vo + 4n)(e2 —1).
Note that 0 < Vy < 1,s > 0. So we obtain
Vs — Vol < (4n+1)(e2 — 1),

which yields (3.104) by letting s = d. q.e.d.

The above argument clearly works for every Riemannian Ricci flow.

Note that the reduced volume is continuous for geodesic balls of each
fixed scale under the Cheeger—-Gromov convergence. Combining this
continuity together with the estimate in Lemma 3.27 and Lemma 3.28,
we can improve (3.100) as an equality.

Proposition 3.29 (Continuity of reduced volume). Same con-
ditions as in Lemma 3.23, t < 0 is a finite number. Then we have

(3.105) V((7,0), 1) = lim V(s 0), 17)-
1— 00
Then we can study the gap property of the singularities.

Proposition 3.30 (Gap of local volume density). Same condi-
tions as in Theorem 3.18.
Suppose y € S(M), then we have

(3.106) v(y) = lim wo 2| B(g,7)| < 1 — 250.
Proof. Due to the tangent cone structure (c.f. Theorem 2.6), we have
(3.107) v(g) = lim wy, v~ 2| B(g,r)| = lim V((7,0),7%).
r—0 r—0

Let y; — y under the metric g;(0). By rearranging points and taking
subsequences if necessary, we can assume ¥; has the “local minimum”
canonical volume radius p;.
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The rearrangement is a standard point-picking technique. In fact,
since 7 is a singular point, it is clear that r; = cvr(y;,0) — 0. Since
everything is done at time slice ¢ = 0, we shall drop the time in the
following argument. Fix L > 1 and ¢, we search if y; is the point such
that

cvr(y) < 0.5cvr(y;), Vy € By, Lr;).

If so, we stop. Otherwise, we can find a point z € B(y;, Lr;) such that

i(l) and set 7“2(1) = cvr <y§1)>.

(1)
in the ball B (yi(l), LT‘ZQ)) with cvr < 0.57“2(1). If no such points exist,
(2)

i

cvr(z) < 0.5cvr(y;). Denote such z by y

We then repeat the previous process for y;”' and 7"1(1) . To search points

we stop. Otherwise, we find such a point and denote it by y.” and set

7”52) =cvr (%(2)). Note this process happens in a compact set since

% %

d (yf“),yi) <L (m + ) 4+ -+ r(k)> < 2Lr;.

Each LM; is smooth. Therefore, the process above must stop at some
(k)

%

cvr(y) > 0.50;, Yy € B(zi, Lpi).

finite step k. Denote z; = y; ' and p; = cvr(z;). Then we have

Note that Lp; — 0 as ¢ — co. Therefore, the limit of z; and the limit of
y; are the same point . Then we let L = L — oo and take diagonal
sequence if necessary, we can guarantee that L;p; — 0 and p; — 0
simultaneously. Thus, we obtain z; such that

cvr(y) > 0.5p;, Yy € B(zi,Lip;); llgg 2 =17

Therefore, we can regard z; as the rearrangement of y;, with the property
that each z; achieve the “local minimum” of cvr.

By rescaling p; to 1, we obtain new Ricci flows g;. Taking limit of
(M;, i, gi(0)), we have a complete, Ricci flat eternal Ricci flow solution.
It is not hard to see the limit space is not Euclidean. For otherwise,
each geodesic ball’s volume ratio, under metric §o(0), is exactly the
Euclidean volume ratio wo,. Following from the volume convergence
and the definition of the canonical volume radius, it is clear that the
canonical volume radius of the rescaled flow is strictly greater than 1
which contradicts to our assumption. So it has normalized asymptotic
volume ratio less than 1 — 2dp, according to Anderson’s gap theorem.
Then the infinity tangent cone structure implies the asymptotic reduced
volume is the same as the asymptotic reduced volume ratio. So it is at
most 1 — 26g. Therefore, there exists a big constant H such that

Vi ((:,0), H) < 1 — 25.



SPACE OF RICCI FLOWS (II)—PART B 73

Note that H p? < r for each fixed r and the corresponding large i.
Recall the scaling invariant property of reduced volume, we can apply
the reduced volume monotonicity to obtain

Vo (9, 0),7%) < Vg (96, 0), i *r) < Vg, (9, 0), H) < 1= 200,
The continuity of reduced volume (Proposition 3.29) then implies that
V((5,0).7%) <124,

for each r > 0, which in turn yields

(3.108) lim V((7,0),72) < 1 — 24.

r—0

Then (3.106) follows from the combination of (3.107) and (3.108). q.e.d.

Theorem 3.31 (Metric structure of a blowup limit). Suppose
LM; € K# (n,A;1) satisfies (3.94), x; € M;. Let (M,z,g) be the limit
space of (M;,x;,9:(0)). Then M € ¥ (n, k).

Proof. We only n@f_i/ to check M satisfies all the 6 properties required
in the definition of # . (n, k), i.e., Definition 2.1. In fact, the 1st prop-
erty follows directly from definition. The 2nd property follows from the
fact that R is scalar flat and satisfies Kahler Ricci flow equation, by
Proposition 3.15. The 3rd property, weak convexity of R is shown in
Proposition 3.25. The 4th property, codimension estimate of singularity
follows from Proposition 3.19. The 5th property, gap estimate, follows
from Proposition 3.30. The 6th property, asymptotic volume ratio es-
timate can be obtained by the condition Vol(M;) — oo, Sobolev con-
stant uniformly bounded, and the volume convergence, Proposition 2.14.
Note that k = k(n,Cyg) is in general much smaller than ws,. More de-
tails can be found in Re/nilirk 3.32. So we have checked all the prop-
erties needed to define #.%(n, x) are satisfied by M. In other words,

M € J/i/\;’(n, K). q.e.d.

Remark 3.32. It is known in the literature of the Ricci flow that
a noncollapsing constant x can be determined by dimension and the
L2-Sobolev constant Cg of a closed manifold (M?", g), whenever scalar
curvature is uniformly bounded. Actually, it follows from the observa-
tion of Klaus Ecker (c.f. Lemma 8 of Cao—Sesum [4]) that u(g,7) is
uniformly bounded from below for each 7 € (0, m), where u(g, 1)
is the functional of Perelman. Then the s-noncollapsing of each geo-
desic ball B(y,r) follows from the argument of Perelman (c.f. Remark
13.13 of Kleiner-Lott [41]), whenever |R|r? < 1. Note that |R| — 0 by
(3.94), we obtain uniform x-noncollapsing for each fixed r on (M;, g;(0)),
whenever i large enough. In other words, for each » > 0, with respect
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to the metric ¢;(0), we have

B
g | (y,;”)l .
YEM; Wopr™

for large 1.

Since M € %(n, K), it is clear that cr(z) = co. Therefore, we have
vr(Z) = cvr(z) by definition.

Proposition 3.33. Same conditions as in Theorem 3.31. Let 7 =
lim cr(z;). Then we have
1—00

(3.109) min{7, vr(z)} = Zlg& cvr(z;).

Proof. We divide the proof in three cases according to the value of
min{7, vr(z)}.

Case 1. min{r,vr(z)} = 0.

Otherwise, there exists a positive number py such that

lim cvr(z;) > po.

1— 00
Therefore, z € R,, C R, which in turn implies that vr(z) > 0. Conse-
quently, we have min{7, vr(z)} > 0. Contradiction.

Case 2. min{7, vr(Z)} = oco.

In this case, vr(Z) = oo. By the gap theorem in the space . (n, k),
we see that M is the Euclidean space C". Therefore, for each H > 0, we
have wy ! H~2"|B(z;, H)| converges to 1, the normalized volume ratio of
C™. Since 7 = lim cr(z;) = oo, this means that cvr(z;) > H for large

1—00
i by the volume convergence. Since H is chosen arbitrarily, we obtain
lim cvr(z;) = oc.
1—00

So the remainder case is that min{7, vr(z)} is a finite positive num-
ber. Two more subcases can be divided.

Case 3(a). min{7,vr(z)} < T.

Let H = vr(Z), a finite number in this case. Clearly, Z is a regular
point and the normalized volume ratio of the ball B(z, H) is 1 — dy.
Clearly, B(Z, H) cannot be a isometric to an Euclidean ball. Therefore,

by the rigidity of ﬁ(n, k) (c.f. Proposition 2.3), we see that
wolr T2 B(Z, )| > 1— 6, Ve (0,H),
wo lr 2| B(Z,7)| <1 -3, Yre (H,F).

Then the volume convergence implies that Zlggo cvr(z;) = H.

Case 3(b). min{r,vr(z)} = 7.
In this case, we see that the normalized volume ratio of B(z,7) is at
least 1 — dg. Also, we see that T is a regular point. Same argument as



SPACE OF RICCI FLOWS (II)—PART B 75

in the previous case, we see that
wo 2| B(Z,7)| > 138, V1€ (0,7).

Therefore, for every fixed r € (0,7), the volume convergence implies

that lim cvr(z;) > r. Consequently, we have lim cvr(z;) > 7 by the
1—00 1—00

arbitrariness of 7. On the other hand, the definition of cvr(z;) implies
that

lim cvr(z;) < lim cr(x;) = 7.

1—00 1—+00
Therefore, we obtain lim cvr(z;) = 7. q.e.d.
1—00

Corollary 3.34. Same conditions as in Theorem 3.31. Then for
each r € (0,1), we have

(3.110) Fr(M) = R.(M).

In particular, for each 0 <r <1< H < 0o, we have

Blas, H) 0 Fo(My) 2 B(z, H) N F,(I).

Moreover, this convergence can be improved to take place in C°°-topology,
1.€.,

(3.111) Blas, H) N F(My) — B(z, H) 1 F(M).

Corollary 3.35. Same conditions as in Theorem 3.31, 0 < H < 3.
Then we have

(3112) hm Vr(l)(y)*QpOdy < H2n72pOE.
1—00 B(IZ,H)

Proof. Fix two positive scales r1,ro such that 0 < ro <r; < 1.

(3.113) / veD (y) 2P0y
B(xi,H)ﬁf—'rl
< | B(xy, H) N Fpy | < 77 2P| B(ay, H))|
> ) ril =T 2 .
Fix arbitrary r € (0,1), then we have
lim vrD (y) 2Py

=00 ) B(ai, H)N(Fry \Fry )

vl (y)“2ody.

/B(x,H)ﬂ(]-',.Q NFry)
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Note that

/ v (y) 7o dy
B(z,H)N(FryNFry)

< min{vr, 1}~ 2P°dy

/B(gi,H)ﬁ(]—‘r2 NFry)

< / {1+ vr(y)_2p°} dy
B(Z,H)N(FryNFry)

< / {1+vr(y)~*°}dy
B(z,H)
< |B(a_77 H)| + HQn_2p0E(n’ 571)0)'
It follows that

(3.114) lim v (y) 2Py
100 B(z:,H)N(Fry\Fry)

<|B(z,H)|+ H*" *"E(n, x,po).

Note that S N B(z, H) is a compact set with Hausdorff dimension at
most 2n — 4, which is strictly less than 2n — 2py. By the definition

of Hausdorff dimension, for every small number £, we can find finite

Ne
e By, p;) of 8 N B(z, H), such th |22 B

cover U, B(y;, p;) of SN B(z, H), such that Z]p]| < ¢ By
j=1

the finiteness of this cover, we can choose an r9 very small such that

ijle(fgj,pj) is a cover of D,, N B(Z,H). Therefore, for large i, we

have a finite cover Uj.vilB(ym,pj) of the set D,,(M;) N B(z;, H) such

N;
that Z\pi,jl%_z”o < ¢. Combining this with the canonical radius

Jj=1
density estimate, we have

N;
3.115 / vr (y)72Pody < /
( ) B(zi,H)ND v= zz:
N,

Vr(ﬂi,j) (y)—zp() dy
)

ro yz ,3oPig

<2B) |pi |7 < 2EL.
j=1
Putting (3.113), (3.114) and (3.115) together, we have

/ v (y) 7o dy
B(z;,H)

< / v () "2dy / vr( ()20 dy
B(-’Ei,H)m]:rl B(mi7H)m('FT2\‘FT1)
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+f v () 2y
B(z;,H)NDy,
< 7| B(xy, H)| + |B(z, H)| + H*™ 2P E(n, k, po) + 2EE.

Taking limit on both sides and then letting £ — 0,71 — 1, we have

lim vl (y) 2 < 2|B(z, H)| + H*" > E(n, &, po)
1—00 B(mZ,H)

< (2w2nH2p0 + E(”? K, pO)) H?" 2P0
S (2 : 9p0w2n + E(TL, K’apO)) H2n_2p07

where we used the fact that H < 3 in the last step. Then (3.112) follows
from the definition of E. q.e.d.

Proposition 3.36. Same conditions as in Theorem 3.31. Suppose
1< H <. Then we have

(3.116) lim sup wy, p 2"|B(zi, p)| < k7,

1—00 1<p<H
where g;(0) is the default metric. In other words, for every large i, the
volume ratio estimate holds on (M;, z;, g;(0)) for every scale p € (0, H].

Proof. We argue by contradiction. If (3.116) were false, by taking
subsequence if necessary, one can assume that there exists p; € [1, H]
such that wy,! p; 2"|B(zi, p;)| > k1. Recall that we are in the situation
that cr is bounded from below by 1. Let p be the limit of p;, then by
the volume continuity in the pointed—64—Cheeger—Gromov convergence,
we see that

(3.117) w52 B(@,5)] > w7

However, since M € inft;”(n, K), we know wy, 52" B(Z, p)| < 1, which
contradicts (3.117). q.e.d.

Proposition 3.37. Same conditions as in Theorem 3.31. Suppose
1 < H < oo. For every large i, the regularity estimate holds on
(M;, x4, 9i(0)) for every scale p € (0, H].

Proof. If the statement were false, then by taking subsequence if nec-
essary, we can assume there exists p; € (0, H] such that the regularity
estimates fail on the scale p;, i.e., the following two inequalities hold
simultaneously.

(3.118) won p; "B (i, pi)| > 1 = b,
(3.119) max { p2™*  sup  |[VERm|p > 4c; 2
0<k<5 | * B keaps) “
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Clearly, p; € [1, H] by the fact cr(z;,0) > 1. Let p be the limit of p;.
Then we have

(3.120) Wyl p 2| B(z, p)| > 1 — do.

n

Since M € %(n, k), (3.120) implies

—2+k ka < —2
0<k<s {p Bes) | m'} far

which contradicts (3.119) in light of the smooth convergence (c.f. Propo-
sition 3.15). q.e.d.

Proposition 3.38. Same conditions as in Theorem 3.831, 1 < H < 2.
Then we have

3

(3.121) lim sup p2p02n/ vrP) ()70 dy < ZE.
i 1<p<H B(i.p) 2

In particular, the density estimate holds on (M;, x;, gi(0)) for every scale

p € (0, H] and each large i.

Proof. Since vr(?) > vr(1) whenever p > 1, in order to show (3.121),
it suffices to show

3

(3.122) lim sup p2p°_2n/ v (y)~2Pody < ZE.
100 1<p<H B(zi,p) 2

We argue by contradiction. If (3.122) were false, by taking subsequence

if necessary, one can assume that there exists p; € [1, H] such that

3
pirom / vl (y)~?dy > “E,
xzvpz) 2

3
:>/ vrD (y)~2Pody > Epzn 2P0,
mz pz

Let p be the limit of p;. Fix € arbitrary small positive number, then we
have
3 _ 5
(3.123) / v (y)72ody > SEpX 0 > ZE(p 4 €)2n 0,
B(z;,p+e€) 2 4
for large ¢. Note that p + € < 3, so (3.123) contradicts (3.112). q.e.d.

Proposition 3.39. Same conditions as in Theorem 3.31. Suppose
1 < H < oco. Then for every large i, the connectivity estimate holds on
(M;, x4, gi(0)) for every scale p € (0, H].

Proof. By the canonical radius assumption, we know the connectivity
estimate holds for every scale p € (0, 1].

If the statement were false, then by taking subsequence if necessary,
we can assume that for each ¢, there is a scale p; € [1, H] such that the

connectivity estimate fails on the scale p;. In other words, F 1 1o, pi )
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B(x;, pi) is not %ebpi-regularly connected. So there exist points y;, z; €
f%@bm N B(x;, p;) which cannot be connected by a curve v C féebpi
satisfying |y| < 2d(y;,2;). By the canonical radius assumption, it is
clear that p; € [1, H], d(yi,z:) € [1,2H]. Let p be the limit of p;, ¥ and
Z be the limit of y; and z;, respectively. Clearly, we have y,Z2 € R1 . C

50 CbP
Fa1 . (M). Since M € #.%(n,k), we can find a shortest geodesic 7
100 “bP

connecting § and z such that ¥ C F,;. Note that the limit set of
F1ep; N B(@i, pi) falls into F 1 5. Moreover, this convergence takes
50 K 100

place in the smooth topology (c.f. Corollary 3.34). So by deforming ¥

if necessary, we can construct a curve -; which locates in Fi1 eopi and
2 7

lvil < 2d(y,%) < 3d(yi, 7). The existence of such a curve contradicts
the choice of the points y; and z;. q.e.d.

Combining Proposition 3.36 to 3.39, we obtain a weak-semi-continuity
of canonical radius.

Theorem 3.40 (Weak continuity of canonical radius). Same
conditions as in Theorem 3.31. Then we have lim cr(M?) = oo.
1—00

Proof. If the statement were wrong, then we can find a sequence
of polarized Kéahler Ricci flow solutions LM; € J# (n, A; 1) satisfying
(3.94) and
(3.124) lim er(MY) = H < .

1—00
Here cr(M?) = cr(M, g;(0)). We remind the readers that cr is defined
in Definition 2.9, ¢ (n, A;1) is defined in Definition 3.14.
For each M, we can find a point x; such that

er(z:,0) = er(zi, g:(0)) < Ser(MO)

2
by definition. So we have
3
(3.125) lim cr(z;,0) < -H < 0.

In light of Proposition 3.36, Proposition 3.37, Proposition 3.38 and
Proposition 3.39, we see that there exists an N = N(H) such that for
every ¢ > NN, we have volume ratio estimate, regularity estimate, den-
sity estimate and connectivity estimate hold on each scale p € (0,2H].
Therefore, by definition, we obtain that lim cr(z;,0) > 2H, which con-

11— 00

tradicts (3.125). q.e.d.

Corollary 3.41 (Weak continuity of canonical volume radius).
Same conditions as in Theorem 3.31. Then we have

vr(z) = lim cvr(z;).
1—00
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Proof. 1t follows from the combination of Proposition 3.33 and The-
orem 3.40. q.e.d.

Theorem 3.42 (Weak continuity of polarized canonical ra-
dius). Suppose LM; € # (n, A;0.5) satisfies (3.94). Then

per(M?) > 1,
for i large enough.

Proof. Note that in Theorem 3.31 and Theorem 3.40, the condition
LM; € X (n,A;1) can be replaced by LM; € & (n, A;rg) for arbitrary
ro € (0,1). The existence of a fixed ry allows us to use the weak com-
pactness theorem and then the proof follows verbatim. The exact value
of rp is not important in the argument.

Now the theorem follows from the combination of Theorem 3.31, The-
orem 3.40 (for the case o = 0.5) and Corollary 3.11. q.e.d.

3.4. A priori lower bound of pcr. We shall use a maximum principle
type argument to show that the polarized canonical radius cannot be
too small. The technique used in the following proof is inspired by the
proof of Theorem 12.1 of [49].

Proposition 3.43 (A priori lower bound of pcr). There is a
uniform integer constant jo = jo(n, A) with the following property.
Suppose LM € J (n, A), then
1
(3126) pcr(Mt) Z —,
Jo

for every t € [—1,1].

Proof. Suppose for some positive integer jg, (3.126) fails at time ty €
[—1,1]. Then we check whether

1
t
pcr(M') > —
2jo
on the interval [ty — 2%.0, to + 2%0] If so, stop. Otherwise, choose t; to

be such a time and continue to check if pcr(M?) > ﬁ on the interval

[t1 — ﬁ, t + ﬁ] In each step, we shrink the scale to one half of the
scale in the previous step. Note this process will never escape the time
interval [—2, 2] since
|t — to] < L (L + :
P Go\2 T
By compactness of the underlying manifold, it is clear that the process
stops after finite steps. So we can find t; such that

1

2k jo’

1 1
++ )< =<1, |t <l|to]+1<2.
2% Jo

leo S pcr(Mtk) <
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and per(M?) > 2k+1 for every t € [ty — 2k+1 S+ 2k+1j |. Translating
the flow and rescahng it by constant 4%;2 Jo, we obtain a new polarized
Kihler Ricci flow LM € ¢ (n, A) such that

per(M°) < 1,
per(M') > 5. 3. Vite[=281jo, 25 o),
IRl +[A < giz < j%, on M,

0 —
%"‘Vol%M) < 2k=Tj, 1 o T 2’ on M.

(3.127)

In other words, LM € . (n,A;0.5) and |R| + |A| + & + W very
small.

Now we return to the main proof. If the statement fails, after ad-
Justing, translating and rescaling, we can find a sequence of polarized
Kahler Ricci flow LM; € J (n, A;0.5) satisfying

pcr (MO) <1,
{ 7+ Vol( 5 +sup g (R + [A) =
which contradicts Theorem 3.42. q.e.d.
Let h = =-. Then we have the following fact.

Theorem 3.44 (Homogeneity on small scales). For some small
positive number h = h(n, A), we have

(3.128) H(n, A) = H (n, A: 1)

4. Structure of polarized Kahler Ricci flows

In this section, we shall study the structure of polarized Kahler Ricci
flows belong to # (n,A). In light of Theorem 3.44, it is known that
H (n,A) = # (n,A;h). Therefore, we do have a uniform lower bound
of polarized canonical radius for every flow in J¢ (n, A).

4.1. Local metric, flow, and line bundle structure. The purpose
of this subsection is to set up estimates related to the local metric struc-
ture, flow structure and line bundle structure of every flow in % (n, A).
In particular, we shall prove Theorem 1.2 and Theorem 1.3.

Proposition 4.1 (Kéhler tangent cone). Suppose LM; € # (n, A)
is a sequence of polarized Kihler Ricci flows. Let (M,Z,g) be the limit
space of (M;,x;,g;(0)). Then for each § € M, every tangent space of
M at § is an irreducible metric cone. Moreover, this metric cone can
be extended as an eternal, possibly singular Ricci flow solution.

Proof. 1t follows from Theorem 3.44 and Theorem 3.18 that every
tangent space is an irreducible metric cone. From the proof of Theo-
rem 3.18, it is clear that the tangent cone can be extended as an eternal,
static Ricci flow solution. q.e.d.
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Proposition 4.2 (Regularity equivalence). Same conditions as in
Proposition 4.1, y € M. Then the following statements are equivalent.

1) One tangent space of y is C™.

2) Every tangent space of y is C".

3) § has a neighborhood with C*-manifold structure.

4) g has a neighborhood with C'*°-manifold structure.

5) § has a neighborhood with C*-manifold (real analytic manifold)
structure.

Proof. 1t is obvious that 5 = 4 = 3 = 2 = 1. So it suffices to
show 1 = 5 to close the circle. Suppose y has a tangent space which is
isometric to C™. So we can find a sequence 1 — 0 such that

- _ _9_\ PG.H.
(M7 Y, T 29) — (Cna 07 gEuc)
So for large k, the unit ball B, -2 (y,1) has volume ratio almost the
k

Euclidean one. Fix such a large k, we see that Bg(y,r;) has almost
Fuclidean volume ratio. It follows from volume convergence that

cvr(y;, 0) > 7,

for large i, where y; € M; and y; — g as (M;,x;,g;(0)) converges to
(M,z,3). By the regularity improving property of canonical volume
radius, there is a uniform small constant ¢ such that B(y;,cry) is dif-
feomorphic to the same radius Euclidean ball in C” and the metrics on
B(y;, cri) is C?-close to the Euclidean metric. Then one can apply the
backward pseudolocality (c.f. Theorem 4.7) to obtain higher order de-
rivative estimate for the metrics. Therefore, B(y;, 3cry,) will converge in
smooth topology to a limit smooth geodesic ball B(y, %crk). Moreover,
it is clear that geometry is uniformly bounded in a space-time neighbor-

hood containing B(y;, %crk) x [—c?rZ,0], by shrinking c if necessary. So

we obtain a limit Kéhler Ricci flow solution on B(y, tery) x [—1c%r?, 0].
It follows from the result of Kotschwar (c.f. [42]), that B(y, tery) is
actually an analytic manifold, which is the desired neighborhood of .

So we finish the proof of 1 = 5 and close the circle. q.e.d.

Remark 4.3. By Proposition 4.2, our initial non-classical definition
of regularity is proved to be the same as the classical one.

Proposition 4.4 (Volume density gap). Same conditions as in
Proposition 4.1, y € M. Then y is singular if and only if

(4.1) limsup L <1 95,

Proof. 1f (4.1) holds, then every tangent cone of § cannot be C", so ¢
is singular. If 7 is singular, then every tangent space of 7 is an irreducible

metric cone in the model space # .7 (n, k) with vertex a singular point,
it follows from the gap property of #.%(n, k) that asymptotic volume
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ratio of such a metric cone must be at most 1 — 2dp. Then (4.1) follows
from the volume convergence and a scaling argument. q.e.d.

Proposition 4.5 (Regular-Singular decomposition). Same con-
ditions as in Proposition 4.1, M has the reqular-singular decomposition
M =RUS. Then the reqular part R admits a natural Kdhler structure
J. The singular part S satisfies the estimate dimy S < 2n — 4.

Proof. The existence of J on R follows from smooth convergence, due
to the backward pseudolocality (c.f. Theorem 4.7) and Shi’s estimate.
The Hausdorff dimension estimate of S follows from the combination of
Proposition 3.19 and Theorem 3.44. q.e.d.

Therefore, Theorem 1.2 follows from the combinations from Proposi-
tion 4.1 to Proposition 4.5. Now we are going to discuss more delicate
properties of the moduli space £ (n, A).

Proposition 4.6 (Improved regularity in two time directions).
There is a small positive constant ¢ = c(n, A) with the following prop-
erties.

Suppose LM € J# (n,A), vo € M. Let ro = min{cvr(zg,0),1}.
Then we have

for every k € ", x € Byo)(wo, cro), t € [—c2r2, c2r?]

constant depending on n, A and k.

. Here C}, is a

Proof. Otherwise, there exists a fixed positive integer ky and a se-
quence of ¢; — 0 such that

(4.2) (ciri) TR VR Rm| (y;, t;) — oo,
for some y; € By, (o (w4,73), t; € [—cir?, ¢ir?], where
r; = min{evr(z;,0),1}.
Let §;(t) = (c;iri) 2gi((ciri)?t + t;). Then we have
cvry, (i, 0) = (ciri)™H — oo,

Note that pery, (y;,0) > min{h(cir;) 1,1} > 1. It is also clear that for
the flows g;, |R| + |A| — 0. Therefore, Proposition 3.15 can be applied
to obtain

- C= o
However, it follows from Theorem 3.31 and Corollary 3.41 that
(NL.3.9) € H F (n.r),  eve(j) = oc.
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In light of the gap property, Proposition 2.2, we know that M is iso-
metric to C™. So the convergence (4.3) can be rewritten as

(M; 3. 5i(0)) <= (T, 0. guc).
In particular, |[V* Rm/z, (y;,0) — 0, which is the same as
(ciri) 2R [V R (y;, ti) — 0.
This contradicts the assumption (4.2). q.e.d.

Perelman’s pseudolocality theorem says that an almost Euclidean do-
main cannot become very singular in a short time. His almost Euclidean
condition is explained as isoperimetric constant close to that of the Eu-
clidean one. In our special setting, we can reverse this theorem, i.e., an
almost Euclidean domain cannot become very singular in the reverse
time direction for a short time period.

Theorem 4.7 (Two-sided pseudolocality). There is a small pos-
itive constant & = £(n, A) with the following properties.

Suppose LM € A (n,A), xyg € M. Let
,
Q= Bg(O)(x07T>v Q= Bg(())(x(]a 5)7

for some 0 < r < 1. Suppose I(2) > (1 — §p)I(C"™) at time t =0, then
(&r)? TR VERm|(2,t) < C,

for every k € Z=29, x € Q, t € [—€%2,£%r%]. Here Cy is a constant
depending on n, A and k.

Proof. Note that each geodesic ball contained in §2 has volume ratio
at least (1 — dg)wan. Then the theorem follows directly from Proposi-
tion 4.6. q.e.d.

After we obtain the bound of geometry, we can go further to study
the evolution of potential functions.

Theorem 4.8 (Two-sided pseudolocality of the potential).
Same conditions as in Theorem 4.7. Let wp be a smooth metric form in
2me1 (M, J) and denote wy by wp + /—100¢(-,t). Suppose p(xo,0) =0
and Oscap(-,0) < H. Let Q" = By (o0, 7). Then we have

(4.4) (57’)72+k”9@(‘7t)HCk(QH,wt) < Cg,

for every k € 729, t € [—%73,%7'2}. Here Cy, depends on k,n, A, &
and %

Proof. Up to rescaling, we may assume &£r = 1.
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Note that ¢ and ¢ satisfy the equations

—/=100¢ = Ric — \g.
It follows from Theorem 4.7 that geometry is uniformly bounded in
O x [—€&r?,€r?). The trace form of the second equation in the above
list is —A¢p = R — n\. Therefore, the regularity theory of Laplacian
operator applies and we have uniform bound of ||| -« in a neighborhood
of 0 x [—gr2, gTQ}. Up to a normalization, we can rewrite the first
equation as

(we — v/=199p)"

n
W

log = —¢+¢(-0).

On ', the metric g(0) and g(¢) are uniformly equivalent in each C*-
topology. So it is clear that [|¢ — ¢(-,0)[|or(q) are uniformly bounded,
for each k, with respect to metric g(¢). Since all higher derivatives
of curvature are uniformly bounded on €', (4.4) follows from standard
Monge—Ampere equation theory and bootstrapping argument.  q.e.d.

Theorem 4.9 (Improved regularity of potentials). Suppose that
LM € H(n,A), cvr(M,0) = rg. Let wp be a smooth metric in [wo]
such that

1
(4.5) in <wy < 20.)3.

Let wo = wp + /—1900p. Suppose fM pwly =0 and Oscyrp < H. Then
we have

(4.6) lellorarwy) < Ch, VK€ 7>9,
where Cy, depends on k,wp,n, A,rqg and H.

Proof. Since cvr(M,0) = r9 > 0, we see that all the possible wp’s
form a compact set under the smooth topology. In other words, wgy has
uniformly bounded geometry in each regularity level. Fix a positive
integer kg > 4. Therefore, around each point x € M, one can find a
coordinate chart 2, with uniform size, such that

woy = WEuce + Vv _185f7 ||f||ck0(ﬂwauc) S 0.01.

Note that in €2, the connection terms of the metric wy are pure deriva-
tives f;5, which are uniformly bounded. Similarly, all derivatives of
connection terms can be expressed as high order pure derivatives of f.
Therefore, up to order ky — 3, the derivatives of connections are uni-
formly bounded. It is clear that the metric wg and wgy. are uniformly
equivalent. By the covariant derivatives’ bounds ||¢|cr(pr) < Cks the
bounds of connection derivatives yield that



86 X. CHEN & B. WANG

In other words, we have uniform bound for every order pure derivatives
of ¢, up to order ky — 1. Together with the choice assumption of €2, we
have

1f = eller@up) < Ck VO <k <ko—1.

Therefore, the connection derivatives of metric wp in €2 are uniformly
bounded, up to order kg — 4. Consequently, the pure derivative bound
(4.7) implies

HQOHC"“(Q,LUB) < Ck; V0 < k < ko — 1,

since wp is a fixed smooth, compact metric with every level of regular-
ity. Clearly, the above constant C} depends on k,n, A,ro,wp and H.
Recall that the size of € is uniformly bounded from below, (M,wp) is a
compact manifold. Consequently, a standard covering argument implies
(4.6) for each k < ko — 1. In the end, we free ko and finish the proof.

q.e.d.

In Ricci-flat theory, a version of Anderson’s gap theorem says that
regularity can be improved in the center of a ball if the volume ratio of
the unit ball is very close to the Euclidean one. In our special setting,
this gap theorem has a reduced volume version.

Theorem 4.10 (Gap of reduced volume). There is a constant
5 € (0,00] and a small constant n with the following property.
Suppose LM € K (n,A), zo € M, 0<r <1. If

V(($0, O)’ 72) Z 1- 5(,)7
then we have
(4.8) cvr(zp,0) > nr.

Proof. If A = 0, reduced volume is monotone. If A is bounded, then
reduced volume is almost monotone. A simple calculation shows that
V((0,0), p?) > 10 for all 0 < p < r? whenever V((z,0),7%) > 1 -6,
for some 0 < r < 1. Therefore, without loss of generality, we may
assume A\ = 0 and 0 = dp in the proof.

If the statement was wrong, there exists a sequence of

7 —0,0<r; <1, z; € M;,
and corresponding Kahler Ricci flows satisfying
{ V((2:,0),72) > 1 — &,
cvr(z;, 0) < n;r;.
By the monotonicity of reduced volume, we have

V((xi,0), Hn2r?) > 1 — &,
CVI‘(ZCi, 0) < n;Ty,
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for each fixed H and large i. Let §;(t) = (mir;)"2g((niri)*t). It is clear
that
(4.9) cvrg, (z4,0) = 1.

The canonical radius of g; tends to infinity, |R| 4+ |A] — 0. Similar to
the proof of Proposition 4.6, we have the convergence:

(M, 24, 5:(0)) < (M, 2,§) € A (n, k).

The limit space M can be extended to a static eternal Kihler Ricci flow
solution. Moreover, Proposition 3.29 can be applied here and guarantees
the reduced volume convergence.

V((z,0),H) = hm Vi, ((4,0), H) = hm V((4,0), H(nir)?) > 1 = 6.

Note that H is arbltrary. By the homogenelty of reduced volume at
infinity, Theorem 2.6, we see that

avr(M) = Jim V((z,0), H) > 1 - d.
— 00

So Proposition 2.2 applies to force M to be isometric to be C". In
particular, vr(Z) = co. It follows from Corollary 3.41 that

lim cvry, (x;,0) = oo,
1—00
which contradicts (4.9). q.e.d.

According to Theorem 4.10, one can define a concept of reduced vol-
ume radius for the purpose of improving regularity. Clearly, other reg-
ularity radius can also be defined. However, it seems all of them are
equivalent. For simplicity, we shall not compare all of them, but only
prove an example case: the equivalence of harmonic radius and canoni-
cal volume radius. The proof of other cases are verbatim. Following [1],
for each xg € (M™, g), we define harmonic radius of z( to be the largest
r such that the ball B(xg,r) has a harmonic coordinate {z'}", satisfy-
ing

1 o 0
300 < 9 = (a 3 63;]) < 20y,

3
r2lgijll 13 < 2.

We denote the harmonic radius of z¢ by hr(zo, g). If g is the time slice
g(t) in a flow, we shall denote hr(zg, g(t)) by hr(xg,t).

Proposition 4.11 (Equivalence of regularity radii). Suppose
LM e H (n,A), v € M. Suppose max{hr(x,0),cvr(z,0)} <1, then

we have
1
ahr(x,O) < cvr(z,0) < Chr(z,0),

for some uniform constant C = C(n, A).
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Proof. Clearly, cvr(x,0) < Chr(x,0) follows from the C®-regularity
property of canonical volume radius. It suffices to show

%hr(w, 0) < cvr(z,0).

However, since cr(z,0) > h, it is clear from definition that
1
cvr(z,0) > ol min{hr(z,0), h}.

If hr(x,0) < h, then we are done. Otherwise, we have i < hr(z,0) < 1.
It follows that

1
—h
C
So we finish the proof. q.e.d.

1
cvr(z,0) > > —hr(z,0) > ﬁhr(m,O).

Ql =

Theorem 4.12 (Improved density estimate). For arbitrary small
€, arbitrary 0 < p < 2, there is a constant § = d(n,A,p) with the
following properties.

Suppose LM € # (n,A), x € M. Then under the metric g(0), we
have

fB(%T) cvr Py

E(n,k,p)r?n=2p

(4.10) log <€,
whenever v < 0. Here the number E(n,k,p) is defined in Proposi-
tion 2.8.

/f’foof. We argue by contradiction. Note that every blowup limit is in
H S (n,k) (c.f. Theorem 3.31). Then a contradiction can be obtained
by the weak continuity of cvr (c.f. Corollary 3.41) if the statement of
this theorem does not hold. q.e.d.

Note that E(n, k,0) = wa,. So we are led to the volume ratio estimate
immediately.

Corollary 4.13 (Volume-ratio estimate). For arbitrary small e,
there is a constant 6 = §(n, A) with the following properties.

Suppose LM € H# (n,A), x € M. Then under the metric g(0), we
have

(4.11) log 1Bz, )] <

W2nT2n

whenever r < 4.

In the Kéahler Ricci flow setting, Corollary 4.13 improves the volume
ratio estimates in [78] and [31] (c.f. Remark 1.1 of [31]). Note that
the integral (4.10) can be used to show that for every p € (0,2), there
is a C = C(n,A,p) such that the volume of the r-neighborhood of S
in a unit ball is bounded by C7?" (c.f. Theorem 2.13), where S is the
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singular part of a limit space. By the definition of Minkowski dimension
(c.f. Definition 2.2 of [29]), we can improve Proposition 4.5 as follows.

Corollary 4.14 (Minkowski dimension of singular set). Same
conditions as in Proposition 4.1, M has the regular-singular decompo-
sition M =R US. Then dimy S < 2n — 4.

In [73], the second author developed an estimate of the type

|Ric| < +/|Rm||R],

where /| Rm/| should be understood as the reciprocal of a regular scale.
Due to the improving regularity property of canonical volume radius, it

induces the estimate |Ric| < —”cyfl pointwisely. By the uniform bound
of scalar curvature and Theorem 4.12, the following estimate is clear

now.

Corollary 4.15 (Ricci curvature estimate). There is a constant
C = C(n,A,rg,p) with the following property.

Suppose LM € A (n,A), xzo € M, 0 <r <1y, 0 <p< 2. Then
under the metric g(0), we have

(4.12) r2p—2n / |Ric|*’dv < C.
B(zo,r)

Corollary 4.15 localizes the L?P-curvature estimate of [70] in a weak
sense, since (4.12) only holds for p < 2. If n = 2, (4.12) also holds for
p = 2, since the finiteness of singularity guarantees that one can choose
good cutoff functions. We believe that the same localization result hold
for p =2 even if n > 2.

We return to the canonical neighborhood theorems in the introduc-
tion, Theorem 1.2, Theorem 1.3 and Theorem 1.4. However, Theo-
rem 1.4 is not completely local. Actually, Theorem 4.7 is enough to show
the local flow structure of # (n, A) can be approximated by & .%(n, k).
In light of its global properties, the proof of Theorem 1.4 is harder and
is postponed to section 5.5. On the other hand, Theorem 1.2 and Theo-
rem 1.3 are local. We now close this subsection by proving Theorem 1.2
and Theorem 1.3.

Proof of Theorem 1.2. It follows directly from the combination of
Proposition 4.1, Proposition 4.2, Proposition 4.4, and Proposition 4.5.

q.e.d.
Proof of Theorem 1.3. It follows from Theorem 3.44, Definition 3.10
and a scaling argument. q.e.d.

4.2. Local variety structure. We focus on the variety structure of
the limit space in this subsection. We essentially follow the argument
in [37], with slight modification.



90 X. CHEN & B. WANG

Suppose LM; € # (n,A), x; € M;. Let (M,z,3) be a pointed-
Gromov-Hausdorff limit of (M;,x;, g;(0)). Since M may be non-com-
pact, the limit line bundle L may have infinitely many orthogonal holo-
morphic sections. Therefore, in general, we cannot expect to embed M
into a projective space of finite dimension by the complete linear system
of L. However, when we focus our attention to the unit geodesic ball
B(z,1), we can choose some holomorphic sections of L, peaked around
T, to embed B(Z,1) into CPY for a finite N.

Actually, for every € > 0, we can find an e-net of B(Z,2) such that
every point in this net has canonical volume radius at least cge. For each
point y in this e-net, we have a peak section s,, which is a holomorphic
section such that ||s(y)|| achieves the maximum among all unit L?-norm
holomorphic sections s € H°(M, L). By the partial-C%-estimate argu-
ment (c.f. [30] for the flow case with weak convergence), we can assume
that ||s,||* is uniformly bounded below in B(y, 2¢).

On the other hand, by the choice of y, B(y, ne) has a smooth manifold
structure for some 1 = n(n). Therefore, we can choose n holomorphic
sections of LF such that these sections are the local deformation of
21,29, ,2n. Here k is a positive integer proportional to e 2. Put these
holomorphic sections together with 3];, we obtain (n + 1)-holomorphic
sections of L* based at the point y. Let y run through all points in the
e-net and collect all the holomorphic sections based at y, we obtain a set
of holomorphic sections {s;}¥, of L*. Let {5;}X, be the orthonormal

basis of span{sg,s1, - ,sny}. We define the Kodaira map ¢ as follows.
v: B(0,2) — CPY,
x = [So(x) : §1(x) = -+ Sy (2)].

This map is well defined. In fact, for every z € B(z,1), we can find a
point y in the e-net and z € B(y, 2¢), then ||s,||*(z) > 0 by the partial-
CY-estimate. It forces that 5j(z) # 0 for some j. Since k is proportional
to €72, we can just let € = ﬁ without loss of generality. In the following
argument, by saying “raise the power of line bundle” from ki to ko, we

simultaneously means the underlying e-net is strengthened from a —

) Vi
net to a \/—k—Q—net.
Lemma 4.16. Suppose w € 1(B(%,1)), then 1~Y(w) N B(x,1) is a
finite set.

Proof. Let y € = (w) N B(x,1). It is clear that =1 (w) is contained
in a ball centered at y with fixed radius, say 10e. Therefore, :~!(w) is
a bounded, closed set and, therefore, compact. Let F be a connected
component of :~!(w). Then ¢(F) is a connected, compact subvariety of
CV, and, consequently, is a point. Note that ¢(F) is always a connected
set no matter how do we raise the power of ¢. On the other hand, ¢(F")
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will contain more than one point if F' is not a single point, after we
raise power high enough. These force that F' can only be a point. Since
v~ Yw) N B(z,1) is compact, it must be union of finite points.  q.e.d.

Denote «(B(z,1)) by W. Then W is a compact set and locally can
be extended as an analytic variety. By dividing W into different com-
ponents, one can apply induction argument as that in [37]. Follow-
ing verbatim the argument of Proposition 4.10, Lemma 4.11 of [37],
one can show that ¢ is an injective, non-degenerate embedding map on
B(z,1), by raising power of L if necessary. Furthermore, since being
normal is a local property, one can improve Lemma 4.12 of [37] as fol-
lows.

Lemma 4.17. By raising power if necessary, W is normal at the
point 1(y) for every y € B(Z, 3).

Under the help of parabolic Schwarz lemma and heat flow localization
technique (c.f. Section 4.1 and Proposition 4.37), we can parallelly
generalize Proposition 4.14 of [37] as follows.

Lemma 4.18. Suppose y € B(Z, %) NS, then u(y) is a singular point
of W.

It follows from the proof of Proposition 4.15 of [37] that there always
exist a holomorphic form © on R N B(Z, 1) such that

/ ONO < .
RNB(z,1)

This means that every singular point y € «(B(Z, 3))NW is log-terminal.
Combining all the previous lemmas, we have the following structure
theorem.

Theorem 4.19 (Analytic variety structure). Suppose LM; €
H(n,A), z; € My, (M,Z,g) is a pointed Gromov-Hausdorff limit of
(M;, 7, gi(0)). Then M is an analytic space with normal, log terminal
stngularities.

4.3. Distance estimates. In this subsection, we shall develop the dis-
tance estimate along polarized Kahler Ricci flow in terms of the esti-
mates from line bundle.

Lemma 4.20. Suppose (M, L) is a polarized Kdhler manifold satis-
fying the following conditions
o |B(x,7)| > kwo,r®, Vz € M,0<7r < 1.

e |b| < 2¢y where b is the Bergman function.
o |VS|| < Cy for every L?-unit section S € H°(M,L).
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For every positive number a, define Q(x,a) as the path-connected com-
ponent containing x of the set

(4.13) {z
Then we have

(4.14) B (z,r) C Q(z,a) C B(z,p),

1SI2(2) > e~20-20 IS |2 (x) = ¢P@), /M 1S|2dv = 1 } |

for some r = r(n, K, cy,C1,a) and p = p(n, k,co, C1,a).

Proof. Define r £ 1=¢° Recall that ||S|(z) > e~®. By the

Cl ea+c0 .
gradient bound of S, it is clear that every point in B(z,r) satisfies
|S]] > e~*~“. In other words, we have

B(z,r) C Q(z,a).

On the other hand, we can cover Q(z,a) by finite balls B(z;,2r) such
that each z; € Q(x, a) and different B(z;,r)’s are disjoint to each other.
Again, the gradient bound of S implies that ||S|| > e~2¢7% in each
B(zj,r). Then we have

N
N kwonr?™ < Z |B(z,7)| < |Q(z,2a)| < ot
i=1

For every z € Q(z,a), we have

4€4a+2c0 464a+200 01271716(271—1)(@-1—00)

d(z,z) <4Nr <

Kwonr? =1 Kwoy, (1 —ea)2n—l
Let p be the number on the right hand side of the above inequality.
Then it is clear that
Q(z,a) C B(x, p).
So we finish the proof. q.e.d.

Lemma 4.20 implies that the level sets of peak holomorphic sections
are comparable to geodesic balls. However, the norm of peak holo-
morphic section has stability under the Kéhler Ricci flows in % (n, A).
Therefore, one can compare distances at different time slices in terms
the values of norms of a same holomorphic sections.

Lemma 4.21. There exists a small constant ey = €g(n, A) such that
the following properties are satisfied.
Suppose LM € J (n, A), then we have

(4.15) Bg(tl)(xa €) C Bg(tg) (m, 661) ,

whenever t1,ty € [—1,1].
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Proof. Without loss of generality, we only need to show (4.15) for
time t; = 0,t2 = 1. Because of Theorem 1.3 and Moser iteration, we can
assume |b| < 2¢g for some ¢y = c¢g(n, A). By Moser iteration technique,
we can also assume ||VS|| < C; for every unit L?norm holomorphic
section of L (c.f. Lemma 5.1 of [72] and Lemma 3.2 of [30]). Note that
¢P(*) is the maximum value of ||S||* among all unit L?-norm holomorphic
sections of L. So we can choose € small enough such that

1
I1S1(2) > 5e7*, ¥z € B(x,2e),

for some unit holomorphic section S. Note € can be chosen uniformly,
say € = %.

Fix S and define
1 -
(o= {z 1S]p(2) > 56_00 }, (V= {z

Without loss of generality, we can assume both 2 and Q are path-
connected. Otherwise, just replace them by the corresponding path-
connected part containing z. It follows from definition that B(x,€) C Q.
In view of the volume element evolution equation, it is also clear that
QcQ.

Note that S is a unit section at time t = 0. At time t = 1, its L?>-norm
locates in [e724, e24]. So we have

1.
I8h(:) = g4 b,

_ 1 _
¢4 > / ISI2dn > 0 s 074, = [l < 16620+
M

Now we can follow the covering argument in the previous lemma to show
a diameter bound of  under the metric g(1). In fact, we can cover €
by finite geodesic balls B(z;,2¢) such that z; € Q and all different
B(x;,€)’s are disjoint to each other. Clearly, each geodesic ball B(z;,€)
has volume at least kwa,e2", where k = k(n, A). Let N be the number
of balls, then

N
N kwan e < Z |B(x;,1)] < Q] < 16e20+44,
i=1
Therefore, under metric g(1), we obtain

_ 4 2co+4A
diam 2 < diam ) < 4Ne < Gde

Iiu)gnGQn*l :

Recall that Byy(z,e) C Q C Q, = '34_510 So under metric g(1), we
have

A2n—1
42n+26(2n+3)co+4 Cln

diam Byg) (7, €) < diam 2 <

RWon,
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Define

a . Je@ KWan,
(4.16) €0 = mm{ AC; " 42n+2¢(2nt3)cot4A 2] } '

Note that €y depends only on n, A. Then we have
diam By (o) (7, €0) < &,
which implies
Bg(O) (.%', 60) C Bg(l)(.%', Eal).
So we finish the proof. q.e.d.

Lemma 4.22. For every r small, there is a § with the following

property.
Suppose LM € H# (n,A). Suppose |R|+ |\ <& on M x [—1,1], then

we have

(4.17) Bg(t1)<33> eor) C Bg(t2)(m, 6517'),

for every ti,to € [—1,1]. Here €y is the constant in Lemma 4.21.
Proof. We proceed by a contradiction argument.
Again, it suffices to show (4.17) for ¢; = 0 and t; = 1. By adjusting

r if necessary, we can also make a rescaling by integer factor. Up to
rescaling, (4.17) is the same as

(4.18) Byo)(, €0) C By(r—2y(, € t)-

Suppose the statement of this lemma was wrong. Then there is an
ro > 0 and a sequence of points x; € M; such that

Bgi(O) (zi,€0) Z Bgi(To_Q) (x4, 661).

However, |R| + |A| = 0 in C%norm as i — co. So we can take a limit
G
(Ml)$l7gl(0)) — (M7x7g)

As usual, we can find a regular point Z € M near Z. Let z; € M; and
z; — Z as the above convergence happens. Then we can extend the
above convergence to each time slice.

(M;, 25, gi(8) < (M, 2,g), Vte 0,52

Note that Z may be a singular point of M. So in the above conver-
gence, we only have x; converges to Z(t), which may depends on time ¢.
Lemma 4.21 guarantees that Z(¢) is not at infinity.

Note that Oscprp is scaling invariant and, consequently, uniformly
bounded by condition inequality (1.4). From the polarized Kéhler Ricci
flow solution condition (1.3), we have

Ap=—R+n\,
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whose right hand side is tending to zero. Therefore, ¢ converges to a
limit bounded function which is harmonic function on R(M), the regular
part of M. Such a function must be a constant by Liouville-type theorem
(c.f. Corollary 2.25 of [29]). Actually, a bounded harmonic function on
R(M) will automatically be a bounded Lipschitz function on M, by
Proposition 2.29 of [29]. Applying normalization condition, the limit
function must be zero on M x [0,7;?]. Therefore, the limit line bundle
L admits a limit metric which does not evolve along time. Therefore,
for a fixed holomorphic section S and a fixed level value, the level sets
of HSHZ does not depend on time.

Choose S; be the peak section of L; at x;, with respect to the metrics
at time t = 0. By the choice of €, it is clear that ||S;[, > 1e~ on the
ball B(z;,€p). In other words, we have

1 —c
I50(:) = 5o }.

Without loss of generality, we can assume €); ; is path connected. Clearly,
each €;; has uniformly bounded diameter, due to Lemma 4.20. Let
be the limit set of ;9. Clearly, Z € Q. Then the above discussion
implies that () is actually the limit set of each Qi

Let § be the limit point of y;, which is a point in By, ) (i, €0) and

B(:L‘Z',E()) C Qiﬂg = {Z

start to escape B(x;, € 1) at time t;, which converges to . So we obtain

(4.19) J € Byo)(T,0),  d(7,2(F) ="

Recall that

Dy = nr— Rydo, L) = Leon(0)} = —gh(t).
dt Toodt dt

Since |R| + |A| = 0 and |¢| — 0, the volume element of the underlying
manifold and the line bundle metric are all almost static when time
evolves. Then it is easy to see that y; can never escape €;;. So § € Q.
Similarly, we know z(f) € Q. Therefore, at time #, we have

d(iy,z(t)) < diam €.

Note that the argument in the proof of Lemma 4.20 holds for the polar-

ized singular manifold (M, L), due to the high codimension of S(M) and

the gradient bound of each S;. Since || i HS H2dv is uniformly bounded

from above by 1, we can follow the proof of Lemma 4.20 to show that
diam(Q) < p(n, &, co, C1,log 2) < ¢!

by the choice of €y in (4.16). Consequently, we have d(7,%(f)) < e,
which contradicts (4.19). q.e.d.

Based on Lemma 4.22, we can improve Proposition 3.15. Namely,
under the condition |R| + |A|] — 0, the limit flow is static, even on
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the singular part. Clearly, due to Theorem 3.44, we do not need the
assumption of lower bound of polarized canonical radius anymore.

Proposition 4.23 (Static limit space-time). Suppose LM; €
H (n, A) satisfies

lim sup(|R| + [A|) = 0.
1—00 MZ

Suppose x; € M;. Then

(M, 20, i(0) 5 (M, 7,5).

Moreover, we have

Aoo

(M, 21, 6:(t)) — (M, 7, ),

for every t € (=T,T), where T = lim T; > 0. In other words, the

1— 00
identity maps between different time slices converge to the limit identity

map.

As a direct application, we obtain the bubble structure of a given
family of polarized Kéhler Ricci flows.

Theorem 4.24 (Space-time structure of a bubble). Suppose
LM; € H(nA), z; € M;, t; € (-T;,T;), and r; — 0. Suppose /WZ
is the adjusting of M; by shifting time t; to 0 and then rescaling the
space-time by the factors 7‘;2, ie., gi(t) = T‘;Qg(TZ-Zt + t;). Suppose
r 2 max{|t; — T3], |t; + Ti|} = co. Then we have

oo

~ C ~ A ~
(wa’mg’b(t)) E— (M,I',g),
for each time t € (—o0, 00) with M € ,)i//\g”(n, K).

Theorem 4.24 means that the space-time structure of M € J?:S/”(n, K)
is the model for the space-time structures around (x;, ¢;), up to proper
rescaling. Therefore, Theorem 4.24 is an improvement of Theorem 3.31,
where we only concern the metric structure.

In view of Proposition 4.23, it is not hard to see that distance is a
uniform continuous function of time in % (n, A).

Theorem 4.25 (Uniform continuity of distance function). Sup-
pose LM € JH (n, A), x,y € M. Suppose dyq(z,y) < 1. Then for every
small €, there is a § = d(n, A, €) such that

‘dg(t) (.’E, y) - dg(O) (.CL', y)| <e¢,

whenever [t| < 0.
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Proof. We argue by contradiction. Suppose the statement was wrong,

we can find an € > 0 and a sequence of flows violating the statement
2,

for time |t;| — 0. Around z;, in the ball By, (0) (a:i, %), we can find z}
which are uniform regular at time ¢t = 0, where €q is the same constant in
Lemma 4.22 and Lemma 4.21. Namely, 2/, the limit point of 2/, is a reg-
ular point in the limit space. By two-sided pseudolocality, Theorem 4.7,
it is clear that  is also uniform regular at time ¢ = ¢;. Similarly, we can
choose y!. By virtue of triangle inequality and Lemma 4.22, we obtain

gi(O)(xbyi) 5 — gi(O)(xuyz) = gi(o)(xiﬂyi)+ 5
€ €
g, () (25, y7) — E < dg 1) (@i, yi) < dg, ) (25, y7) + 3

By argument similar to that in Proposition 3.20, it is clear that

,Lliglo dgi(ti) (x;’ y”lb) = }g& dgz‘(o) (xfb’ y;)

Then it follows that

. (1+€3)_
Y, dy o ) — g e
. . (1+€3)_
< Zlggo dgi(ti)(xiayi) < Zgrgo dg,(0) (x4, 9i) + Tf‘
In particular, for large i, we have
1+e€)
|dgl(0)(x7,7yl) - dgi(ti)(xia yl)‘ < (50)6 <€
which contradicts our assumption. q.e.d.

4.4. Volume of high curvature neighborhood. In this subsection,
we shall develop the flow version of the volume estimate of Donaldson
and the first author (c.f. [17], [18], see also [14]).

Proposition 4.26 (K&hler cone complex splitting). Same con-
ditions as in Proposition 4.1, § € M. Suppose Y is a tangent cone of
M at y, then there is a fized nonnegative integer k such that

(4.20) Y =C(Z) x Ck,

where C(Z) is a metric cone without straight line. A point in M is
reqular if and only if one of the tangent cone is C™.

Proof. By definition of tangent cone, one can find a sequence of num-
bers r; — 0. Taking subsequence if necessary, let g;(t) = r; 2gi(r?t),
then we have

- C® & . .

By compactness, we see that (17, 7,9) € J??(n, k). On the other hand,
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it is a metric cone, which is the tangent space of itself at the origin. So
Y has the decomposition (4.20), by Theorem 2.5. q.e.d.

Proposition 4.27 (Kéhler tangent cone rigidity, c.f. Theorem 2
of [18]). Suppose that LM; € ¥ (n, A). Suppose x; € M; and (M,z,g)
is a limit space of (M;,z;,9:(0)). Let Y be a tangent space of M satis-
fying

Y = (c’f/r) x C"k T Uk).
Then'Y satisfies the splitting (4.20) for k =2 or k= 0.

Proof. Clearly, k = 0 if and only if the base point is regular. So it
suffices to show that for every singular tangent space we have k = 2. By
Proposition 4.26, we only need to rule out the case k£ > 3. However, this
follows from the rigidity of complex structure on the smooth annulus in
CF/T, where T is a finite group of holomorphic isometry of C*, when
k > 3. Note that [w;] = ¢1(L;), which is an integer class. Therefore,
the proof follows verbatim as that in [18]. Note that Ricci curvature
uniformly bounded condition in [18] is basically used to guarantee the
pointed—C’4—CheegerfGrom0V convergence. In our case, the convergence
can be obtained from Theorem 3.44. q.e.d.

Proposition 4.28 (Existence of holomorphic slicing). Suppose
Y e H S (n, k) is a metric cone satisfying the splitting (4.20). Suppose
LM e KH(n,A), ze M. If (M,z,g(0)) is very close to (Y,9,3q), i.e.,
the pointed-Gromov—Hausdorff distance

dPGH((Mv z, g(O)), (YAV, ga g)) <€,

for sufficiently small €, which depends on n, A, Y, then there exists a
holomorphic map

U= (ukJrla Uk+2; " aun) : B(.I’, 10) = (Cn_k
satisfying
(4.21) V| < C(n, A),
(4.22) 3 / 16 — (Vus, Vag)| dv < nin, A, €),
k+1<i,j<n Y B(z,10)

where 1 is a small number such that 111%77 =0.
e—

Proof. Tt follows from the argument in [37] that the constant section
1 of the trivial bundle over ¥ can be “pulled back” as a non-vanishing
holomorphic section of L over B(z,10), up to a finite lifting of power of
L. Therefore, we can regard L as a trivial bundle over B(z, 10) without
loss of generality. Let Sy be the pull-back of the constant 1 section. In
particular, Sp is a non-vanishing holomorphic section on B(z,10). On
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B(xz,10), every holomorphic section S of L can be written as S = uSy
for a holomorphic function u and ||SH%L = ]u|2||SoHi.

From the splitting (4.20), there exist natural coordinate holomorphic
functions {z;}7_, ; on Y. Same as [37], one can apply Hormander’s
estimate to construct {S;}7_,;, which are holomorphic sections of L.
Each S; can be regarded as an “approximation” of z;, although they
have different base spaces. Let u; = % for each j € {k+1,--- ,n}.

Then we can define a holomorphic map ¥ from B(z,10) to C"* as
follows

gl(y) é (uk+17uk+27 e )un) .

Note that each S; is a holomorphic section of L with L?-norm bounded
from two sides, according to its construction. Using metrics induced by
h and condition (1.3), direct calculation shows that

AVS|* = [VVSII* = (n+2)[[VS|* +nl|S|* + R7535,;

= [IVVS|* + A = (n+2)} VS| + n|lS|* — ¢;35375 5.

In light of (1.4), ¢ is bounded and there exists a uniform Sobolev con-
stant. Then Moser iteration (c.f. Lemma 3.2 of [30] and Lemma 5.1
of [72]) implies that there exists a uniform bound ||VS;||2 < C(n, A),
which implies (4.21) when restricted on B(z, 10). Moreover, on B(z, 10),
by smooth convergence, it is not hard to see that (Vu;, Vu;) can point-
wisely approximate d;; away from singularities of Y, in any accuracy
level when € — 0. This approximation together with (4.21) yields (4.22).

q.e.d.

Theorem 4.29 (Weak monotonicity of curvature integral).
There exists a small constant € = €(n, A) with the following properties.

Suppose LM € A (n,A). Suppose x € M, 0 < r < 1. Then under
the metric g(0), we have

(4.23) sup |Rm|<r72
B(x,57)

whenever ri=2n fB(x " |Rm|?dv < e.

Proof. Up to rescaling, we can assume r = 1 without loss of generality.
If the statement was wrong, we can find a sequence of points z; € M;
such that

/ |Rm|*dv — 0, sup |Rm|>1,
B(Ii,l) B

(IH%)

where the default metric is ¢;(0), the time zero metric of a flow g;, in
the moduli space J# (n, A). By the smooth convergence at places when
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curvature uniformly bounded, it is clear that the above conditions imply
that

/ |Rm|*dv — 0, sup |Rm|— occ.

(:Eh%)

Let (M, Z,g) be the limit space of (M;, z;,9;(0)). Then B(z, 2) contains
at least one singularity y. Without loss of generality, we can assume &
is a singular point. Note that B(z, %) is a flat manifold away from
singularities. So every tangent space of M at Z is a flat metric cone.
Let Y be one of such a flat metric cone. By taking subsequence if
necessary, we can assume

(Mlvxhgl(o)) — (i}’ j).@)’

for some flow metrics §; satisfying g;(t) = r; 2g;(r?t), r; — 0. Since Y
is a flat metric cone, in light of Proposition 4.27, we have the splitting

Y = (C?/T) x C"2,

Let (M, x, §) be one of (M;, z;, §;(0)) for some large i. Because of Propo-
sition 4.28, we can construct a holomorphic map ¥ : B(z,10) — C"~2
satisfying (4.21) and (4.22). Then we can follow the slice argument as
in [12] and [9]. Our argument will be simpler since our slice functions
are holomorphic rather than harmonic.

Actually, for generic Z = (z3,24,---,2,) satisfying |2] < 0.1, we
know U~1(%) N B(x,5) is a complex surface with boundary. Clearly,
UL((S3/T) x {2}) is close to (S3/T) x Z, if we regard S3/T as the unit
sphere in C?/T". Deform the preimage a little bit if necessary, we can
obtain a 02 which bounds a complex surface €. By coarea formula and
the bound of |V, it is clear that for generic 2 obtained in this way,
we have

/ |Rm|*do — 0.
Q

Consider the restriction of TM on ). Let ca be a form representing
the second Chern class of the tangent bundle 7'M, obtained from the
Kéhler metric g(0) from the classical way. Let ¢o be the corresponding
differential character with value in R/Z. Since the point-wise norm of
c2 is bounded by |Rm/|?, it is clear that

(4.24) ¢2(092) = / ca  (modZ) — 0.
Q
On the other hand, since 9 converges to S3/T, we have

. 1
(4.25) B(0) = 1o
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Therefore, the combination of (4.24) and (4.25) forces that |I'| = 1. This
is impossible since |I'| > 2 by our assumption that Y is a singular metric
cone. q.e.d.

From now on to the end of this subsection, we use g(0) as the default
metric. Similar to the definition in [17], for any small r, let Z, be the
r-neighborhood of the points where |Rm| > r~2. Recall the definition
equation (2.12), we denote F, as the collection of points whose canonical
volume radii are greater than r, D, as the complement of F,.. Under
these notations, we have the following property.

Proposition 4.30 (Equivalence of singular neighborhoods).
Suppose LM € H (n,A), 0 <r < h. Then at time zero, we have

(4.26) D, C Z, C D1,,
for some small constant ¢ = ¢(n, A).

Proof. Let us first prove D, C Z,.. Suppose the statement was wrong,
we can find a sequence ¢; — 0 and flows in " (n, A) such that D,,, ¢ Z,,
for some r; < h. Choose z; € D, N Zr . Let p; be the canonical
volume radius of z;. Rescale the flow such that the canonical volume
radius at Ti becomes 1. Taking limit, we will obtain a smooth flat
space in J#.¥(n, k), which is nothing but C". Therefore, the canonical
volume radii of the base points z; should tend to infinity, which is a
contradiction.

Then we prove Z, C D1,. Suppose z € Z,, then |[Rm|(y) > r~2 for
some y € B(z,r). By the regularity improving property of canonical
volume radius, it is clear that cvr(z) < %r. In other words, z € D2 .

Ca

q.e.d.

Theorem 4.31 (Volume estimates of high curvature neigh-
borhood). Suppose LM € % (n, A). Under the metric g(0), we have

1Z,| < Cr,
where C' depends on n, A and the upper bound of fM |Rm|*dv.

Proof. Because of Proposition 4.30, it suffices to show |D,,.| < Cr4.
In light of Theorem 4.29, if

1"4_2"/ |Rm|?dv < e,
B(z,r)

for some r < h, then x € F,.. In other words, if z € D..(M,0), then it
is forced that

r42”/ |Rm|*dv > e.
B(z,r)

Let U,f\il B(x;,2r) be a finite cover of D, such that
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o 1, €D,
e B(x;,r) are disjoint to each other.

Then we can bound N as follows.

N
Ner2n—1 < Z/
i—1 7 B(

Consequently, we have

|Rm|*dv < / |Rm/|*dv < H.
M

Zi,T)

N
H
|Der (M) < E |B(x;,2r)] < =772k, (2r)" < Ol
€
i=1

Since both k and e depends only on n and A. It is clear that C' =
C(n, A, H) where H is the upper bound of fM | Rm|?dwv. q.e.d.

Corollary 4.32 (Volume estimates of singular neighborhood).
Suppose LM; € H (n,A). Suppose fMi |Rm|*dv < H uniformly under
the metric g;(0). Let (M,z,g) be the limit space of (M;,x;,9:;(0)). Let
S, be the set defined in (2.22), then we have

S| < Cr,

for each small r and some constant C = C(n, A, H). In particular, we
have the estimate of Minkowski dimension of the singularity

dimay S < 2n — 4.

Following [30], the space M = RUS is called a metric-normal Q-Fano
variety if there exists a homeomorphic map ¢ : M — Z for some Q-
Fano normal variety Z such that ¢|z is a biholomorphic map. Moreover,
dimay S < 2n — 4.

Theorem 4.33 (Limit structure). Suppose that LM; € # (n, A).
Under the metric g;(0), suppose

(4.27) Vol(M;) + / |Rm|*dv < H,
for some uniform H. Let (M,z,g) be the limit space of (M, x;, gi(0)).
Then M is a compact metric-normal Q-Fano variety.

Proof. 1t follows from (4.27) and the non-collapsing that diam(M;)
is uniformly bounded. So the limit space M is compact. Due to Theo-
rem 1.3, the partial C%estimate, one can follow the argument in [37] to
show that M is a Q-Fano, normal variety. The metric-normal property
follows from Corollary 4.32. q.e.d.

Based on the estimates developed in this subsection, we can easily
prove Corollary 1.8 and Corollary 1.9 in the introduction.

Proof of Corollary 1.8 and Corollary 1.9. 1t follows from the combi-
nation of Theorem 4.33, Corollary 4.32 of this paper and main results
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in [30]. Note that the line bundle metric choice in this paper is equiva-
lent to that in [30], due to the bound of ¢. q.e.d.

4.5. Singular Kahler Ricci flows. In this subsection, we shall relate
the different limit time slices, without the assumption of |R| 4 |A| — 0.
We shall further improve regularity, by estimates essentially arising from
complex analysis of holomorphic sections.

We want to compare wy, the Kahler Ricci flow metrics, and @, the
evolving Bergman metrics. We first show that @ is very stable when ¢
evolves.

Lemma 4.34. Suppose G(t) is a family of (N+1) x (N +1) matrices
parameterized by t € [—1,1]. Suppose G(0) = Id, G(O) = B. Let
A < A < oo < AN be the real eigenvalues of the Hermitian matriz
B+ B™. If we regard G as a holomorphic map from CPYN to CPV, then
we have

(4.28) (Ao — AN)wrs < g{ﬂw*@ms)

< (Ay — A .
o < (AN — Ao)wrs

t=0

Proof. Let {2}, be the homogeneous coordinate of CPV. Let G =
G(t). Then we have

WFs = V —13510g(|20‘2 + |Zl|2 + - |ZN|2)
_ \/_—1 0z N\ 0%; n (Ziagi) VAN (Ejazj) 7
|22 |24
G*(wps) = V=130 log(|Z0> + |12 + - - |28 ]%)
_ \/jl 0Z; N\ 551 (gzéz) VAN (Ejaéj)
|22 Bl ’
where Z; = G;jz;. Let {w1,--- ,wn} be local coordinate. At point z,
the matrix of wgg is

Id 72\ - ]
Eo=J( -2 _ 22\ J = JRJ",
|22 |24

where J is an N x (/N + 1) matrix which is the Jacobi matrix ( aauzji )
The matrix of wgx, g is

Id  Z7zZ\ A, = -
Et:JG ~7_2~Z GTJT:JFtJT.
EI e
Clearly, we have
d
~F
at |,

Id 7z Id 272\ 5, z(B+B")z"
=B - Sk I S A
(|z|2 rz\4>+(|z|2 |zr4> EE
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2:(B+B")z" . B'Zz+2zB

z Z—
[EE ) F )
B {B +B7 (B+BT)Z"z+2"2(B+B7) 2(B+B7) }
|22 |2]* |2[°
2(B+ B7)z"
R
A z(B+ BT)z"
=M — TFO.

It follows that

d
ZE
dt

— e (- on)or)
=0 dt 2> IZ]

It is easy to check that
_r . z(
zMZ" =0, zFyz' =0, z|M—

Without loss of generality, we can assume B + BT is a diagonal matrix
diag(Xo, A1, - ,An). Let v = (vg,v1,---,vn) be a vector in CN+!
satisfying

20" = Vgzo + V121 + -+ Unzny = 0.

Then it is clear that

= (Ol - Anlon ) (z0f +-- 4 o)
—(Nolzof* + -~ Anlan ) (lol® + -+ + |on]?) }
= ’214 {{(h0 = 20)[z0/* + (Ao = Az + - 4+ (Ao — An) 2w [?] [vol
+ (A= 20)lz0 + (M = Az + - 4+ (= Aw)lan ] [or?
L.
+ [ = )lz0l* + A = M)z + - + Ay = An)lan ] fow [P}
KIS

<(Anv - AO)@-
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Similarly, we have

Note that zFyv™ = 0. Therefore, we can apply the orthogonal de-
composition with respect to Fy to obtain that for every vector f =
(anflv'” 7fN) S CN+17 we have

(o)

Let u € TZ(I’O)(C}P’N. Then we have
<u7 u>wFs = (UJ)FO(UJ) )

(uJ) (M — Wﬂ)) uJT’

< (Av — o) () Fy(ud)”
< (AN = 20) (U, Wwps-

By the arbitrary choice of u, then (4.28) follows directly from the above
inequality. q.e.d.

oy - i
< (An >\o)|2|2—()\1v Xo)fFofT.

‘<u’ u) &G (wrs)|,_,

Lemma 4.35. Suppose LM € # (n,A). Let & be the pull back of
the Fubini—Study metric by orthonormal basis of L with respect to wy
and hy. Then we have the evolution inequality of (wy:

d
(4.29) —24r < — by < 240,

Proof. Without loss of generality, it suffices to show (4.29) at time
t=0.

Suppose {s;}1x, is an orthonormal basis at time 0, {5;}7, is an or-
thonormal basis at time ¢. They are related by §; = s;Gj;. Fix ef a
local representation of the line bundle L around a point x so that locally
we have s; = zjer, and 5; = Zjer, = 2;Gjer,. Then we have

wo = \/—135105% (’Z0|2 + |Zl‘2 + -+ |ZN|2) ,

@y = V/—190log (|55 + |Z1)* + - + |2n[?) -
Let ¢ be the Kodaira embedding map induced by {sl}f\i o at time 0.
Then it is clear that

@ = "wrs, @O =1 (Gwpg).

)

Therefore, we have

qa
dt

Wt

d
=0 | =G (wps)
t=0 (dt
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So (4.29) is reduced to the estimate

(4.30) —2Awps < iG(t)*(wFs)

< 2Awps.
di = SAWES

t=0

However, note that

wn

ik, = Giijl/ (85 50)m, 7
M n:
Taking derivative on both sides at time 0 and denote G by B, we obtain

Wo

OZBik+Bki+/( @+ nX\— R)(Si, Sk)h, "
M n!

Therefore, for every v € CVT1, the following inequality holds.
(4.31) ‘Ui(Bij + Bji)@j‘

= |—v;U; +nA— R)(s;, s w < Alv|?.
j M( ® j

In particular, each eigenvalue of the Hermitian matrix B + B™ has ab-
solute value bounded by A. Then (4.30) follows from Lemma 4.34.
q.e.d.

In view of Lemma 4.35, the following property is obvious now.

Proposition 4.36 (Bergman metric equivalence along time).
Suppose LM € H (n,A). Then we have

In general, we cannot hope a powerful estimate like (4.32) holds for
metrics wy, since such an estimate will imply the Ricci curvature is
uniformly bounded by A. However, if we only focus on points regular
enough, then we do have a similar weaker estimate.

Proposition 4.37 (Flow metric equivalence along time). Sup-
pose LM € # (n,A), x € F.(M,0). Then we have

1
(4.33) 6&)0(56) < wi(z) < Cwp(x),
for every t € [—1,1]. Here C is a constant depending only on n, A and

r.

Proof. Recall that Theorem 1.3 is already proved at the end of Sec-
tion 4.1. In light of Theorem 1.3, up to raising the power of line bundle
if necessary, we may assume b is uniformly bounded from below. On the
other hand, for each holomorphic section S € H°(M, L) satisfying the
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normalization condition [y, ||S|*dv £ [, ||S|[7dv = 1, it follows from
direct calculation that

AlIS|* = [VSI* = nllS|I* > —nlS]*.

Moser iteration then implies that ||S||* < C point-wisely. Using the
expression (1.7), we then know b is uniformly bounded from above also.
Therefore, with out loss of generality, we can assume b is uniformly
bounded.

By short time two-sided pseudolocality, Theorem 4.7 and rescaling,
it suffices to show (4.33) for t = —1 and ¢t = 1. At time 0, it is clear
that wo(z) and @o(x) are uniformly equivalent. The volume form wy is
uniformly equivalent to wj’. By the stability of @, inequality (4.32), it
suffices to prove the following two inequalities hold at point x.

(4.34) Aw, G < C,
(4.35) Ayo@_1 < C.

We shall prove the above two inequalities separately.

Let wg be defined as that before Lemma 3.3. Let w be the solution
of Jw = 0, initiating from wgy. By the heat kernel estimate and the
uniform upper bound of diameter of By g)(z,r) under metric g(t) (c.f.
Lemma 4.21), we see that w(z,1) is uniformly bounded away from 0.
Then Lemma 3.2 applies and we obtain that

C

So we finish the proof of (4.34). The proof of (4.35) is similar. Modulo
time shifting, the only difference is that we do not know whether z is
very regular at time t = —1, so the construction of initial value of a
heat equation may be a problem. However, due to Proposition 2.12, we
can always find a point yo € Fe,n(M, —1) N By_1y(x, k). Consider the
heat equation w’, starting from a cutoff function supported around yq
at time ¢t = —1. In light of uniform diameter bound of Bgy_1)(yo,h)
under the metric ¢(0), w'(x,0) is uniformly bounded away from 0. So
we can follow the proof of Lemma 3.2 to obtain that

Awo(:p)w—l(‘r) < < C.

w'(x,0)
Therefore, (4.35) is proved. q.e.d.

Note that due to the two-sided pseudolocality, Theorem 4.7, we now
can use blowup argument, taking for granted that every convergence in
regular part takes place in smooth topology. Therefore, we can use the
blowup argument in the proof of Proposition 3.6, based on the Liouville
type theorem, Lemma 3.5. Then the following corollary follows directly
from Proposition 4.37.
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Corollary 4.38 (Long-time regularity improvement in two
time directions). Suppose LM € & (n, A), r > 0, then

Fr(M0)C [ Fs(M,1),
—1<t<1

for some 6 = §(n, A,r).

Now we are ready to prove Theorem 1.4, the long-time, two-sided
pseudolocality theorem.

Proof of Theorem 1.4. It follows from the combination of Corollary
4.38 and Proposition 4.6. q.e.d.

Suppose LM; € # (n,A), x; € M;. Then for each time ¢t € [—1,1]
we have

(4.36) (M, i, gi(1) < (BI(8), 2(8), 9(1)).

Let us see how are the two time slice limits M (0) and M (1) related.
Clearly, by Theorem 1.4, the regular parts of M (0) and M (1) can be
identified. The relations among the singular parts at different time
slices are more delicate. For simplicity, we denote (M (0),z(0), §(0)) by
(M, z, ), denote (M(1),z(1),g(1)) by (M',z',3"). Let us also assume
Vol(M;) is uniformly bounded. Then it is clear that both M and M’
are compact by the uniform non-collapsing caused by Sobolev constant
bound. In light of the uniform partial-C°-estimate along the flow, with-
out loss of generality, we can assume that the Bergman function b is
uniformly bounded below. By the fundamental estimates in [37], we
obtain that the map

IdO: (M7i'7g)_>(Ma'f7§)

is a homeomorphism. Recall that (M, Z, g) is the limit of (M;, x;, §;(0)),
where g; is the pullback of Fubini-Study metric. Similarly, we have
another homeomorphism map at time ¢t = 1.

Idy: (M, %,§5)— (M, %, 3.
By Proposition 4.36, the pullback Fubini-Study metrics g;(¢) are uni-

formly equivalent for ¢ € [—1,1]. It follows that there is a Lipschitz map
Idy; between two time slices, for the pullback Fubini-Study metrics:

IdOl : (M7iag> (M/ T’ _/)

Combining the previous steps and letting ¥ = T dl_1 o Idpy o Idy, we
obtain that the map

U (M,z,5) = (M, %,7)
is a homeomorphism. By analyzing each component identity map, it is
clear that W|g ), where R(M) is the regular part of M, maps R(M)
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to R(M'"), as a biholomorphic map. Similarly, | s(ir) 1s @ homeomor-
phism to S(M’). Therefore, the variety structure of the M(t) does not
depend on time. We remark that the compactness of M is not essen-
tially used here. If M is noncompact, the above argument go through
formally if we replace the target embedding space CPY by CP>. This
formal argument can be made rigorous by applying delicate localization
technique. However, in our applications, M is always compact except
it is a bubble, i.e., a blowup limit. In this situation, we have the extra
condition |R| 4 |[A\| = 0, then ¥ can be easily chosen as identity map,
due to Proposition 4.23.

From the above discussion, it is clear that the topology structure and
variety structure of M(t) does not depend on time. So we just denote
M (t) by M. Then we can denote the convergence (4.36) by
(4.37) (M i, gi(t) = (M, 2(8), 5(1)),
for each t. Hence, the limit family of metric spaces can be regarded as
a family of evolving metrics on the limit variety. Therefore, the above
convergence at each time ¢ can be glued together to obtain a global
convergence

(4.38) {(Mi i, gu(0)),~T; < t < T} <5 {(3.2,9(0), ~T < t < T},

where T = lim ;. Clearly, g(t) satisfies the Kihler Ricci flow equation

1— 00

on the regular part of M. Recall that we typically denote the Kéhler
Ricci flow {(M;,xi,9i(t)),—T; <t <T;} by M;. Then we obtain the
convergence of Kéahler Ricci flows (with base points):

(4.39) My, ) &5 (M, ).

If we further know the underlying space M is compact, then the notation
can be even simplified as

(4.40) M; &5 M

Remark 4.39. The limit flow M can be regarded as an intrinsic
Kihler Ricci flow on the normal variety M. Actually, it is already clear
that M is at least a weak super solution of Ricci flow, in the sense
of R.J. McCann and P.M. Topping ([44]). From the point of view of
Kéhler geometry, when restricted to the potential level, the flow M
coincides with the weak Kéhler Ricci flow solution defined by Song and
Tian ([56]), if M is compact.

If we also consider the convergence of the line bundle structure, we
can obviously generalize the convergence in (4.39) as
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(4.41) (LM, x;) o (E./\/l,a_c) , if M is non-compact,
(4.42) cM; &S LM, if M is compact.

With these notations, we can formulate our compactness theorem as
follows.

Theorem 4.40 (Polarized flow limit). Suppose LM; € ¥ (n, A),
x; € M;. Then we have

(LM;,z;) 5 (TM, ),

where LM 1is a polarized Kdhler Ricci flow solution on an analytic nor-
mal variety M. Moreover, if M is compact, then it is a projective normal
variety.

Notice that we have already proved Theorem 1.5 now.

Proof of Theorem 1.5. The limit polarized flow on variety follows from
the combination of Theorem 4.40 and Theorem 4.19. The Minkowski di-
mension estimate of the singular set follows from Corollary 4.14.

q.e.d.

The properties of the limit spaces can be improved if extra conditions
are available.

Proposition 4.41 (KE limit). Suppose LM; € # (n, A) satisfies

(4.43) / / |R — nA|dvdt — 0.

Then LM is a static, polarized Kdhler Ricci flow solution. In other
words, g(t) = g(0) and, consequently, are Kdhler Einstein metric.

Suppose LM € # (n, A) and A > 0. Then it is clear that ¢1 (M) > 0,
or M is Fano. Note that for every Fano manifold, we have a uniform
bound ¢} (M) < C(n) (c.f. [34]). This implies that

%SVOI(M):C?(L):)\ (M) < CAT™
So A is bounded away from above. If we assume )\ is bounded away
from zero, then Vol(M) = ¢} (L) is uniformly bounded. Consequently,
diam (M) is uniformly bounded by non-collapsing, due to the Sobolev
constant bound. Therefore, if we have a sequence of LM, € J# (n, A)
with A; > Ag > 0, we can always assume

N A>0, LM ESTM,

without considering the base points.
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Proposition 4.42 (KRS limit). Suppose LM; € # (n, A) satisfies

Ai Ai
where i is Perelman’s W-functional. Suppose LM is the limit of LM.
Then M is a gradient shrinking Kdahler Ricct soliton. In other words,
there is a smooth real valued function f defined on R(M) x (=T,T)
such that

(4.45) fie=Fr=0, R+ fir—az=0.
Proof. Without loss of generality, we may assume \; = 1. Let LM €

H (n,A). At time t = 1, let u be the minimizer of Perelman’s u-
functional. Then solve the backward heat equation

O = (-0 —A+R—n\)u=0.
Let f be the function such that (27) "e™/ = u. Then we have

1
-n - _ |2 2 12\ —f
27 R+ fir — 9| + | fiel”+|f; e Tdv
| en { 1R+ fe = al” + 16 + 156}

<pu (M,g(l), ;) — B (M,g(—l), ;)
<u (M,gm, ;) —p <M,g<—T>, ;) o,

At time t = 1, f has good regularity estimate for it is a solution of
an elliptic equation. For t € (—1,1), we have estimate of f from heat
kernel estimate. It is not hard to see that, on the space-time domain
R x (—1,1), f converges to a limit function f satisfying (4.45). Clearly,
the time interval of (—1,1) can be replaced by (—a,a) for every a €
(1,T). For each a, we have a limit function f(@), which satisfies equation
(4.45) and, therefore, has enough a priori estimates. Then let a — T
and take diagonal sequence limit, we obtain a limit function f (T) which
satisfies (4.45) on R x (=T,T). Without loss of generality, we still
denote f(T) by f. Then f satisfies (4.45) on R x (=T, T). q.e.d.

Remark 4.43. It is an interesting problem to see whether (M, g(0))
is a conifold in Theorem 4.40. This question has affirmative answer
when we know (M, g(0)) has Einstein regular part, following the proof
of Theorem 2.5 and Proposition 3.25. In particular, the limit spaces in
Proposition 4.41 and Proposition 4.23 are Kahler Einstein conifolds, in
the sense of Chen—Wang (c.f. Definition 1.2 of [29]).

5. Applications

In this section, we will focus on the applications of our structure
theory to the study of anti-canonical Kéahler Ricci flows.
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5.1. Convergence of Kiahler Ricci flows. Based on the structure
theory, Theorem 1.6 can be easily proved.

Proof of Theorem 1.6. In view of the fundamental estimate of Perel-
man (c.f. [55]), in order (1.4) to hold, we only need a Sobolev constant
bound, which was proved by Q. Zhang (c.f. [76]) and R. Ye (c.f. [75]).
Therefore, the truncated flow sequences locate in % (n, A) for a uni-
form A. It follows from Theorem 1.5 that the limit Kahler Ricci flow
exists on a compact projective normal variety. The limit normal variety
is @Q-Fano since it has a limit anti-canonical polarization. According
to Proposition 4.42, the boundedness and monotonicity of Perelman’s
p-functional force the limit flow to be a Kahler Ricci soliton. The vol-
ume estimate of r-neighborhood of § follows from Corollary 4.32 and
estimate (3.34) of [29]. q.e.d.

We continue to discuss applications beyond Theorem 1.6. The fol-
lowing property is well known to experts, we write it down here for the
convenience of the readers.

Proposition 5.1 (Connectivity of limit moduli). Suppose M =
{(M™,¢g(t)),0 <t < oo} is an anti-canonical Kdhler Ricci flows on Fano
manifold (M, J). Let A be the collection of all the possible limit space
along this flow. Then . is connected.

Proof. If the statement was wrong, we have two limit spaces M, and
My, locating in different connected components of .#. Let .#, be the
connected component containing M,. Since .#, is a connected com-
ponent, it is open and closed. So its closure .Z, is the same as .#,.
Clearly, .#, is compact under the Gromov-Hausdorff topology. Define

1 d( X, 4, 2 inf d X, Y
(5 ) ( >%) YIG//[a GH( 3 )7
5.2 o £ inf d(X,.#,).

( ) L Xegl///\///a ( )

Clearly, n, > 0 by the compactness of .#, and the fact that .#Z, is a
connected component.

Without loss of generality, we can assume (M, g(¢;)) converges to M,,
(M, g(s;)) converges to M, for t; — oo and s; > t;. For simplicity of
notation, we denote (M, g(t;)) by M, (M,g(s;)) by Ms,. For large 1,
we have

v Na — Na
(5 3) dGH( tiy a) < 1007 dGH( Si b) < 100
In particular, the above inequalities imply that
Na 99
d(M,,, —, d(M,,, A, — 1.
( tis a) < 1007 ( Si9 a) > 10077(1
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By continuity of the flow, we can find 6; € (¢;, s;) such that

A(My,, M) =
whose limit form is
(5.4) d(M,, M) = %na,
where M, is the limit of My,. However, (5.4) contradicts with (5.2) and
the fact n, > 0. q.e.d.

Proposition 5.1 can be generalized as follows.
Proposition 5.2 (KRS limit moduli). Suppose that
M ={(M, gs(t)),0 <t <o0,s € X}

is a smooth family of anti-canonical Kdahler Ricci flows on Fano mani-
folds (Ms, J5), where X is a connected parameter space. We call (M, §)
as a limit space if (M, g) is the Gromov-Hausdorff limit of (M, g, (t;))
for some t; = oo and s; -+ 5 € X.

1

Suppose f(s) = tlim I <gs(t), 3 is an upper semi-continuous func-
—00

tion on X. Then we have the following properties.

o Fuvery limit space is a Kdahler Ricci soliton.

o Let A be the collection of all the limit spaces. Then M is con-
nected under the Gromov—Hausdorff topology.

Proof. We shall only show that every limit space is a Kéhler Ricci
soliton. The connectedness of .# can be proved almost the same as
Proposition 5.1. So we leave the details to the readers.

Suppose s; — 5. Fix €, we can choose T; such that

H (g§(Te); ;) > fs—e

By the smooth convergence of gs,(T¢) and the upper semi-continuity of
f, we have

2 (gsi(T€>? ;) > fSi -6

for large ¢. Recall that t; — co. Therefore, it follows from the mono-
tonicity of Perelman’s functional that

2 <gsi(T€)7 ;) < u <gsi(ti - 1)7 ;) < tliglolul <gsi(t)ﬂ ;) = sz"

Hence, we have

1 1
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for large i. By the arbitrary choice of €, we obtain

Jim {u (gsl-(ti +1), ;) —p (951-(% - 1), ;)} =0.

Therefore, (M, gs,(t;)) converges to a Kéhler Ricci soliton, in light of
Proposition 4.42. q.e.d.

The gap between singularity and regularity in Theorem 1.2 has a
global version as follows.

Proposition 5.3 (Gap around smooth KE). Suppose (M, §,J) is
a compact, smooth Kdhler Finstein manifold which belongs to ¥ (n, A)
when regarded as a trivial polarized Kahler Ricci flow solution. Then
there exists an € = €(n, A, g) with the following properties.

Suppose LM € H (n,A) and dGH((M,f]),(M,g(O))) < €, then we
have

cvr(M, g(0)) > %cvr(M,g).

Proof. 1t follows from the continuity of canonical volume radius un-
der the C'*°-Cheeger—Gromov convergence (c.f. Proposition 3.33 and
Corollary 3.41). q.e.d.

Proposition 5.3 means that there is no singular limit space around
any given smooth Kéahler Einstein manifold. Clearly, the single smooth
Kahler Einstein manifold in this Proposition can be replaced by a fam-
ily of smooth Kéhler Einstein manifolds with bounded geometry. The
gap between smooth and singular Kahler Einstein metrics can be con-
veniently used to carry out topology argument.

Theorem 5.4 (Convergence of KRF family). Suppose that
M = {(M, g5(t), J5),0 <t < 00,5 € X}

is a smooth family of anti-canonical Kdahler Ricci flows on Fano mani-
folds (Mg, Js), where X is a connected parameter space. Moreover, we
assume that

e The Mabuchi’s K-energy is bounded from below along each flow.

e Smooth Kdhler Finstein metrics in all adjacent complex structures
(c.f. Definition 1.4 of [23]) have uniformly bounded Riemannian
curvature.

Let €2 be the collection of s such that the flow g5 has bounded Riemannian
curvature. Then Q =0 or Q = X.

Proof. 1t suffices to show that €2 is both open and closed in X.

The openness follows from the stability of Kahler Ricci flow around a
given smooth Kéahler Einstein metric, due to Sun and Wang (c.f. [59]).
Suppose s € 2, then the flow gs converges to some Kéahler Einstein
manifold (M’,¢’,J’), which is the unique Kéhler Einstein metric in its
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small smooth neighborhood. By continuous dependence of flow on the
initial data, and the stability of Kahler Ricci flow in a very small neigh-
borhood of (M’,¢’, J'), it is clear that s has a neighborhood consisting
of points in 2. Therefore, €2 is an open subset of X.

The closedness follows from Proposition 5.2. Suppose s; € € and
s; — 5 € X. Due to the fact that the Mabuchi’s K-energy is bounded
from below along each Kéhler Ricci flow we are concerning now, the limit
Perelman functional is always the same (c.f. [23]). Therefore, we can
apply Proposition 5.2 to show that every limit space is a possibly singu-
lar Kahler Einstein. However, along every gs,, we obtain a smooth limit
Kéhler Einstein manifold (M’, ¢, J'), which has uniformly bounded cur-
vature, as a Kdhler Einstein manifold in an adjacent complex structure.
Note that the diameter of M’ is uniformly bounded by Myers theorem.
The volume of M’ is a topological constant. Therefore, the geometry
of (M',¢') are uniformly bounded. By a generalized version of Propo-
sition 5.3, (M’,g’, J’) is uniformly bounded away from singular Kahler
Einstein metrics. Due to Proposition 5.2, the connectedness of .# forces
that the flow gs must converge to a smooth (M’ ¢’,J’). In particular,
gs has bounded curvature. Therefore, 5 € ) and €2 is closed. q.e.d.

The two assumptions in Theorem 5.4 seem to be artificial. However,
if Js is a trivial family or a test configuration family, by the unique
degeneration theorem of Chen-Sun (c.f. [23]), all the smooth Kéahler
Einstein metrics form an isolated family, then the second condition is
satisfied automatically. On the other hand, by the existence of Kahler
Einstein metrics in the weak sense, one can also obtain the lower bound
of Mabuchi’s K-energy (c.f. [2], [35], [16]). Consequently, Theorem 5.4
can be applied to these special cases and obtain the following corollaries.

Corollary 5.5 (Convergence to given KE, c.f. Tian—Zhu [68],
Collins—Székelyhidi [33]). Suppose (M,J) is a Fano manifold with a
Kahler Finstein metric gxg. Then every anti-canonical Kdahler Ricci
flow on (M, J) converges to (M, gxg,J).

Proof. Let wi g be the Kéhler Einstein metric form. Then every met-
ric form w can be written as wx g + v/ —109¢ for some smooth function
¢. Define

ws = wgp + sV —100¢, s¢€[0,1].

It follows from Theorem 5.4 that the Kéhler Ricci flow from every ws
has bounded curvature, and, consequently, converges to wxg, by the
uniqueness theorem of Chen-Sun (c.f. [23]). In particular, the flow
start from w converges to Wi . q.e.d.

Corollary 5.6 (Convergence of a test configuration). Suppose
M is a smooth test configuration, i.e., a family of Fano manifolds
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(Mg, J,) parameterized by s in unit disk D C C' with a natural C*-
action. Suppose each fiber is smooth and the central fiber (Mo, go, Jo) ad-
mits Kahler Einstein metric (Mo, gk, Jo). Then each Kdhler Ricci flow
starting from (Mg, gs, Js) for arbitrary s € D converges to (Mo, gxE, Jo)-

Proof. Theorem 5.4 can be applied for X = D. The central Kéhler
Ricci flow converges by Corollary 5.5. Therefore, the Kéhler Ricci flow
on each fiber has bounded curvature and converge to some smooth
Kéhler Einstein metric, which can only be (My,g9xg, Jy), due to the
uniqueness theorem of Chen—Sun again. q.e.d.

Remark 5.7. Corollary 5.5 was announced by G. Perelman. The
first written proof was given by Tian-Zhu in [68] whenever there is no
non-trivial holomorphic vector field. The general case was proved by
Collins—Székelyhidi in [33]. The strategy of Corollary 5.5 was inspired
by that in [69]. Corollary 5.5-Corollary 5.6 have the corresponding
Kaéhler Ricci soliton versions. These generalizations will be discussed in
a separate paper.

5.2. Degeneration of Kahler Ricci flows. In this subsection, we
shall prove Theorem 1.10 and related corollaries.

The following Theorem is due to Jiang (c.f. [40]). It is a generalization
of the estimate of Perelman (c.f. [55]).

Theorem 5.8 (Generalization of Perelman’s estimate). Sup-
pose that

M = {(M™,g(t),]),0 < t < 00}

is an anti-canonical Kdhler Ricci flow solution satisfying

(5.5) HRz‘c—HCO(M) + | log Vol(M)| + Cs(M, g(0)) < F
at time t = 0. Then we have
(5.6) B+ V9 <

for some constant C = C(n, F).

Note that (5.6) implies a uniform bound of diameter at each time
t > 0, by the uniform bound of Perelman’s functional. Then one can
easily deduce a uniform bound (depending on ) of [|9]|c1(y). Combing
this with the Sobolev constant estimate along the flow (c.f. [76], [75]),
we see that

for each ¢t > 0. Therefore, away from the initial time, we can always
apply our structure theory.
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Theorem 5.9 (Weak convergence with initial time). Suppose

M; = {(M]',g:(t), Ji),0 < t < oo} is a sequence of anti-canonical
Kahler chcz flow solutions, whose initial time slices satisfy estimate
(5.5) uniformly. Then we have

G.H. ,— _—
where the limit is a weak Kdhler Ricci flow solution on a Q-Fano normal

variety M, for time t > 0. Moreover, the convergence can be improved
to be in the C'°°-Cheeger—Gromov topology for each t > 0, i.e.,

(5.9) (M, gi(t)) <5 (N1 (), 5(1)),
for each t > 0.

Clearly, if (M;, g;) is a sequence of almost Kéhler Einstein metrics in
the anti-canonical classes (c.f. [67]), then (M(0),g(0)) and (M(1),g(1))
are isometric to each other, due to Proposition 4.41 and the estimate
in [67]. In this particular case, it is easy to see that partial-C%-estimate
holds uniformly at time ¢ = 0 for each ¢, at least intuitively. Actually,
by the work Jiang [40], it is now clear that partial-C°-estimate at time
t = 0 only requires a uniform Ricci lower bound.

Note that the evolution equation of the anti-canonical Kahler Ricci

flow is
n

. Weo
(5.10) wzlogﬁjtcp—uw

Where uw is the Ricci potential satisfying the normalization condition
[ie "% = (2m)". By maximum principle and Green function argu-
ment, we have the following property (c.f. [40]).

Proposition 5.10 (Potential equivalence). Suppose that
M ={(M",g(t),J),0 <t < oo}

is an anti-canonical Kahler Ricci flow solution satisfying (5.5). At time
t =0, let ¢ =0 and u,, satisfy the normalization condition. Then we
have

(5.11) C(l—e) <p<Ce,
for a constant C = C(n, F).
Let b(-,t) be the Bergman function at time ¢. By definition, at

point z € M and time ¢ = 0, we can find a holomorphic section
S € H'(M, K,,) such that
[ IS % =1, b(e.0) = log S o).

Note that |]S||h(1) = |]S||h(0)e_9"(1). By (5.11), it is clear that |]S||Z(1) and
||S||i(0) are uniformly equivalent. On the other hand, A||S||* > —n||S||.
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At time t = 0, applying Moser iteration implies that HS”}ZL(o) < C.
Hence, we obtain ||S||i(1) < C. At time t = 1, let S be the normalization
of S, i.e.,, S =S such that Jor HS“ “i

2
=1 Then we have
h(1) ™

-2 _ 2 Wy
2= [ st <
It follows that
~ 112
b(z, 1) ZIOgHSHhO)@g:zlognsnio)@g-+1ogA2

= log [|S 17 () () — (1) + log A?
= b(z,0) — ¢(1) + log \?
> b(z,0) — C.
By reversing time, we can obtain a similar inequality with reverse di-

rection. Same analysis applies to b(¥) for each positive integer k. So we
have the following property.

Proposition 5.11 (Bergman function equivalence). Suppose that
M ={(M",4(t),J),0 <t < oo}

is an anti-canonical Kdhler Ricci flow solution satisfying (5.5). For each
positive integer k, there exists C = C(n, F, k) such that

(5.12) b® (z,0) — ¢ < b®(z,1) < b (2,0) + C,
for allx € M.

In view of Theorem 5.9, partial-C?-estimate holds at time ¢t = 1,
which induces the partial-C?-estimate at time ¢ = 0, by Proposition 5.11.
Therefore, the following theorem is clear now.

Theorem 5.12 (Partial-C’-estimate at initial time). Suppose
M ={(M",g(t),J),0 <t < oo} is an anti-canonical Kdhler Ricci flow
solution satisfying (5.5). Then

i (ko) >
xlél]&b (.T, 0) = —Co,

for some positive integer kg = ko(n,F) and positive number cy =
co(n, F).

By the Sobolev constant estimates for manifolds with uniform positive
Ricci curvature, it is clear that Theorem 1.10 follows from Theorem 5.12
directly. It is also clear that Corollary 1.11 follows from Theorem 5.12.

The proof of Corollary 1.12 is known in literature (c.f. [61]), provided
the partial-C%-estimate along the Kéhler Ricci flow. We shall be sketchy
here. In fact, due to the work of S. Paul ([47], [48]) and the argument
in section 6 of Tian and Zhang ([70]), one obtains that the I-functional



SPACE OF RICCI FLOWS (II)—PART B 119

is bounded along the flow. Then the Kéahler Ricci flow converges to a
Kéhler—Einstein metric, on the same Fano manifold.

It is an interesting problem to study the K-stability through the
Kahler Ricci flow. Based on Theorem 1.6, the weak compactness of
polarized Kahler Ricci flow, we are able to give an alternative Kahler
Ricci flow proof of the stability theorem (Yau’s conjecture) of Chen—
Donaldson-Sun. Interested readers are referred to [24] for the de-
tails.
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