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SPACE OF RICCI FLOWS (II)—PART B: WEAK
COMPACTNESS OF THE FLOWS

Xiuxiong Chen∗ & Bing Wang†

Abstract

Based on the compactness of the moduli of non-collapsed
Calabi–Yau spaces with mild singularities, we set up a structure
theory for polarized Kähler Ricci flows with proper geometric
bounds. Our theory is a generalization of the structure theory
of non-collapsed Kähler Einstein manifolds. As applications, we
show the convergence of the Kähler Ricci flow in an appropriate
topology and prove the partial-C0-conjecture.
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1. Introduction

This paper is the continuation of the study in ([27]) and ([30]).
In [27], we developed a weak compactness theory for non-collapsed Ricci
flows with bounded scalar curvature and bounded half-dimensional cur-
vature integral. This weak compactness theory is applied in [30] to show
the convergence of the Kähler Ricci flow in complex dimension 2 and its
geometric consequences. However, the assumption of half dimensional
curvature integral is restrictive. It is not available for high dimensional
anti-canonical Kähler Ricci flow, i.e., Kähler Ricci flow on a Fano mani-
fold (M,J), in the class 2πc1(M,J). In this paper, by taking advantage
of the extra structures from Kähler geometry, we drop this curvature
integral condition.

The present paper is inspired by two different sources. One source is
the structure theory of Kähler Einstein manifolds which was developed
over last 20 years by many people, notably, Anderson, Cheeger, Cold-
ing, Tian and more recently, Naber, Donaldson and Sun. The recent
progress of the structure theory of Kähler Einstein manifolds supplies
many additional tools for our approach. The other source is the semi-
nal work of Perelman on the Ricci flow (c.f. [49], [55]). Actually, it was
pointed out by Perelman already that his idea in [49] can be applied to
study Kähler Ricci flow. He wrote that

“present work has also some applications to the Hamilton–
Tian conjecture concerning Kähler–Ricci flow on Kähler
manifold with positive first Chern class: these will be dis-
cussed in a separate paper”.

We cannot help to wonder how far he will push the subject of Ricci flow
if he continued to publicize his works on arXiv. Although “this separate
paper” never appears, his fundamental estimates of Kähler Ricci flow on
Fano manifolds is the base of our present research. Besides Perelman’s
estimates, we also note that the following technical results in the Ricci
flow are important to the formation of this paper over a long period of
time: the Sobolev constant estimate by Q.S. Zhang ([76]) and R. Ye
([75]), and the volume ratio upper bound estimate by Q.S. Zhang ([78])
and Chen–Wang ([31]). Some other important estimates can be found
in the summary of [26].

Our key observation is that there is a “canonical neighborhood” the-
orem for anti-canonical Kähler Ricci flows. The idea of “canonical
neighborhood” originates from Theorem 12.1 of Perelman’s paper [49].
For every 3-dimensional Ricci flow, Perelman showed that the space-
time neighborhood of a high curvature point can be approximated by
a κ-solution, which is a model Ricci flow solution. To be precise, a
κ-solution is a 3-dimensional, κ-noncollapsed, ancient Ricci flow solu-
tion with bounded, nonnegative curvature operator. By definition, it
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is not clear at all that the moduli of κ-solutions has compactness un-
der (pointed-) smooth topology (modulo diffeomorphisms). Perelman
genuinely proved the compactness by delicate use of Hamilton–Ivey es-
timate and the geometry of nonnegatively curved 3-manifolds. In light
of the compactness of the moduli of κ-solutions, by a maximum princi-
ple type argument, Perelman developed the “canonical neighborhood”
theorem, which is of essential importance to his celebrated solution of
the Poincaré conjecture (c.f. [41], [45], [5]).

The idea of “canonical neighborhood” is universal and can be applied
in many different geometric settings. In particular, there is a “canon-
ical neighborhood” theorem for the anti-canonical Kähler Ricci flows,
where estimates of many quantities, including scalar curvature, Ricci
potential and Sobolev constant, are available. Clearly, a “canonical
neighborhood” should be a neighborhood in space-time, behaving like
a model space-time, which is more or less the blowup limit of the given
flow. Therefore, it is natural to expect that the model space-time is
the scalar flat Ricci flow solutions, which must be Ricci flat, due to the
equation ∂

∂tR = ∆R + 2|Ric|2, satisfied by the scalar curvature R. For
this reason, the model space and model space-time can be identified,
since the evolution on time direction is trivial. It is also natural to ex-
pect that the model space has a Kähler structure. In other words, the
model space should be Kähler Ricci flat space, or Calabi–Yau space.
Now the first essential difficulty appears. A good model space should
have a compact moduli. For example, in the case of 3-dimensional Ricci
flow, the moduli space of κ-solutions, which are the model space-times,
has compactness in the smooth topology. However, the moduli space
of all the non-collapsed smooth Calabi–Yau space-times is clearly not
compact under the smooth topology. A blowdown sequence of Eguchi–
Hanson metrics is an easy example. For the sake of compactness, we
need to replace the smooth topology by a weaker topology, the pointed-
Ĉ∞-Cheeger–Gromov topology. At the same time, we also need to en-
large the class of model spaces from complete Calabi–Yau manifolds
to the Calabi–Yau spaces with mild singularities (c.f. Definition 2.1),

which we denote by K̃ S (n, κ). Similar to the compactness theorem of

Perelman’s κ-solutions, we have the compactness of K̃ S (n, κ).

Theorem 1.1 (Compactness of model moduli, Chen–Wang [29]).

K̃ S (n, κ) is compact under the pointed-Ĉ∞-Cheeger–Gromov topology.

In other words, for each sequence of (Xi, xi, gi) ∈ K̃ S (n, κ), by taking
subsequence if necessary, we have

(Xi, xi, gi)
Ĉ∞

−−→ (X̄, x̄, ḡ),(1.1)

for some (X̄, x̄, ḡ) ∈ K̃ S (n, κ).
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Note that the convergence topology in (1.1) was stated as “pointed-
Cheeger–Gromov” topology previously in literature, for example, in
Chen–Wang [27]. We now use extra term Ĉ∞ to indicate it deals with
singularities. Let us say a few more words for its precise meaning. In
fact, (1.1) first means that (Xi, xi, di) converges to a pointed-length-
space (X̄, x̄, d̄), where di is the distance structure induced by gi. The
second meaning of (1.1) is that X̄ has a regular-singular decomposition
X̄ = R(X̄) ∪ S(X̄), where the regular part R(X̄) is a smooth manifold
equipped with a smooth metric ḡ, the singular part S(X̄) is a measure
(2n-dimensional Hausdorff measure) zero set. Locally around each reg-
ular point, the metric structure determined by ḡ is identical to d̄. The
regular part R(X̄) has an exhaustion ∪∞j=1Kj by compact sets Kj . For
each compact set K = Kj for some j, one can find diffeomorphisms ϕK,i
from K to ϕK,i(K), a subset of R(Xi) such that

di(ϕK,i(y), xi)→ d̄(y, x̄), ∀ y ∈ K;

ϕ∗K,i(gi)
C∞−→ ḡ, on K.

Although in general the global distance structure induced by ḡ may not
be the same as d̄, this difference does not happen whenever the limit

space X̄ ∈ K̃ S (n, κ) since R(X̄) is weakly geodesic convex. Clearly,
∞ can be replaced by general positive k and the convergence in the
pointed-Ĉk-Cheeger–Gromov topology can be defined similarly. So we

use
Ĉk−→ to denote the (pointed)-Ĉk-Cheeger–Gromov topology, i.e., the

convergence is in the (pointed)-Gromov–Hausdorff topology, and can
be improved to be in Ck-topology (modulo diffeomorphisms) away from

singularities. For simplicity of notation, we use
P.G.H.−→ to denote the

convergence in pointed-Gromov–Hausdorff topology, use
G.H.−→ to denote

the convergence in Gromov–Hausdorff topology.

The strategy to prove the compactness of K̃ S (n, κ) follows the same
route of the weak compactness theory of Kähler Einstein manifolds, de-
veloped by Cheeger, Gromoll, Anderson, Colding, Tian, Naber, etc.
However, the analysis foundation on the singular spaces need to be
carefully checked, which is discussed in a separate paper [29]. Theo-
rem 1.1 is motivated by section 11 of Perelman’s seminal paper [49],
where Perelman proved the compactness of moduli space of κ-solutions
and showed that κ-solutions have many properties which are not obvious
from definition.

By trivial extension, each X ∈ K̃ S (n, κ) can be understood as a
space-time X× (−∞,∞) satisfying Ricci flow equation. Intuitively, the
rescaled space-time structure in a given anti-canonical Kähler Ricci flow

should behave similar to that of X×(−∞,∞) for some X ∈ K̃ S (n, κ),
when the rescaling factor is large enough. In order to make sense that
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two pointed-space-times are close to each other, we need the pointed-
Ĉ∞-Cheeger–Gromov topology for space-times, a slight generalization
of the pointed-Ĉ∞-Cheeger–Gromov topology for metric spaces. When
restricted on each time slice, this topology is the same as the usual
pointed-Ĉ∞-Cheeger–Gromov topology. Between every two different
time slices, there is a natural homeomorphism map connecting them.
Therefore, the above intuition can be realized if we can show a blowup
sequence of Ricci flow space-times from a given Kähler Ricci flow con-
verges to a limit space-time X× (−∞,∞), in the pointed-Ĉ∞-Cheeger–
Gromov topology for space-times. However, it is not easy to obtain
the homeomorphism maps between different time slices in the limit.
Although it is quite obvious to guess that the homeomorphism maps
among different time slices are the limit of identity maps, there ex-
ists serious technical difficulty to show the existence and regularity of
the limit maps. The difficulty boils down to a fundamental improve-
ment of Perelman’s pseudolocality theorem (Theorem 10.1 of [49]). Re-
call that Perelman’s pseudolocality theorem says that Ricci flow cannot
“quickly” turn an almost Euclidean region into a very curved one. It
is a short-time, one-sided estimate in nature. We need to improve it
to a long-time, two-sided estimate. Not surprisingly, the rigidity of
Kähler geometry plays an essential role for such an improvement. The
two-sided, long-time pseudolocality is an estimate in the time direction.
Modulo this time direction estimate and the weak compactness in the
space direction, we can take limit for a sequence of Ricci flows blown
up from a given flow. Then the canonical neighborhood theorem can be

set up if we can show that the limit space-time locates in K̃ S (n, κ),
following the same route as that in the proof of Theorem 12.1 of [49].

From the above discussion, it is clear that the strategy to prove
the canonical neighborhood theorem is simple. However, the techni-
cal difficulty hidden behind this simple strategy is not that simple.
We observe that the anti-canonical Kähler Ricci flow has many ad-
ditional structures, all of them should be used to carry out the proof
of the canonical neighborhood theorem. In particular, over every anti-
canonical Kähler Ricci flow, there is a natural anti-canonical polariza-
tion, which should play an important role, as done in [30]. Although
it can be studied in a more general setting, in this paper, however,
we shall focus on the flow with pluri-anti-canonical polarizations. We
call LM = {(Mn, g(t), J, L, h(t)), t ∈ (−T, T ) ⊂ R} a polarized Kähler
Ricci flow if

• M = {(Mn, g(t), J), t ∈ (−T, T )} is a Kähler Ricci flow
solution.
• L = K−νM is a pluri-anti-canonical line bundle over M , h(t) is a

family of smooth metrics on L whose curvature is ω(t), the metric
form compatible with g(t) and the complex structure J .
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Clearly, the first Chern class of L is [ω(t)], which does not depend on
time. So a polarized Kähler Ricci flow stays in a fixed integer Kähler
class. The evolution equation of g(t) can be written as

∂

∂t
gij̄ = −Rij̄ + λgij̄ ,(1.2)

where λ = c1(M)
c1(L) . Since the flow stays in the fixed class, we can let

ωt = ω0 +
√
−1∂∂̄ϕ. Then ϕ̇ is the Ricci potential, i.e.,

√
−1∂∂̄ϕ̇ = −Ric+ λg.(1.3)

Note the choice of ϕ is unique up to adding a constant. So we can
always modify the choice of ϕ such that sup

M
ϕ̇ = 0. For simplicity, we

denote K (n,A) as the collection of all the polarized Kähler Ricci flows
LM satisfying the following estimate{

T ≥ 2,

CS(M) + 1
Vol(M) + |ϕ̇|C1(M) + |R− nλ|C0(M) ≤ A,

(1.4)

for every time t ∈ (−T, T ). Here CS means the Sobolev constant, A
is a uniform constant. In this paper, we study the structure of polar-
ized Kähler Ricci flows locating in the space K (n,A). The motivation
behind (1.4) arises from the fundamental estimate of diameter, scalar
curvature, C1-norm of Ricci potential, and Sobolev constant along the
anti-canonical Kähler Ricci flows (c.f. [55], [76], [75]). Every polar-
ized Kähler Ricci flow solution in K (n,A) has at least three structures:
the metric space structure, the flow structure, the line bundle struc-
ture. Same structures can be discussed on the model space-time in

K̃ S (n, κ). All the structures of a flow in K (n,A) can be modeled by

the corresponding structures in K̃ S (n, κ), which is the same mean-
ing as the “canonical neighborhood theorem”. We shall compare these
structures term by term. Note that κ is the uniform non-collapsing con-
stant determined by the Sobolev constant bound in (1.4). The choice of
κ follows from the notation of the famous no-local-collapsing theorem
of Perelman [49]. More details can be found in Remark 3.32.

Under the pointed-Ĉ∞-Cheeger–Gromov topology at time 0, let us
compare the metric structure of a flow in K (n,A) with a Calabi–Yau

conifold in K̃ S (n, κ). We shall show that K (n,A) and K̃ S (n, κ)
behaves almost the same in this perspective. Intuitively, one can think
that the weak compactness theory of Ricci-flat manifolds and Einstein
manifolds are almost the same.

Theorem 1.2 (Metric space estimates). Suppose LMi ∈ K (n,
A). By taking subsequence if necessary, we have

(Mi, xi, gi(0))
Ĉ∞

−−→ (M̄, x̄, ḡ).(1.5)
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The limit space M̄ has a classical regular-singular decomposition R∪S
with the following properties.

• (R, ḡ) is a smooth, open Riemannian manifold. Moreover, R ad-
mits a limit Kähler structure J̄ such that

(
R, ḡ, J̄

)
is an open

Kähler manifold.
• S is a closed set and dimM S ≤ 2n − 4, where dimM means

Minkowski dimension (c.f. Definition 2.2 of [29]).
• Every tangent space of M̄ is an irreducible metric cone.
• Let v be the volume density, i.e.,

v(y) = lim sup
r→0

ω−1
2n r

−2n|B(y, r)|,(1.6)

for every point y ∈ M̄ . Then a point is regular if and only if
v(y) = 1, a point is singular if and only if v(y) ≤ 1−2δ0, where δ0

is a dimensional constant determined by Anderson’s gap theorem
(c.f. Lemma 3.1 of [1]).

By definition, we call a point being regular if it has a neighborhood
with smooth manifold structure and call a point being singular if it is not
regular (c.f. Proposition 4.2 and Remark 4.3). It is important to note

the difference between K̃ S (n, κ) and K (n,A). We use K̃ S (n, κ) to
denote the space of possible bubbles, or blowup limits. Therefore, every
metric space in it is a non-compact one. However, each time slice of flows
in K (n,A) is a compact manifold. The limit space M̄ of Theorem 1.2

maybe compact and does not belong to K̃ S (n, κ). Note also that the
weak convexity of R(M̄) is not known without further conditions.

In the study of the line bundle structure of K (n,A), the Bergman
function plays an important role. Actually, for every positive integer k
large enough such that Lk is globally generated, we define the Bergman
function b(k) as follows

b(k)(x, t) = log

Nk∑
i=0

∥∥∥S(k)
i

∥∥∥2

h(t)
(x, t),(1.7)

where Nk = dimCH
0(M,Lk) − 1,

{
S

(k)
i

}Nk
i=0

are orthonormal basis of

H0(M,Lk) under the natural metrics ω(t) and h(t). Theorem 1.2 means
that the metric structure of the center time slice of a Kähler Ricci flow in
K (n,A) can be modeled by non-collapsed Calabi–Yau manifolds with
mild singularities. In particular, each tangent space of a point in the
limit space is a metric cone. The trivial line bundle structure on metric
cone then implies an estimate of line bundle structure of the original
manifold, due to delicate use of Hömander’s ∂̄-estimate, as done by
Donaldson and Sun (c.f. [37]).
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Theorem 1.3 (Line bundle estimates). Suppose LM ∈ K (n,A),
then

inf
x∈M

b(k0)(x, 0) ≥ −c0,

for some positive number c0 = c0(n,A), and positive integer k0 =
k0(n,A).

In other words, Theorem 1.3 states that there is a uniform partial-
C0-estimate at time t = 0. This estimate then implies variety structure
of limit space, as discussed in [66] and [37]. Theorem 1.3 can be under-
stood that the line bundle structure of K (n,A) is modeled after that

of K̃ S (n, κ).
Theorem 1.2 and Theorem 1.3 deal only with one time slice. In order

to make sense of limit Kähler Ricci flow, we have to compare the limit
spaces of different time slices. For example, we choose xi ∈Mi, then we
have

(Mi, xi, gi(0))
Ĉ∞

−−→ (M̄, x̄, ḡ), (Mi, xi, gi(−1))
Ĉ∞

−−→ (M̄ ′, x̄′, ḡ′).

How are M̄ and M̄ ′ related? If x̄ is a regular point of M̄ , can we say x̄′

is a regular point of M̄ ′? Note that Perelman’s pseudolocality theorem
cannot answer this question, due to its short-time, one-sided property.
In order to relate different time slices, we need to improve Perelman’s
pseudolocality theorem to the following long-time, two-sided estimate,
which is the technical core of the current paper.

Theorem 1.4 (Time direction estimates). Let LM ∈ K (n,A).
Suppose x0 ∈M , Ω = Bg(0)(x0, r), Ω′ = Bg(0)(x0,

r
2) for some r ∈ (0, 1).

At time t = 0, suppose the isoperimetric constant estimate

I(Ω) ≥ (1− δ0)I(Cn)

holds for δ0 = δ0(n), the same constant in Theorem 1.2. Then we have

|∇kRm|(x, t) ≤ Ck, ∀ k ∈ Z≥0, x ∈ Ω′, t ∈ [−1, 1],

where Ck is a constant depending on n,A, r and k.

Theorem 1.4 holds trivially on each space in K̃ S (n, κ), when re-
garded as a static Ricci flow solution. Therefore, it can be understood
as the time direction structure, or the flow structure of LM ∈ K (n,A)

is similar to that of K̃ S (n, κ). Theorem 1.4 removes the major stum-
bling block for defining a limit Kähler Ricci flow, since it guarantees that
the regular-singular decomposition of the limit space is independent of
time. Therefore, there is a natural induced Kähler Ricci flow structure
on the regular part of the limit space. We denote its completion by
a limit Kähler Ricci flow solution, in a weak sense. Clearly, the limit
Kähler Ricci flow naturally inherits a limit line bundle structure, or a
limit polarization, on the regular part. Moreover, the limit underlying
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space does have a variety structure due to Theorem 1.3. With these
structures in hand, we are ready to discuss the convergence theorem of
polarized Kähler Ricci flows, which is the main structure theorem of
this paper (c.f. section 4.5 for meaning of the notations).

Theorem 1.5 (Weak compactness of polarized flows). Suppose
LMi ∈ K (n,A), xi ∈ Mi satisfying diamgi(0)(Mi) < C uniformly or
supMi

|R| → 0. By passing to subsequence if necessary, we have

(LMi, xi)
Ĉ∞−→

(
LM, x̄

)
,(1.8)

where LM is a polarized Kähler Ricci flow solution on an analytic nor-
mal variety M̄ , whose singular set S has Minkowski codimension at
least 4, with respect to each ḡ(t). Moreover, if M̄ is compact, then it is
a projective normal variety with at most log-terminal singularities.

Let us explain a few words of the meaning of (1.8). The limit flow LM
exists on M̄ × (−T̄ , T̄ ), whose regular part supports a line bundle (L̄, h̄)
such that the curvature form of h̄(t) is ω̄(t). Built on the convergence
of the time slices at t = 0 (c.f. (1.5)), for each compact set K ⊂ R(M̄),
we can find diffeomorphisms ϕK,i such that

ϕ∗K,i(gi(0))
C∞−→ ḡ(0).

Via the same diffeomorphisms, (1.8) means that we further have

ϕ∗K,i(Ji)
C∞−→ J̄ ;

ϕ∗K,i(gi(t))
C∞−→ ḡ(t), ∀ t ∈ (−T̄ , T̄ );(

ϕ∗K,i(Li)
∣∣
K
, hi(t)

)
C∞−→

(
L̄
∣∣
K
, h̄(t)

)
, ∀ t ∈ (−T̄ , T̄ ).

For more details, see the discussion from (4.37) to (4.42).
As it is developed for, our structure theory has applications in the

study of anti-canonical Kähler Ricci flows. Due to the fundamental
estimate of Perelman and the monotonicity of his µ-functional along
each anti-canonical Kähler Ricci flow, we can apply Theorem 1.5 directly
and obtain the following theorem.

Theorem 1.6 (Weak compactness of flows). Suppose that the
spacetime {(Mn, g(t)), 0 ≤ t <∞} is an anti-canonical Kähler Ricci flow
solution on a Fano manifold (M,J). For every s > 1, define

gs(t) , g(t+ s),

Ms , {(Mn, gs(t)),−s ≤ t ≤ s}.
Then for every sequence si →∞, by taking subsequence if necessary, we
have

(Msi , gsi)
Ĉ∞

−−→
(
M̄, ḡ

)
,(1.9)
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where the limit space-time M̄ is a Kähler Ricci soliton flow solution on
a Q-Fano normal variety (M̄, J̄). Moreover, with respect to each ḡ(t),
there is a uniform C independent of time such that the r-neighborhood
of the singular set S has measure not greater than Cr4.

Theorem 1.6 confirms a long-standing conjecture (sometimes called
Hamilton–Tian conjecture) concerning the convergence of the Kähler
Ricci flow. This conjecture dates back to Hamilton and it was refined
by Tian (c.f. Conjecture 9.1. of [65] for the precise statement). In fact,
Theorem 1.6 provides more information than that was conjectured since
it deals with the convergence of the “space-times”, rather than time
slices of the flow. Historically, the two dimensional case was confirmed
by the authors in [27]. We note that in a recent paper [70], another
approach to attack this conjecture in complex dimension 3, based on
L4-bound of Ricci curvature, was presented by Z.L. Zhang and G. Tian.
Their work in turn depends on the comparison geometry with integral
Ricci bounded, developed by G.F. Wei and P. Petersen ([50]). For other
important progress in Kähler Ricci flow, we refer interested readers to
the following papers (far away from being complete): [54], [76], [75],
[69], [77], [57], [69], [56], [51], [71], [60], as well as references listed
therein.

Theorem 1.6 can be used to study the relationship between the exis-
tence of Kähler Einstein metrics and the K-stability of the underlying
manifolds. By the work of Chen, Donaldson and Sun (c.f. [19], [20], [21]
and [22]), a long standing stability conjecture, going back to Yau (c.f.
Problem 65 of [74]) and critically contributed by Tian (c.f [65]) and
Donaldson (c.f. [36]), was confirmed. Theorem 1.6 can be applied to
provide an alternative proof of the original solution of the stability con-
jecture by Chen–Donaldson–Sun. Moreover, the convergence limit in
Theorem 1.6 is unique, i.e., does not depend on the choice of si → ∞.
Such results are proved in a subsequent work Chen–Sun–Wang [24].

Theorem 1.7 (Limit uniqueness and stability, Theorem 1.2
of Chen–Sun–Wang [24]). Suppose {(Mn, g(t)), 0 ≤ t <∞} is an anti-
canonical Kähler Ricci flow solution on a Fano manifold (M,J). There
is a unique Gromov–Hausdorff limit M̄ of (M, g(t)), as a Q-Fano vari-
ety endowed with a weak Kähler–Ricci soliton metric. Moreover, if M
is K-stable, then M̄ is isomorphic to M endowed with a smooth Kähler–
Einstein metric. In particular, M admits a Kähler–Einstein metric if
it is K-stable.

As corollaries of Theorem 1.6, we can affirmatively answer some prob-
lems raised in [30].

Corollary 1.8. Every anti-canonical Kähler Ricci flow is tamed, i.e.,
partial-C0-estimate holds along the flow.
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Corollary 1.9. Suppose {(Mn, g(t)), 0 ≤ t <∞} is an anti-canonical
Kähler Ricci flow on a Fano manifold M . Then the flow converges to a
Kähler Einstein metric if one of the following conditions hold for every
large positive integer ν.

• αν,1 > n
n+1 .

• αν,2 > n
n+1 and αν,1 >

1
2− n−1

(n+1)αν,2

.

Corollary 1.9 gives rise to a method for searching Fano Kähler Ein-
stein metrics in high dimension, which generalize the 2-dimensional case
due to Tian (c.f. [62]). The quantities αν,k are some algebro-geometric
invariant. The interested readers are referred to [62] for the precise
definition.

Our structure theory can be applied to study a family of Kähler Ricci
flows with some uniform initial conditions. In this perspective, we have
the following theorem.

Theorem 1.10 (Partial-C0-conjecture). For every positive con-
stants R0, V0, there exists a positive integer k0 and a positive constant
c0 with the following properties.

Suppose (M,ω, J) is a Kähler manifold satisfying Ric ≥ R0 and
Vol(M) ≥ V0, [ω] = 2πc1(M,J). Then we have

inf
x∈M

b(k0)(x) > −c0.

Theorem 1.10 confirms the partial-C0-conjecture of Tian (c.f. [64],
[66]). The low dimension case (n ≤ 3) was proved by Jiang ([40]),
depending on the partial-C0-estimate along the flow, developed by Chen
and Wang ([27], [30]) in complex dimension 2 and Tian–Zhang ([70]) in
complex dimension 3. In fact, a more general version of Theorem 1.10
is proved (c.f. Theorem 5.12). As a corollary of Theorem 1.10, we have

Corollary 1.11. (c.f. [61]) The partial-C0-estimate holds along the
classical continuity path.

Following Corollary 1.8, we obtain the following result, which was
originally proved by G. Székelyhidi (c.f. [61]) along the classical conti-
nuity path.

Corollary 1.12. Suppose (M,J) is a Fano manifold with Aut(M,J)
discrete. If it is stable in the sense of S. Paul (c.f. [46]), then it admits
a Kähler Einstein metric.

Because of the solution of stability conjecture by Chen–Donaldson–
Sun, we now know a Fano manifold is K-stable if and only if it admits
Kähler Einstein metrics. Using the theorem of Székelyhidi (c.f. [61]),
one can obtain the equivalence of the K-stability and Paul’s stability,
whenever the underlying manifold has discrete automorphism group. In
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light of Theorem 1.7 and Corollary 1.12, we obtain a Ricci flow proof of
this equivalence.

Let us quickly go over the relationships among the theorems. Theo-

rem 1.1 is the structure theorem of the model space K̃ S (n, κ). The-
orem 1.2, Theorem 1.3 and Theorem 1.4 combined together give the
canonical neighborhood structure of the polarized Kähler Ricci flow in
K (n,A), in a strong sense. The main structure theorem in this paper is
Theorem 1.5, the weak compactness theorem of polarized Kähler Ricci
flows. It is clear that Theorem 1.6 and Theorem 1.10 are direct appli-
cations of Theorem 1.5. The proof of Theorem 1.5 is based on the com-
bination of Theorem 1.2, Theorem 1.3 and Theorem 1.4. These three
theorems deal with different structures of K (n,A), including the Ricci
flow structure, metric space structure, line bundle structure and variety
structure. The importance of these structures decreases in order, for
the purpose of developing compactness. However, all these structures
are intertwined together. Paradoxically, the proof of the compactness of
these structures does not follow the same order, due to the lack of pre-
cise estimate of Bergman functions. Instead of proving them in order,
we define a concept called “polarized canonical radius”, which guar-
antees the convergence of all these structures under this radius. The
only thing we need to do then is to show that this radius cannot be
too small. Otherwise, we can apply a maximum principle argument to
obtain a contradiction, which essentially arise from the monotonicity of
Perelman’s reduced volume and localized W -functional.

This paper is organized as follows. In section 2, we quote some re-

sults from [29] of the model space K̃ S (n, κ) and the canonical radius
with respect to this model space. In section 3, we first set up a forward,
long-time pseudolocality theorem based on the existence of partial-C0-
estimate. Motivated by this pseudolocality theorem, we then refine the
“canonical radius” to “polarized canonical radius” and discuss the con-
vergence of flow structure and line bundle structure under the assump-
tion that polarized canonical radius is uniformly bounded from below.
Finally, at the end of section 3, we use a maximum principle argument
to show that there is an a priori bound of the polarized canonical ra-
dius. In section 4, we prove Theorem 1.2–1.5, together with some other
more detailed properties of the space K (n,A). At last, in section 5,
we develop the structure theory of the anti-canonical Kähler Ricci flows.
Applying the structure theory, we prove Theorem 1.6 and Theorem 1.10.

List of notations

• avr: asymptotic volume ratio. Defined in (2.2).
• b: Bergman function of L = K−νM . Defined in (3.1).

• b(k): Bergman function of Lk. Defined in (1.7).
• cr: canonical radius. Defined in Definition 2.9.
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• cvr: canonical volume radius. Defined in Proposition 2.10.
• dimH: Hausdorff dimension. First appears in Proposition 3.19.
• dimM: Minkowski dimension. First appears in Theorem 1.2.
• Dr: points on M where the volume radius is strictly less than r.

Defined in (2.12).
• E: upper bound of the density estimate of model space. First

appears in Theorem 2.7.
• Fr: points on M where the volume radius is at least r. Defined in

(2.12).
• K(n,A): Kähler Ricci flow satisfying (1.4). Defined in Defini-

tion 3.14.
• K(n,A; r): Kähler Ricci flow satisfying (1.4) and pcr ≥ r in the

central period. Defined in Definition 3.14.
• K S (n): the class of all the complete n-dimensional Calabi–Yau

manifolds. Stated before Proposition 2.2.

• K̃ S (n):the class of all n-dimensional Calabi–Yau manifolds with
mild singularities. Defined in Definition 2.1.

• K̃ S (n, κ): the model space, which is the class of all n-dimensional
Calabi–Yau manifolds with mild singularities and at least κ as-
ymptotic volume ratios. Defined in Definition 2.1.
• l: Perelman’s reduced distance. First appears in (2.5).
• L: The line bundle polarizing M . First appears in the paragraph

before (1.2).
• L: Lagrangian of space-time curves. First appears in (2.4).
• LM: Polarized Kähler Ricci flow solution. First appears in the

paragraph before (1.2).
• M: Kähler Ricci flow solution. First appears in the paragraph

before (1.2).
• Mt: the time t slice of the Kähler Ricci flow M. First appears in

Proposition 3.12.
• pcr: polarized canonical radius. Defined in Definition 3.10.
• p0: a constant very close to 2. It is chosen as p0 = 2 − 1

1000n in
Theorem 2.7.
• R: regular part of the limit space. Defined in (2.23).
• S: singular part of the limit space. Defined in (2.24).
• v: volume density. Defined in (2.1).
• V: Perelman’s reduced volume. First appears at (2.7).
• vr: volume radius. Defined in Proposition 2.2.
• Zr: r-neighborhood of the points where |Rm| > r−2. Defined in

the paragraph before Proposition 4.30.
• α,β,γ: bold symbol Greek letters mean space-time curves. First

appears in the discussion before (2.4).
• α, β, γ: Greek letters mean space curves. First appears in the

discussion before (2.4).
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• �: Heat operator ∂t −∆. First appears in Lemma 3.2.
• �∗: Conjugate heat operator −∂t −∆ + (R − nλ). First appears

in Lemma 3.1.

•
Ĉ∞

−−→: Convergence in smooth pointed-Ĉ∞-Cheeger–Gromov
topology. First appears in the discussion after Theorem 1.1. It
is generalized in the discussion after Theorem 1.5. Similar nota-

tion
Ĉk

−−→ is also defined there.

•
P.G.H.
−−−−→: Convergence in pointed Gromov–Hausdorff topology.
First appears in the discussion after Theorem 1.1. Similar no-

tation
G.H.
−−−→ is also defined there.

2. Preliminary results

In this section, we collect important results from [29].

Definition 2.1. Let K̃ S (n, κ) be the collection of length spaces
(X, g) with the following properties.

1) X has a disjoint regular-singular decomposition X = R∪S, where
R is the regular part, S is the singular part. A point is called
regular if it has a neighborhood which is isometric to a totally
geodesic convex domain of some smooth Riemannian manifold. A
point is called singular if it is not regular.

2) The regular part R is a nonempty, open Ricci-flat manifold of real
dimension m = 2n. Moreover, there exists a complex structure J
on R such that (R, g, J) is a Kähler manifold.

3) R is weakly convex, i.e., for every point x ∈ R, there exists a mea-
sure (2n-dimensional Hausdorff measure) zero set Cx ⊃ S such that
every point in X\Cx can be connected to x by a unique shortest
geodesic in R. For convenience, we call Cx as the cut locus of x.

4) dimM S < 2n− 3, where M means Minkowski dimension.
5) Let v be the volume density function, i.e.,

v(x) , lim
r→0

|B(x, r)|
ω2nr2n

,(2.1)

for every x ∈ X. Then v ≡ 1 on R and v ≤ 1− 2δ0 on S. In other
words, the function v is a criterion function for singularity. Here
δ0 = δ0(n) is the Anderson constant.

6) The asymptotic volume ratio avr(X) ≥ κ. In other words, we have

avr(X) , lim
r→∞

|B(x, r)|
ω2nr2n

≥ κ,(2.2)

for every x ∈ X.
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Let K̃ S (n) be the collection of metric spaces (X, g) with all the above
properties except the last one. Since Euclidean space is a special ele-
ment, we define

K̃ S
∗
(n) , K̃ S (n)\{(Cn, gE)},

K̃ S
∗
(n, κ) , K̃ S (n, κ)\{(Cn, gE)}.

Note that K S (n) is the class of all the complete n-dimensional
Calabi–Yau (Kahler–Ricci-flat) manifolds, where the classical Cheeger–

Colding theory works well. The space K̃ S (n) is an extension of K S (n)
by including Calabi–Yau manifolds with mild singularities. In [29], we

develop the structure theory of K̃ S (n). In the study of K̃ S (n), the
volume ratio plays a key role. In particular, we have the following prop-
erties.

Proposition 2.2 (Euclidean space by vr). Suppose X ∈ K̃ S (n)
and vr(x0) = ∞ for some x0 ∈ X, then X is isometric to the Eu-
clidean space Cn. Here vr(x0) is the supreme of all radii r such that
ω−1

2n r
−2n|B(x0, r)| ≥ 1− δ0.

Proposition 2.3 (Rigidity of volume ratio). Let X ∈ K̃ S (n).
If for two concentric geodesic balls B(x0, r1) ⊂ B(x0, r2) centered at a
regular point x0, we have

ω−1
2n r

−2n
1 |B(x0, r1)| = ω−1

2n r
−2n
2 |B(x0, r2)|,(2.3)

then the ball B(x0, r2) is isometric to a geodesic ball of radius r2 in Cn.
Furthermore, if X ∈ K S (n), then we can further conclude that X is
Euclidean.

A main result of [29] is the following compactness theorem.

Theorem 2.4 (Compactness, c.f. Theorem 1.1 of [29]). K̃ S (n, κ)

is compact under the pointed-Ĉ∞-Cheeger–Gromov topology.

Moreover, the combination of the 6 defining properties of K̃ S (n, κ)

is sufficient to improve the regularity of K̃ S (n, κ).

Theorem 2.5 (Space regularity improvement, c.f. Theorem 1.1

of [29]). Suppose X ∈ K̃ S (n, κ), then R is strongly convex, and
dimM S ≤ 2n − 4. Suppose x0 ∈ S, Y is a tangent space of X at

x0. Then Y is a metric cone in K̃ S (n, κ) with the splitting

Y = Cn−k × C(Z),

for some k ≥ 2, where C(Z) is a metric cone without lines.

Every space X ∈ K̃ S (n, κ) can be regarded as a trivial Ricci flow
solution. Therefore, Perelman’s celebrated work [49] can find its role
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in the study of X. Let us briefly recall some fundamental functionals
defined for the Ricci flow by Perelman.

Suppose {(Xm, g(t)),−T ≤ t ≤ 0} is a Ricci flow solution on a smooth
complete Riemannian manifold X of real dimension m. Suppose x, y ∈
X. Suppose γ is a space-time curve parameterized by τ = −t such that

γ(0) = (x, 0), γ(τ̄) = (y,−τ̄).

Let γ be the space-projection curve of γ. In other words, we have

γ(τ) = (γ(τ),−τ).

By the way, for the simplicity of notations, we always use bold symbol
of a Greek character to denote a space-time curve. The corresponding
space projection will be denoted by the normal Greek character. Fol-
lowing Perelman, the Lagrangian of the space-time curve γ is defined
as

L(γ) =

∫ τ̄

0

√
τ
(
R+ |γ̇|2

)
g(−τ)

dτ.(2.4)

Among all such γ’s that connected (x, 0), (y,−τ̄) and parameterized by
τ , there is at least one smooth curve α which minimizes the Lagrangian.
This curve is called a shortest reduced geodesic. The reduced distance
between (x, 0) and (y,−τ̄) is defined as

l((x, 0), (y,−τ̄)) =
L(α)

2
√
τ̄
.(2.5)

Let V = α̇. Then V satisfies the equation

∇V V +
V

2τ
+ 2Ric(V, ·) +

∇R
2

= 0,(2.6)

which is called the reduced geodesic equation. It is easy to check that
α̇ = V = ∇l. The reduced volume is defined as

V((x, 0), τ̄) =

∫
X

(4πτ̄)−
m
2 e−ldv.(2.7)

It is proved by Perelman that (4πτ )−
m
2 e−ldv, the reduced volume ele-

ment, is monotonically non-increasing along each reduced geodesic em-
anating from (x, 0).

Suppose the Ricci flow solution mentioned above is static, i.e., Ric ≡
0. Then it is easy to check that

L(α) = d2(x,y)

2
√
τ̄
,

l((x, 0), (y,−τ̄)) = d2(x,y)
4τ̄ ,

∇V V + V
2τ = 0,

|α̇|2 = |V |2 = |∇l|2 = τ l,

V((x, 0), τ̄) =
∫
X(4πτ̄)−

m
2 e−

d2

4τ̄ dv.

(2.8)
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Now we assume X ∈ K̃ S (n, κ). By a trivial extension in an extra
time direction, we obtain a static, eternal singular Kähler Ricci flow
solution. Since distance structure is already known, we can define re-
duced distance, reduced volume, etc, following equation (2.8). Clearly,
this definition coincides with the original one when X is smooth. The
following theorem is important to bridge the Cheeger–Colding’s struc-
ture theory to the Ricci flow theory.

Theorem 2.6 (Volume ratio and reduced volume). Suppose

X ∈ K̃ S (n, κ), x ∈ X. Let X × (−∞, 0] have the obvious static space-
time structure. Then we have

avr(X) = lim
τ→∞

V((x, 0), τ).(2.9)

v(x) = lim
τ→0
V((x, 0), τ).(2.10)

The compactness of the moduli K̃ S (n, κ) also implies the following
uniform estimates.

Theorem 2.7 (A priori estimates in model spaces, c.f. Theorem

1.5 of [29]). Suppose (X,x0, g) ∈ K̃ S (n, κ), r is a positive number.
Then the following estimates hold.

1) Strong volume ratio estimate: κ ≤ ω−1
2n r

−2n|B(x0, r)| ≤ 1.
2) Strong regularity estimate: r2+k|∇kRm| ≤ c−2

a in B(x0, car) for
every 0 ≤ k ≤ 5 whenever vr(x0) ≥ r.

3) Strong density estimate: r2p0−2n

∫
B(x0,r)

vr(y)−2p0dy ≤ E.

4) Strong connectivity estimate: Every two points y1, y2 ⊂ B(x0, r)∩
F 1

100
cbr

(X) can be connected by a shortest geodesic γ such that

γ ⊂ Fεbr(X).

Here, the constants ca, cb, εb all depend on κ and n, the constant p0

depends only on n and it is very close to 2, say p0 = 2 − 1
1000n , the

constant E depends on κ, n and p0.

Note that p0 can be chosen as arbitrarily close to 2. We set p0 =
2 − 1

1000n here just for simplicity of notations. The set Fr(X) is the
collection of points y satisfying vr(y) ≥ r. See (2.12) for precise def-
initions and keep in mind that cr(X) = ∞. Among all the estimates
listed in Theorem 2.7, we emphasize the following one, originally due to
Cheeger–Naber [14] for smooth non-collapsing Einstein case.

Proposition 2.8 (Density estimate of regular points). For ev-
ery 0 < p < 2, there is a constant E = E(n, κ, p) with the following
properties.
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Suppose (X,x, g) ∈ K̃ S (n, κ), r is a positive number. Then we have

r2p−2n

∫
B(x,r)

vr(y)−2pdy ≤ E(n, κ, p).(2.11)

Note that the estimates in Theorem 2.7 hold for each positive r. For
a general smooth manifold M , we design a scale to describe how similar
a manifold is to the model space.

Definition 2.9. We say that the canonical radius (with respect to

model space K̃ S (n, κ)) of a point x0 ∈ M is not less than r0 if for
every r < r0, we have the following properties.

1) Volume ratio estimate: κ ≤ ω−1
2n r

−2n|B(x0, r)| ≤ κ−1.
2) Regularity estimate: r2+k|∇kRm| ≤ 4c−2

a in the ball B(x0,
1
2car)

for every 0 ≤ k ≤ 5 whenever ω−1
2n r

−2n|B(x0, r)| ≥ 1− δ0.

3) Density estimate: r2p0−2n

∫
B(x0,r)

vr(r)(y)−2p0dy ≤ 2E, where p0 =

2− 1
1000n .

4) Connectivity estimate: B(x0, r)∩F (r)
1
50
cbr

(M) is 1
2εbr-regularly con-

nected on the scale r. Namely, every two points in B(x0, r) ∩
F (r)

1
50
cbr

(M) can be connected by a shortest geodesic γ ⊂ F (r)
1
2
εbr

(M).

Then we define canonical radius of x0 to be the supreme of all the r0

with the properties mentioned above. We denote the canonical radius
by cr(x0). For subset Ω ⊂ M , we define the canonical radius of Ω as
the infimum of all cr(x) where x ∈ Ω. We denote this canonical radius
by cr(Ω).

According to Definition 2.9, the canonical radius of a Kähler–Ricci-
flat smooth manifold with asymptotic volume ratio at least κ is ∞.
More generally, we can also define the canonical radius on spaces with
mild singularities. Then it is not hard to see that cr(x) = ∞ for each

x ∈ X whenever X ∈ K̃ S (n, κ).
For each r ∈ (0, cr(M)), one can decompose the manifold M into

r-regular and r-singular part as follows:

Fr , F (cr(M))
r , Dr , {Fr}c ,(2.12)

where we recall that the set F (cr(M))
r is{

x ∈M
∣∣there exists ρ ∈ (r, cr(M)), ω−1

2n ρ
−2n|B(x, ρ)| ≥ 1− δ0

}
.

Based on such decomposition, a rough weak compactness can be easily
established whenever we have global uniform lower bound cr ≥ 1. Let
us first list some properties needed to setup the weak compactness. Note
that from Proposition 2.10 to Proposition 2.12, we have the common
condition that cr(M) ≥ 1.
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Proposition 2.10. There is a constant K = K(n, κ) with the fol-
lowing properties.

For each x ∈M , let cvr(x) be the supreme of all radius ρ ∈ (0, cr(x))
such that

ω−1
2n ρ

−2n|B(x, ρ)| ≥ 1− δ0.

If r = cvr(x) < 1
K , then for every y ∈ B(x,K−1r), we have

K−1r ≤ cvr(y) ≤ Kr,(2.13)

ω−1
2n ρ

−2n|B(y, ρ)| ≥ 1− 1

100
δ0, ∀ ρ ∈ (0,K−1r),(2.14)

|Rm|(y) ≤ K2r−2,(2.15)

inj(y) ≥ K−1r.(2.16)

Proposition 2.11. For every r ≤ 1, two points x, y ∈ Fr can be
connected by a curve γ ⊂ F 1

2
εbr

with length |γ| < 3d(x, y).

Proposition 2.12. For every 0 < r ≤ ρ0 ≤ 1, x0 ∈M , we have

|B(x0, ρ0) ∩ Dr| < 4Eρ2n−2p0
0 r2p0 ,(2.17)

|B(x0, ρ0) ∩ Fr| >
(
κω2n − 4Er2p0ρ−2p0

0

)
ρ2n

0 .(2.18)

In particular, there exists at least one point z ∈ B(x0, ρ0) such that

cvr(z) > cbρ0,(2.19)

where cb =
(
κω2n
4E

) 1
2p0 .

Then we can easily obtain a rough weak compactness theory. Suppose
(Mi, gi, Ji) is a sequence of Kähler manifolds satisfying cr(Mi) ≥ r0. Let
di be the length structure induced by gi. It follows from ball-packing
argument that

(Mi, xi, di)
P.G.H.
−−−−→ (M̄, x̄, d̄),(2.20)

for some length space (M̄, d̄), by taking subsequence if necessary. For
each r < r0, define

Rr ,
{
ȳ ∈ M̄

∣∣∣∣There exists yi ∈Mi such that(2.21)

yi → ȳ and lim inf
i→∞

cvr(yi) ≥ r
}
,

Sr , (Rr)c ,(2.22)

R ,
⋃

0<r≤r0

Rr,(2.23)

S ,
⋂

0<r≤r0

Sr.(2.24)
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Theorem 2.13 (Rough weak compactness). Suppose cr(Mi) ≥
r0 > 0 uniformly and (2.20) holds. Then we have the regular-singular
decomposition M̄ = R∪ S with the following properties.

• The regular part R is an open, path connected C4-Riemannian
manifold. Furthermore, for every two points x, y ∈ R, there exists
a curve γ connecting x, y satisfying

γ ⊂ R, |γ| ≤ 3d(x, y).(2.25)

• The singular part S satisfies the Minkowski dimension estimate

dimM S ≤ 2n− 2p0.(2.26)

Proposition 2.14 (Volume convergence). The volume (Hausdorff
measure of dimension 2n) is continuous under the convergence (2.20),
i.e., for every fixed ρ0 > 0, we have

|B(x̄, ρ0)| = lim
i→∞
|B(xi, ρ0)|.

Note that the convergence regularity was improved on R(M̄). There-
fore, by abuse of notation, we now improve the convergence (2.20) as

(Mi, xi, gi)
Ĉ4

−−→ (M̄, x̄, ḡ),(2.27)

which means (2.20) together with the extra information that the conver-
gence on R(M̄) happens in C4-topology modulo diffeomorphisms. It is
important to note that the length structure of d̄ is not necessarily
equivalent to the length structure induced by ḡ. Instead, only
a rough equivalence (2.25) is known. However, they will be equivalent
when we know that R is weakly geodesic convex. To show the weak
convexity of R, one needs other conditions for (Mi, gi) such like the
Ricci flow condition. The furthermore improvement of this type will be
discussed in the next section.

3. Polarized canonical radius(pcr)

In this section, we shall improve the regularity of the limit pace M̄
in Theorem 2.13, under the help of Kähler geometry and the Ricci flow.
The Ricci flow has reduced volume and local W -functional monotonic-
ity, discovered by Perelman. These monotonicities will be used to show
that each tangent space is a metric cone, and the regular part R is
weakly convex, under some natural geometric conditions. However, the
weak-compactness we developed in last section only deals with the met-
ric structure. On M̄ , we cannot see a Ricci flow structure. In order
to make use of the intrinsic monotonicity of the Ricci flow, we need
a weak compactness of Ricci flows, not just the weak compactness of
time slices. However, along the Ricci flow, the metric at different time
slices cannot be compared obviously if no estimate of Ricci curvature is



SPACE OF RICCI FLOWS (II)—PART B 21

known. This is one of the fundamental difficulty to develop the weak
compactness theory of the Ricci flows. We overcome this difficulty by
taking advantage of the rigidity of Kähler geometry.

3.1. A rough long-time pseudolocality theorem. Suppose LM =
{(Mn, g(t), J, L, h(t)), t ∈ I ⊂ R} is a polarized Kähler Ricci flow. Let
b be the Bergman function with respect to ω(t) and h(t), i.e.,

b(x, t) = log

N∑
k=0

‖Sk‖2h(t),(3.1)

where N = dim(H0(L)) − 1, {Sk}Nk=0 are orthonormal holomorphic
sections of L in the sense that∫

M
〈Sk, Sl〉ω(t)n = δkl.

By pulling back the Fubini–Study metric through the natural holomor-
phic embedding, we have

ω̃ = ι∗(ωFS) = ω +
√
−1∂∂̄b.

Let ω0 = ω(0),b0 = b(0). Then

ω(t) = ω0 +
√
−1∂∂̄ϕ, ω̃(t) = ω0 +

√
−1∂∂̄(ϕ+ b).

Clearly, ϕ(0) = 0.
In this section, we focus on polarized Kähler Ricci flow LM satisfying

the following estimate

‖ϕ̇‖C0(M) + ‖b‖C0(M) + ‖R‖C0(M) + |λ|+ CS(M) ≤ B,(3.2)

for every time t ∈ I. Let b(k) be the Bergman function of the line
bundle Lk with the naturally induced metric. Then a standard argument
implies that

‖ϕ̇‖C0(M) +
∥∥∥b(k)

∥∥∥
C0(M)

+ ‖R‖C0(M) + |λ|+ CS(M) ≤ B(k),(3.3)

for a constant B(k) depending on B and k. Define

ω̃(k) ,
1

k

(
ι(k)
)∗

(ωFS),

F (k) , Λωtω̃
(k)
0 = n−∆

(
ϕ− b

(k)
0

)
.

In this section, the existence time of the polarized Kähler Ricci flow is
always infinity, i.e., I = [0,∞).

Lemma 3.1 (Integral bound of trace). Suppose LM is a polarized
Kähler Ricci flow satisfying (3.2). Suppose u is a positive, backward heat
equation solution, i.e.,

�∗u = (−∂t −∆ +R− nλ)u = 0,
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and
∫
M udv ≡ 1. Then for every t0 > 0, we have∫ t0

0

∫
M
F (k)udvdt ≤

(
n+ 2B(k)

)
t0 + 2B(k).(3.4)

Proof. For simplicity of notation, we only give a proof of the case
k = 1 and denote F = F (1). Note that b = b(1), B = B(1). The proof
of general k follows verbatim.

Direct calculation shows that∫ t0

0

∫
M
Fudv = nt0 −

∫ t0

0

∫
M
{∆(ϕ− b0)}udv

= nt0 −
∫ t0

0

∫
M

(ϕ− b0)(∆u)dv

= nt0 +

∫ t0

0

∫
M

(ϕ− b0) (u̇−Ru+ λnu) dv

= nt0 +

∫ t0

0

[
d

dt

(∫
M

(ϕ− b0)udv

)
−
∫
M
ϕ̇udv

]
dt

= nt0 +

∫
M

(ϕ− b0)udv

∣∣∣∣t0
0

−
∫ t0

0

∫
M
ϕ̇udvdt.

Note |ϕ| ≤ Bt0 at time t0, then (3.4) follows from the above inequality
and (3.3). q.e.d.

We shall proceed to improve the integral estimate (3.4) of F (k) to
point-wise estimate, under local geometry bounds. Before we go into
details, let us first fix some notations. Suppose LM is a polarized Kähler
Ricci flow solution satisfying (3.2), x0 ∈M . In this subsection, we shall
always assume 

Ω , Bg(0)(x0, r0),

Ω′ , Bg(0)(x0, (1− δ)r0),

Ω′′ , Bg(0)(x0, (1− 2δ)r0).

(3.5)

Then we define

w0 , φ

(
2(d− 1 + 2δ)

δ

)
,(3.6)

where d = dg(0)(x0, ·), φ is a cutoff function, which equals one on

(−∞, 1], decreases to 0 on (1, 2). Moreover, (φ′)2 ≤ 10φ. Note that

such φ exists by considering the behavior of e−
1
s around s = 0. Clearly,

w0 satisfies 
|∇w0|2 ≤ 40

δ2w0,

w0 ≡ 1, on Ω′′,

w0 ≡ 0, on (Ω′)c.

(3.7)
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Lemma 3.2 (Pointwise bound of trace). Suppose LM is a polar-
ized Kähler Ricci flow satisfying (3.2), x0 ∈ M , Ω′ is defined by (3.5).

Suppose 1
2ω0 ≤ ω̃

(k)
0 ≤ 2ω0 on Ω′. Let w be a solution of heat equation

�w =
(
∂
∂t −∆

)
w = 0, initiating from a cutoff function w0 satisfying

(3.7). Then for every t0 > 0 and y0 ∈M , we have

F (k)(y0, t0)w(y0, t0) ≤ C,(3.8)

where C = C(B, k, δ, t0).

Proof. For simplicity of notation, we only give a proof for the case
k = 1 and denote F = F (1), B = B(1), H = 40

δ2 . The proof of general k
follows verbatim.

Note that 0 ≤ w0 ≤ 1, since w is the heat solution, it follows from
maximum principle that 0 ≤ w ≤ 1. On the other hand, according to
the choice of w0, we have |∇w|2 − Hw ≤ 0 at the initial time. Direct
calculation implies that

�
{
eλt
(
|∇w|2 −Hw

)}
= −eλt

{
|∇∇w|2 + |∇∇̄w|2 +Hw

}
≤ 0.

Therefore, |∇w|2 − Hw ≤ 0 is preserved along the flow by maximum
principle. In other words, we always have

w|∇ logw|2 ≤ H, 0 ≤ w ≤ 1,

on the space-time M × [0,∞). In light of parabolic Schwarz lemma
(c.f. [58] and references therein), we obtain

� logF ≤ BF − λ.
Note that

ω(t) = ω0 +
√
−1∂∂̄ϕ = ω̃0 +

√
−1∂∂̄(ϕ− b0) = ω̃0 +

√
−1∂∂̄ϕ̃,

where we denote ϕ − b0 by ϕ̃ for simplicity of notation. It is obvious
that ˙̃ϕ = ϕ̇. Direct calculation shows that

�ϕ̃ = ϕ̇−∆ϕ̃ = F − n+ ϕ̇,

�(logF −Bϕ̃) ≤ B(n− ϕ̇)− λ ≤ B(n+ ‖ϕ̇‖C0(M)) + |λ| ≤ C.

Let u be the solution of �∗u = 0, starting from a δ-function from (y0, t0).
Then we calculate

d

dt

∫
M
Fe−Bϕ̃wudv

=

∫
M
�(Fe−Bϕ̃w)udv −

∫
M
Fe−Bϕ̃w�∗udv

=

∫
M
�(Fe−Bϕ̃w)udv

=

∫
M
Fe−Bϕ̃w

{
� log(Fe−Bϕ̃w)− |∇ log(Fe−Bϕ̃w)|2

}
udv
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≤
∫
M
Fe−Bϕ̃w

{
� log(Fe−Bϕ̃w)

}
udv

=

∫
M
Fe−Bϕ̃w

{
� log(Fe−Bϕ̃) +� logw

}
udv

=

∫
M
Fe−Bϕ̃w

{
� log(Fe−Bϕ̃) + |∇ logw|2

}
udv

≤ C
∫
M
Fe−Bϕ̃wudv +H

∫
M
Fe−Bϕ̃udv.

It follows that

d

dt

{
e−Ct

∫
M
Fe−Bϕ̃wudv

}
≤ He−Ct

∫
M
Fudv.

Integrating the above inequality and applying Lemma 3.1, we have

e−Ct0F (y0, t0)w(y0, t0)e−Bϕ̃(y0,t0)

≤
∫
M
Fe−Bϕ̃wudv

∣∣∣∣
t=0

+H

∫ t0

0

∫
M
Fudvdt

≤ C
∫

Ω′
Fudv

∣∣∣∣
t=0

+ C

≤ C
∫

Ω′
udv

∣∣∣∣
t=0

+ C ≤ C.

Therefore, (3.8) follows directly from the above inequality. q.e.d.

Lemma 3.3 (Lower bound of heat solution). Suppose LM is a
polarized Kähler Ricci flow satisfying (3.2), x0 ∈M , notations fixed by
(3.5) and (3.6).

Suppose Ω′′ ⊂ Bg(t)(x0, r) for some t > 0 and r > 0. Then in the
geodesic ball Bg(t)(x0, r), we have

w(y, t) > c,

for some constant c = c(n,B, k, δ, r0, r, t).

Proof. By the construction of w0 and maximum principle, it is clear
that 0 < w ≤ 1 when t > 0. Let P be the heat kernel function, then we
can write

w(x0, t) =

∫
M
P (x0, t; y, 0)w0(y)dvy ≥

∫
Ω′′
P (x0, t; y, 0)w0(y)dvy.

(3.9)

In light of the Sobolev constant bound and scalar curvature bound, one
has the on-diagonal bound

1

C
t−n ≤ P (x, t;x, 0) ≤ Ct−n,
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which combined with the gradient estimate of heat equation (c.f. The-
orem 3.3 of [77]) implies that

P (x, t; y, 0) ≥ 1

C
t−n,

where C = C(B, dg(t)(x, y)). Plugging this estimate into (3.9) implies
that

w(x0, t) ≥
|Ω′′|
Ctn

.

Note that CS bound forces |Ω′′| is bounded from below. Since 0 < w ≤ 1,
then (3.9) follows from the above inequality and the gradient estimate
of heat equation. q.e.d.

The following two lemmas show that Kähler geometry is much more
rigid than Riemannian geometry.

Lemma 3.4 (Fubini–Study approximation). Suppose LM is a
polarized Kähler Ricci flow satisfying (3.2), x0 ∈M , notations fixed by
(3.5) and (3.6).

Suppose |Rm| ≤ r−2
0 in Ω at time t = 0. Then there exists an integer

k = k(B, r0, δ) such that

1

2
ω0 ≤ ω̃(k)

0 ≤ 2ω0(3.10)

on Ω′.

Proof. This follows essentially from the peak section method of Tian.
We give a proof here for the convenience of the readers. Further details
can be found in [63] and [43].

Fix arbitrary x ∈ Ω′, V ∈ T (1,0)
x M with unit norm. In order to prove

(3.10), it suffices to show that

1

2
≤ ω̃(k)

0 (V, JV ) ≤ 2.(3.11)

Around x, we can always choose a normal coordinate (K-coordinate,
c.f. [43]) chart around x such that

V =
∂

∂z1
, gij̄(x) = δij̄ ,

∂p1+p2+···+pn

∂zp1
1 ∂z

p2
2 · · · ∂z

pn
n
gij̄(x) = 0,

for any nonnegative integers p1, p2, · · · , pn with p = p1+p2+p3+· · · pn >
0. Moreover, there exists a local holomorphic frame eL of L around x
such that the local representation a of the Hermitian metric h has the
properties

a(x) = 1,
∂p1+p2+···+pn

∂zp1
1 ∂z

p2
2 · · · ∂z

pn
n
a(x) = 0,

for any nonnegative integers p1, p2, · · · , pn with p = p1+p2+p3+· · · pn >
0.
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Suppose {Sk0 , · · ·SkNk} is an orthonormal basis of H0(M,Lk), where

Nk = dimCH
0(M,Lk)− 1. Around x, we can write

Sk0 = fk0 eL, · · · , SkNk = fkNkeL.

Rotating basis if necessary (c.f. [63]), we can assume

fki (x) = 0, ∀ i ≥ 1,

∂fki
∂zj

(x) = 0, ∀ i ≥ j + 1.

Recall that

ω̃(k) = ω0 +
1

k

√
−1∂∂̄ log

Nk∑
j=0

∥∥∥Skj ∥∥∥2
=

1

k

√
−1∂∂̄ log

Nk∑
j=0

|fkj |2.

So we have

ω̃(k)(V, JV ) =
1

k

∂2 log
∑Nk

j=0 |fkj |2

∂z1∂̄z1
=
|∂f

k
1

∂z1
|2

k|fk0 |2
.(3.12)

Because of (3.11) and (3.12), the problem boils down to a precise esti-

mate of
∂fk1
∂z1

and fk0 .

As pointed out by Tian in [63], the peak section method is local in
nature. The global information of the underlying manifold is only used
in the step of Hörmander’s estimate. However, in our case, we have

Ric(h) = g,
√
−1∂∂̄ϕ̇+Ric = λg, λ > 0.

It then follows that

Ric(h) +Ric(g) +
√
−1∂∂̄ϕ̇ = (1 + λ)g ≥ g.

Therefore, Hörmander’s L2-estimate (c.f. Proposition 5.1. of [62] or
Proposition 3.1. of [31]) applies and we have∫

M
|u|2e−ϕ̇ωn ≤

∫
M
|∂̄u|2e−ϕ̇ωn.

By the uniform bound of ϕ̇, we can replace the e−ϕ̇ωn by ωn in the
above inequality, up to adjusting a multiplicative constant. Due to the
uniformly bounded geometry (up to C2-norm of g) inside Ω′ and the
uniform bound of

√
−1∂∂̄ϕ̇+Ric on the whole manifold M , Lemma 1.2

of [63] follows directly and can be written as follows.
For an n-tuple of integers (p1, p2, · · · , pn) ∈ Zn+ and an integer p′ >

p = p1 + p2 + · · · + pn, there exists a k0 = k0(n,B, r0, δ) such that
for k > k0, there is a unit norm holomorphic section S ∈ H0(M,Lk)
satisfying ∫

M\{|z|2≤ (log k)2

k
}
‖S‖2dv ≤ 1

k2p′
.
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Then the same argument as in [63] implies that (c.f. Lemma 3.2 of [63])

∣∣∣∣∣fk0 (x)−
√

(n+ k)!

k!

{
1 +

1

2(k + n+ 1)!
(R(x)− n2 − n)

}∣∣∣∣∣
(3.13)

<
C

k2
,

∣∣∣∣∣∂fk1∂z1
(x)−

√
(n+ k + 1)!

k!

{
1 +

1

2(k + n+ 1)
(R(x)− n2 − 3n− 2)

}∣∣∣∣∣
(3.14)

<
C

k2
,

for some C = C(n,B, r0, δ). Here R is the complex scalar curvature.
Plugging the above estimate into (3.12), we obtain (3.11), whenever k
is larger than a big constant, which depends only on n,B, r0, δ. q.e.d.

Lemma 3.5 (Liouville type theorem). Every complete Kähler
Ricci flat metric g̃ on Cn must be an Euclidean metric if there is a
constant C such that

1

C
δij̄(z) ≤ g̃ij̄(z) ≤ Cδij̄(z), ∀ z ∈ Cn.(3.15)

Proof. The original proof of this lemma goes back to the famous pa-
per of E. Calabi [3] and Pogorelov [52] on real Monge Ampère equation.
For complex Monge Ampère equation, this is initially due to Riebesehl–
Schulz [53] where higher derivatives are used heavily. We say a few
words here for the convenience of the readers, using the Schauder esti-
mate of Evans–Krylov.

Actually, it is not difficult to see that the problem boils down to the
study of a global pluri-subharmonic function u in Cn such that det

(
∂2u
∂zi∂z̄j

)
= 1,

C−1(δij̄) <
(

∂2u
∂zi∂z̄j

)
< C(δij̄).

(3.16)

In order to show the metric g̃ is Euclidean, it suffices to show that u
is a global quadratic polynomial. Without loss of generality, we may
assume that u(0) = Du(0) = 0. For every positive integer k, we can

define a function u(k) in the unit ball by

u(k)(z) =
u(kz)

k2
.

Clearly, u(k) satisfies (3.16). Note that
∥∥u(k)

∥∥
C2 is uniformly bounded,

in the unit ball B(0, 1). By standard Evans–Krylov theorem, there
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exists a uniform constant C such that

[D2u(k)]Cα(B(0, 1
2

)) ≤ C,

for every k. Putting back the scaling factor, the above inequality is
equivalent to

[D2u]Cα(B(0, k
2

)) ≤ Ck
−α, ∀ k = 1, 2, · · · .

Let k → ∞, we have [D2u]Cα(Cn) = 0. Therefore, D2u is a constant
matrix, u is a quadratic polynomial. So we finish the proof. q.e.d.

Proposition 3.6 (Ball containing relationship implies regu-
larity improvement). Suppose LM is a polarized Kähler Ricci flow
satisfying (3.2), x0 ∈ M , notations fixed by (3.5) and (3.6). Suppose
|Rm| ≤ r−2

0 in Ω at time t = 0. Moreover, we assume

Ω′′ ⊂ Bg(t)(x0, r) ⊂ Ω′,(3.17)

for every 0 ≤ t ≤ t0. Then the following estimates hold.

• In the geodesic ball Bg(t)(x0, r), we have

1

C
ω0 ≤ ωt ≤ Cω0,(3.18)

for some constant C = C(n,B, k, δ, r0, r, t0).
• In the geodesic ball Bg(t)(x0, r − ξ), we have

|Rm|(x, t)ξ2 ≤ C,(3.19)

for each small ξ and some constant C = C(n,B, k, δ, r0, r, t0).

Proof. Note that Perelman’s strong version of pseudolocality theo-
rem, i.e., Theorem 10.3 of [49], can be modified and applied here. In
fact, the almost Euclidean volume ratio condition in that theorem can be
replaced by κ-noncollapsing condition. Since one has injectivity radius
estimate when curvature and volume ratio bounds are available, thanks
to the work of Cheeger, Gromov and Taylor, in [13]. By shrinking the
ball to some fixed smaller size, one can get back the condition of almost
Euclidean volume ratio. Up to a covering argument, we can apply this
strong version pseudolocality theorem to show that |Rm| is uniformly
bounded on Ω′× [0, η] for some positive η = η(n, κ, δ). Then (3.18) and
(3.19) follows trivially. For this reason, we can assume t0 > η.

We first prove estimate (3.18). Due to Fubini–Study metrics’ ap-

proximation, Lemma 3.4, it is clear that one can regard ω0 and ω̃
(k)
0

as the same metric on Ω′. Therefore, it follows from the combination
of Lemma 3.2 and Lemma 3.3 that F (k) is bounded from above, which
implies Λωtω0 ≤ C. Recall that the volume element ωn0 and ωnt are
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uniformly equivalent, due to the uniform bound of |R| + |λ| and the
evolution equation

∂

∂t
logωnt = nλ−R.

Consequently, (3.18) follows. We remind the readers that condition
(3.17) is used in the above discussion.

We proceed to prove inequality (3.19). Fix L very large. If (3.19) does
not hold uniformly, then we can find some space-time point (y0, s0) such

that y0 ∈ Bg(s0)(x0, r − ξ) and Q0 , |Rm|(y0, s0) > 100L2ξ−2 is very

large. Set ρ0 , dg(s0)(y0, x0). On one hand, ρ0 < r − ξ by the choice
of (y0, s0). On the other hand, s0 > η for some uniform η due to the
application of Perelman’s pseudo-locality, as discussed above. Search
whether there is a point (x, t) satisfying

|Rm|(x, t) > 4Q0, x ∈ Bg(t)
(
x0, ρ0 + LQ

− 1
2

0

)
, t ∈

[
t0 −Q−1

0 , t0
]
.

If there exists such a point, we denote it by (y1, s1) and continue the
above searching. Inductively, we can find (yk, sk). In fact, if (yk−1, sk−1)
is defined, then we shall denote |Rm|(yk−1, sk−1) by Qk−1, and denote
dg(sk−1)(x0, yk−1) by ρk−1 and search point (x, t) satisfying

|Rm|(x, t) > 4Qk−1, x ∈ Bg(t)
(
x0, ρk−1 + LQ

− 1
2

k−1

)
,

t ∈
[
tk−1 −Q−1

k−1, tk−1

]
.

If there is no such point, we stop the process. Otherwise, we denote
such a point by (yk, sk) and continue the process. Clearly, we have

Qk = 4kQ0 > 100L2ξ−2,

ρk ≤ ρ0 + L

(
Q
− 1

2
0 + · · ·Q−

1
2

k−1

)
< ρ0 + 4LQ

− 1
2

0 < r − 0.5ξ,

|s0 − sk| = s0 − sk ≤ Q−1
0 +Q−1

1 + · · ·Q−1
k−1 < 2Q−1

0 <
ξ2

50L2
<< η.

Since the process happens in a compact space-time domain with
bounded geometry, it must stop after finite steps. Let k be the last
(yk, sk). We denote it by (y, s) and set Q = |Rm|(y, s) and ρ =
dg(s)(y, x0). Then we have


Q > 100L2ξ−2,

ρ < r − 0.5ξ,

s > 0.5η,

|Rm|(x, t) < 4Q, ∀ x ∈ Bg(t)(x0, ρ+ LQ−
1
2 ), t ∈

[
s−Q−1, s

]
.

(3.20)
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By its choice, we have dg(s)(x0, y) = ρ. We observe that y will stay

in Bg(t)(x0, ρ + 2Q−
1
2 ) whenever t ∈ [s − 1

5nQ , s]. This is an applica-

tion of section 17 of Hamilton [38], or Lemma 8.3 of Perelman [49].
Actually, let θ0 be the largest positive number such that y fails to lo-

cate in Bg(t−θ0Q−1)(x0, ρ + 2Q−
1
2 ). Then for each t ∈ [s − θ0Q

−1, s],

triangle inequality implies that Bg(t)(y,Q
− 1

2 ) ⊂ Bg(t)(x0, ρ + 3Q−
1
2 ).

Consequently, we have

|Rm|(x, t) ≤ 4Q, ∀ x ∈ Bg(t)(y,Q−
1
2 ),

|Rm|(x, t) ≤ 4Q, ∀ x ∈ Bg(t)(x0, Q
− 1

2 ).

It follows from Lemma 8.3 (b) of Perelman [49] that

d

dt
d(x0, y) ≥ −10nQ

1
2 ,

⇒ dg(s)(x0, y)− dg(s−θ0Q−1)(x0, y) ≥ −10nQ
1
2 · θ0Q

−1.

According to the choice of θ0, the left hand side of the second inequality

is −2Q−
1
2 . It follows that θ0 ≥ 1

5n . Now we know that y stays in

Bg(t)(x0, ρ + 2Q−
1
2 ) for each t ∈ [s − 1

5nQ , s]. In view of (3.20) and the

fact L >> 1, the triangle inequality implies that

|Rm|(x, t) < 4Q, ∀x ∈ Bg(t)(y, 0.5LQ−
1
2 ), t ∈

[
s− 1

5nQ
, s

]
.

Let g̃(t) = Qg(Q−1t+ s). We have{
|R̃m|(y, 0) = 1,

|R̃m|(x, t) < 4, ∀x ∈ Bg̃(t)(y, 0.5L), t ∈
[
− 1

5n , 0
]
.

Note that
[
− 1

5n , 0
]

is a fixed time period. The application of Perel-
man’s pseudo-locality guarantees the existence of such a time period
(c.f. (3.20)). Now let L → ∞, we can use the compactness theorem
of Hamilton [39] to obtain a limit Ricci flow solution, which is non-
flat, Kähler Ricci-flat and non-collapsed on all scales. We remark that
the discussion above is nothing but repeating the argument of Claim
1 and Claim 2 in the proof of Perelman’s pseudo-locality theorem, i.e,
Theorem 10.1 in [49]. Similar argument was also used in the distance
estimate of the work of Tian and the second named author [67].

Notice that

Bg(s)(y, 0.5LQ
− 1

2 ) ⊂ Bg(s)(x0, r − 0.5ξ)

⊂ Bg(s)(x0, r) ⊂ Ω′ = Bg(0)(x0, 1− δ).

Therefore, by the same scale blowup at (y, 0), we obtain nothing but
Cn. Recall we have (3.18), so we obtain a nontrivial Kähler Ricci flat
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metric g̃ij̄ on Cn such that (3.15) holds for some C. This contradicts
Lemma 3.5. q.e.d.

The rough estimate (3.18) and (3.19) can be improved when |R|+ |λ|
is very small. When curvature tensor is bounded in the space-time,
one can estimate the Ricci curvature in terms of scalar curvature. Let
|R| + |λ| tend to zero, we see that the Ricci curvature tends to zero
at the space-time where |Rm| is bounded. By adjusting ξ if neces-
sary, we obtain that in the limit, Bg(t)(x0, (1 − ξ)r) is isometric to
Bg(0)(x0, (1 − ξ)r) for every 0 < t < t0. By adjusting ξ and apply-
ing Perelman’s pseudolocality theorem, we see the convergence at time
t = t0 is also smooth since curvature derivatives are all bounded in
the ball Bg(t0)(x0, (1 − ξ)r) at time t0. Further details will appear in
Proposition 3.7 and Theorem 3.8.

Proposition 3.7 (Volume element derivative small implies
ball containing relationship). For every r0, T and small ξ, there
exists an ε with the following property.

Suppose LM is a polarized Kähler Ricci flow satisfying (3.2), x0 ∈
M , notations fixed by (3.5) and (3.6). Suppose |Rm| ≤ r−2

0 in Ω at
time t = 0. If sup

M
(|R|+ |λ|) < ε, then for every t ∈ [0, T ] we have

Ω′′ ⊂ Bg(t)
(
x0,

(
1− 3

2
δ

)
r0

)
⊂ Ω′,

(1− ξ)ω(0) ≤ ω(t) ≤ (1 + ξ)ω(0), in Ω′′.

Proof. If the statement was wrong, we can find a tuple (n,B, δ, r0, T )
and εi → 0 such that the property does not hold for every εi → 0.
Without loss of generality, we can assume r0 = 1.

For each εi, let ti ∈ [0, T ] be the critical time of a flow gi(t) such that
the properties hold on [0, ti]. In other words, for every t ∈ [0, ti], we
have

Ω′′i ⊂ Bgi(t)
(
xi, 1−

3

2
δ

)
⊂ Ω′i,(3.21)

(1− ξ)ωi(0) ≤ ωi(t) ≤ (1 + ξ)ωi(0), in Ω′′i .(3.22)

However, for each time t > ti, at least one of the above relations fails
to hold. Related to (3.5), here we set

Ωi , Bgi(0)(xi, 1), Ω′i , Bgi(0)(xi, 1− δ), Ω′′i , Bgi(0)(xi, 1− 2δ).

We shall show that ti cannot locate in [0, T ] for large i and, therefore,
obtain a contradiction.

Note that |Rm|gi(0) ≤ 1 at time t = 0 in the ball Bgi(0)(xi, 1). By the
strong version of Perelman’s pseudolocality theorem, i.e., Theorem 10.3
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of [49], one can find a uniform small constant η such that

|Rm|gi(x, t) ≤
ξ

100n2
η−2, ∀ x ∈ Bgi(0)(xi, 1− η), t ∈ [0, η2].(3.23)

The existence of η can be obtained by a contradiction blowup argument.
Since metrics evolve by −Ric+λg, it follows from (3.23) and the choice
of ti that η2 ≤ ti ≤ T . Recall that we have the relationship (3.21) by
the choice of ti. Therefore, Proposition 3.6 can be applied to obtain a
uniform C, independent of i, such that

1

C
gi(0) ≤ gi(ti) ≤ Cgi(0)(3.24)

in the ball Bgi(ti)(xi, 1 −
3δ
2 ). Furthermore, the inequality (3.19) in

Proposition 3.6 yields that

|Rm|gi(x, t) ≤
C

ψ2
, x ∈ Bg(t)

(
xi, 1−

3

2
δ − ψ

)
, 0 ≤ t ≤ ti,

where ψ is a small constant ψ << δ, to be determined. Note that we
are in a setting where each geodesic ball’s volume ratio is bounded from
below, due to the bounds in (1.4). Consequently, injectivity radius has
a lower bound (c.f. [13]), by shrinking the ball if necessary. Therefore,
we can apply Theorem 3.2 of [73] to obtain

sup
η2≤t≤ti,dgi(t)(x,xi)≤1− 3

2
δ−2ψ

|Ric|gi(x, t)→ 0, as i→∞,(3.25)

where η is the constant in (3.23). Alternatively, one can apply Lemma
2.1 of [31] to obtain the above estimate, with the fact that geodesic balls
at different times can be compared due to the Riemannian curvature
bound and the evolution equation of the Ricci flow: the metrics evolve
by −Ric+ λg. Since ti is uniformly bounded by T , the above equation
implies (up to a maximum principle type argument of the first violating
time if necessary) that

Bgi(η2)

(
xi, 1−

3

2
δ − 5ψ

)
⊂ Bgi(t)

(
xi, 1−

3

2
δ − 4ψ

)
(3.26)

⊂ Bgi(η2)

(
xi, 1−

3

2
δ − 3ψ

)
, ∀ t ∈ [η2, ti).

Combining the above relationship with (3.25), we obtain that

sup
η2≤t≤ti,dgi(η2)(x,xi)≤1− 3

2
δ−3ψ

|Ric|gi(x, t)→ 0, as i→∞.(3.27)

By (3.23) and |R|+ |λ| → 0, we see the metric at gi(0) and gi(η
2) are al-

most isometric to each other on the ball Bgi(0)(xi, 1− 3
2δ). Consequently,
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we have

Ω′′i = Bgi(0)(xi, 1− 2δ) ⊂ Bgi(η2)

(
xi, 1−

7

4
δ

)
⊂ Bgi(ti)

(
xi, 1−

7

4
δ + ψ

)
b Bgi(ti)

(
xi, 1−

3

2
δ

)
,

where b means “compactly contained”. We claim that we also have

Bgi(ti)

(
xi, 1−

3

2
δ

)
b Ω′i.

For otherwise, by the choice of ti, the boundary of Bgi(ti)
(
xi, 1− 3

2δ
)

touches the boundary of Ω′i at time ti. Therefore, we can find a point
yi satisfying

dgi(ti)(xi, yi) = 1− 3

2
δ, dgi(0)(xi, yi) = 1− δ.

Let γi be a shortest unit-speed geodesic connecting xi and yi, with
respect to the metric gi(ti). Let γi(0) = xi and γi(1 − 3

2δ) = yi. By
previous estimates, we see that

γi

(
1− 3

2
δ − 100ψ

)
⊂ Bgi(0)

(
xi, 1−

3

2
δ − 50ψ

)
.

Let αi be the part of γi, connecting xi = γi(0) and γi(1− 3
2δ−100ψ). Let

βi be the remainded part of γi, i.e., the part connecting γi(1− 3
2δ−100ψ)

and yi = γi(1− 3
2δ). Using | · | to denote the length of curves. It is clear

that |βi|gi(ti) = 100ψ. Note that αi locates in Bgi(ti)(xi, 1−
3
2δ− 100ψ).

It follows from (3.26), (3.27) and (3.23) that

sup
αi×[η2,ti]

|Ric|(x, t)→ 0, as i→∞; sup
αi×[0,η2]

|Rm|(x, t) ≤ ξ

100n2
η−2.

Together with |R|+ |λ| → 0 as i→∞, we can compare the length of αi
at time t = ti and t = 0.

|αi|gi(ti) = 1− 3

2
δ − 100ψ, |αi|gi(0) ≤ 1− 3

2
δ.

However, since dgi(0)(xi, yi) = 1− δ, we have

1− δ ≤ |γi|gi(0) = |αi|gi(0) + |βi|gi(0) ≤ |βi|gi(0) + 1− 3

2
δ.

It follows that |βi|gi(0) ≥ 1
2δ. Recall that |βi|gi(ti) = 100ψ. Therefore,

by mean value theorem, we must have√
〈V, V 〉gi(0)√
〈V, V 〉gi(ti)

≥
1
2δ

100ψ
=

δ

200ψ
,
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at some point zi ∈ βi, where V is the unit tangent vector (with respect
to gi(ti)) of βi at zi. Since zi ∈ Bgi(ti)(xi, 1−

3
2δ), one can apply (3.24)

to bound the left hand side of the above inequality by
√
C, where C is

the constant in (3.24). It follows that C ≥ δ2

40000ψ2 , which is impossible

if we choose ψ small enough. Therefore, for i large, we must have

Ω′′i b Bgi(ti)

(
xi, 1−

3

2
δ

)
b Ω′i.

Then we can apply (3.23), (3.25) and the fact that |R| + |λ| → 0 to
obtain that(

1− ξ

100

)
ωi(0) ≤ ωi(t) ≤

(
1 +

ξ

100

)
ωi(0), in Ω′′i ,

whenever i large enough. Here Ω′′i = Bgi(0)(xi, 1− 2δ). This means that
for large i, we have both (3.21) and (3.22) hold for a short while beyond
the time ti. This contradicts to the choice of time ti. q.e.d.

By further applying the argument in Proposition 3.6, the following
theorem follows directly from the combination of Proposition 3.6 and
Proposition 3.7.

Theorem 3.8 (Rough long-time pseudolocality theorem for
polarized Kähler Ricci flow). For every group of numbers δ, ξ, r0, T ,
there exists an ε = ε(n,B, δ, ξ, r0, T ) with the following properties.

Suppose LM is a polarized Kähler Ricci flow satisfying (3.2), x0 ∈
M . Suppose |Rm| ≤ r−2

0 in Ω at time t = 0, where Ω = Bg(0)(x0, r0).
If sup
M

(|R|+ |λ|) < ε, then for every t ∈ [0, T ] we have

Bg(t)(x0, (1− 2δ)r0) ⊂ Ω,(3.28)

|Rm|(·, t) ≤ 2r−2
0 , in Bg(t)(x0, (1− 2δ)r0),(3.29)

(1− ξ) g(0) ≤ g(t) ≤ (1 + ξ) g(0), in Bg(t)(x0, (1− 2δ)r0).(3.30)

3.2. Motivation and definition of pcr. In previous subsection, we
see that the assumption (3.2) helps a lot to relate different time slices
of the Kähler Ricci flow solution. However, why is this assumption
reasonable? This question will be answered in this subsection.

Proposition 3.9 (Weak continuity of Bergman function). There
is a big integer constant k0 = k0(n,A) and small constant ε = ε(n,A)
with the following property.

Suppose (M, g, J, L, h) is a polarized Kähler manifold, taken out from
a polarized Kähler Ricci flow in K (n,A) as a central time slice. In
particular, we have

OscM ϕ̇+ CS(M) + |λ| ≤ B,(3.31)
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where B = B(n,A). If cr(M) ≥ 1, then

sup
1≤k≤k0

b(k)(x) > −k0,(3.32)

whenever dPGH((M,x, g), (M̃, x̃, g̃)) < ε for some space (M̃, x̃, g̃) ∈
K̃ S (n, κ).

Proof. Note that the model moduli space K̃ S (n, κ) has compact-
ness under the pointed Gromov–Hausdorff topology. Actually, this fol-
lows from the proof of Theorem 1.1, where the topology can be further
improved to the pointed-Ĉ∞-Cheeger–Gromov topology. This compact-
ness property will be used in the following argument.

Suppose the statement was wrong, then there is a sequence of polar-
ized Kähler manifolds (Mi, xi, gi) satisfying (3.31) and spaces (M̃i, x̃i, g̃i)

in K̃ S (n, κ) with the following properties:

dPGH((Mi, xi, gi), (M̃i, x̃i, g̃i)) < εi → 0,

sup
1≤j≤ki

b(j)(xi)→ −∞, ki →∞.

In light of the compactness of the moduli K̃ S (n, κ), i.e., Theorem 1.1,
by taking subsequence if necessary, we can find a space (M̄, x̄, ḡ) ∈
K̃ S (n, κ) such that

lim
i→∞

dPGH((Mi, xi, gi), (M̄, x̄, ḡ))

= lim
i→∞

dPGH((M̃i, x̃i, g̃i), (M̄, x̄, ḡ)) = 0.

Consequently, we have

(Mi, xi, gi)
P.G.H.
−−−−→ (M̄, x̄, ḡ); sup

1≤j≤ki
b(j)(xi)→ −∞, ki →∞.

(3.33)

Then we shall use the argument of the proof of Theorem 3.2 of [37]
by Donaldson–Sun to find positive integer q = q(x̄), and real numbers
r = r(x̄), C = C(x̄) such that

inf
y∈B(xi,r)

b(q)(y) ≥ −C.(3.34)

Note that the proof of Theorem 3.2 [37] is based on a blowup argu-
ment. The essential ingredients there are the convergence theory, the
Hömander’s estimate, and the fact that each tangent space in the limit
space is a good metric cone. By “good” we mean the singular set of
the metric cone has Hausdorff codimension strictly greater than 2. It
is important to observe that whether the limit space M̄ is compact or
not does not affect the argument. Basically, this is because of the lo-
cal property of the Hömander’s estimate. Actually, no matter whether
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M̄ is compact or not, every tangent space of a point on M̄ must be
non-compact. The contradiction is obtained from the convergence to
the good tangent metric cone. With the argument of Theorem 3.2
of [37] in mind, we now check the conditions available to us in the
current case. Firstly, the canonical radius assumption makes sure that
the topology of the convergence can be improved to the pointed-Ĉ4-
Cheeger–Gromov topology. Secondly, by the uniform bound of Sobolev
constant and ‖ϕ̇‖C0 , the general Hörmander’s estimate (c.f. section 3
of [30] and section 5 of [72] for this particular case) can be applied.
Thirdly, we know each tangent space at x̄ is a good metric cone, by

Theorem 2.5 since (M̄, x̄, ḡ) ∈ K̃ S (n, κ). Therefore, we can use a con-
tradiction blowup argument, like that in Theorem 3.2 of [37], to obtain
(3.34). Consequently, we have

b(q)(xi) ≥ −C, ⇒ sup
j≤ki

b(j)(xi) ≥ −C,

which contradicts (3.33), the assumption. q.e.d.

Proposition 3.9 means that the Bergman function has a weak con-
tinuity under the pointed-Ĉ4-Cheeger–Gromov convergence if the limit
space is the model space. Inspired by this property, we can define the
polarized canonical radius as follows.

Definition 3.10. Suppose (M, g, J, L, h) is a polarized Kähler man-
ifold satisfying (3.31), x ∈M . We say the polarized canonical radius of
x is not less than 1 if

• cr(x) ≥ 1.

• sup
1≤j≤2k0

b(j)(x) ≥ −2k0.

For every r = 1
j , j ∈ Z+, we say the polarized canonical radius of x is

not less than r if the rescaled polarized manifold
(
M, j2g, J, Lj , hj

)
has

polarized canonical radius at least 1 at the point x. Fix x, let pcr(x)
be the supreme of all the r with the above property and call it as the
polarized canonical radius of x.

We can define the polarized canonical radius of a manifold as the
infimum of the polarized canonical radii of all points in that manifold.
Similarly, we can define the polarized canonical radius of time slices of a
flow. Note that from the above definition, pcr is always the reciprocal
of a positive integer. It could not be zero because of (3.13) in the proof
of Lemma 3.4 and the fact that every compact smooth manifold has
bounded geometry and positive cr. One can also repeat the argument
in the proof of Proposition 3.9 to obtain that the pcr is always pos-
itive. Note that a blowup sequence of (M, g, J, L, h) at a given point
x ∈M always converges in smooth topology to the standard Euclidean
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space (Cn, gE , JE , LE , hE) with LE being the trivial line bundle and

hE = e−|z|
2
. For each sequence of positive integers k → ∞ and the

sequence
(
M,k2g, J, Lk, hk

)
, we have b(k)(x) → b(E)(x) = Cn > −2k0.

Therefore, for large k, we must have b(k)(x) ≥ −2k0. Consequently, the
pcr(x) of

(
M,k2g, J, Lk, hk

)
is at least 1. This means that the pcr(x)

of (M, g, J, L, h) is at least 1
k > 0.

Under the terminology in Definition 3.10, the continuity of Bergman
function implies the following corollary.

Corollary 3.11 (Weak equivalence of cr and pcr). There is a
small constant ε = ε(n,B, κ) with the following property.

Suppose (M, g, J, L, h) is a polarized Kähler manifold satisfying (3.31)
and cr(M) ≥ 1. Then

pcr(x) ≥ 1,(3.35)

whenever dPGH((M,x, g), (M̃, x̃, g̃)) < ε for some space (M̃, x̃, g̃) ∈
K̃ S (n, κ).

3.3. Kähler Ricci flow with lower bound of pcr. Suppose the
polarized canonical radius is uniformly bounded from below, then the
convergence theory is much better than that in section 3. This is ba-
sically because of the rough long-time pseudolocality theorem, Theo-
rem 3.8.

Proposition 3.12 (Improving regularity in forward time di-
rection). For every r0 > 0, r ∈ (0, r0) and T0 > 0, there is an
ε = ε(n,A, r0, r, T0) with the following properties.

If LM is a polarized Kähler Ricci flow satisfying (1.4) and

pcr(Mt) ≥ r0, ∀ t ∈ [0, T0],(3.36)

then

Fr(M, 0) ⊂
⋂

0≤t≤T0

F r
K

(M, t),(3.37)

whenever sup
M

(|R|+|λ|) < ε. Here K is the constant in Proposition 2.10,

Mt is (M, g(t)), the time t slice of the flow M.

Proof. It follows directly from Theorem 3.8, the long time pseudolo-
cality theorem for polarized Kähler Ricci flow with partial-C0-estimate.

q.e.d.

Proposition 3.13 (Improving regularity in backward time
direction). For every r0 > 0, r ∈ (0, r0) and T0 > 0, there is an
ε = ε(n,A, r0, r, T0) with the following properties.
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If LM is a polarized Kähler Ricci flow satisfying (1.4) and (3.36),
then ⋃

0≤t≤T0

Fr(M, t) ⊂ F r
K

(M, 0),(3.38)

whenever sup
M

(|R|+ |λ|) < ε.

Proof. At time 0, Fr(M, 0) ⊂ F r
K

(M, 0) trivially. Suppose t0 > 0

is the first time such that (3.38) start to fail. It suffices to show that
t0 > T0 whenever ε is small enough. Otherwise, at time t0 ∈ (0, T0], we
can find a point x0 ∈ (∂F r

K
(M, 0)) ∩ (∂Fr(M, t0)). In other words, we

have

cvr(x0, 0) =
r

K
, cvr(x0, t0) = r.

In particular, we have∣∣∣Bg(0)

(
x0,

r

K

)∣∣∣
0

= (1− δ0)ω2n

( r
K

)2n
.(3.39)

Let ξ be a small number which will be fixed later. Let Ωξ(x0, t0) be
the subset of unit sphere of tangent space of Tx0(M, g(t0)) such that
every geodesic (under metric g(t0)) emanating from x0 along the di-
rection in Ωξ(x0, t0) does not hit points in Dξ(M, 0) before distance
r
K . By canonical radius assumption, |Rm|g(t0) is uniformly bounded
in Bg(t0)(x0,

r
K ). By long-time pseudolocality theorem (c.f. Proposi-

tion 3.13), Bg(t0)(x0,
r
K3 ) has empty intersection with Dξ(M, 0) when

ξ << r
K3 . Note that every geodesic (emanating from x0) entering

Dξ(M, 0) must hit ∂Dξ(M, 0) first, where cvr(·, 0) = ξ. So every point
in ∂Dξ(M, 0) will be uniformly regular at time t0, in light of the long-
time pseudolocality. At time t0, observing from x0, the set which stays
behind ∂Dξ(M, 0) must have small measure. Since Bg(t0)(x0,

r
K ) has

uniformly bounded curvature, it is clear that Ωξ(x0, t0) is an almost full
measure subset of S2n−1. Actually, we have

|Ωξ(x0, t0)| ≥ 2nω2n ·
(
1− Cξ2p0

)
,

whenever ε is sufficiently small. On the other hand, we see that ev-
ery geodesic (under metric g(t0)) emanating from Ωξ(x0, t0) is almost
geodesic at time t = 0 (under metric g(0)), when ε small enough. There-
fore, |Bg(0)(x0,

r
K )|0 is almost not less than |Bg(t0)(x0,

r
K )|t0 . Note that

the volume ratio of Bg(t0)(x0,
r
K ) is at least (1 − δ0

100)ω2n. Suppose we
choose ξ small (according to δ0) and ε very small (based on ξ, δ0, A, T0),
we obtain ∣∣∣Bg(0)

(
x0,

r

K

)∣∣∣
0
≥
(

1− δ0

2

)
ω2n

( r
K

)2n
,

which contradicts (3.39). q.e.d.
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Definition 3.14. Let K (n,A) be the collection of polarized Kähler
Ricci flows satisfying (1.4). For every r ∈ (0, 1], define

K (n,A; r) , {LM|LM ∈ K (n,A),pcr(M × [−1, 1]) ≥ r} .

Clearly, we have

K (n,A) ⊃ K (n,A; r1) ⊃ K (n,A; r2),

whenever 1 ≥ r2 > r1 > 0. Since every polarized Kähler Ricci flow
LM ∈ K (n,A) has a smooth compact underlying manifold, we see
LM ∈ K (n,A; r) for some very small r, which depends on LM. There-
fore, it is clear that ⋃

0<r<1

K (n,A; r) = K (n,A).

Fix r > 0, we shall first make clear the structure of K (n,A; r) under
the help of polarized canonical radius. Then we show that the canonical
radius can actually been bounded a priori. In other words, there exists
a uniform small constant } (Planck scale) such that

K (n,A) = K (n,A; }),

which will be proved in Theorem 3.44.

Proposition 3.15 (Limit space-time with static regular part).
Suppose LMi ∈ K (n,A) satisfies the following properties.

• pcr(Mi × [−Ti, Ti]) ≥ r0 for each i.
• lim
i→∞

sup
Mi

(|R|+ |λ|) = 0.

Suppose xi ∈Mi and lim
i→∞

cvr(xi, 0) > 0, then

(Mi, xi, gi(0))
Ĉ∞

−−→ (M̄, x̄, ḡ).(3.40)

Moreover, we have

(Mi, xi, gi(t))
Ĉ∞

−−→ (M̄, x̄, ḡ),(3.41)

for every t ∈ (−T̄ , T̄ ), where T̄ = lim
i→∞

Ti > 0. In particular, the limit

space does not depend on time.

Proof. It follows from the combination of Proposition 3.12 and Propo-
sition 3.13 that the limit space does not depend on time. From the
definition of canonical radius, the convergence locate in Ĉ4-topology for
each time. However, this can be improved to Ĉ∞-topology. Actually,
if ȳ is a regular point of M̄ (c.f. the definition in Theorem 2.13), then
we can find yi ∈ Mi such that yi → ȳ and cvr(yi, 0) ≥ η uniformly for
some η > 0, in light of the definition of regular points in Theorem 2.13
and its proof. It follows from Proposition 3.13 that
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inf
t∈[−1,0]

cvr(yi, t) ≥ K−1η,

for all large i. By second property, or regularity estimate of canonical
radius (c.f. Definition 2.9), we know

|Rm|(z, t) ≤ CK−4η−2, ∀ z ∈ Bgi(t)(yi,K
−2η), t ∈ [−1, 0].

Note that R → 0, which implies |Ric| → 0 when we have |Rm|-bound

in a bigger ball (c.f. the |Ric| ≤
√
|Rm||R|-type estimate in [73]). In

particular, we have

Bgi(0)(yi, 0.1K
−2η) ⊂ Bgi(t)(yi,K

−2η),

for all t ∈ [−0.5, 0]. Hence, we obtain

|Rm|(z, t) ≤ CK−4η−2,(3.42)

for every z ∈ Bgi(0)(yi, 0.1K
−2η), t ∈ [−0.5, 0]. Then we can apply Shi’s

estimate to obtain that |∇kRm| ≤ Ck on Bgi(0)(yi, 0.01K−2η) for each
positive integer k. This is enough to set up a uniform sized harmonic co-
ordinate chart around yi (with respect to metric gi(0)) and all the metric
tensor and its derivatives are uniformly bounded (c.f. Hamilton [39]).
Clearly, the convergence around ȳ happens in the pointed-C∞-topology.
Since ȳ is an arbitrary regular point, we see that the convergence to M̄
is in pointed-Ĉ∞-Cheeger–Gromov topology.

Note that we currently do not know whether M̄ locates in the model

space K̃ S (n, κ). However, we do know that M̄ = R(M̄) ∪ S(M̄).
The regular part is a smooth Ricci-flat manifold, due to the smooth
convergence and |Ric| → 0 on regular part. The singular part satisfies
the Minkowski dimension bound (c.f. (2.26) in Theorem 2.13):

dimM S ≤ 2n− 2p0 < 2n− 4 +
2

1000n
< 2n− 4 +

2

2n− 1
,(3.43)

where we used the fact that p0 is very close to 2.

Claim 3.16 (Good version of Lipschitz function). Every bound-

ed function f ∈ N1,2
0 (M̄) with finite ‖∇f‖L∞(M̄) and Lipschitz on R(M̄)

has a good version f̃ such that

f(x) = f̃(x), ∀ x ∈ R(M̄),(3.44)

sup
M̄

|∇f̃ | ≤ ‖∇f‖L∞(M̄),(3.45)

where the inequality (3.45) can be understood as

|f̃(x)− f̃(y)| ≤ ‖∇f‖L∞(M̄) · d(x, y), ∀ x, y ∈ M̄.

This is a flow property, so we assume λ = 0 without loss of generality.
For simplicity of notation, we also assume that ‖∇f‖L∞(M̄) = 1 and the

support of f is contained in B(x̄, 1). Note that these assumptions can
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always be achieved up to rescaling argument. Let χε = φ(d(x,S)
ε ) be the

cutoff function where φ is a smooth cutoff function such that φ ≡ 1
on (2,∞) and φ ≡ 0 on (−∞, 1) and |∇φ| ≤ 2, φ′ ≤ 0. Then χεf
is a Lipschitz function with compact support. By the smooth conver-
gence away from singularity (c.f. Proposition 3.13 and the discussion
around inequality (3.42)), we can regard χεf as a Lipschitz function on

(Mi, gi(−δ)), denoted by fε,i, where δ = ε
1
n . Starting from fε,i, we solve

the heat equation until time t = 0 and obtain a function hε,i = fε,i(0),
together with the metric evolving by the Ricci flow. Then we have

hε,i(x) =

∫
Mi

w(x, y,−δ)fε,i(y)dvy, ∀ x ∈Mi,

where w is the fundamental solution of �∗w = (∂τ − ∆ + R)w = 0.
Recall that

∫
Mi
wdv ≡ 1 and |fε,i| ≤ C uniformly, we have

|hε,i|(x) =

∣∣∣∣∫
Mi

w(x, y,−δ)fε,i(y)dvy

∣∣∣∣(3.46)

≤ sup
Mi

|fε,i|
∫
Mi

w(x, y,−δ)dvy = sup
Mi

|fε,i| ≤ C.

Direct calculation shows that

�|∇fε,i|2 = (∂t −∆) |∇fε,i|2 = −2|∇∇fε,i|2 ≤ 0.

It follows that

|∇hε,i|2(x)−
∫
Mi

w(x, y,−δ)|∇fε,i|2(y)dvy

= −2

∫ 0

−δ

∫
Mi

w(x, y, t)|∇∇fε,i|2dvydt ≤ 0.

Consequently, we have

|∇hε,i|2(x) ≤
∫
Mi

w(x, y,−δ)|∇fε,i|2(y)dvy(3.47)

=

∫
Ωi\Ai

w(x, y,−δ)|∇fε,i|2(y)dvy

+

∫
Ai

w(x, y,−δ)|∇fε,i|2(y)dvy,

where Ai is the set where the pull back of χε achieves values in (0, 1),
Ωi is the support of the pull back function fi. Note that |∇fε,i|(x) ≤
1 + ξ for arbitrary small, but fixed ξ, whenever i is large enough and
x ∈ Ωi\Ai. On Ai, we have |∇fε,i| ≤ Cε−1 for some universal constant
C. Note that Ωi ⊂ Bgi(0)(xi, 1), the canonical assumption then implies

the density estimate |Ai| ≤ Cε2p0 . Recall that we have the heat kernel
(hence, conjugate heat kernel estimate) estimate w(x, y,−δ) ≤ Cδ−n
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for some universal constant C. Plugging these inequalities into (3.47),
we obtain

|∇hε,i|2(x)

≤
∫

Ωi\Ai
w(x, y,−δ)|∇fε,i|2(y)dvy +

∫
Ai

w(x, y,−δ)|∇fε,i|2(y)dvy

≤ (1 + ξ)

∫
Ωi\Ai

w(x, y,−δ)dvy + Cε−2 · Cδ−n · |Ai|

≤ (1 + ξ)

∫
Mi

w(x, y,−δ)dvy + Cε2p0−2δ−n

≤ (1 + ξ) + Cε2p0−2δ−n ≤ 1 + ξ + Cε2−
1

500n δ−n,

where we used the fact ε < 1 and inequality (3.43) in the last step.

Recall that δ = ε
1
n and let ξ = ε1−

1
500n <<

√
ε, we then have

|∇hε,i|2(x) ≤ 1 +
√
ε.(3.48)

Moreover, if z̄ is a regular point of M̄ , i.e., z̄ ∈ R(M̄). Let zi ∈Mi and
zi → z̄. Then we have

|hε,i(zi)− fε,i(zi)|

=

∣∣∣∣∫
Mi

w(zi, y,−δ) {fε,i(y)− fε,i(zi)} dvy
∣∣∣∣

≤
∫
Bgi(0)(zi,δ

1
4 )
w(zi, y,−δ) |fε,i(y)− fε,i(zi)| dvy

+

∫
Mi\Bgi(0)(zi,δ

1
4 )
w(zi, y,−δ) |fε,i(y)− fε,i(zi)| dvy.

Note that z̄ is regular, we can assume that the regularity scale (for

example, cvr) of each zi is much larger than δ = ε
1
n , if we choose ε small

enough. Clearly, Bgi(0)(zi, δ
1
4 ) ∩ Ai = ∅, which implies the Lipschitz

constant of fε,i on Bgi(0)(zi, δ
1
4 ) is uniformly bounded by C. Recall that∫

Mi
wdv ≡ 1. Therefore, we have

|hε,i(zi)− fε,i(zi)| ≤ Cδ
1
4 + C

∫
Mi\Bgi(0)(zi,δ

1
4 )
w(zi, y,−δ)dvy.(3.49)

The last term of the above inequality is a small term which can be

absorbed in Cδ
1
4 . Actually, let ψ be a cutoff function such that ψ ≡ 0

on Bgi(0)(zi, 0.5δ
1
4 ), ψ ≡ 1 on Mi\Bgi(0)(zi, δ

1
4 ). Moreover, we have

|∇ψ|2 + |∆ψ| ≤ Cδ−
1
2 .

This can be done since δ
1
4 is much less than the regularity scale of zi.

Now we extend ψ to be a function on space-time by letting ψ(x, t) =
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ψ(x). Due to Proposition 3.13 and the discussion before (c.f. inequality

(3.42)), we obtain |∇ψ|2 + |∆ψ| ≤ Cδ−
1
2 on Mi× [−δ, 0]. Consequently,

we obtain

d

dt

∫
Mi

ψ(y, t)w(zi, y, t)dvy =

∫
Mi

(w�ψ − ψ�∗w)dvy = −
∫
Mi

w∆ψdvy.

As w converges to the δ-function at zi as t approaches 0, ψ(zi, 0) = 0,
we have

0−
∫
Mi

ψ(y,−δ)w(zi, y,−δ)dvy

= −
∫ 0

−δ

∫
Mi

w∆ψdvydt ≥ −Cδ−
1
2

∫ 0

−δ

∫
Mi

wdvydt = −Cδ
1
2 ,

which implies that∫
Mi\Bgi(0)(zi,δ

1
4 )
ψ(y,−δ)w(zi, y,−δ)dvy

≤
∫
Mi

ψ(y,−δ)w(zi, y,−δ)dvy ≤ Cδ
1
2 .

Plugging the above inequality into (3.49), and noticing that δ = ε
1
n , we

obtain

|hε,i(zi)− fε,i(zi)| ≤ Cδ
1
4 ≤ Cε

1
4n .(3.50)

It follows from the combination of (3.46), (3.48) and (3.50) that there
is a limit function hε on M̄ . Let ε = 2−i → 0, up to a diagonal sequence
argument, we can assume that h2−i,i converges to a limit function h,
which satisfies

sup
M̄

|h| ≤ C, sup
M̄

|∇h| ≤ 1 = ‖∇f‖L∞(M̄),

h(x) = f(x), ∀ x ∈ R(M̄).

In particular, h is a good version of f . We finish the proof of Claim 3.16.
Based on Claim 3.16, the proof of (3.41) follows from the standard

technique used in the proof of the Cheeger–Gromoll splitting lemma
in [29]. Actually, for each t 6= 0, we already know that (Mi, xi, gi(t))
converges in the pointed Gromov–Hausdorff topology to some (M̄ ′, x̄′, ḡ′).
We only need to show that M̄ ′ is isometric to M̄ . By Proposition 3.13
and the fact |R|+ |λ| → 0, we know that there is a natural identification
map between R(M̄) and R(M̄ ′), which contain a common point x̄. In
the following discussion, we shall show that this identification map can
be extended to an isometry between M̄ and M̄ ′.

Let ȳ, z̄ be two regular points of M̄ . Clearly, ȳ and z̄ can also be
regarded as regular points on M̄ ′. We omit the identification map for
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the simplicity of notations. Suppose dḡ(ȳ, z̄) = D > 0. We can construct
a function χ on M̄ ′ as follows

χ(x) =

{
max{D − dḡ(x, ȳ), 0}, if x ∈ R(M̄ ′),

0, if x ∈ S(M̄ ′).
(3.51)

Fix point x ∈ R(M̄ ′)\Bḡ′(ȳ, 3D), every smooth curve connecting x and
ȳ has length as least 3D. In light of inequality (2.25) in Theorem 2.13
(applying to both ḡ and ḡ′), we know that

min{dḡ(x, ȳ), dḡ′(x, ȳ)} ≥ D,

which implies that χ(x) = 0 by definition equation (3.51). We remark
that inequality (2.25) together with the high codimension of S implies

that χ ∈ N1,2
0 (M̄ ′) and we have

‖∇χ‖L∞(M̄ ′) = ‖∇χ‖L∞(R(M̄ ′)) = ‖∇χ‖L∞(R(M̄)) = 1.

Then we can apply Claim 3.16 to obtain a good version χ̃ of χ. In
particular, we have

dḡ(ȳ, z̄) = D = |χ(ȳ)− χ(z̄)| = |χ̃(ȳ)− χ̃(z̄)|(3.52)

≤ dḡ′(ȳ, z̄)‖∇χ‖L∞(M̄ ′) ≤ dḡ′(ȳ, z̄).

Similarly, by reversing the role of ḡ′ and ḡ when we choose the test
function, we obtain that

dḡ′(ȳ, z̄) ≤ dḡ(ȳ, z̄).(3.53)

By the arbitrary choice of ȳ, z̄, we know the identity map between R(M̄)
and R(M̄ ′) is an isometry map by (3.52) and (3.53). Since R(M̄) is
dense in M̄ , R(M̄ ′) is dense in M̄ ′, we obtain M̄ and M̄ ′ are isometric
to each other by taking metric completion. Consequently, (3.41) follows
from (3.40). q.e.d.

In Proposition 3.15, we show that the limit flow exists and is static in
the regular part, whenever we have |R|+ |λ| → 0. It is possible that the
limit points in the singular part S are moving as time evolves. However,
this possibility will be ruled out finally (c.f. Proposition 4.23).

3.3.1. Tangent structure of the limit space. In this subsection, we
shall show that the tangent space of each point in the limit space has a
metric cone structure, provided polarized canonical radius is uniformly
bounded below. Basically, the cone structure is induced from the local-
ized W -functional’s monotonicity. Up to a parabolic rescaling, we can
assume λ = 0 without loss of generality.

Proposition 3.17 (Local W -functional). Let LMi ∈ K (n,A; r0)
and supMi

(|R|+ |λ|)→ 0.
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Let ui be the fundamental solution of the backward heat equation[
− ∂
∂t −4+R

]
ui = 0 based at the space-time point (xi, 0). Then ui

converges to a limit positive solution ū on R× (−1, 0], i.e.,[
− ∂

∂t
−∆ +R

]
ū = 0.

Moreover, we have∫∫
R×(−1,0]

2|t|
∣∣∣Ric+∇∇f̄ +

ḡ

2t

∣∣∣2 ūdvḡdt ≤ C,(3.54)

where C = C(n,A), ū = (4π|t|)−ne−f̄ .

Proof. This is a flow property and has nothing to do with polarization.
So we can assume λ = 0 for simplicity.

Fix r > 0. Choose a point ȳ ∈ Rr and a time t̄ < 0. Without
loss of generality, we assume that there is a sequence of points (yi, ti)
converging to (ȳ, t̄). Note that dgi(0)(yi, xi) is uniformly bounded. It is
not hard to see that ui is uniformly bounded around (yi, ti). Actually,
let wi be the heat equation �wi = (∂t − ∆)wi = 0, starting from a
δ-function at (yi, ti). Then by the heat kernel estimate of Cao–Zhang
(c.f. [7]), we obtain the on-diagonal bound

1

C
|ti|−n < wi(yi, 0) < C|ti|−n,

for some uniform constant C. Then the gradient estimate of Cao–
Hamilton–Zhang (c.f. [77], [6]) and the fact dgi(0)(yi, xi) < C implies
that | logwi(xi, 0)| is uniformly bounded. Note that wi(xi, 0) = ui(yi, ti)
since the integral

∫
M uividµ does not depend on time. Therefore, we

have
1

C
≤ ui(yi, ti) = wi(xi, 0) ≤ C,(3.55)

where C depends on |ti| and dgi(0)(yi, xi). It clearly works uniformly
for a fixed-sized space-time neighborhood of (yi, ti), where curvatures
are uniformly bounded. Then standard regularity argument from heat
equation shows that all derivatives of ui are uniformly bounded around
(yi, ti). Therefore, there is a limit positive solution ū around (ȳ, t̄). By
the arbitrary choice of r, ȳ, t̄. It is clear that there is a smooth heat
solution ū defined on R× (−1, 0).

By Perelman’s calculation, for each flow gi, we have∫ 0

−1

∫
Mi

2|t|
∣∣∣Ricgi +∇∇fi +

gi
2t

∣∣∣2 uidvgidt(3.56)

= −µ(Mi, gi(ti), 1) ≤ C,

since Sobolev constant is uniformly bounded. By passing to limit, (3.54)
follows. q.e.d.
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Theorem 3.18 (Tangent cone structure). Suppose LMi is a se-
quence of polarized Kähler Ricci flow solutions in K (n,A; r0), xi ∈Mi.
Let (M̄, x̄, ḡ) be the limit space of (Mi, xi, gi(0)), ȳ be an arbitrary point
of M̄ . Then every tangent space of M̄ at ȳ is an irreducible metric cone.

Proof. Suppose Ŷ is a tangent space of M̄ at the point ȳ, i.e., there
are scales rk → 0 such that

(Ŷ , ŷ, ĝ) = lim
k→∞

(M̄, ȳ, ḡk),(3.57)

where ḡk = r−2
k ḡ. By taking subsequence if necessary, we can assume

(Ŷ , ŷ, ĝ) as the limit space of (Mik , yik , g̃ik) where g̃ik = r−2
i gik(0). De-

note the regular part of Ŷ by R(Ŷ ). Then on the space-time R(Ŷ ) ×
(−∞, 0], there is a smooth limit backward heat solution û. Recall that

û is positive by Proposition 3.17. For every compact subset K ⊂ R(Ŷ )
and positive number H, it follows from Cheeger–Gromov convergence
and the estimate (3.56) that∫∫

K×[−H,0]
2|t|

∣∣∣∣Ric+∇∇f̂ +
ĝ

2t

∣∣∣∣2 ûdvdt = 0.

Note the scaling invariance of ûdv and |t|
∣∣∣Ric+∇∇f̂ + ĝ

2t

∣∣∣2 dt. Actu-

ally, if the above equality fails for some K and H, then by definition
of tangent space and the integral accumulation, we shall obtain the left
hand side of (3.56) is infinity and obtain a contradiction. Then by the
arbitrary choice of K and H, we arrive∫∫

R(Ŷ )×(−∞,0]
2|t|

∣∣∣∣Ric+∇∇f̂ +
ĝ

2t

∣∣∣∣2 ûdvdt = 0.

Note that R(Ŷ ) is Ricci flat. So there is a smooth function f̂ defined

on R(Ŷ )× (−∞, 0] such that

∇∇f̂ +
ĝ

2t
≡ 0.(3.58)

The above equation means that ∇f̂ is a conformal Killing vector field,
when restricted on each time slice t < 0. It follows from the work of
Cheeger–Colding (c.f. [10]) that there is a local cone structure around
each regular point. We shall show that a global cone structure can be
obtained due to the high co-dimension of the singular set S and the
Killing property arises from (3.58). The basic techniques we shall use
in our proof is very similar to that in the proof of Lemma 2.31, Lemma
2.34 of [29] and Proposition 3.15.

Let’s first list the excellent properties of f̂ . Recall that f̂ satisfies the
following differential equation on R× (−∞, 0) from the limit process.

f̂t = −∆f̂ + |∇f̂ |2 −R− n

t
= |∇f̂ |2.(3.59)
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On the other hand, it follows from (3.58) that

∇
(
t|∇f̂ |2 + f̂

)
= 2tHessf̂ (∇f̂ , ·) +∇f̂ = −∇f̂ +∇f̂ ≡ 0.

So we have t|∇f̂ |2 + f̂ = C(t), whose time derivatives calculation yields
that

C ′(t) = |∇f̂ |2 + 2t
〈
∇f̂ ,∇f̂t

〉
+ f̂t = 2|∇f̂ |2 + 2t

〈
∇f̂ ,∇|∇f̂ |2

〉
= 2|∇f̂ |2 + 4tHessf̂

(
∇f̂ ,∇f̂

)
= 2|∇f̂ |2 − 2|∇f̂ |2 = 0,

where we repeatedly used (3.59) and (3.58). Therefore, t|∇f̂ |2 + f̂ ≡ C
on R× (−∞, 0). Replacing f̂ by f̂ +C if necessary, we can assume that

t|∇f̂ |2 + f̂ ≡ 0, which implies that(
tf̂
)
t

= f̂ + tf̂t = f̂ + t|∇f̂ |2 ≡ 0.(3.60)

Consequently, we have

f̂(x, t) =
−1

t
f̂(x,−1), ∀ x ∈ R(Ŷ ),(3.61) ∣∣∣∣∇√f̂(x, t)

∣∣∣∣ =
1

2|t|
.(3.62)

We remark that the above discussion is nothing but the application of
general property of gradient shrinking solitons (c.f. Chapter 4 of Chow–
Lu–Ni [32]), in the special case that Ric ≡ 0.

Intuitively, a space which is both Ricci-flat and is a gradient shrink-
ing soliton must be a metric cone. This can be easily proved if the
underlying space is smooth. In our current situation, due to high codi-
mension of S, the cone structure can be established using the technique
developed in section 2. Suppose Ŷ is a metric cone based at ŷ, then we
should have

f̂ =
d2

4|t|
,(3.63)

where d is the distance to the origin. This will be confirmed in the fol-
lowing discussion. The cone structure of Ŷ will be established together
with equality (3.63). The basic idea to prove (3.63) is to compare the

level sets of f̂ with geodesic balls, with more and more preciseness. Note
that similar ideas to estimate distance will be essentially used in section
5.3 (c.f. Lemma 4.20). We remark that our proof could be much simpler
if we use Lemma 3.23, which is independent (c.f. Remark 3.24). For

example, the application of Lemma 3.23 directly implies that f̂ must
achieve minimum only at base point ŷ (see step 3 below), since f̂ is
a strictly convex function in regular part R and can be regarded as a
continuous function on Ŷ (c.f. step 1 below). Here we want to give a
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self-contained proof, using only the good property of f̂ to improve the
regularity of Ŷ .

We divide the proof of (3.63) into four steps.

Step 1. f̂ is a nonnegative, continuous, proper function which achieves
minimum value 0 at ŷ.

Let us focus our attention on time slice t = −1 for a while. Denote
f̂(x,−1) by f̂(x) for simplicity of notation. It is not hard to observe

that f̂(x) is weakly proper. In other words, we have

lim
R(Ŷ )3x→∞

f̂(x) =∞.(3.64)

For otherwise, we can find a sequence of points zi ∈ R(Ŷ ) such that

d(zi, ŷ) → ∞ and f̂(zi) ≤ D for some positive number D. Note that f̂
is uniformly bounded from below in the ball B(zi, 1). Actually, for every
smooth point x ∈ B(zi, 1), we can find a smooth curve γ connecting x to
zi such that |γ| ≤ 3d(x, zi). This is an application of inequality (2.25)
in Theorem 2.13. Note that the canonical radius is very large in the
current situation. Parametrize γ by arc length and let γ(0) = zi and
γ(L) = x. Then |γ| = L ≤ 3. Along the curve γ, by (3.62), we have

d

ds

√
f̂(γ(s)) =

〈
∇
√
f̂ , γ̇(s)

〉
≤
∣∣∣∣∇√f̂ ∣∣∣∣ =

1

2
.

Integration of the above inequality implies that

f̂(x) = f̂(γ(L)) ≤
(

1

2
L+ f̂(γ(0))

)2

=

(
1

2
L+ f̂(zi)

)2

(3.65)

≤ (1.5 +D)2 ≤ 2(1 +D)2.

The above inequality holds for every regular point x ∈ B(zi, 1). In

particular, we know
∫
B(zi,1) e

−f̂dv is uniformly bounded from below by

some C−1. Consequently, we have∫
B(zi,1)

ûdv = (4π)−n
∫
B(zi,1)

e−f̂dv ≥ 1

C
,

for some uniform constant C depending on κ and D. Up to reselecting
a subsequence if necessary, we can assume that all B(zi, 1) are disjoint
to each other. Then we have

C ≥
∞∑
i=1

∫
B(zi,1)

ûdv ≥ ∞,

which is impossible. This contradiction establishes the proof of (3.64).

Note that in the above discussion, we already know that the function f̂ is
bounded on B∩R(Ŷ ) for each fixed geodesic ball B, by the application
of the proof of (3.65). Consequently, we have uniform gradient estimate

of f̂ in B∩R(Ŷ ) by (3.60), since t = −1. The locally Lipschitz condition
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guarantees that f̂ can be extended as a continuous function on whole
Ŷ . Actually, let z̄ be a singular point on Ŷ . Suppose ak and bk are two
sequences of regular points inR(Ŷ ) converging to z̄. Clearly, d(ak, bk)→
0. By inequality (2.25) in Theorem 2.13, we can find a smooth curve

γk ⊂ R(Ŷ ) connecting ak, bk such that |γk| < 3d(ak, bk) → 0. The

bound of |∇f̂ | then implies that |f̂(ak)− f̂(bk)| → 0. So we can define

f̂(z̄) , lim
y→z̄,y∈R(Ŷ )

f̂(y) without ambiguity (c.f. Proposition 2.29 of [29]

for similar discussion). Therefore, from now on we can regard f̂ as

a continuous function on Ŷ , rather than only on R(Ŷ ). Clearly, the

previous discussion implies that f̂ is proper. Namely, we have

lim
Ŷ 3x→∞

f̂(x) =∞.(3.66)

Consequently, the minimum value of f̂ can be achieved at some point ẑ.
The above discussion can be trivially extended for the function f̂(·, t)
for each t ∈ (−∞, 0). So we know f̂(·, t) is a continuous proper function,
which achieves minimum value at ẑ also, by (3.61). Furthermore, it is
also clear that (3.61) and the first part of (3.60) can be extended to hold

on whole Ŷ × (−∞, 0). Then we observe that

f̂(ŷ, t) = min
x∈Ŷ

f̂(x, t) = 0, ∀ t ∈ (−∞, 0).(3.67)

Actually, following the discussion around inequality (3.55), we can use
the on-diagonal estimate of Cao–Zhang and the gradient estimate of
Cao–Hamilton–Zhang to obtain that

(4π|t|)−ne−f̂(x,t)−C = û(x, t) ≥ 1

C
|t|−n, ∀ x ∈ B

(
ŷ,
√
|t|
)
∩R(Ŷ ),

where we used the fact that we adjusted f̂ globally by adding a constant
to obtain (3.60). By the continuity of f̂ , the above inequality implies
that

f̂(ŷ,−1)

|t|
= f̂(ŷ, t) ≤ C, ⇒ f̂(ŷ,−1) ≤ C|t|, ∀ t ∈ (−∞, 0).

This forces that f̂(ŷ,−1) = 0. Recall that f̂ is a nonnegative function

by (3.60), so we obtain min
x∈Ŷ

f̂(x,−1) = 0. Then (3.67) follows from the

extended version of (3.61). So we finish Step 1.

Step 2. Unit level set of f̂ is comparable with unit geodesic ball cen-
tered at ŷ.

For each nonnegative number a, we define

Ωa , {x ∈ Ŷ |f̂(x,−1) ≤ a2}.
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According to this definition, we immediately know that ŷ ∈ Ω0. Fur-
thermore, by (3.61), it is clear that

Ωa = {x ∈ Ŷ |f̂(x, t) ≤ |t|−1a2}, ∀ t ∈ (−∞, 0).

Note that Ω1 is bounded by the properness of f̂(·) = f̂(·,−1). For
simplicity, we assume that Ω1 ⊂ B(ŷ, 0.5H) for some H > 0. On the

other hand, applying the gradient estimate of

√
f̂ , i.e., (3.62), and the

smooth curve length estimate (2.25), we have√
f̂(x) ≤

√
f̂(ŷ) +

1

2
· 4 ·H ≤ 2H, ∀ x ∈ B(ŷ, H),

which means that B(ŷ, H) ⊂ Ω2H . Let D = 2H, we have the following
relationships in short:

Ω1 ⊂ B(ŷ, 0.25D) ⊂ B(ŷ, 0.5D) ⊂ ΩD.(3.68)

Equation (3.68) can be regarded as the first step to improve (3.66) and

(3.67). In order to obtain the estimates of general level sets of f̂ , we
need to use the conformal Killing equation (3.58). We observe that the

space-time vector field (−∇f̂ , ∂∂t) = (− r̂
2
∂
∂r̂ ,

∂
∂t) = (−0.5r̂∂r̂, ∂t), as the

“lift” of the conformal Killing vector field −∇f̂ (c.f. (3.58)), has many
excellent properties. First, direct calculation (c.f. (3.59)) shows that

d

dt
f̂ = f̂t − |∇f̂ |2 ≡ 0,(3.69)

along the integral curve of this space-time vector field. Second, it follows
from (3.58) that

L(−∇f̂ , ∂
∂t

) {|t|ĝ} = 0,(3.70)

where L means Lie derivative. Now we can regard R(Ŷ ) × (−∞, 0) as
a Riemannian manifold, equipped with metric |t|ĝ(t) + dt2 (c.f. section

6 of Perelman [49]). Then (−∇f̂ , ∂∂t) is really a Killing vector field.

Step 3. f̂ and d(ŷ, ·) have the same unique minimum value point ŷ.

In other words, the infimum of f̂ must be 0 and it is only achieved
at base point ŷ. We shall use Killing vector field to generate quasi-
isometric diffeomorphisms. Then an application of the technique, i.e.,
bounding distance by choosing good Lipschitz functions, used in the
proof Lemma 2.31, Lemma 2.34 of [29] and Proposition 3.15 will imply
the diameter bound for general level sets Ωa. For small a, we shall
show that diam Ωa is also small. Then Ω0 has diameter 0 and consists
of only one point ŷ, which is of course the unique minimum point of
d(ŷ, ·). Actually, if one only want to show Ω0 = {ŷ}, then there is a

shortcut by using the uniform convexity of f̂ on R(Ŷ ) (i.e., equation

(3.58)), the homogeneity of f̂ in time direction (i.e., equation (3.61)),

the fact
∫
Ŷ e
−f̂dv < C and the application of Lemma 3.23. We leave
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the details to interested readers. In the following paragraph, we shall
show Ω0 = {ŷ} together with the construction of the cone structure.

Killing vector property together with high codimension of S implies
metric product rigidity, as we have done in Lemma 2.31, Lemma 2.34
of [29]. We repeat the discussion here again for the convenience of the
readers. Fix each positive integer k. We claim that there is a bounded
closed set Ek ⊂ Ŷ satisfying dimM(Ek) < 2n−2. Furthermore, for each
t ∈ [−2−k,−2−k], we have a family of smooth diffeomorphism ϕk,t from
ΩD\Ek to Ω√

2k|t|D\Ek with

ϕ∗k(ĝ)(z) = 2k|t|ĝ(z), ∀ t ∈ [−2−k,−2−k], z ∈ Ω√
2k|t|D\Ek.(3.71)

The set Ek can be constructed similarly as the set Ek in the proof of
Claim 2.32 of [29]. Now the Killing vector field ∇b+ is replaced by the

space-time “Killing” (c.f. (3.70)) vector field (−∇f̂ , ∂t). Let’s describe
more details about the construction of Ek. Actually, fixing a small
positive number ξ, we define the set E−k,ξ to be

{x ∈ ΩD|flow line of (−∇f̂ , ∂t) passing through (x,−2−k)(3.72)

hits Dξ at some t ∈ (−2k,−2−k)}.

The minus sign in E−k,ξ indicates that we are flowing backward along

the space-time integral curve of (−∇f̂ , ∂t), since −2−k > t for each
t ∈ (−2k,−2−k). Note that the intersection point to Dξ locates in a
uniformly bounded set. This can be simply proved as follows. Let
(y,−τ) be the first point on Dξ. By (3.69) and (3.61), we have

f̂(y,−1)

τ
= f̂(y,−τ) = f̂(x,−2−k) = 2kf̂(x,−1) ≤ 2k ·D2,

⇒ f̂(y,−1) ≤ 2kτD2 ≤ 4kD2,

which means that y ∈ Ω2kD, a uniformly bounded set by the properness

of f̂ . By high Minkowski codimension of S and the application of the
Killing condition (3.70), similar argument for equation (2.54) in Claim
2.32 of [29] implies that

|E−k,ξ| ≤ Cξ
2p0−1−ε,

where p0 is the constant appeared in (3.43), i.e., dimM S < 2n − 2p0,
C may depends on ε also. Let ξi → 0 and define E−k = ∩∞i=1E

−
k,ξ. We

obtain a measure-zero closed set E−k . Moreover, same as (2.55) in the

proof of Claim 2.32 of [29], the ξ-neighborhood of E−k is contained in

E−k,Cξ for some uniform constant C. Then the above volume estimate

implies that dimME−k ≤ 2n − 2p0 + 1 < 2n − 2. Now we reverse the

direction. Similar to the definition of E−k,ξ in (3.72), we can define E+
k,ξ
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as follows:

{x ∈ Ω2kD|flow line of (−∇f̂ , ∂t) passing through (x,−2k)

hits Dξ at some t ∈ (−2k,−2−k)}.

Clearly, the plus sign in E+
k,ξ indicates that we are flowing forward

along the space-time integral curve of (−∇f̂ , ∂t), since t > −2k for
each t ∈ (−2k,−2−k). Suppose we start from (x,−2k) outside Dξ
and the flow line of (−∇f̂ , ∂t) enters Dξ at some (y,−τ). We know

f̂(y,−τ) = f̂(x,−2k) since the flow preserves f̂ -value. Then we have

f̂(y,−1) = τ f̂(y,−τ) = τ f̂(x,−2k) = 2−kτ f̂(x,−1) ≤ f̂(x,−1) ≤ 4kD2.

Consequently, y ∈ Ω2kD. Therefore, the forward flow is also restricted
in a bounded domain when we start from a point (x,−2k) satisfying
x ∈ Ω2kD. Applying high codimension of S and Killing condition again,
we know E+

k,ξ has volume bounded by Cξ2p0−1−ε. Let ξi → 0 and set

E+
k to be ∩∞i=1E

+
k,ξ. We know E+

k is a bounded closed set satisfying

dimME+
k < 2n− 2. Now we define

Ek , E
+
k ∪ E

−
k .(3.73)

Then each Ek is a closed bounded set satisfying dimMEk < 2n −
2. According to their definitions and the above discussion, we know
that there is a family of diffeomorphism ϕk,t, parametrized by t ∈
[−2k,−2−k], from ΩD\Ek to Ω√

2k|t|D\Ek, generated by the integral

curve of (−∇f̂ , ∂t). It is clear that (3.71) follows from the integration
of (3.70). The above argument is almost the same as that in the proof
of Claim 2.32 in Lemma 2.31 of [29]. In particular, the argument for
the proof of equation (2.53) of [29] is more or less repeated here. We
remind the readers that weak convexity of R is not used in the proof of
equation (2.53) of [29]. Only the high codimension of S and the Killing
vector properties are used.

Now we are ready to use the existence of the diffeomorphism (c.f.
discussion around (3.71)) ϕk,−2k : ΩD\Ek → Ω2kD\Ek to relate the
estimate of general Ωa to (3.68). We are particularly interested in the
sets Ωa for small a’s. Without loss of generality, let a = 2−k. Fix some
points x, y ∈ Ω2−k\Ek. Denote ρ = d(x, y). Similar to (3.51) in the
proof of Proposition 3.15, we choose a function

χ̃ , max{ρ− d(·, x), 0}.(3.74)

Note that x, y ∈ Ω2−k ⊂ Ω1 ⊂ B(ŷ, 0.25D) by (3.68), which forces that
ρ = d(x, y) < 0.25D. Also by (3.68), we know that χ̃ is supported in
B(x, ρ) ⊂ B(x, 0.25D) ⊂ B(ŷ, 0.5D) ⊂ ΩD. Let ϕ be the diffeomor-

phism generated by integrating (−∇f̂ , ∂t) from t = −2−k to t = −2k.
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In other words, ϕ = ϕk,−2−k . Using ϕ, we can push forward the function
χ̃ to obtain

ϕ∗(χ̃)(z) , χ̃(ϕ−1(z)), ∀ z ∈ Ω2kD\Ek.
Clearly, ϕ∗(χ̃) is supported on Ω2kD\Ek with

‖∇ϕ∗(χ̃)‖L∞(Ŷ ) ≤ 2−k‖∇χ̃‖L∞(Ŷ ) = 2−k,

in light of (3.71) and t = −2k. By the high codimension of Ek, we

know that ϕ∗(χ̃) is an N1,2
0 -function, which has a good version such that

supŶ |∇ϕ∗(χ̃)| ≤ ‖∇ϕ∗(χ̃)‖L∞(Ŷ ), due to the high codimension of S (c.f.

Claim 3.16). For simplicity of notation, we still denote the new version
of χ̃ by χ̃. Note that the values of χ̃(x) and χ̃(y) are independent of the
different versions, since x, y are away from Ek. Recall that x, y ∈ Ω2−k .
Integration of (3.69) implies that

f̂(x,−2k) = 2−kf̂(x,−1) = 4−kf̂(x, 2−k) ≤ 4k · 4−k = 1.

Therefore, ϕ(x) ∈ Ω1. Similarly, we also know ϕ(y) ∈ Ω1. Combining
the previous inequalities and use (3.68) again, we obtain that

0.5D ≥ d(ϕ(x), ϕ(y)) ≥ |ϕ∗(χ̃)(ϕ(x))− ϕ∗(χ̃)(ϕ(y))|
supŶ |∇ϕ∗(χ̃)|

≥ |ϕ∗(χ̃)(ϕ(x))− ϕ∗(χ̃)(ϕ(y))|
‖∇ϕ∗(χ̃)‖L∞(Ŷ )

≥ |χ̃(x)− χ̃(y)|
2−k

.

Recall that χ̃(x) = ρ and χ̃(y) = 0 by (3.74). It follows from the above
inequality that

ρ = d(x, y) ≤ 0.5D · 2−k = 2−1−kD,(3.75)

which is independent of the choice of x, y ∈ Ω2−k\Ek. Recall that
Ω2−k\Ek is dense in Ω2−k . So we have

diam Ω2−k = diam{Ω2−k\Ek} ≤ 2−1−kD.

Consequently, lim
k→∞

diam(Ω2−k) = 0. Since Ω0 =
⋂

1≤k<∞Ω2−k , we

know that Ω0 consists of only one point {ŷ}.
Step 4. The level sets of f̂ coincide the geodesic balls centered at ŷ.
Define

r̂(x) ,
√

4f̂(x,−1) =

√
4f̂(x), d(x) , d(x, ŷ).(3.76)

Recall that in the standard Euclidean case, f̂ = d2

4 and r̂ = d. Our
destination (3.63) is equivalent to the equation r̂ − d ≡ 0. Clearly, we

have |∇r̂| = |∇f̂ |√
f̂

= 1. Recall that (c.f. (3.73)) each Ek is a bounded

closed set with dimMEk < 2n − 2. Let E = ∪∞k=1Ek. Then it is clear

that E is measure-zero and Ŷ \E is dense in Ŷ . Note that Ŷ \E has a

cone structure, as every point x ∈ Ŷ \E can be flowed to ŷ along the
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integral curve of ∇f̂ = 1
2 r̂∂r̂ without hitting singularities (c.f. Section

1 of [10]). Let x ∈ R(Ŷ ) and a = r̂(x) > 0, we can find xk ∈ R(Ŷ )\E
approaching y. Every point xk can be flowed to a point nearby ŷ. So
we obtain

d(x) = d(x, ŷ) ≤ lim
k→∞

d(xk, ŷ) ≤ lim
k→∞

r̂(xk) ≤ r̂(x).(3.77)

On the other hand, we can construct a function χ as

χ(x) , max{a− r̂(x), 0},

which is supported on a bounded set Ω0.5a. Clearly, χ is Lipschitz.
By the high codimension of S, by replacing χ with a new version if
necessary, we can assume supŶ |∇χ| ≤ ‖∇χ‖L∞(Ŷ ) ≤ 1. Note the values

at x and y does not depend on the choice of versions since they are
regular points. Therefore, we have

d(x, y) ≥ |χ(x)− χ(y)|
supŶ |∇χ|

≥=
|χ(x)− χ(y)|
‖∇χ‖L∞(Ŷ )

= |χ(x)− χ(y)| = |χ(y)| ≥ a− |r̂(y)|,

for every y ∈ R(Ŷ ). Let y approach ŷ in R(Ŷ )\E, we obtain

d(x) ≥ a = r̂(x),

which together with (3.77) yields that

d(x) = r̂(x),(3.78)

for arbitrary x ∈ R(Ŷ )\{ŷ}. Since both d and r̂ are uniformly Lipschitz,

equation (3.78) holds for every y ∈ Ŷ by continuity and density reason.
In particular, the relationship (3.68) can be improved to the following
one:

Ωa = B(ŷ, 2a), ∀ a ≥ 0.

This confirms our expectation. Clearly, (3.63) follows from the combi-
nation of (3.76) and the extended version of (3.78). The proof of (3.63)
is complete.

From the discussion in Step 4 of the proof of (3.63), we already know

that Ŷ \{E ∪ {ŷ}} has a local cone structure, which induces the global

cone structure of Ŷ by taking completion. In view of (2.25) in Propo-

sition 2.13, we know R(Ŷ ) is path connected. Therefore, the cone Ŷ

is irreducible, i.e., Ŷ \{ŷ} is path connected. Therefore, we obtain the
global cone structure from the local cone structure, due to the high co-
dimension of the singular set S and the Killing property arisen from
(3.58), as we claimed. q.e.d.
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3.3.2. Improved estimates in K (n,A; r0). In this subsection, we
shall improve the limit space structure by the fact that every tangent
space is a metric cone. For simplicity, we assume r0 = 1 if we do not
mention otherwise.

Proposition 3.19 (Improvement of codimension estimate of
S). Suppose LMi is a sequence of polarized Kähler Ricci flow solutions
in K (n,A; 1), xi ∈Mi. Let (M̄, x̄, ḡ) be the limit space of (Mi, xi, gi(0)).
Let S be the singular part of M̄ . Then

dimM S ≤ 2n− 2p0, dimH S ≤ 2n− 4,(3.79)

where dimM is the Minkowski dimension, dimH is the Hausdorff dimen-
sion.

Proof. The Minkowski dimension estimate follows from Theorem 2.13.
Recall that we are in a situation where canonical radius is uniformly
bounded from below. Therefore, there is a gap between local behav-
ior of singular point and regular point. In particular, if one tangent
space is Euclidean space, then the base point has a neighborhood with
smooth manifold structure. This follows from the volume convergence
(c.f. Proposition 2.14) and the regularity estimate in the definition of
canonical radius (c.f. Definition 2.9). One can find the detailed ar-
gument in the proof of Proposition 4.2, where only polarized canonical
radius lower bound is used. Note that each iterated tangent space (away
from vertex) is also a tangent space, and, hence, force a tangent cone
with more splitting directions. Consequently, we can use induction to
show that every tangent cone’s singularity has an integer Hausdorff
dimension (c.f. [11]). However, the Minkowski dimension of singular-
ity is at most 2n − 2p0. This forces that every tangent cone’s singu-
larity has Hausdorff dimension 2n − 4 at most, which in turn implies
dimH S ≤ 2n− 4. q.e.d.

After we set up the tangent cone structure, we can improve Proposi-
tion 2.11.

Proposition 3.20 (Improvement of regular curve estimate).
Same conditions as in Proposition 3.19.

For every two points x, y ∈ R and every small positive number ε > 0,
there exists a rectifiable curve connecting x, y such that

• γ locates in R.
• |γ| ≤ (1 + ε)d(x, y).

Proof. The proof is very similar to the proof of Proposition 2.11.
The basic idea is to use the tangent cone structure, i.e., Theorem 3.18
to improve Proposition 2.11.
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First, every point in M̄ has a cone-like neighborhood.
To be more precise, fix ε > 0, for every point z ∈ M̄ , there is a radius

rz, depending on z and ε, with the following property:
For every point v ∈ B(z, rz), one can find a curve α such that

• Initial point of α locates in B(z, εd(v, z)), end point of α locates
in B(v, εd(v, z)).
• α ⊂ R, |α| < (1 + ε)d(v, z).

The existence of rz can be obtained by application of Theorem 3.18 and
a contradiction blowup argument. Actually, if for some z such rz does
not exist, we can find vi → z such that corresponding αi does not exist.
Blowup by d−2(vi, z), we obtain a tangent cone M∞ with vertex z∞ and
a point v∞ on the unit sphere of the cone. By the density of regular
part in the tangent cone, we have a regular point ṽ∞ ∈ B(v∞, 0.5ε). The
cone structure guarantees that the shortest geodesic connecting ṽ∞ to
z∞, which we denote by z∞ṽ∞, has regular interior (c.f. (3.78)). Denote
the intersection of z∞ṽ∞ and M∞\B(z∞, 0.5ε) by α∞. Then α∞ is a
compact curve and locates in the regular part of M∞. By the uniform
convergence around α∞, we obtain a curve αi with the desired property
before we arrive limit. Contradiction.

Second, we can find a good covering of each shortest geodesic by cone-
like neighborhoods.

Fix any two points x, y ∈ R. Let β be a shortest geodesic connecting
x, y. Since

⋃
z∈β B(z, 1

4rz) is a cover of a compact curve β, we can find a
finite covering. Starting from this finite covering, by deleting redundant
extra balls from x to y (e.g., using the “greedy algorithm”), we obtain
a covering ∪Ni=1B(zi,

1
4rzi) with the following properties.

• zi’s are ordered by their distance to x.
• Each point on β locates in at most two balls. If a point on β is

contained in two balls, then these two balls must be “adjacent”.
In other words, if z ∈ β ∩B(zk,

1
4rk) ∩B(zl,

1
4rl), then |k − l| = 1.

• Every pair of “adjacent” balls have nonempty intersection, i.e., if
|k − l| = 1, then B(zk,

1
4rk) ∩B(zl,

1
4rl) 6= ∅.

Third, based on the good covering, one can construct approximation
curve.

Now we have a covering of β by ∪Nk=0B(zk,
1
4rk) with the property

mentioned in the second step. Without loss of generality, we further
assume z0 = x, zN = y. For each 0 ≤ k ≤ N − 1, let βk be the part of
β connecting zk and zk+1, let dk be the length of βk. Then we have

dk = d(zk, zk+1) <
1

4
rk +

1

4
rk+1 ≤

1

2
max{rk, rk+1}.

Hence, either zk+1 locates in the cone-like neighborhood of zk, or zk
locates in the cone-like neighborhood of zk+1. No matter what case
happens, we can find an approximation curve αk ⊂ R, whose two ends
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locate in the εdk neighborhood of zk and zk+1, satisfying |αk| < (1+ε)dk.
According to this choice, the end point of αk−1 and the initial point of
αk have distance bounded by ε(dk + dk−1), whenever 1 ≤ k ≤ N − 1.
So they can be connected by a curve γk ⊂ R with |γk| ≤ 3ε(dk + dk−1),
due to Proposition 2.11. For the boundary case, it is not hard to see
that z0 = x can be connected to the initial point of α0 by γ0 ⊂ R and
|γ0| < 3εd0. Similarly, zN = y can be connected to the end point of
αN−1 by γN ⊂ R and |γN | < 3εdN−1. Concatenating all the curves αk
and γk, we obtain a curve γ ⊂ R connecting x, y and satisfying

|γ| =
N−1∑
k=0

|αk|+
N∑
k=0

|γk|

≤

(
N−1∑
k=0

(1 + ε)dk

)
+

(
3εd0 +

N−2∑
k=0

3ε(dk + dk+1) + 3εdN−1

)

= (1 + ε)
N−1∑
k=0

dk + 6ε
N−1∑
k=0

dk = (1 + 7ε)|β| = (1 + 7ε)d(x, y).

Replacing ε by 0.1ε at the beginning, we then find a curve γ satisfying
the requirement. q.e.d.

Lemma 3.21 (Rough estimate of reduced distance). There is
an ε = ε(n,A) with the following properties.

Suppose LM ∈ K (n,A; 1), x, y ∈ M and r = d0(x, y) < 1. Suppose
y ∈ F εb

2
r(M, 0). Then we have

l((x, 0), (y,−r2)) < 100,(3.80)

whenever supM(|R|+ |λ|) < ε.

Proof. Let y0 = y. According to the construction in Proposition
3.14 of [29], there exists a point y1 ∈ ∂Bg(0)(x,

r
2) ∩ F εbr

4
(M, 0) and

a curve γ1 ⊂ F ε2
b
8
r
(M, 0) connecting y0, y1, with length less than 9

2r.

Suppose |R|+ |λ| is small enough, then γ1 ⊂
⋂

−r2≤t≤0

F ε2
b
r

16

(M, t). So γ1

can be lifted as a space-time curve connecting (y1,− r2

4 ) and (y0,−r2).
Reparameterizing γ1 by τ , after a proper adjustment, we have∫ r2

r2

4

√
τ |γ̇1|2g(−τ)dτ < 100r.

Following the same procedure, we can find γ2 connecting y1 to y2 ∈
∂Bg(0)(x,

r
4) ∩ F εbr

8
(M, 0) with γ2 ⊂

⋂
− r2

4
≤t≤0

F ε2
b
r

32

(M, t). By a proper
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reparameterization of τ , we can regard γ2 as a space-time curve con-

necting (y1,− r2

4 ) and (y2,− r2

16), and it satisfies the estimate∫ r2

4

r2

16

√
τ |γ̇2|2g(−τ)dτ < 100 · r

2
.

Note that there is no need to choose a new ε because of the rescaling
property of |R|+ |λ|. Repeating this process, we can find curve γk con-

necting (yk,− r2

4k
) and (yk+1,− r2

4k+1 ). Concatenating all γk’s together,

we obtain a space-time curve γ connecting (x, 0) and (y,−r2) such that∫ r2

0

√
τ |γ̇|2g(−τ)dτ < 100

∞∑
k=0

r

2k
= 200r.

It follows that

l((x, 0), (y,−r2)) <
200r

2
√
r2

= 100. q.e.d.

Lemma 3.22 (Most shortest reduced geodesics avoid high
curvature part). For every group of numbers 0 < ξ < η < 1 < H,
there is a big constant C = C(n,A, η,H) and a small constant ε =
ε(n,A,H, η, ξ) with the following properties.

Suppose LM ∈ K (n,A; 1), x ∈ Fη(M, 0). Let Ωξ be the collection
of points z ∈ M such that there exists a shortest reduced geodesic β
connecting (x, 0) and (z,−1) satisfying

β ∩ Dξ(M, 0) 6= ∅.(3.81)

Then

|Bg(0)(x,H) ∩ Fη(M, 0) ∩ Ωξ| < Cξ2p0−1,(3.82)

whenever supM(|R|+ |λ|) < ε.

Proof. This is a flow property, we assume λ = 0 without loss of
generality.

From the argument in Lemma 3.21, it is not hard to obtain the fol-
lowing bound

l((x, 0), (z,−1)) < C, ∀ z ∈ Bg(0)(x,H) ∩ Fη(M, 0),(3.83)

where C = C(η,H). Suppose z ∈ Bg(0)(x,H) ∩ Fη(M, 0), β is a short-
est reduced geodesic connecting (x, 0) and (z,−1). Let β be the corre-
sponding space curve. Note that x and z, the two end points of β, locate
outside of Dξ(M, 0). Therefore, if z ∈ Ωξ, then (3.81) is satisfied. In
other words, the shortest reduced geodesic connecting (x, 0) and (z,−1)
cannot avoid the “high curvature” part Dξ(M, 0). By continuity, we
have

β ∩ ∂Fξ(M, 0) = β ∩ ∂Dξ(M, 0) 6= ∅.
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Let τa be the first time β escape from FK−1η, τb be the last time such
that β(τ) re-enter FK−1η, when we move along backward time direction.
Here K is the constant defined in Proposition 2.10. To be more precise,
we define

τa , sup
{
τ
∣∣β(s) ∈ FK−1η, ∀ s ∈ (0, τ)

}
,

τb , inf
{
τ
∣∣β(s) ∈ FK−1η, ∀ s ∈ (τ, 1)

}
.

By the choice of x and z, it is clear that 0 < τa < τb < 1. We can
further estimate τa and τb uniformly. Actually, since l is achieved by β
and is bounded by C, it follows from the definition of l (c.f. equation
(2.4) and (2.5)) that∫ 1

0

√
τ
(
R+ |β̇|2

)
g(−τ)

dτ < C.(3.84)

Note that β(τ) ∈ Fη(M, 0) whenever τ ∈ (0, τa) ∪ (τb, 1). In view of
Proposition 3.15, we have the metric equivalence

0.5g(x, 0) < g(x,−τ) < 2g(x, 0),

for all x ∈ FK−1η(M, 0) and τ ∈ (0, 1). Recalling that |R| is uniformly
small. Then (3.84) implies that∫ τa

0

√
τ |β̇|2g(0)dτ < C,

∫ 1

τb

√
τ |β̇|2g(0)dτ < C.

It follows from Proposition 2.10 and the above inequality that

η

C
< dg(0)(x, β(τa)) ≤

∫ τa

0
|β̇|g(0)dτ(3.85)

<

(∫ τa

0

√
τ |β̇|2g(0)dτ

) 1
2
(∫ τa

0

1√
τ
dτ

) 1
2

< Cτ
1
4
a ,

η

C
< dg(0)(β(τb), z) ≤

∫ 1

τb

|β̇|g(0)dτ(3.86)

<

(∫ 1

τb

√
τ |β̇|2g(0)dτ

) 1
2
(∫ 1

τb

1√
τ
dτ

) 1
2

< C
√

1−
√
τb,

where C = C(η,H,K). Consequently, we have

τa >
η4

C
, 1− τb = (1−

√
τb) (1 +

√
τb) ≥ 1−

√
τb ≥

η2

C
.

This means that [τa, τb] ⊂
[
η4

C , 1−
η2

C

]
. Define τ̄ as

τ̄ , max{τ |β(τ) ∈ Dξ(M, 0)}.(3.87)
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Clearly, we have β(τ̄) ∈ ∂Dξ(M, 0) = ∂Fξ(M, 0). Since ξ < K−1η, we
have τ̄ ∈ [τa, τb] for continuity reason. Consequently, we know

η4

C
< τ̄ < 1− η2

C
,(3.88)

for some C = C(η,H,K), whenever ξ < K−1η and |R| very small.
Beyond the estimate of τ̄ , there are more estimates around β(τ̄). In

light of the choice of τ̄ , we have β(τ) ∈ Fξ(M, 0) for each τ ∈ [τ̄ , 1].
By (3.83), we have uniform rough bound of the reduced distance from
(x, 0) to (z,−1). Noting that R may be negative and |R| is very small,
we have∫ 1

τ̄

√
τ
(
R+ |β̇|2

)
g(−τ)

dτ < 1 +

∫ 1

0

√
τ
(
R+ |β̇|2

)
g(−τ)

dτ < C(η,H).

Following the route of (3.85), noting that metrics g(0), g(−τ) and g(−1)
are all uniformly equivalent on β(τ) whenever τ ∈ [τ̄ , 1], we have

dg(0)(z, β(τ̄)) ≤
∫ 1

τ̄
|β̇|g(0)dτ ≤ 2

∫ 1

τ̄
|β̇|g(−1)dτ

< 2

(∫ 1

τ̄

√
τ |β̇|2g(−1)dτ

) 1
2
(∫ 1

τ̄

1√
τ
dτ

) 1
2

< C.

Note that dg(0)(z, x) < H. Triangle inequality then implies that

dg(0)(β(τ̄), x) < F,(3.89)

for some F independent of ξ when |R|+ |λ| small enough.

The purpose of this paragraph is to estimate β̇(τ̄). Recalling the
reduced geodesic equation (2.6):

∇V V +
V

2τ
+ 2Ric(V, ·) +

∇R
2

= 0,

where V = β̇. It follows that along the reduced geodesic β, we have

d

dτ
|β̇|2 = 2〈∇β̇β̇, β̇〉+ 2Ric(β̇, β̇) = −|β̇|

2

τ
− 2Ric(β̇, β̇)− 〈∇R, β̇〉,

d

dτ

{
τ |β̇|2

}
= −τ

{
2Ric(β̇, β̇) + 〈∇R, β̇〉

}
.

Note that β(τ) ∈ Fξ(M, 0) for each τ ∈ [τ̄ , 1]. By Proposition 3.12, we
can assume β(τ) ∈ FK−1ξ(M,−τ). It follows that |Ric| and |∇R| are
uniformly small whenever |R| globally very small. Therefore, the above
equation implies∣∣∣∣ ddτ (τ |β̇|2 + 1

)∣∣∣∣ < θ
(
τ |β̇|2 + 1

)
, ∀ τ ∈ (τ̄ , 1),(3.90)
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for some small constant θ depending on ξ and supM |R|. Moreover,
θ → 0 if supM |R| → 0 and ξ is fixed. Integrating (3.90) and using
(3.88), we obtain

τ |β̇|2 + 1 > e−θ
(
τ̄ |β̇|2g(−τ̄) + 1

)
.

It follows that∫ 1

τ̄

√
τ |β̇|2g(−τ)dτ

=

∫ 1

τ̄

1√
τ
τ |β̇|2g(−τ)dτ ≥

∫ 1

τ̄

{
e−θ

(
τ̄ |β̇|2g(−τ̄) + 1

)
− 1
}
dτ

= e−θ|β̇|2g(−τ̄)τ̄(1− τ̄) + (e−θ − 1)(1− τ̄).

In view of (3.84) and the fact that |R| is very small, we know the left
hand side of the above inequality is bounded above by C = C(η,H).

Since θ is very small, τ̄ ∈
[
η4

C , 1−
η2

C

]
by (3.88), the above inequality

yields that ∣∣∣β̇(τ̄)
∣∣∣
g(−τ̄)

< C,(3.91)

where C = C(η,H,K) is independent of ξ. Note that β(τ) = (β(τ),−τ),

the space-time tangent vector of β is (β̇,−1). Intuitively, (3.91) can be
understood that the “angle” between the space-time tangent and the
space tangent form a positive “angle” which is uniformly bounded be-
low.

Note that the reduced volume element (4πτ )−ne−ldv is decreasing
along β. Up to a perturbation, ∂Fξ(M, 0) can be regarded as a smooth
hypersurface in M satisfying∣∣∂Fξ(M, 0) ∩Bg(0)(x, F )

∣∣
H2n−1 ≤ Cξ2p0−1,(3.92)

for some C = C(n,A, F ), F = F (η,H) is the constant in (3.89). Con-
sequently, ∂Fξ(M, 0)× [−1, 0] can be regarded as a hypersurface in the
space-time. Recall that Ωξ is the collection of points z ∈ M such that
there exists a shortest reduced geodesic β connecting (x, 0) and (z,−1)
satisfying (3.81). By reduced geodesic theory (c.f. Section 7 of [49] and
the corresponding sections in [41] for more details), the following results
are known.

(a). For every z ∈M , (z,−1) can be connected to (x, 0) by a shortest
reduced geodesic.

(b). For every z ∈M\E, (z,−1) can be connected to (x, 0) by a unique
shortest reduced geodesic, where E is a measure-zero set and is
called the L-cut-locus.
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Therefore, we can define a projection map ϕ as follows.

ϕ : Bg(0)(x,H) ∩ Fη(M, 0) ∩ {Ωξ\E} 7→ ∂Fξ(M, 0)× [−1, 0],

z 7→ β(τ̄).(3.93)

For simplicity, let Ω = Bg(0)(x,H) ∩ Fη(M, 0) ∩ {Ωξ\E}. The reduced
distance bound (3.83) and the entering-time bound (3.88) implies that
the reduced volume element (4πτ)−ne−ldv along β is uniformly equiv-
alent to dv, whenever τ ∈ [τ̄ , 1]. Since (4πτ)−ne−ldv is monotone along
β, we can regard dv as almost monotone, up to multiplying a uniform
constant C. Therefore, we have

|Ω|H2n =

∫
Ω

1dv ≤ C
∫

Ω
e−l(z)dvz ≤

∫
ϕ(Ω)

τ̄−ne−l(y)dvy ≤ C
∫
ϕ(Ω)

dvy,

where y = ϕ(x). Note that inequality (3.91) can be regarded as an

“angle” bound, since β̇ = (β̇,−1). The uniform bound of |β̇| guarantees
that dvy ≤ C|dσy ∧ dt| where dσy is the “area” element of ∂Fξ. Then
we have

|Ω|H2n ≤ C
∫
ϕ(Ω)
|dσy ∧ dt| ≤ C

∫
{∂Fξ(M,0)∩Bg(0)(x,F )}×[−1,0]

|dσy ∧ dt|

= C
∣∣{∂Fξ(M, 0) ∩Bg(0)(x, F )

}
× [−1, 0]

∣∣
H2n

≤ C
∣∣∂Fξ(M, 0) ∩Bg(0)(x, F )

∣∣
H2n−1 ,

where we used the almost product structure of ∂Fξ × [−1, 0] in the last
step. Note that C = C(η,H,K) = C(n,A, η,H) since K is determined
by n,A (c.f. Proposition 2.10). Recall that

Ω = Bg(0)(x,H) ∩ Fη(M, 0) ∩ {Ωξ\E} .

Plugging (3.92) into the above inequality, we obtain (3.82). q.e.d.

Note that in Lemma 3.22, for every point

z ∈
{
Bg(0)(x,H) ∩ Fη(M, 0)

}
\{Ωξ ∪ E},

there is a unique shortest reduced geodesic connecting (z,−1) to (x, 0)
and avoiding Dξ(M, 0). If z ∈

{
Bg(0)(x,H) ∩ Fη(M, 0) ∩ E

}
\Ωξ, then

every shortest reduced geodesic connecting (z,−1) to (x, 0) must avoid
Dξ(M, 0). However, we may not have uniqueness.

Now we pass Lemma 3.22 to limit and have the following property.

Lemma 3.23 (Rough weak convexity by reduced geodesics).
Suppose LMi ∈ K (n,A; 1) satisfies

lim
i→∞

(
1

Ti
+

1

Vol(Mi)
+ sup
Mi

(|R|+ |λ|)
)

= 0.(3.94)

Suppose xi ∈ Mi. Let (M̄, x̄, ḡ) be the limit space of (Mi, xi, gi(0)), R
be the regular part of M̄ and x̄ ∈ R. Suppose t̄ < 0 is a fixed number.
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Then every (z̄, t̄) can be connected to (x̄, 0) by a smooth reduced geodesic,
whenever z̄ is away from a closed measure-zero set.

Proof. Without loss of generality, let t̄ = −1 and λ = 0. We use ḡ(0)
as the default metric on the limit space.

Since x̄ ∈ R, it locates in Rη0 for some η0 ∈ (0, 1), where we used
the notation defined in equation (2.21). Fix η ∈ (0, η0). Let Eη,ξ be the
closure of the limit set of Bgi(0)

(
xi, η

−1
)
∩ Fη(Mi, 0) ∩ Ωξ(Mi), which

we denote by E′η,ξ(Mi) for simplicity. Suppose z̄ ∈ Eη,ξ is the limit of

some sequence zi ∈ E′η,ξ(Mi). Then it is easy to see that

z̄ ∈ B(x̄, η−1) ∩Rη(M̄).

For each i, there is a shortest reduced geodesic βi connecting (xi, 0)
to (zi,−1) and passing through Dξ(Mi, 0). Let β be the limit of βi.
Note that β may pass through singularity. The largest τ such that β(τ)
comes out of Sξ (c.f. equation (2.22) for notations) is denoted by τ̄ (c.f.

equation (3.87)). By (3.88), i.e., η
4

C < τ̄ < 1− η2

C , we know τ̄ is uniformly
bounded away from 0 and 1. Moreover, d(x̄, β(τ̄)) is uniformly bounded

by some constant F (c.f. inequality (3.89)), the value |β̇(τ̄)| is uniformly
bounded by inequality (3.91). By taking limit on M̄ , we see that for
every point z̄ (no matter whether it is a limit of points in E′η,ξ(Mi)),

we can find a shortest reduced geodesic β connecting (x̄, 0) and (z̄,−1),
with τ̄ satisfying (3.88) and β(τ̄) locating in B(x̄, F ) for some uniform

constant F , and |β̇(τ̄)| uniformly bounded by C. Note that both C and
F are independent of ξ.

As a closure, Eη,ξ is clearly a closed set. Note that

Eη,ξ ⊂ B(x̄, η−1) ∩Rη ⊂ B(x̄, 2η−1) ∩
◦
R0.5η,

which is an open smooth manifold. Therefore, Eη,ξ is measurable.
Suppose z̄a, z̄b are two points in Ēη,ξ. Tracing their origin and use

the shortest property, it is clear that βa and βb have no intersection
except (x̄, 0), where βa is a shortest reduced geodesic connecting (x̄, 0) to
(z̄a,−1), βb is a shortest reduced geodesic connecting (x̄, 0) to (z̄b,−1).
Similar to (3.93) in the proof of Lemma 3.22, we now define a multi-
valued projection map ϕ̃ from Eη,ξ to ∂Rξ as follows:

ϕ̃ : Eη,ξ 7→ ∂Rξ × [−1, 0],

z 7→ {β(z), β is a shortest reduced geodesic connecting

(z,−1) to (x̄, 0) with β ∩ Sξ 6= ∅}.

Following the argument at the end of the proof of Lemma 3.22, we have

|Eη,ξ|H2n =

∫
Eη,ξ

1dv ≤ C
∫
Eη,ξ

e−l(z)dvz ≤
∫
ϕ̃(Eη,ξ)

τ̄−ne−l(y)dvy,
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where (y,−τ̄) = β(τ̄) for some β connecting (x̄, 0) to (z,−1) satisfying
β∩Sξ 6= ∅. Note that the last inequality holds even if ϕ̃ is multi-valued.
Starting from the above step, the remainder argument exactly follows
from the proof of (3.82). Consequently, we have

|Eη,ξ| ≤ Cξ2p0−1,(3.95)

for some C independent of ξ. Note that Eη1,ξ1 ⊂ Eη2,ξ2 whenever

0 < ξ1 < ξ2, 0 < η2 ≤ η1.

Then we define

Eη ,
⋂

ξ∈(0,η)

Eη,ξ.(3.96)

In light of (3.95), we see that Eη is a closed subset of B(x̄, η−1) ∩Rη(M̄)
with measure zero. Suppose

z̄ ∈
{
B(x̄, η−1) ∩Rη(M̄)

}
\Eη =

⋃
ξ∈(0,η)

{{
B(x̄, η−1) ∩Rη(M̄)

}
\Eη,ξ

}
,

then z̄ ∈ B(x̄, η−1) ∩ Rη(M̄)\Eη,ξ for some ξ ∈ (0, η). By the smooth
flow convergence on Fξ(Mi, 0) × [−1, 0] (c.f. Proposition 3.15) and the
definition of Eη,ξ, we obtain that (z̄,−1) can be connected to (x̄, 0) by
some shortest smooth reduced geodesic contained in Rξ(M̄) × [−1, 0].
Moreover, every smooth shortest reduced geodesic connecting (x̄, 0) and
(z̄,−1) are uniformly ξ-regular. To be more precise, every point z̄ ∈{
B(x̄, η−1) ∩Rη(M̄)

}
\Eη satisfies the following property:

(z̄,−1) can be connected to (x̄, 0) by a shortest smooth reduced geo-
desic β. In other words, for every other smooth reduced geodesic γ with
the same ends, we have L(γ) ≥ L(β).

Now we define

E ,
⋃

k∈{1,2,··· }

E2−kη0
\
{
B(x̄, 2k−2η−1

0 ) ∩
◦
R2−k+2η0

}
.(3.97)

The η0 above is some fixed positive number. According to this definition,
every regular point locates in finitely many closed sets

E2−kη0
\
{
B(x̄, 2k−2η−1

0 ) ∩
◦
R2k−2η0

}
.

The reason we choose to define E in the way of (3.97) is to obtain
the closedness of E ∪ S. Note that if we simply define E to be the
union of all E2−kη0

, then E ∪ S may not be closed set. It is possible to
obtain points in E2−kη0

converging to a regular point. However, from
the discussion in the above paragraph, it is clear that for every regular
point, one can find a small closed ball regular neighborhood B̄ where
every point (with time t = −1) can be connected to (x̄, 0) away from a
closed set EB̄ = Eη ∩ B̄, where η depends on B̄. Taking a countable,



SPACE OF RICCI FLOWS (II)—PART B 65

locally finite cover of R by such B̄’s and let E′ be the union of such EB̄.
Then E′ is measure zero and relatively closed in R. The choice of E in
(3.97) follows the same idea, with the covering of R being written down
explicitly.

It follows from (3.97) that E is the union of countably many measure-
zero sets. Consequently, E is measure-zero. Fix arbitrary z̄ ∈ R\E.
Because z̄ ∈ R, we see that z̄ ∈ B(x̄, η−1) ∩ Rη(M̄) for some η > 0.
Accordingly, we can find k0 very large such that

z̄ ∈ B(x̄, 2k0η−1
0 ) ∩R2−k0η0

(M̄).

Now using z̄ /∈ E and the decomposition of E in (3.96), we have

z̄ /∈ E2−k0η0
\
{
B(x̄, 2k0−2η−1

0 ) ∩
◦
R2−k0+2η0

}
⇔ z̄ ∈

{
B(x̄, 2k0−2η−1

0 ) ∩
◦
R2−k0+2η0

}
\E2−k0η0

,

⇒ z̄ ∈
{
B(x̄, 2k0η−1

0 ) ∩R2−k0η0

}
\E2−k0η0

.

Then it follows from our discussion in the previous paragraph that
(z̄,−1) can be connected to (x̄, 0) by a shortest smooth reduced ge-
odesic in R(M̄)× [−1, 0].

It is not hard to see that E ∪ S is a closed set, which will be proved
in this paragraph. Suppose zi is a sequence of points in E. Without
loss of generality, we can assume

zi ∈ E2−kη0
\
{
B(x̄, 2k−2η−1

0 ) ∩R2k−2η0

}
,

where k = k(i). Let z be a limit point of zi. There are two possibilities
(by taking subsequence if necessary):

• z ∈ S.
• z ∈ R. Then z ∈ R2η ∩ B(x̄, 0.5η−1) for some η > 0. Therefore,

we can assume zi ∈ Rη ∩ B(x̄, η−1) for large i. This forces that
k(i) is uniformly bounded. By taking subsequence if necessary,

we can assume that zi ∈ E2−kη0
\
{
B(x̄, 2k−2η−1

0 ) ∩
◦
R2k−2η0

}
for

a fixed k. By closedness of each Eη, we see that

z ∈ E2−kη0
\
{
B(x̄, 2k−2η−1

0 ) ∩
◦
R2k−2η0

}
⊂ E.

Therefore, we conclude that z ∈ E ∪ S. Note that S is a closed set and
has measure (2n-Hausdorff measure) zero. Then we obtain E ∪ S is a
closed measure-zero set.

Clearly, away from the closed measure-zero set E ∪ S, every point
z̄ ∈ M̄ satisfies the following property: (z̄,−1) can be connected to
(x̄, 0) by a shortest smooth reduced geodesic. q.e.d.
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Remark 3.24. The development from Lemma 3.21 to Lemma 3.23
is parallel, or independent to the development from Proposition 3.17 to
Proposition 3.20. Our key observation is that the limit space has weakly
convex regular part, which essentially arises from the weak convexity of
R × [−1, 0] in terms of reduced geodesics. Actually, there exists an
independent proof of Proposition 3.20 in Appendix C of [28].

By natural projection to the time slice t = 0, we obtain the following
property.

Proposition 3.25 (Weak convexity by Riemannian geodesics).
Same conditions as in Lemma 3.23. Then away from a measure-zero
set, every point in R can be connected to x̄ with a unique smooth shortest
geodesic. Consequently, R is weakly convex.

Proof. Fix x̄ ∈ R and let E be the measure-zero set constructed
in the proof of Lemma 3.23. Therefore, (ȳ,−1) can be connected to
(x̄, 0) by a smooth shortest reduced geodesic β, with space projection
curve β, whenever ȳ ∈ R\E. For our purpose of weak convexity, it
suffices to show that each β is a smooth shortest geodesic connecting x̄
and ȳ. Actually, it follows from reduced geodesic equation on Ricci-flat

manifold (c.f. equations (2.8)) that L(β) =
1

2
|β|2, where |β| is the length

of β. Since both x̄ and ȳ are regular, for each small ε > 0, we can find
a smooth geodesic γ such that |γ| < d0(x̄, ȳ) + ε, by Proposition 3.20.
Because the limit space-time is static, we can lift γ to be a space-time

curve γ such that L(γ) = |γ|2
2 . Using the shortest property of β and

the construction of γ, we have

|β|2

2
= L(β) ≤ L(γ) =

|γ|2

2
<

(d0(x̄, ȳ) + ε)2

2
, ⇒ |β| < d0(x̄, ȳ) + ε.

Since ε can be chosen arbitrarily small, we have |β| ≤ d0(x̄, ȳ), which
means |β| = d0(x̄, ȳ) and β is a shortest Riemannian geodesic.

By adjusting E to a bigger measure zero set E′ if necessary, we obtain
the uniqueness of geodesics from ȳ to x̄ for each ȳ ∈ R\E′. This follows
from standard Riemannian geometry argument since E′\E ⊂ R. q.e.d.

By the correspondence between smooth Riemannian geodesic and
smooth reduced geodesic (c.f. the discussion in Section 2.7 of [29]), it
is clear (from the proof of Proposition 3.25) now that most smooth re-
duced geodesics obtained in Lemma 3.23 are shortest among all smooth
reduced geodesics. Furthermore, the rough estimate in Lemma 3.21 can
be improved as the following proposition.

Proposition 3.26 (Continuity of reduced distance). Same con-
ditions as in Lemma 3.23. Suppose (yi, ti) ∈ Mi converges to (ȳ, t̄),
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which is regular and t̄ < 0. Then we have

lim
i→∞

l((xi, 0), (yi, ti)) =
d2

0(x̄, ȳ)

4|t̄|
= l((x̄, 0), (ȳ, t̄)),(3.98)

where l is Perelman’s reduced distance. Therefore, reduced distance is
continuous function under Cheeger–Gromov topology whenever ȳ is reg-
ular.

Proof. Without loss of generality, we assume ti ≡ −1, d0(xi, yi) ≡ 1.
We first show

lim
i→∞

l((xi, 0), (yi, ti)) ≤
1

4
.(3.99)

If xi are uniformly regular, then there is a limit smooth geodesic con-
necting x̄ and ȳ, which can be lifted to a smooth reduced geodesic con-
necting (x̄, 0) and (ȳ,−1) with reduced length 1

4 . Then (3.99) follows
trivially. So we focus on the case when x̄ is a singular point. Choose a
smooth point z̄ very close to x̄, say δ-away from x̄ under metric ḡ(0).
From Lemma 3.21, the reduced length from (xi, 0) to (zi,−δ2) is uni-
formly less than 100. So we have space-time curves αi connecting these
two points such that ∫ δ2

0

√
τ |α̇i|2dτ < 200δ.

Note that (z̄,−δ2) and (ȳ,−1) can be connected by a space-time curve
β such that ∫ 1

δ2

√
τ |β̇|2dτ < 1

2
+ 100δ,

if δ is small enough. So for large i, we have space-time curve βi con-
necting (zi,−δ2) and (yi,−1) such that∫ 1

δ2

√
τ |β̇i|2dτ <

1

2
+ 200δ.

Concatenating αi and βi to obtain γi such that∫ 1

δ2

√
τ |γ̇i|2dτ <

1

2
+ 400δ,

which implies l((xi, 0), (yi,−1)) < 1
4 + 200δ for large i. Thus, (3.99)

follows by letting i→∞ and δ → 0.
Then we show the equality holds. Otherwise, there exists a small ε

such that

lim
i→∞

l((xi, 0), (yi,−1)) <
1

4
− ε.
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Note that (yi,−1) is uniformly regular. So we can find small δ such that

l((xi, 0), (z,−1− δ2)) <
1

4
− 1

2
ε, ∀ z ∈ Bg(−1−δ2)(yi, εδ).

By Lemma 3.23, we obtain a point (z̄,−1−δ2), which can be connected
to (x̄, 0) by a smooth reduced geodesic, with reduced length smaller
than 1

4 −
1
2ε. Projecting this reduced geodesic to time zero slice, we

obtain a curve connecting x̄ and z̄ with

d2
0(x̄, ȳ) < 4(1 + δ2) ·

(
1

4
− 1

2
ε

)
= (1 + δ2)(1− 2ε) < 1− ε,

if we choose δ sufficiently small. This is impossible since d0(x̄, ȳ) = 1.
Therefore, we have

lim
i→∞

l((xi, 0), (yi,−1)) =
1

4
. q.e.d.

Since singular set has measure zero, it is clear that

V((x̄, 0), |t̄|) ≤ lim
i→∞
V((xi, 0), |t̄|),(3.100)

where the “lim” of the right hand side of the above inequality should
be understood as “lim sup”. We shall improve the above inequality as
equality.

Lemma 3.27 (Major part of reduced volume). For every posi-
tive η and H, there exists an ε = ε(n,A, η,H) with the following prop-
erties.

Suppose LM ∈ K (n,A), x ∈ Fη(M, 0). Then we have∣∣∣∣∣V((x, 0), 1)− (4π)−n
∫
Bg(0)(x,H)

e−ldv

∣∣∣∣∣ ≤ 2a(H),(3.101)

whenever supM(|R|+ |λ|) < ε. Here a is a positive function defined as

a(H) , (4π)−n
∫
{|~w|> H

100
}⊂R2n

e−
|~w|2

4 dw.(3.102)

Proof. The line bundle structure is not used in the following proof.
So up to a parabolic rescaling if necessary, we can assume λ = 0.

For every y ∈ M , there is at least one shortest reduced geodesic
γ connecting (x, 0) and (y,−1). By standard ODE theory, the limit
lim
τ→0

√
τγ′(τ) is unique as a vector in TxM , which is called the reduced

tangent vector of γ. Away from a measure-zero set, every (y,−1) can be
connected to (x, 0) by a unique shortest reduced geodesic. For simplicity
for our argument, we may assume this measure-zero set is empty, since
measure-zero set does not affect integral at all. So there is a natural
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injective map from M to TxM , by mapping y to the corresponding
reduced tangent vector ~w. We define

Ω(H) , {y ∈M ||~w| > H}.

It follows from the monotonicity of reduced element along reduced ge-
odesic that∫

Ω(H)
(4π)−ne−ldv ≤

∫
{|~w|>H}⊂R2n

(4π)−ne−
|~w|2

4 dw.

Choose ξ < η, with size to be determined. Suppose γ is a reduced
geodesic connecting (x, 0) to (y,−1) for some y ∈ M . It is clear that
γ(0) is in the interior part of Fξ(M, 0). Let τ to be the first time such
that γ(τ) touches the boundary of Fξ(M, 0). Then we see that γ([0, τ ])
locates in a space-time domain with uniformly bounded geometry, Ricci
curvature very small. In particular, the reduced distance between (x, 0)
and γ(τ) is comparable to the length of ~w, which is the reduced tangent
vector of γ at (x, 0). If |~w| < H, then we see that

H2

4
>
|~w|2

4
∼
d2
g(0)(x, γ(τ))

4τ
>
c2
aη

2

100τ
, ⇒ τ >

c2
aη

2

25H2
.

Note that γ([0, τ ]) is in a space-time region where Ricci curvature is
almost flat, geometry is uniformly bounded. So the lower bound of τ
and the upper bounded of |~w| imply an upper bound of dg(0)(x, γ(τ)).
Say dg(0)(x, γ(τ)) < H ′.

Around γ, there is a natural projection (induced by reduced geodesic)

from the space-time hypersurface ∂Fξ(M, 0)× [−1,− c2aη
2

25H2 ], to the time
slice M×{−1}. At point γ(τ), γ has space-time tangent vector (γ ′,−1),

with τ |γ′(τ)|2 is almost less than H2

4 . Together with the lower bound
of τ , we obtain an upper bound of |γ′(τ)|. Up to a constant depending

on H, η, the volume element of ∂Fξ(M, 0) × [−1,− c2aη
2

25H2 ] is compara-

ble to the reduced volume element (4πτ)−ne−l of M , around the point
γ(τ). Note that the reduced volume element is monotone along each re-
duced geodesic. This implies that the projection map mentioned above
“almost” decreases weighted hypersurface volume element, if we equip

{B(x,H ′)∩ ∂Fξ(M, 0)}× [−1,− η2

4H2 ] with the natural weighted volume

element e−l|dσ∧dt|. Let Ω′ξ be the collection of all y’s such that (y,−1)

cannot be connected to (x, 0) by a shortest reduced geodesic γ which
locates completely in Fξ(M, 0)× [−1, 0]. Then we have∫

Ω′ξ

e−l(4πτ)−ndv ≤ C
∫ 1

c2aη
2

25H2

∫
B(x,H′)∩∂Fξ(M,0)

e−ldσdτ

≤ C
∫
B(x,H′)∩∂Fξ(M,0)

dσ ≤ Cξ2p0−1,
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where C = C(n,H,H ′, η) = C(n,H, η). By choosing ξ small enough,
we have ∫

Ω′ξ

e−l(4πτ)−ndv ≤ (4π)na(H).(3.103)

Note that

Ω100H ∩Bg(0)(x,H) ⊂ Ω′ξ, M\(Ω′ξ ∪Bg(0)(x,H)) ⊂ Ω H
100
.

Therefore, recalling the definition of reduced volume (2.7), we have

(4π)nV((x, 0), 1) =

∫
M
e−ldv

=

∫
M\(Ω′ξ∪Bg(0)(x,H))

e−ldv +

∫
Ω′ξ

e−ldv +

∫
Bg(0)(x,H)\Ω′ξ

e−ldv

≤
∫
|~w|> H

100

e−
|~w|2

4 dw +

∫
Ω′ξ

e−ldv +

∫
Bg(0)(x,H)

e−ldv

≤
∫
|~w|> H

100

e−
|~w|2

4 dw + Cξ2p0−1 +

∫
Bg(0)(x,H)

e−ldv

≤ 2(4π)na(H) +

∫
Bg(0)(x,H)

e−ldv.

Then (3.101) follows from the above inequality directly. q.e.d.

Lemma 3.27 is related to Corollary 6.82 of [45].

Lemma 3.28 (Uniform continuity of reduced volume). Suppose
M = {(M, g(t)),−τ ≤ t ≤ 0} is an unnormalized Kähler Ricci flow
solution. Suppose x, y are two points in M , d = dg(0)(x, y). Then we
have

|V((x, 0), τ)− V((y, 0), τ)| < (4n+ 1)(e
d
2 − 1).(3.104)

In particular, the reduced volume changes uniformly continuously with
respect to the base point.

Proof. Recall the definition of reduced volume (2.7):

V((x, 0), τ) = (4πτ)−n
∫
M
e−ldv.

Let x move along a unit speed Riemannian geodesic α, with respect to
the metric g(0). Let x = α(0), s be parameter of α, ~u = α′. For sim-
plicity of notation, we denote V((α(s), 0), τ) by Vs. It can be calculated
directly the first variation of l is 〈~u, ~w〉 where ~w is the tangent vector of
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the reduced geodesic at time t = 0. Therefore, we have∣∣∣∣ ddsV((α(s), 0), τ)

∣∣∣∣
=

∣∣∣∣(4πτ)−n
∫
M
〈~u, ~w〉e−ldv

∣∣∣∣ ≤ (4πτ)−n
∫
M

1 + |~w|2

2
e−ldv

=
1

2
V +

1

2

∫
R2n

|~w|2e−
|~w|2

4 Jdw ≤ 1

2
V +

(4π)−n

2

∫
R2n

|~w|2e−
|~w|2

4 dw,

where J is the Jacobian determinant of the reduced exponential map,
which is always not greater than 1, due to Perelman’s argument in
Section 7 of [49]. Plugging the identity

(4π)−n
∫
R2n

|~w|2e−
|~w|2

4 dw = 4n,

into the above inequality implies
∣∣ d
dsV
∣∣ ≤ 1

2V + 2n, which can be inte-
grated as

(−V0 + 4n)(1− e−
s
2 ) ≤ Vs − V0 ≤ (V0 + 4n)(e

s
2 − 1).

Note that 0 < V0 ≤ 1, s > 0. So we obtain

|Vs − V0| ≤ (4n+ 1)(e
s
2 − 1),

which yields (3.104) by letting s = d. q.e.d.

The above argument clearly works for every Riemannian Ricci flow.
Note that the reduced volume is continuous for geodesic balls of each

fixed scale under the Cheeger–Gromov convergence. Combining this
continuity together with the estimate in Lemma 3.27 and Lemma 3.28,
we can improve (3.100) as an equality.

Proposition 3.29 (Continuity of reduced volume). Same con-
ditions as in Lemma 3.23, t̄ < 0 is a finite number. Then we have

V((x̄, 0), |t̄|) = lim
i→∞
V((xi, 0), |t̄|).(3.105)

Then we can study the gap property of the singularities.

Proposition 3.30 (Gap of local volume density). Same condi-
tions as in Theorem 3.18.

Suppose ȳ ∈ S(M̄), then we have

v(ȳ) = lim
r→0

ω−1
2n r

−2n|B(ȳ, r)| ≤ 1− 2δ0.(3.106)

Proof. Due to the tangent cone structure (c.f. Theorem 2.6), we have

v(ȳ) = lim
r→0

ω−1
2n r

−2n|B(ȳ, r)| = lim
r→0
V((ȳ, 0), r2).(3.107)

Let yi → ȳ under the metric gi(0). By rearranging points and taking
subsequences if necessary, we can assume yi has the “local minimum”
canonical volume radius ρi.



72 X. CHEN & B. WANG

The rearrangement is a standard point-picking technique. In fact,
since ȳ is a singular point, it is clear that ri = cvr(yi, 0) → 0. Since
everything is done at time slice t = 0, we shall drop the time in the
following argument. Fix L ≥ 1 and i, we search if yi is the point such
that

cvr(y) < 0.5cvr(yi), ∀ y ∈ B(yi, Lri).

If so, we stop. Otherwise, we can find a point z ∈ B(yi, Lri) such that

cvr(z) < 0.5cvr(yi). Denote such z by y
(1)
i and set r

(1)
i = cvr

(
y

(1)
i

)
.

We then repeat the previous process for y
(1)
i and r

(1)
i . To search points

in the ball B
(
y

(1)
i , Lr

(1)
i

)
with cvr < 0.5r

(1)
i . If no such points exist,

we stop. Otherwise, we find such a point and denote it by y
(2)
i and set

r
(2)
i = cvr

(
y

(2)
i

)
. Note this process happens in a compact set since

d
(
y

(k)
i , yi

)
< L

(
ri + r

(1)
i + · · ·+ r

(k)
i

)
< 2Lri.

Each LMi is smooth. Therefore, the process above must stop at some

finite step k. Denote zi = y
(k)
i and ρi = cvr(zi). Then we have

cvr(y) > 0.5ρi, ∀ y ∈ B(zi, Lρi).

Note that Lρi → 0 as i→∞. Therefore, the limit of zi and the limit of
yi are the same point ȳ. Then we let L = Lk → ∞ and take diagonal
sequence if necessary, we can guarantee that Liρi → 0 and ρi → 0
simultaneously. Thus, we obtain zi such that

cvr(y) > 0.5ρi, ∀ y ∈ B(zi, Liρi); lim
i→∞

zi = ȳ.

Therefore, we can regard zi as the rearrangement of yi, with the property
that each zi achieve the “local minimum” of cvr.

By rescaling ρi to 1, we obtain new Ricci flows g̃i. Taking limit of
(Mi, yi, g̃i(0)), we have a complete, Ricci flat eternal Ricci flow solution.
It is not hard to see the limit space is not Euclidean. For otherwise,
each geodesic ball’s volume ratio, under metric g̃∞(0), is exactly the
Euclidean volume ratio ω2n. Following from the volume convergence
and the definition of the canonical volume radius, it is clear that the
canonical volume radius of the rescaled flow is strictly greater than 1
which contradicts to our assumption. So it has normalized asymptotic
volume ratio less than 1 − 2δ0, according to Anderson’s gap theorem.
Then the infinity tangent cone structure implies the asymptotic reduced
volume is the same as the asymptotic reduced volume ratio. So it is at
most 1− 2δ0. Therefore, there exists a big constant H such that

Vg̃i((yi, 0), H) < 1− 2δ0.
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Note that Hρ2
i < r for each fixed r and the corresponding large i.

Recall the scaling invariant property of reduced volume, we can apply
the reduced volume monotonicity to obtain

Vgi((yi, 0), r2) ≤ Vg̃i((yi, 0), ρ−2
i r2) ≤ Vg̃i((yi, 0), H) < 1− 2δ0.

The continuity of reduced volume (Proposition 3.29) then implies that

V((ȳ, 0), r2) ≤ 1− 2δ0,

for each r > 0, which in turn yields

lim
r→0
V((ȳ, 0), r2) ≤ 1− 2δ0.(3.108)

Then (3.106) follows from the combination of (3.107) and (3.108). q.e.d.

Theorem 3.31 (Metric structure of a blowup limit). Suppose
LMi ∈ K (n,A; 1) satisfies (3.94), xi ∈ Mi. Let (M̄, x̄, ḡ) be the limit

space of (Mi, xi, gi(0)). Then M̄ ∈ K̃ S (n, κ).

Proof. We only need to check M̄ satisfies all the 6 properties required

in the definition of K̃ S (n, κ), i.e., Definition 2.1. In fact, the 1st prop-
erty follows directly from definition. The 2nd property follows from the
fact that R is scalar flat and satisfies Kähler Ricci flow equation, by
Proposition 3.15. The 3rd property, weak convexity of R is shown in
Proposition 3.25. The 4th property, codimension estimate of singularity
follows from Proposition 3.19. The 5th property, gap estimate, follows
from Proposition 3.30. The 6th property, asymptotic volume ratio es-
timate can be obtained by the condition V ol(Mi) → ∞, Sobolev con-
stant uniformly bounded, and the volume convergence, Proposition 2.14.
Note that κ = κ(n,CS) is in general much smaller than ω2n. More de-
tails can be found in Remark 3.32. So we have checked all the prop-

erties needed to define K̃ S (n, κ) are satisfied by M̄ . In other words,

M̄ ∈ K̃ S (n, κ). q.e.d.

Remark 3.32. It is known in the literature of the Ricci flow that
a noncollapsing constant κ can be determined by dimension and the
L2-Sobolev constant CS of a closed manifold (M2n, g), whenever scalar
curvature is uniformly bounded. Actually, it follows from the observa-
tion of Klaus Ecker (c.f. Lemma 8 of Cao–Sesum [4]) that µ(g, τ) is
uniformly bounded from below for each τ ∈ (0, 1

supM |R|
), where µ(g, τ)

is the functional of Perelman. Then the κ-noncollapsing of each geo-
desic ball B(y, r) follows from the argument of Perelman (c.f. Remark
13.13 of Kleiner–Lott [41]), whenever |R|r2 ≤ 1. Note that |R| → 0 by
(3.94), we obtain uniform κ-noncollapsing for each fixed r on (Mi, gi(0)),
whenever i large enough. In other words, for each r > 0, with respect
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to the metric gi(0), we have

inf
y∈Mi

|B(y, r)|
ω2nr2n

≥ κ,

for large i.

Since M̄ ∈ K̃ S (n, κ), it is clear that cr(x̄) =∞. Therefore, we have
vr(x̄) = cvr(x̄) by definition.

Proposition 3.33. Same conditions as in Theorem 3.31. Let r̄ =
lim
i→∞

cr(xi). Then we have

min{r̄,vr(x̄)} = lim
i→∞

cvr(xi).(3.109)

Proof. We divide the proof in three cases according to the value of
min{r̄,vr(x̄)}.

Case 1. min{r̄,vr(x̄)} = 0.
Otherwise, there exists a positive number ρ0 such that

lim
i→∞

cvr(xi) ≥ ρ0.

Therefore, x̄ ∈ Rρ0 ⊂ R, which in turn implies that vr(x̄) > 0. Conse-
quently, we have min{r̄,vr(x̄)} > 0. Contradiction.

Case 2. min{r̄,vr(x̄)} =∞.

In this case, vr(x̄) =∞. By the gap theorem in the space K̃ S (n, κ),
we see that M̄ is the Euclidean space Cn. Therefore, for each H > 0, we
have ω−1

2nH
−2n|B(xi, H)| converges to 1, the normalized volume ratio of

Cn. Since r̄ = lim
i→∞

cr(xi) = ∞, this means that cvr(xi) ≥ H for large

i by the volume convergence. Since H is chosen arbitrarily, we obtain
lim
i→∞

cvr(xi) =∞.

So the remainder case is that min{r̄,vr(x̄)} is a finite positive num-
ber. Two more subcases can be divided.

Case 3(a). min{r̄,vr(x̄)} < r̄.
Let H = vr(x̄), a finite number in this case. Clearly, x̄ is a regular

point and the normalized volume ratio of the ball B(x̄, H) is 1 − δ0.
Clearly, B(x̄, H) cannot be a isometric to an Euclidean ball. Therefore,

by the rigidity of K̃ S (n, κ) (c.f. Proposition 2.3), we see that

ω−1
2n r

−2n|B(x̄, r)| > 1− δ0, ∀ r ∈ (0, H),

ω−1
2n r

−2n|B(x̄, r)| < 1− δ0, ∀ r ∈ (H, r̄).

Then the volume convergence implies that lim
i→∞

cvr(xi) = H.

Case 3(b). min{r̄,vr(x̄)} = r̄.
In this case, we see that the normalized volume ratio of B(x̄, r̄) is at

least 1 − δ0. Also, we see that x̄ is a regular point. Same argument as
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in the previous case, we see that

ω−1
2n r

−2n|B(x̄, r)| > 1− δ0, ∀ r ∈ (0, r̄).

Therefore, for every fixed r ∈ (0, r̄), the volume convergence implies
that lim

i→∞
cvr(xi) ≥ r. Consequently, we have lim

i→∞
cvr(xi) ≥ r̄ by the

arbitrariness of r. On the other hand, the definition of cvr(xi) implies
that

lim
i→∞

cvr(xi) ≤ lim
i→∞

cr(xi) = r̄.

Therefore, we obtain lim
i→∞

cvr(xi) = r̄. q.e.d.

Corollary 3.34. Same conditions as in Theorem 3.31. Then for
each r ∈ (0, 1), we have

Fr(M̄) = Rr(M̄).(3.110)

In particular, for each 0 < r < 1 < H <∞, we have

B(xi, H) ∩ Fr(Mi)
G.H.
−−−→ B(x̄, H) ∩ Fr(M̄).

Moreover, this convergence can be improved to take place in C∞-topology,
i.e.,

B(xi, H) ∩ Fr(Mi)
C∞

−−→ B(x̄, H) ∩ Fr(M̄).(3.111)

Corollary 3.35. Same conditions as in Theorem 3.31, 0 < H ≤ 3.
Then we have

lim
i→∞

∫
B(xi,H)

vr(1)(y)−2p0dy ≤ H2n−2p0E.(3.112)

Proof. Fix two positive scales r1, r2 such that 0 < r2 < r1 < 1.∫
B(xi,H)∩Fr1

vr(1)(y)−2p0dy(3.113)

≤ r−2p0
1 |B(xi, H) ∩ Fr1 | ≤ r

−2p0
1 |B(xi, H)|.

Fix arbitrary r ∈ (0, 1), then we have

lim
i→∞

∫
B(xi,H)∩(Fr2\Fr1 )

vr(1)(y)−2p0dy

=

∫
B(x̄,H)∩(Fr2∩Fr1 )

vr(1)(y)−2p0dy.
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Note that ∫
B(x̄,H)∩(Fr2∩Fr1 )

vr(1)(y)−2p0dy

≤
∫
B(x̄,H)∩(Fr2∩Fr1 )

min{vr, 1}−2p0dy

<

∫
B(x̄,H)∩(Fr2∩Fr1 )

{
1 + vr(y)−2p0

}
dy

<

∫
B(x̄,H)

{
1 + vr(y)−2p0

}
dy

< |B(x̄, H)|+H2n−2p0E(n, κ, p0).

It follows that

lim
i→∞

∫
B(xi,H)∩(Fr2\Fr1 )

vr(1)(y)−2p0dy(3.114)

≤ |B(x̄, H)|+H2n−2p0E(n, κ, p0).

Note that S ∩ B(x̄, H) is a compact set with Hausdorff dimension at
most 2n − 4, which is strictly less than 2n − 2p0. By the definition
of Hausdorff dimension, for every small number ξ, we can find finite

cover ∪Nξj=1B(ȳj , ρj) of S ∩ B(x̄, H), such that

Nξ∑
j=1

|ρj |2n−2p0 < ξ. By

the finiteness of this cover, we can choose an r2 very small such that

∪Nξj=1B(ȳj , ρj) is a cover of Dr2 ∩ B(x̄, H). Therefore, for large i, we

have a finite cover ∪Nξj=1B(yi,j , ρj) of the set Dr2(Mi) ∩ B(xi, H) such

that

Ni∑
j=1

|ρi,j |2n−2p0 < ξ. Combining this with the canonical radius

density estimate, we have∫
B(xi,H)∩Dr2

vr(1)(y)−2p0dy ≤
Ni∑
j=1

∫
B(yi,j ,ρi,j)

vr(ρi,j)(y)−2p0dy(3.115)

≤ 2E

Ni∑
j=1

|ρi,j |2n−2p0 < 2Eξ.

Putting (3.113), (3.114) and (3.115) together, we have∫
B(xi,H)

vr(1)(y)−2p0dy

≤
∫
B(xi,H)∩Fr1

vr(1)(y)−2p0dy +

∫
B(xi,H)∩(Fr2\Fr1 )

vr(1)(y)−2p0dy
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+

∫
B(xi,H)∩Dr2

vr(1)(y)−2p0dy

≤ r−2p0
1 |B(xi, H)|+ |B(x̄, H)|+H2n−2p0E(n, κ, p0) + 2Eξ.

Taking limit on both sides and then letting ξ → 0, r1 → 1, we have

lim
i→∞

∫
B(xi,H)

vr(1)(y)−2p0 ≤ 2|B(x̄, H)|+H2n−2p0E(n, κ, p0)

≤
(
2ω2nH

2p0 + E(n, κ, p0)
)
H2n−2p0

≤ (2 · 9p0ω2n + E(n, κ, p0))H2n−2p0 ,

where we used the fact that H ≤ 3 in the last step. Then (3.112) follows
from the definition of E. q.e.d.

Proposition 3.36. Same conditions as in Theorem 3.31. Suppose
1 ≤ H <∞. Then we have

lim
i→∞

sup
1≤ρ≤H

ω−1
2n ρ

−2n|B(xi, ρ)| < κ−1,(3.116)

where gi(0) is the default metric. In other words, for every large i, the
volume ratio estimate holds on (Mi, xi, gi(0)) for every scale ρ ∈ (0, H].

Proof. We argue by contradiction. If (3.116) were false, by taking
subsequence if necessary, one can assume that there exists ρi ∈ [1, H]
such that ω−1

2n ρ
−2n
i |B(xi, ρi)| > κ−1. Recall that we are in the situation

that cr is bounded from below by 1. Let ρ̄ be the limit of ρi, then by
the volume continuity in the pointed-Ĉ4-Cheeger–Gromov convergence,
we see that

ω−1
2n ρ̄

−2n|B(x̄, ρ̄)| ≥ κ−1.(3.117)

However, since M̄ ∈ K̃ S (n, κ), we know ω−1
2n ρ̄

−2n|B(x̄, ρ̄)| ≤ 1, which
contradicts (3.117). q.e.d.

Proposition 3.37. Same conditions as in Theorem 3.31. Suppose
1 ≤ H < ∞. For every large i, the regularity estimate holds on
(Mi, xi, gi(0)) for every scale ρ ∈ (0, H].

Proof. If the statement were false, then by taking subsequence if nec-
essary, we can assume there exists ρi ∈ (0, H] such that the regularity
estimates fail on the scale ρi, i.e., the following two inequalities hold
simultaneously.

ω−1
2n ρ

−2n
i |B(xi, ρi)| > 1− δ0,(3.118)

max
0≤k≤5

{
ρ2+k
i sup

B(xi,
1
2
caρi)

|∇kRm|

}
> 4c−2

a .(3.119)
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Clearly, ρi ∈ [1, H] by the fact cr(xi, 0) ≥ 1. Let ρ̄ be the limit of ρi.
Then we have

ω−1
2n ρ̄

−2n|B(x̄, ρ̄)| ≥ 1− δ0.(3.120)

Since M̄ ∈ K̃ S (n, κ), (3.120) implies

max
0≤k≤5

{
ρ̄2+k sup

B(x̄,caρ̄)
|∇kRm|

}
< c−2

a ,

which contradicts (3.119) in light of the smooth convergence (c.f. Propo-
sition 3.15). q.e.d.

Proposition 3.38. Same conditions as in Theorem 3.31, 1 ≤ H ≤ 2.
Then we have

lim
i→∞

sup
1≤ρ≤H

ρ2p0−2n

∫
B(xi,ρ)

vr(ρ)(y)−2p0dy ≤ 3

2
E.(3.121)

In particular, the density estimate holds on (Mi, xi, gi(0)) for every scale
ρ ∈ (0, H] and each large i.

Proof. Since vr(ρ) ≥ vr(1) whenever ρ ≥ 1, in order to show (3.121),
it suffices to show

lim
i→∞

sup
1≤ρ≤H

ρ2p0−2n

∫
B(xi,ρ)

vr(1)(y)−2p0dy ≤ 3

2
E.(3.122)

We argue by contradiction. If (3.122) were false, by taking subsequence
if necessary, one can assume that there exists ρi ∈ [1, H] such that

ρ2p0−2n
i

∫
B(xi,ρi)

vr(1)(y)−2p0dy >
3

2
E,

⇒
∫
B(xi,ρi)

vr(1)(y)−2p0dy ≥ 3

2
Eρ2n−2p0

i .

Let ρ̄ be the limit of ρi. Fix ε arbitrary small positive number, then we
have ∫

B(xi,ρ̄+ε)
vr(1)(y)−2p0dy >

3

2
Eρ2n−2p0

i >
5

4
E(ρ̄+ ε)2n−2p0 ,(3.123)

for large i. Note that ρ̄+ ε < 3, so (3.123) contradicts (3.112). q.e.d.

Proposition 3.39. Same conditions as in Theorem 3.31. Suppose
1 ≤ H <∞. Then for every large i, the connectivity estimate holds on
(Mi, xi, gi(0)) for every scale ρ ∈ (0, H].

Proof. By the canonical radius assumption, we know the connectivity
estimate holds for every scale ρ ∈ (0, 1].

If the statement were false, then by taking subsequence if necessary,
we can assume that for each i, there is a scale ρi ∈ [1, H] such that the
connectivity estimate fails on the scale ρi. In other words, F 1

50
cbρi
∩



SPACE OF RICCI FLOWS (II)—PART B 79

B(xi, ρi) is not 1
2εbρi-regularly connected. So there exist points yi, zi ∈

F 1
50
cbρi
∩ B(xi, ρi) which cannot be connected by a curve γ ⊂ F 1

2
εbρi

satisfying |γ| ≤ 2d(yi, zi). By the canonical radius assumption, it is
clear that ρi ∈ [1, H], d(yi, zi) ∈ [1, 2H]. Let ρ̄ be the limit of ρi, ȳ and
z̄ be the limit of yi and zi, respectively. Clearly, we have ȳ, z̄ ∈ R 1

50
cbρ̄
⊂

F 1
100

cbρ̄
(M̄). Since M̄ ∈ K̃ S (n, κ), we can find a shortest geodesic γ̄

connecting ȳ and z̄ such that γ̄ ⊂ Fεbρ̄. Note that the limit set of
F 1

50
cbρi
∩ B(xi, ρi) falls into F 1

100
cbρ̄

. Moreover, this convergence takes

place in the smooth topology (c.f. Corollary 3.34). So by deforming γ̄
if necessary, we can construct a curve γi which locates in F 1

2
εbρi

and

|γi| < 3
2d(ȳ, z̄) < 3d(yi, zi). The existence of such a curve contradicts

the choice of the points yi and zi. q.e.d.

Combining Proposition 3.36 to 3.39, we obtain a weak-semi-continuity
of canonical radius.

Theorem 3.40 (Weak continuity of canonical radius). Same
conditions as in Theorem 3.31. Then we have lim

i→∞
cr(M0

i ) =∞.

Proof. If the statement were wrong, then we can find a sequence
of polarized Kähler Ricci flow solutions LMi ∈ K (n,A; 1) satisfying
(3.94) and

lim
i→∞

cr(M0
i ) = H <∞.(3.124)

Here cr(M0
i ) = cr(M, gi(0)). We remind the readers that cr is defined

in Definition 2.9, K (n,A; 1) is defined in Definition 3.14.
For each Mi, we can find a point xi such that

cr(xi, 0) = cr(xi, gi(0)) ≤ 3

2
cr(M0

i )

by definition. So we have

lim
i→∞

cr(xi, 0) ≤ 3

2
H <∞.(3.125)

In light of Proposition 3.36, Proposition 3.37, Proposition 3.38 and
Proposition 3.39, we see that there exists an N = N(H) such that for
every i > N , we have volume ratio estimate, regularity estimate, den-
sity estimate and connectivity estimate hold on each scale ρ ∈ (0, 2H].
Therefore, by definition, we obtain that lim

i→∞
cr(xi, 0) ≥ 2H, which con-

tradicts (3.125). q.e.d.

Corollary 3.41 (Weak continuity of canonical volume radius).
Same conditions as in Theorem 3.31. Then we have

vr(x̄) = lim
i→∞

cvr(xi).
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Proof. It follows from the combination of Proposition 3.33 and The-
orem 3.40. q.e.d.

Theorem 3.42 (Weak continuity of polarized canonical ra-
dius). Suppose LMi ∈ K (n,A; 0.5) satisfies (3.94). Then

pcr(M0
i ) ≥ 1,

for i large enough.

Proof. Note that in Theorem 3.31 and Theorem 3.40, the condition
LMi ∈ K (n,A; 1) can be replaced by LMi ∈ K (n,A; r0) for arbitrary
r0 ∈ (0, 1). The existence of a fixed r0 allows us to use the weak com-
pactness theorem and then the proof follows verbatim. The exact value
of r0 is not important in the argument.

Now the theorem follows from the combination of Theorem 3.31, The-
orem 3.40 (for the case r0 = 0.5) and Corollary 3.11. q.e.d.

3.4. A priori lower bound of pcr. We shall use a maximum principle
type argument to show that the polarized canonical radius cannot be
too small. The technique used in the following proof is inspired by the
proof of Theorem 12.1 of [49].

Proposition 3.43 (A priori lower bound of pcr). There is a
uniform integer constant j0 = j0(n,A) with the following property.

Suppose LM ∈ K (n,A), then

pcr(Mt) ≥ 1

j0
,(3.126)

for every t ∈ [−1, 1].

Proof. Suppose for some positive integer j0, (3.126) fails at time t0 ∈
[−1, 1]. Then we check whether

pcr(Mt) ≥ 1

2j0

on the interval [t0 − 1
2j0
, t0 + 1

2j0
]. If so, stop. Otherwise, choose t1 to

be such a time and continue to check if pcr(Mt) ≥ 1
4j0

on the interval

[t1 − 1
4j0
, t1 + 1

4j0
]. In each step, we shrink the scale to one half of the

scale in the previous step. Note this process will never escape the time
interval [−2, 2] since

|tk − t0| <
1

j0

(
1

2
+

1

4
+ ·+ 1

2k

)
<

1

j0
< 1, |tk| < |t0|+ 1 ≤ 2.

By compactness of the underlying manifold, it is clear that the process
stops after finite steps. So we can find tk such that

1

2k+1j0
≤ pcr(Mtk) <

1

2kj0
,
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and pcr(Mt) ≥ 1
2k+1j0

for every t ∈ [tk− 1
2k+1j0

, tk+ 1
2k+1j0

]. Translating

the flow and rescaling it by constant 4kj2
0 , we obtain a new polarized

Kähler Ricci flow L̃M ∈ K (n,A) such that
pcr(M̃0) < 1,

pcr(M̃t) ≥ 1
2 , ∀ t ∈ [−2k−1j0, 2

k−1j0],

|R|+ |λ| < A
4kj20

< A
j20
, on M̃,

1
T + 1

Vol(M) <
1

2k−1j0
+ A

j20
, on M̃.

(3.127)

In other words, L̃M ∈ K (n,A; 0.5) and |R| + |λ| + 1
T + 1

Vol(M) very

small.
Now we return to the main proof. If the statement fails, after ad-

justing, translating and rescaling, we can find a sequence of polarized

Kähler Ricci flow L̃Mi ∈ K (n,A; 0.5) satisfying{
pcr

(
M0

i

)
< 1,

1
Ti

+ 1
Vol(Mi)

+ supM̃i
(|R|+ |λ|)→ 0,

which contradicts Theorem 3.42. q.e.d.

Let } = 1
j0

. Then we have the following fact.

Theorem 3.44 (Homogeneity on small scales). For some small
positive number } = }(n,A), we have

K (n,A) = K (n,A; }) .(3.128)

4. Structure of polarized Kähler Ricci flows

In this section, we shall study the structure of polarized Kähler Ricci
flows belong to K (n,A). In light of Theorem 3.44, it is known that
K (n,A) = K (n,A; }). Therefore, we do have a uniform lower bound
of polarized canonical radius for every flow in K (n,A).

4.1. Local metric, flow, and line bundle structure. The purpose
of this subsection is to set up estimates related to the local metric struc-
ture, flow structure and line bundle structure of every flow in K (n,A).
In particular, we shall prove Theorem 1.2 and Theorem 1.3.

Proposition 4.1 (Kähler tangent cone). Suppose LMi ∈ K (n,A)
is a sequence of polarized Kähler Ricci flows. Let (M̄, x̄, ḡ) be the limit
space of (Mi, xi, gi(0)). Then for each ȳ ∈ M̄ , every tangent space of
M̄ at ȳ is an irreducible metric cone. Moreover, this metric cone can
be extended as an eternal, possibly singular Ricci flow solution.

Proof. It follows from Theorem 3.44 and Theorem 3.18 that every
tangent space is an irreducible metric cone. From the proof of Theo-
rem 3.18, it is clear that the tangent cone can be extended as an eternal,
static Ricci flow solution. q.e.d.
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Proposition 4.2 (Regularity equivalence). Same conditions as in
Proposition 4.1, ȳ ∈ M̄ . Then the following statements are equivalent.

1) One tangent space of ȳ is Cn.
2) Every tangent space of ȳ is Cn.
3) ȳ has a neighborhood with C4-manifold structure.
4) ȳ has a neighborhood with C∞-manifold structure.
5) ȳ has a neighborhood with Cω-manifold (real analytic manifold)

structure.

Proof. It is obvious that 5 ⇒ 4 ⇒ 3 ⇒ 2 ⇒ 1. So it suffices to
show 1⇒ 5 to close the circle. Suppose ȳ has a tangent space which is
isometric to Cn. So we can find a sequence rk → 0 such that

(M̄, ȳ, r−2
k ḡ)

P.G.H.−→ (Cn, 0, gEuc).
So for large k, the unit ball Br−2

k ḡ(ȳ, 1) has volume ratio almost the

Euclidean one. Fix such a large k, we see that Bḡ(ȳ, rk) has almost
Euclidean volume ratio. It follows from volume convergence that

cvr(yi, 0) ≥ rk,
for large i, where yi ∈ Mi and yi → ȳ as (Mi, xi, gi(0)) converges to
(M̄, x̄, ḡ). By the regularity improving property of canonical volume
radius, there is a uniform small constant c such that B(yi, crk) is dif-
feomorphic to the same radius Euclidean ball in Cn and the metrics on
B(yi, crk) is C2-close to the Euclidean metric. Then one can apply the
backward pseudolocality (c.f. Theorem 4.7) to obtain higher order de-
rivative estimate for the metrics. Therefore, B(yi,

1
2crk) will converge in

smooth topology to a limit smooth geodesic ball B(ȳ, 1
2crk). Moreover,

it is clear that geometry is uniformly bounded in a space-time neighbor-
hood containing B(yi,

1
2crk)× [−c2r2

k, 0], by shrinking c if necessary. So

we obtain a limit Kähler Ricci flow solution on B(ȳ, 1
4crk)× [−1

4c
2r2
k, 0].

It follows from the result of Kotschwar (c.f. [42]), that B(ȳ, 1
4crk) is

actually an analytic manifold, which is the desired neighborhood of ȳ.
So we finish the proof of 1⇒ 5 and close the circle. q.e.d.

Remark 4.3. By Proposition 4.2, our initial non-classical definition
of regularity is proved to be the same as the classical one.

Proposition 4.4 (Volume density gap). Same conditions as in
Proposition 4.1, ȳ ∈ M̄ . Then ȳ is singular if and only if

lim sup
r→0

|B(ȳ, r)|
ω2nr2n

≤ 1− 2δ0.(4.1)

Proof. If (4.1) holds, then every tangent cone of ȳ cannot be Cn, so ȳ
is singular. If ȳ is singular, then every tangent space of ȳ is an irreducible

metric cone in the model space K̃ S (n, κ) with vertex a singular point,

it follows from the gap property of K̃ S (n, κ) that asymptotic volume
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ratio of such a metric cone must be at most 1− 2δ0. Then (4.1) follows
from the volume convergence and a scaling argument. q.e.d.

Proposition 4.5 (Regular-Singular decomposition). Same con-
ditions as in Proposition 4.1, M̄ has the regular-singular decomposition
M̄ = R∪S. Then the regular part R admits a natural Kähler structure
J̄ . The singular part S satisfies the estimate dimH S ≤ 2n− 4.

Proof. The existence of J̄ on R follows from smooth convergence, due
to the backward pseudolocality (c.f. Theorem 4.7) and Shi’s estimate.
The Hausdorff dimension estimate of S follows from the combination of
Proposition 3.19 and Theorem 3.44. q.e.d.

Therefore, Theorem 1.2 follows from the combinations from Proposi-
tion 4.1 to Proposition 4.5. Now we are going to discuss more delicate

properties of the moduli space K̃ (n,A).

Proposition 4.6 (Improved regularity in two time directions).
There is a small positive constant c = c(n,A) with the following prop-
erties.

Suppose LM ∈ K (n,A), x0 ∈ M . Let r0 = min{cvr(x0, 0), 1}.
Then we have

r2+k|∇kRm|(x, t) ≤ Ck
c2+k

,

for every k ∈ Z+, x ∈ Bg(0)(x0, cr0), t ∈ [−c2r2, c2r2]. Here Ck is a
constant depending on n,A and k.

Proof. Otherwise, there exists a fixed positive integer k0 and a se-
quence of ci → 0 such that

(ciri)
2+k0 |∇k0Rm|(yi, ti)→∞,(4.2)

for some yi ∈ Bgi(0)(xi, ri), ti ∈ [−cir2
i , cir

2
i ], where

ri = min{cvr(xi, 0), 1}.

Let g̃i(t) = (ciri)
−2gi((ciri)

2t+ ti). Then we have

cvrg̃i(yi, 0) = (ciri)
−1 →∞.

Note that pcrg̃i(yi, 0) ≥ min{}(ciri)
−1, 1} ≥ 1. It is also clear that for

the flows g̃i, |R| + |λ| → 0. Therefore, Proposition 3.15 can be applied
to obtain

(Mi, yi, g̃i(0))
Ĉ∞−→ (M̂, ŷ, ĝ).(4.3)

However, it follows from Theorem 3.31 and Corollary 3.41 that

(M̂, ŷ, ĝ) ∈ K̃ S (n, κ), cvr(ŷ) =∞.
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In light of the gap property, Proposition 2.2, we know that M̂ is iso-
metric to Cn. So the convergence (4.3) can be rewritten as

(Mi, yi, g̃i(0))
C∞−→ (Cn, 0, gEuc).

In particular, |∇k0Rm|g̃i(yi, 0)→ 0, which is the same as

(ciri)
2+k0 |∇k0Rm|(yi, ti)→ 0.

This contradicts the assumption (4.2). q.e.d.

Perelman’s pseudolocality theorem says that an almost Euclidean do-
main cannot become very singular in a short time. His almost Euclidean
condition is explained as isoperimetric constant close to that of the Eu-
clidean one. In our special setting, we can reverse this theorem, i.e., an
almost Euclidean domain cannot become very singular in the reverse
time direction for a short time period.

Theorem 4.7 (Two-sided pseudolocality). There is a small pos-
itive constant ξ = ξ(n,A) with the following properties.

Suppose LM ∈ K (n,A), x0 ∈M . Let

Ω = Bg(0)(x0, r), Ω′ = Bg(0)(x0,
r

2
),

for some 0 < r ≤ 1. Suppose I(Ω) ≥ (1− δ0)I(Cn) at time t = 0, then

(ξr)2+k|∇kRm|(x, t) ≤ Ck,

for every k ∈ Z≥0, x ∈ Ω′, t ∈ [−ξ2r2, ξ2r2]. Here Ck is a constant
depending on n,A and k.

Proof. Note that each geodesic ball contained in Ω has volume ratio
at least (1 − δ0)ω2n. Then the theorem follows directly from Proposi-
tion 4.6. q.e.d.

After we obtain the bound of geometry, we can go further to study
the evolution of potential functions.

Theorem 4.8 (Two-sided pseudolocality of the potential).
Same conditions as in Theorem 4.7. Let ωB be a smooth metric form in
2πc1(M,J) and denote ωt by ωB +

√
−1∂∂̄ϕ(·, t). Suppose ϕ(x0, 0) = 0

and OscΩϕ(·, 0) ≤ H. Let Ω′′ = Bg(0)(x0,
r
4). Then we have

(ξr)−2+k‖ϕ(·, t)‖Ck(Ω′′,ωt)
≤ Ck,(4.4)

for every k ∈ Z≥0, t ∈
[
− ξ2

2 r
2, ξ

2

2 r
2
]
. Here Ck depends on k, n,A, ξ

and H
r2 .

Proof. Up to rescaling, we may assume ξr = 1.
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Note that ϕ and ϕ̇ satisfy the equations{
ϕ̇ = log

ωnt
ωnB

+ ϕ+ ϕ̇(·, 0),

−
√
−1∂∂̄ϕ̇ = Ric− λg.

It follows from Theorem 4.7 that geometry is uniformly bounded in
Ω′ × [−ξr2, ξr2]. The trace form of the second equation in the above
list is −∆ϕ̇ = R − nλ. Therefore, the regularity theory of Laplacian
operator applies and we have uniform bound of ‖ϕ̇‖Ck in a neighborhood

of Ω′′ × [− ξ
2r

2, ξ2r
2]. Up to a normalization, we can rewrite the first

equation as

log
(ωt −

√
−1∂∂̄ϕ)n

ωnt
= ϕ− ϕ̇+ ϕ̇(·, 0).

On Ω′, the metric g(0) and g(t) are uniformly equivalent in each Ck-
topology. So it is clear that ‖ϕ̇− ϕ̇(·, 0)‖Ck(Ω′) are uniformly bounded,

for each k, with respect to metric g(t). Since all higher derivatives
of curvature are uniformly bounded on Ω′, (4.4) follows from standard
Monge–Ampère equation theory and bootstrapping argument. q.e.d.

Theorem 4.9 (Improved regularity of potentials). Suppose that
LM ∈ K (n,A), cvr(M, 0) = r0. Let ωB be a smooth metric in [ω0]
such that

1

2
ωB ≤ ω0 ≤ 2ωB.(4.5)

Let ω0 = ωB +
√
−1∂∂̄ϕ. Suppose

∫
M ϕωn0 = 0 and OscMϕ ≤ H. Then

we have

‖ϕ‖Ck(M,ωB) ≤ Ck, ∀ k ∈ Z≥0,(4.6)

where Ck depends on k, ωB, n,A, r0 and H.

Proof. Since cvr(M, 0) = r0 > 0, we see that all the possible ω0’s
form a compact set under the smooth topology. In other words, ω0 has
uniformly bounded geometry in each regularity level. Fix a positive
integer k0 ≥ 4. Therefore, around each point x ∈ M , one can find a
coordinate chart Ω, with uniform size, such that

ω0 = ωEuc +
√
−1∂∂̄f, ‖f‖Ck0 (Ω,ωEuc)

≤ 0.01.

Note that in Ω, the connection terms of the metric ω0 are pure deriva-
tives fij̄l, which are uniformly bounded. Similarly, all derivatives of
connection terms can be expressed as high order pure derivatives of f .
Therefore, up to order k0 − 3, the derivatives of connections are uni-
formly bounded. It is clear that the metric ω0 and ωEuc are uniformly
equivalent. By the covariant derivatives’ bounds ‖ϕ‖Ck(M,ω0) ≤ Ck, the

bounds of connection derivatives yield that

‖ϕ‖Ck(Ω,ωEuc)
≤ Ck, ∀ 0 ≤ k ≤ k0 − 1.(4.7)
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In other words, we have uniform bound for every order pure derivatives
of ϕ, up to order k0 − 1. Together with the choice assumption of Ω, we
have

‖f − ϕ‖Ck(Ω,ωEuc)
≤ Ck, ∀ 0 ≤ k ≤ k0 − 1.

Therefore, the connection derivatives of metric ωB in Ω are uniformly
bounded, up to order k0 − 4. Consequently, the pure derivative bound
(4.7) implies

‖ϕ‖Ck(Ω,ωB) ≤ Ck, ∀ 0 ≤ k ≤ k0 − 1,

since ωB is a fixed smooth, compact metric with every level of regular-
ity. Clearly, the above constant Ck depends on k, n,A, r0, ωB and H.
Recall that the size of Ω is uniformly bounded from below, (M,ωB) is a
compact manifold. Consequently, a standard covering argument implies
(4.6) for each k ≤ k0 − 1. In the end, we free k0 and finish the proof.

q.e.d.

In Ricci-flat theory, a version of Anderson’s gap theorem says that
regularity can be improved in the center of a ball if the volume ratio of
the unit ball is very close to the Euclidean one. In our special setting,
this gap theorem has a reduced volume version.

Theorem 4.10 (Gap of reduced volume). There is a constant
δ′0 ∈ (0, δ0] and a small constant η with the following property.

Suppose LM ∈ K (n,A), x0 ∈M , 0 < r ≤ 1. If

V((x0, 0), r2) ≥ 1− δ′0,
then we have

cvr(x0, 0) ≥ ηr.(4.8)

Proof. If λ = 0, reduced volume is monotone. If λ is bounded, then
reduced volume is almost monotone. A simple calculation shows that
V((x0, 0), ρ2) ≥ 1− δ0 for all 0 < ρ ≤ r2 whenever V((x0, 0), r2) ≥ 1− δ′0
for some 0 < r ≤ 1. Therefore, without loss of generality, we may
assume λ = 0 and δ′0 = δ0 in the proof.

If the statement was wrong, there exists a sequence of

ηi → 0, 0 < ri ≤ 1, xi ∈Mi,

and corresponding Kähler Ricci flows satisfying{
V((xi, 0), r2

i ) ≥ 1− δ0,

cvr(xi, 0) < ηiri.

By the monotonicity of reduced volume, we have{
V((xi, 0), Hη2

i r
2
i ) ≥ 1− δ0,

cvr(xi, 0) < ηiri,
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for each fixed H and large i. Let g̃i(t) = (ηiri)
−2g((ηiri)

2t). It is clear
that

cvrg̃i(xi, 0) = 1.(4.9)

The canonical radius of g̃i tends to infinity, |R| + |λ| → 0. Similar to
the proof of Proposition 4.6, we have the convergence:

(Mi, xi, g̃i(0))
Ĉ∞−→ (M̂, x̂, ĝ) ∈ K̃ S (n, κ).

The limit space M̂ can be extended to a static eternal Kähler Ricci flow
solution. Moreover, Proposition 3.29 can be applied here and guarantees
the reduced volume convergence.

V((x̂, 0), H) = lim
i→∞
Vg̃i((xi, 0), H) = lim

i→∞
V((xi, 0), H(ηiri)

2) ≥ 1− δ0.

Note that H is arbitrary. By the homogeneity of reduced volume at
infinity, Theorem 2.6, we see that

avr(M̂) = lim
H→∞

V((x̄, 0), H) ≥ 1− δ0.

So Proposition 2.2 applies to force M̂ to be isometric to be Cn. In
particular, vr(x̂) =∞. It follows from Corollary 3.41 that

lim
i→∞

cvrg̃i(xi, 0) =∞,

which contradicts (4.9). q.e.d.

According to Theorem 4.10, one can define a concept of reduced vol-
ume radius for the purpose of improving regularity. Clearly, other reg-
ularity radius can also be defined. However, it seems all of them are
equivalent. For simplicity, we shall not compare all of them, but only
prove an example case: the equivalence of harmonic radius and canoni-
cal volume radius. The proof of other cases are verbatim. Following [1],
for each x0 ∈ (Mm, g), we define harmonic radius of x0 to be the largest
r such that the ball B(x0, r) has a harmonic coordinate {xi}mi=1 satisfy-
ing

1

2
δij ≤ gij = g

(
∂

∂xi
,
∂

∂xj

)
≤ 2δij ,

r
3
2 ‖gij‖

C1, 12
≤ 2.

We denote the harmonic radius of x0 by hr(x0, g). If g is the time slice
g(t) in a flow, we shall denote hr(x0, g(t)) by hr(x0, t).

Proposition 4.11 (Equivalence of regularity radii). Suppose
LM ∈ K (n,A), x ∈ M . Suppose max{hr(x, 0), cvr(x, 0)} ≤ 1, then
we have

1

C
hr(x, 0) ≤ cvr(x, 0) ≤ Chr(x, 0),

for some uniform constant C = C(n,A).
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Proof. Clearly, cvr(x, 0) ≤ Chr(x, 0) follows from the C5-regularity
property of canonical volume radius. It suffices to show

1

C
hr(x, 0) ≤ cvr(x, 0).

However, since cr(x, 0) ≥ }, it is clear from definition that

cvr(x, 0) ≥ 1

C
min{hr(x, 0), }}.

If hr(x, 0) ≤ }, then we are done. Otherwise, we have } < hr(x, 0) ≤ 1.
It follows that

cvr(x, 0) ≥ 1

C
} ≥ }

C
hr(x, 0) ≥ 1

C ′
hr(x, 0).

So we finish the proof. q.e.d.

Theorem 4.12 (Improved density estimate). For arbitrary small
ε, arbitrary 0 ≤ p < 2, there is a constant δ = δ(n,A, p) with the
following properties.

Suppose LM ∈ K (n,A), x ∈ M . Then under the metric g(0), we
have

log

∫
B(x,r) cvr−2pdv

E(n, κ, p)r2n−2p
< ε,(4.10)

whenever r < δ. Here the number E(n, κ, p) is defined in Proposi-
tion 2.8.

Proof. We argue by contradiction. Note that every blowup limit is in

K̃ S (n, κ) (c.f. Theorem 3.31). Then a contradiction can be obtained
by the weak continuity of cvr (c.f. Corollary 3.41) if the statement of
this theorem does not hold. q.e.d.

Note that E(n, κ, 0) = ω2n. So we are led to the volume ratio estimate
immediately.

Corollary 4.13 (Volume-ratio estimate). For arbitrary small ε,
there is a constant δ = δ(n,A) with the following properties.

Suppose LM ∈ K (n,A), x ∈ M . Then under the metric g(0), we
have

log
|B(x, r)|
ω2nr2n

< ε,(4.11)

whenever r < δ.

In the Kähler Ricci flow setting, Corollary 4.13 improves the volume
ratio estimates in [78] and [31] (c.f. Remark 1.1 of [31]). Note that
the integral (4.10) can be used to show that for every p ∈ (0, 2), there
is a C = C(n,A, p) such that the volume of the r-neighborhood of S
in a unit ball is bounded by Cr2p (c.f. Theorem 2.13), where S is the
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singular part of a limit space. By the definition of Minkowski dimension
(c.f. Definition 2.2 of [29]), we can improve Proposition 4.5 as follows.

Corollary 4.14 (Minkowski dimension of singular set). Same
conditions as in Proposition 4.1, M̄ has the regular-singular decompo-
sition M̄ = R∪ S. Then dimM S ≤ 2n− 4.

In [73], the second author developed an estimate of the type

|Ric| ≤
√
|Rm||R|,

where
√
|Rm| should be understood as the reciprocal of a regular scale.

Due to the improving regularity property of canonical volume radius, it

induces the estimate |Ric| ≤
√
|R|

cvr pointwisely. By the uniform bound
of scalar curvature and Theorem 4.12, the following estimate is clear
now.

Corollary 4.15 (Ricci curvature estimate). There is a constant
C = C(n,A, r0, p) with the following property.

Suppose LM ∈ K (n,A), x0 ∈ M , 0 < r ≤ r0, 0 < p < 2. Then
under the metric g(0), we have

r2p−2n

∫
B(x0,r)

|Ric|2pdv < C.(4.12)

Corollary 4.15 localizes the L2p-curvature estimate of [70] in a weak
sense, since (4.12) only holds for p < 2. If n = 2, (4.12) also holds for
p = 2, since the finiteness of singularity guarantees that one can choose
good cutoff functions. We believe that the same localization result hold
for p = 2 even if n > 2.

We return to the canonical neighborhood theorems in the introduc-
tion, Theorem 1.2, Theorem 1.3 and Theorem 1.4. However, Theo-
rem 1.4 is not completely local. Actually, Theorem 4.7 is enough to show
the local flow structure of K (n,A) can be approximated by K S (n, κ).
In light of its global properties, the proof of Theorem 1.4 is harder and
is postponed to section 5.5. On the other hand, Theorem 1.2 and Theo-
rem 1.3 are local. We now close this subsection by proving Theorem 1.2
and Theorem 1.3.

Proof of Theorem 1.2. It follows directly from the combination of
Proposition 4.1, Proposition 4.2, Proposition 4.4, and Proposition 4.5.

q.e.d.

Proof of Theorem 1.3. It follows from Theorem 3.44, Definition 3.10
and a scaling argument. q.e.d.

4.2. Local variety structure. We focus on the variety structure of
the limit space in this subsection. We essentially follow the argument
in [37], with slight modification.
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Suppose LMi ∈ K (n,A), xi ∈ Mi. Let (M̄, x̄, ḡ) be a pointed-
Gromov–Hausdorff limit of (Mi, xi, gi(0)). Since M̄ may be non-com-
pact, the limit line bundle L̄ may have infinitely many orthogonal holo-
morphic sections. Therefore, in general, we cannot expect to embed M̄
into a projective space of finite dimension by the complete linear system
of L̄. However, when we focus our attention to the unit geodesic ball
B(x̄, 1), we can choose some holomorphic sections of L̄, peaked around
x̄, to embed B(x̄, 1) into CPN for a finite N .

Actually, for every ε > 0, we can find an ε-net of B(x̄, 2) such that
every point in this net has canonical volume radius at least c0ε. For each
point y in this ε-net, we have a peak section sy, which is a holomorphic
section such that ‖s(y)‖ achieves the maximum among all unit L2-norm
holomorphic sections s ∈ H0(M̄, L̄). By the partial-C0-estimate argu-
ment (c.f. [30] for the flow case with weak convergence), we can assume

that ‖sy‖2 is uniformly bounded below in B(y, 2ε).
On the other hand, by the choice of y, B(y, ηε) has a smooth manifold

structure for some η = η(n). Therefore, we can choose n holomorphic
sections of L̄k such that these sections are the local deformation of
z1, z2, · · · , zn. Here k is a positive integer proportional to ε−2. Put these
holomorphic sections together with sky , we obtain (n + 1)-holomorphic

sections of L̄k based at the point y. Let y run through all points in the
ε-net and collect all the holomorphic sections based at y, we obtain a set
of holomorphic sections {si}Ni=0 of L̄k. Let {s̃i}Ni=0 be the orthonormal
basis of span{s0, s1, · · · , sN}. We define the Kodaira map ι as follows.

ι : B(0, 2) 7→ CPN ,
x 7→ [s̃0(x) : s̃1(x) : · · · : s̃N (x)].

This map is well defined. In fact, for every z ∈ B(x̄, 1), we can find a

point y in the ε-net and z ∈ B(y, 2ε), then ‖sy‖2(z) > 0 by the partial-

C0-estimate. It forces that s̃j(z) 6= 0 for some j. Since k is proportional
to ε−2, we can just let ε = 1√

k
without loss of generality. In the following

argument, by saying “raise the power of line bundle” from k1 to k2, we
simultaneously means the underlying ε-net is strengthened from a 1√

k1
-

net to a 1√
k2

-net.

Lemma 4.16. Suppose w ∈ ι(B(x̄, 1)), then ι−1(w) ∩ B(x̄, 1) is a
finite set.

Proof. Let y ∈ ι−1(w) ∩ B(x̄, 1). It is clear that ι−1(w) is contained
in a ball centered at y with fixed radius, say 10ε. Therefore, ι−1(w) is
a bounded, closed set and, therefore, compact. Let F be a connected
component of ι−1(w). Then ι(F ) is a connected, compact subvariety of
CN , and, consequently, is a point. Note that ι(F ) is always a connected
set no matter how do we raise the power of ι. On the other hand, ι(F )
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will contain more than one point if F is not a single point, after we
raise power high enough. These force that F can only be a point. Since
ι−1(w) ∩B(x̄, 1) is compact, it must be union of finite points. q.e.d.

Denote ι(B(x̄, 1)) by W . Then W is a compact set and locally can
be extended as an analytic variety. By dividing W into different com-
ponents, one can apply induction argument as that in [37]. Follow-
ing verbatim the argument of Proposition 4.10, Lemma 4.11 of [37],
one can show that ι is an injective, non-degenerate embedding map on
B(x̄, 1), by raising power of L̄ if necessary. Furthermore, since being
normal is a local property, one can improve Lemma 4.12 of [37] as fol-
lows.

Lemma 4.17. By raising power if necessary, W is normal at the
point ι(y) for every y ∈ B(x̄, 1

2).

Under the help of parabolic Schwarz lemma and heat flow localization
technique (c.f. Section 4.1 and Proposition 4.37), we can parallelly
generalize Proposition 4.14 of [37] as follows.

Lemma 4.18. Suppose y ∈ B(x̄, 1
2)∩S, then ι(y) is a singular point

of W .

It follows from the proof of Proposition 4.15 of [37] that there always
exist a holomorphic form Θ on R∩B(x̄, 1) such that∫

R∩B(x̄,1)
Θ ∧ Θ̄ <∞.

This means that every singular point y ∈ ι(B(x̄, 1
2))∩W is log-terminal.

Combining all the previous lemmas, we have the following structure
theorem.

Theorem 4.19 (Analytic variety structure). Suppose LMi ∈
K (n,A), xi ∈ Mi, (M̄, x̄, ḡ) is a pointed Gromov–Hausdorff limit of
(Mi, xi, gi(0)). Then M̄ is an analytic space with normal, log terminal
singularities.

4.3. Distance estimates. In this subsection, we shall develop the dis-
tance estimate along polarized Kähler Ricci flow in terms of the esti-
mates from line bundle.

Lemma 4.20. Suppose (M,L) is a polarized Kähler manifold satis-
fying the following conditions

• |B(x, r)| ≥ κω2nr
2n, ∀x ∈M, 0 < r < 1.

• |b| ≤ 2c0 where b is the Bergman function.
• ‖∇S‖ ≤ C1 for every L2-unit section S ∈ H0(M,L).
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For every positive number a, define Ω(x, a) as the path-connected com-
ponent containing x of the set{

z

∣∣∣∣‖S‖2(z) ≥ e−2a−2c0 , ‖S‖2(x) = eb(x),

∫
M
‖S‖2dv = 1

}
.(4.13)

Then we have

B (x, r) ⊂ Ω(x, a) ⊂ B(x, ρ),(4.14)

for some r = r(n, κ, c0, C1, a) and ρ = ρ(n, κ, c0, C1, a).

Proof. Define r , 1−e−a
C1ea+c0

. Recall that ‖S‖(x) ≥ e−c0 . By the

gradient bound of S, it is clear that every point in B(x, r) satisfies
‖S‖ ≥ e−a−c0 . In other words, we have

B(x, r) ⊂ Ω(x, a).

On the other hand, we can cover Ω(x, a) by finite balls B(xi, 2r) such
that each xi ∈ Ω(x, a) and different B(xi, r)’s are disjoint to each other.
Again, the gradient bound of S implies that ‖S‖ ≥ e−2a−c0 in each
B(xi, r). Then we have

Nκω2nr
2n ≤

N∑
i=1

|B(xi, r)| ≤ |Ω(x, 2a)| ≤ e4a+2c0 .

For every z ∈ Ω(x, a), we have

d(x, z) ≤ 4Nr ≤ 4e4a+2c0

κω2nr2n−1
=

4e4a+2c0

κω2n
· C

2n−1
1 e(2n−1)(a+c0)

(1− e−a)2n−1
.

Let ρ be the number on the right hand side of the above inequality.
Then it is clear that

Ω(x, a) ⊂ B(x, ρ).

So we finish the proof. q.e.d.

Lemma 4.20 implies that the level sets of peak holomorphic sections
are comparable to geodesic balls. However, the norm of peak holo-
morphic section has stability under the Kähler Ricci flows in K (n,A).
Therefore, one can compare distances at different time slices in terms
the values of norms of a same holomorphic sections.

Lemma 4.21. There exists a small constant ε0 = ε0(n,A) such that
the following properties are satisfied.

Suppose LM ∈ K (n,A), then we have

Bg(t1)(x, ε0) ⊂ Bg(t2)

(
x, ε−1

0

)
,(4.15)

whenever t1, t2 ∈ [−1, 1].
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Proof. Without loss of generality, we only need to show (4.15) for
time t1 = 0, t2 = 1. Because of Theorem 1.3 and Moser iteration, we can
assume |b| ≤ 2c0 for some c0 = c0(n,A). By Moser iteration technique,
we can also assume ‖∇S‖ ≤ C1 for every unit L2-norm holomorphic
section of L (c.f. Lemma 5.1 of [72] and Lemma 3.2 of [30]). Note that

eb(x) is the maximum value of ‖S‖2 among all unit L2-norm holomorphic
sections of L. So we can choose ε small enough such that

‖S‖(z) ≥ 1

2
e−c0 , ∀ z ∈ B(x, 2ε),

for some unit holomorphic section S. Note ε can be chosen uniformly,

say ε = e−c0
4C1

.
Fix S and define

Ω ,

{
z

∣∣∣∣‖S‖0(z) ≥ 1

2
e−c0

}
, Ω̃ ,

{
z

∣∣∣∣‖S‖1(z) ≥ 1

4
e−c0−A

}
.

Without loss of generality, we can assume both Ω and Ω̃ are path-
connected. Otherwise, just replace them by the corresponding path-
connected part containing z. It follows from definition that B(x, ε) ⊂ Ω.
In view of the volume element evolution equation, it is also clear that
Ω ⊂ Ω̃.

Note that S is a unit section at time t = 0. At time t = 1, its L2-norm
locates in [e−2A, e2A]. So we have

e2A ≥
∫
M
‖S‖21dv > |Ω̃|1

1

16
e−2c0−2A, ⇒ |Ω̃|1 < 16e2c0+4A.

Now we can follow the covering argument in the previous lemma to show
a diameter bound of Ω̃ under the metric g(1). In fact, we can cover Ω̃

by finite geodesic balls B(xi, 2ε) such that xi ∈ Ω̃ and all different
B(xi, ε)’s are disjoint to each other. Clearly, each geodesic ball B(xi, ε)
has volume at least κω2nε

2n, where κ = κ(n,A). Let N be the number
of balls, then

Nκω2nε
2n ≤

N∑
i=1

|B(xi, 1)| ≤ |Ω̃| ≤ 16e2c0+4A.

Therefore, under metric g(1), we obtain

diam Ω ≤ diam Ω̃ ≤ 4Nε ≤ 64e2c0+4A

κω2nε2n−1
.

Recall that Bg(0)(x, ε) ⊂ Ω ⊂ Ω̃, ε = e−c0
4C1

. So under metric g(1), we
have

diamBg(0)(x, ε) ≤ diam Ω̃ ≤ 42n+2e(2n+3)c0+4AC2n−1
1

κω2n
.
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Define

ε0 , min

{
e−c0

4C1
,

κω2n

42n+2e(2n+3)c0+4AC2n−1
1

}
.(4.16)

Note that ε0 depends only on n,A. Then we have

diamBg(0)(x, ε0) ≤ ε−1
0 ,

which implies

Bg(0)(x, ε0) ⊂ Bg(1)(x, ε
−1
0 ).

So we finish the proof. q.e.d.

Lemma 4.22. For every r small, there is a δ with the following
property.

Suppose LM ∈ K (n,A). Suppose |R|+ |λ| < δ on M × [−1, 1], then
we have

Bg(t1)(x, ε0r) ⊂ Bg(t2)(x, ε
−1
0 r),(4.17)

for every t1, t2 ∈ [−1, 1]. Here ε0 is the constant in Lemma 4.21.

Proof. We proceed by a contradiction argument.
Again, it suffices to show (4.17) for t1 = 0 and t2 = 1. By adjusting

r if necessary, we can also make a rescaling by integer factor. Up to
rescaling, (4.17) is the same as

Bg(0)(x, ε0) ⊂ Bg(r−2)(x, ε
−1
0 ).(4.18)

Suppose the statement of this lemma was wrong. Then there is an
r0 > 0 and a sequence of points xi ∈Mi such that

Bgi(0)(xi, ε0) 6⊂ Bgi(r−2
0 )(xi, ε

−1
0 ).

However, |R|+ |λ| → 0 in C0-norm as i→∞. So we can take a limit

(Mi, xi, gi(0))
Ĉ∞−→ (M̄, x̄, ḡ).

As usual, we can find a regular point z̄ ∈ M̄ near x̄. Let zi ∈ Mi and
zi → z̄ as the above convergence happens. Then we can extend the
above convergence to each time slice.

(Mi, zi, gi(t))
Ĉ∞−→ (M̄, z̄, ḡ), ∀ t ∈ [0, r−2

0 ].

Note that x̄ may be a singular point of M̄ . So in the above conver-
gence, we only have xi converges to x̄(t), which may depends on time t.
Lemma 4.21 guarantees that x̄(t) is not at infinity.

Note that OscM ϕ̇ is scaling invariant and, consequently, uniformly
bounded by condition inequality (1.4). From the polarized Kähler Ricci
flow solution condition (1.3), we have

∆ϕ̇ = −R+ nλ,
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whose right hand side is tending to zero. Therefore, ϕ̇ converges to a
limit bounded function which is harmonic function onR(M̄), the regular
part of M̄ . Such a function must be a constant by Liouville-type theorem
(c.f. Corollary 2.25 of [29]). Actually, a bounded harmonic function on
R(M̄) will automatically be a bounded Lipschitz function on M̄ , by
Proposition 2.29 of [29]. Applying normalization condition, the limit
function must be zero on M̄ × [0, r−2

0 ]. Therefore, the limit line bundle
L̄ admits a limit metric which does not evolve along time. Therefore,
for a fixed holomorphic section S̄ and a fixed level value, the level sets

of
∥∥S̄∥∥2

does not depend on time.
Choose Si be the peak section of Li at xi, with respect to the metrics

at time t = 0. By the choice of ε0, it is clear that ‖Si‖t ≥
1
2e
−c0 on the

ball B(xi, ε0). In other words, we have

B(xi, ε0) ⊂ Ωi,t ,

{
z

∣∣∣∣‖Si‖t(z) ≥ 1

2
e−c0

}
.

Without loss of generality, we can assume Ωi,t is path connected. Clearly,
each Ωi,t has uniformly bounded diameter, due to Lemma 4.20. Let Ω̄
be the limit set of Ωi,0. Clearly, z̄ ∈ Ω̄. Then the above discussion
implies that Ω̄ is actually the limit set of each Ωi,t.

Let ȳ be the limit point of yi, which is a point in Bgi(0)(xi, ε0) and

start to escape B(xi, ε
−1
0 ) at time ti, which converges to t̄. So we obtain

ȳ ∈ Bḡ(0)(x̄, ε0), d(ȳ, x̄(t̄)) = ε−1
0 .(4.19)

Recall that

d

dt
dv = (nλ−R)dv,

d

dt
h(t) =

d

dt
{e−ϕh(0)} = −ϕ̇h(t).

Since |R|+ |λ| → 0 and |ϕ̇| → 0, the volume element of the underlying
manifold and the line bundle metric are all almost static when time
evolves. Then it is easy to see that yi can never escape Ωi,t. So ȳ ∈ Ω̄.
Similarly, we know x̄(t̄) ∈ Ω̄. Therefore, at time t̄, we have

d(ȳ, x̄(t̄)) ≤ diam Ω̄.

Note that the argument in the proof of Lemma 4.20 holds for the polar-
ized singular manifold (M̄, L̄), due to the high codimension of S(M) and

the gradient bound of each Si. Since
∫
M̄

∥∥S̄∥∥2
dv is uniformly bounded

from above by 1, we can follow the proof of Lemma 4.20 to show that

diam(Ω̄) ≤ ρ(n, κ, c0, C1, log 2) < ε−1
0

by the choice of ε0 in (4.16). Consequently, we have d(ȳ, x̄(t̄)) < ε−1
0 ,

which contradicts (4.19). q.e.d.

Based on Lemma 4.22, we can improve Proposition 3.15. Namely,
under the condition |R| + |λ| → 0, the limit flow is static, even on
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the singular part. Clearly, due to Theorem 3.44, we do not need the
assumption of lower bound of polarized canonical radius anymore.

Proposition 4.23 (Static limit space-time). Suppose LMi ∈
K (n,A) satisfies

lim
i→∞

sup
Mi

(|R|+ |λ|) = 0.

Suppose xi ∈Mi. Then

(Mi, xi, gi(0))
Ĉ∞

−−→ (M̄, x̄, ḡ).

Moreover, we have

(Mi, xi, gi(t))
Ĉ∞

−−→ (M̄, x̄, ḡ),

for every t ∈ (−T̄ , T̄ ), where T̄ = lim
i→∞

Ti > 0. In other words, the

identity maps between different time slices converge to the limit identity
map.

As a direct application, we obtain the bubble structure of a given
family of polarized Kähler Ricci flows.

Theorem 4.24 (Space-time structure of a bubble). Suppose

LMi ∈ K (n,A), xi ∈ Mi, ti ∈ (−Ti, Ti), and ri → 0. Suppose M̃i

is the adjusting of Mi by shifting time ti to 0 and then rescaling the
space-time by the factors r−2

i , i.e., g̃i(t) = r−2
i g(r2

i t + ti). Suppose

r−2
i max{|ti − Ti|, |ti + Ti|} =∞. Then we have

(Mi, xi, g̃i(t))
Ĉ∞

−−→ (M̂, x̂, ĝ),

for each time t ∈ (−∞,∞) with M̂ ∈ K̃ S (n, κ).

Theorem 4.24 means that the space-time structure of M̂ ∈ K̃ S (n, κ)
is the model for the space-time structures around (xi, ti), up to proper
rescaling. Therefore, Theorem 4.24 is an improvement of Theorem 3.31,
where we only concern the metric structure.

In view of Proposition 4.23, it is not hard to see that distance is a
uniform continuous function of time in K (n,A).

Theorem 4.25 (Uniform continuity of distance function). Sup-
pose LM ∈ K (n,A), x, y ∈M . Suppose dg(0)(x, y) < 1. Then for every
small ε, there is a δ = δ(n,A, ε) such that

|dg(t)(x, y)− dg(0)(x, y)| < ε,

whenever |t| < δ.
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Proof. We argue by contradiction. Suppose the statement was wrong,
we can find an ε̄ > 0 and a sequence of flows violating the statement

for time |ti| → 0. Around xi, in the ball Bgi(0)

(
xi,

ε20ε̄
10

)
, we can find x′i

which are uniform regular at time t = 0, where ε0 is the same constant in
Lemma 4.22 and Lemma 4.21. Namely, x′∞, the limit point of x′i is a reg-
ular point in the limit space. By two-sided pseudolocality, Theorem 4.7,
it is clear that x′i is also uniform regular at time t = ti. Similarly, we can
choose y′i. By virtue of triangle inequality and Lemma 4.22, we obtain

dgi(0)(x
′
i, y
′
i)−

ε20ε̄

5
≤ dgi(0)(xi, yi) ≤ dgi(0)(x

′
i, y
′
i) +

ε20ε̄

5
,

dgi(ti)(x
′
i, y
′
i)−

ε̄

5
≤ dgi(ti)(xi, yi) ≤ dgi(ti)(x

′
i, y
′
i) +

ε̄

5
.

By argument similar to that in Proposition 3.20, it is clear that

lim
i→∞

dgi(ti)(x
′
i, y
′
i) = lim

i→∞
dgi(0)(x

′
i, y
′
i).

Then it follows that

lim
i→∞

dgi(0)(xi, yi)−
(1 + ε20)

5
ε̄

≤ lim
i→∞

dgi(ti)(xi, yi) ≤ lim
i→∞

dgi(0)(xi, yi) +
(1 + ε20)

5
ε̄.

In particular, for large i, we have∣∣dgi(0)(xi, yi)− dgi(ti)(xi, yi)
∣∣ < (1 + ε20)

5
ε̄ < ε̄,

which contradicts our assumption. q.e.d.

4.4. Volume of high curvature neighborhood. In this subsection,
we shall develop the flow version of the volume estimate of Donaldson
and the first author (c.f. [17], [18], see also [14]).

Proposition 4.26 (Kähler cone complex splitting). Same con-

ditions as in Proposition 4.1, ȳ ∈ M̄ . Suppose Ŷ is a tangent cone of
M̄ at ȳ, then there is a fixed nonnegative integer k such that

Ŷ = C(Z)× Cn−k,(4.20)

where C(Z) is a metric cone without straight line. A point in M̄ is
regular if and only if one of the tangent cone is Cn.

Proof. By definition of tangent cone, one can find a sequence of num-
bers ri → 0. Taking subsequence if necessary, let g̃i(t) = r−2

i gi(r
2
i t),

then we have

(Mi, yi, g̃i(0))
Ĉ∞−→ (Ŷ , ŷ, ĝ).

By compactness, we see that (Ŷ , ŷ, ĝ) ∈ K̃ S (n, κ). On the other hand,
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it is a metric cone, which is the tangent space of itself at the origin. So
Ŷ has the decomposition (4.20), by Theorem 2.5. q.e.d.

Proposition 4.27 (Kähler tangent cone rigidity, c.f. Theorem 2
of [18]). Suppose that LMi ∈ K (n,A). Suppose xi ∈Mi and (M̄, x̄, ḡ)

is a limit space of (Mi, xi, gi(0)). Let Ŷ be a tangent space of M̄ satis-
fying

Ŷ =
(
Ck/Γ

)
× Cn−k, Γ ⊂ U(k).

Then Ŷ satisfies the splitting (4.20) for k = 2 or k = 0.

Proof. Clearly, k = 0 if and only if the base point is regular. So it
suffices to show that for every singular tangent space we have k = 2. By
Proposition 4.26, we only need to rule out the case k ≥ 3. However, this
follows from the rigidity of complex structure on the smooth annulus in
Ck/Γ, where Γ is a finite group of holomorphic isometry of Ck, when
k ≥ 3. Note that [ωi] = c1(Li), which is an integer class. Therefore,
the proof follows verbatim as that in [18]. Note that Ricci curvature
uniformly bounded condition in [18] is basically used to guarantee the

pointed-Ĉ4-Cheeger–Gromov convergence. In our case, the convergence
can be obtained from Theorem 3.44. q.e.d.

Proposition 4.28 (Existence of holomorphic slicing). Suppose

Ŷ ∈ K̃ S (n, κ) is a metric cone satisfying the splitting (4.20). Suppose

LM ∈ K (n,A), x ∈ M . If (M,x, g(0)) is very close to (Ŷ , ŷ, ĝ), i.e.,
the pointed-Gromov–Hausdorff distance

dPGH((M,x, g(0)), (Ŷ , ŷ, ĝ)) < ε,

for sufficiently small ε, which depends on n,A, Ŷ , then there exists a
holomorphic map

Ψ = (uk+1, uk+2, · · · , un) : B(x, 10) 7→ Cn−k

satisfying

|∇Ψ| ≤ C(n,A),(4.21) ∑
k+1≤i,j≤n

∫
B(x,10)

|δij − 〈∇ui,∇uj〉| dv ≤ η(n,A, ε),(4.22)

where η is a small number such that lim
ε→0

η = 0.

Proof. It follows from the argument in [37] that the constant section

1 of the trivial bundle over Ŷ can be “pulled back” as a non-vanishing
holomorphic section of L over B(x, 10), up to a finite lifting of power of
L. Therefore, we can regard L as a trivial bundle over B(x, 10) without
loss of generality. Let S0 be the pull-back of the constant 1 section. In
particular, S0 is a non-vanishing holomorphic section on B(x, 10). On
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B(x, 10), every holomorphic section S of L can be written as S = uS0

for a holomorphic function u and ‖S‖2h = |u|2‖S0‖2h.
From the splitting (4.20), there exist natural coordinate holomorphic

functions {zj}nj=k+1 on Ŷ . Same as [37], one can apply Hörmander’s

estimate to construct {Sj}nj=k+1, which are holomorphic sections of L.
Each Sj can be regarded as an “approximation” of zj , although they

have different base spaces. Let uj =
Sj
S0

for each j ∈ {k + 1, · · · , n}.
Then we can define a holomorphic map Ψ from B(x, 10) to Cn−k as
follows

Ψ(y) , (uk+1, uk+2, · · · , un) .

Note that each Si is a holomorphic section of L with L2-norm bounded
from two sides, according to its construction. Using metrics induced by
h and condition (1.3), direct calculation shows that

∆‖∇S‖2 = ‖∇∇S‖2 − (n+ 2)‖∇S‖2 + n‖S‖2 +Rij̄S̄,̄iS,j

= ‖∇∇S‖2 + {λ− (n+ 2)} ‖∇S‖2 + n‖S‖2 − ϕ̇ij̄S̄,̄iS,j .

In light of (1.4), ϕ̇ is bounded and there exists a uniform Sobolev con-
stant. Then Moser iteration (c.f. Lemma 3.2 of [30] and Lemma 5.1

of [72]) implies that there exists a uniform bound ‖∇Si‖2h ≤ C(n,A),
which implies (4.21) when restricted on B(x, 10). Moreover, on B(x, 10),
by smooth convergence, it is not hard to see that 〈∇ui,∇uj〉 can point-

wisely approximate δij away from singularities of Ŷ , in any accuracy
level when ε→ 0. This approximation together with (4.21) yields (4.22).

q.e.d.

Theorem 4.29 (Weak monotonicity of curvature integral).
There exists a small constant ε = ε(n,A) with the following properties.

Suppose LM ∈ K (n,A). Suppose x ∈ M , 0 < r ≤ 1. Then under
the metric g(0), we have

sup
B(x, 1

2
r)

|Rm| ≤ r−2,(4.23)

whenever r4−2n
∫
B(x,r) |Rm|

2dv ≤ ε.

Proof. Up to rescaling, we can assume r = 1 without loss of generality.
If the statement was wrong, we can find a sequence of points xi ∈ Mi

such that ∫
B(xi,1)

|Rm|2dv → 0, sup
B(xi,

1
2

)

|Rm| ≥ 1,

where the default metric is gi(0), the time zero metric of a flow gi, in
the moduli space K (n,A). By the smooth convergence at places when
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curvature uniformly bounded, it is clear that the above conditions imply
that ∫

B(xi,1)
|Rm|2dv → 0, sup

B(xi,
3
4

)

|Rm| → ∞.

Let (M̄, x̄, ḡ) be the limit space of (Mi, xi, gi(0)). Then B(x̄, 3
4) contains

at least one singularity ȳ. Without loss of generality, we can assume x̄
is a singular point. Note that B(x̄, 1

4) is a flat manifold away from

singularities. So every tangent space of M̄ at x̄ is a flat metric cone.
Let Ŷ be one of such a flat metric cone. By taking subsequence if
necessary, we can assume

(Mi, xi, g̃i(0))
Ĉ∞−→ (Ŷ , x̂, ĝ),

for some flow metrics g̃i satisfying g̃i(t) = r−2
i gi(r

2
i t), ri → 0. Since Ŷ

is a flat metric cone, in light of Proposition 4.27, we have the splitting

Ŷ = (C2/Γ)× Cn−2.

Let (M,x, g̃) be one of (Mi, xi, g̃i(0)) for some large i. Because of Propo-
sition 4.28, we can construct a holomorphic map Ψ : B(x, 10) → Cn−2

satisfying (4.21) and (4.22). Then we can follow the slice argument as
in [12] and [9]. Our argument will be simpler since our slice functions
are holomorphic rather than harmonic.

Actually, for generic ~z = (z3, z4, · · · , zn) satisfying |~z| < 0.1, we
know Ψ−1(~z) ∩ B(x, 5) is a complex surface with boundary. Clearly,
Ψ−1((S3/Γ)×{~z}) is close to (S3/Γ)× ~z, if we regard S3/Γ as the unit
sphere in C2/Γ. Deform the preimage a little bit if necessary, we can
obtain a ∂Ω which bounds a complex surface Ω. By coarea formula and
the bound of |∇Ψ|, it is clear that for generic Ω obtained in this way,
we have ∫

Ω
|Rm|2dσ → 0.

Consider the restriction of TM on Ω. Let c2 be a form representing
the second Chern class of the tangent bundle TM , obtained from the
Kähler metric g̃(0) from the classical way. Let ĉ2 be the corresponding
differential character with value in R/Z. Since the point-wise norm of
c2 is bounded by |Rm|2, it is clear that

ĉ2(∂Ω) =

∫
Ω
c2 (mod Z)→ 0.(4.24)

On the other hand, since ∂Ω converges to S3/Γ, we have

ĉ2(Ω)→ 1

|Γ|
.(4.25)



SPACE OF RICCI FLOWS (II)—PART B 101

Therefore, the combination of (4.24) and (4.25) forces that |Γ| = 1. This

is impossible since |Γ| ≥ 2 by our assumption that Ŷ is a singular metric
cone. q.e.d.

From now on to the end of this subsection, we use g(0) as the default
metric. Similar to the definition in [17], for any small r, let Zr be the
r-neighborhood of the points where |Rm| > r−2. Recall the definition
equation (2.12), we denote Fr as the collection of points whose canonical
volume radii are greater than r, Dr as the complement of Fr. Under
these notations, we have the following property.

Proposition 4.30 (Equivalence of singular neighborhoods).
Suppose LM ∈ K (n,A), 0 < r < }. Then at time zero, we have

Dcr ⊂ Zr ⊂ D 1
c
r,(4.26)

for some small constant c = c(n,A).

Proof. Let us first prove Dcr ⊂ Zr. Suppose the statement was wrong,
we can find a sequence ci → 0 and flows in K (n,A) such that Dciri 6⊂ Zri
for some ri < }. Choose xi ∈ Dciri ∩ Zcri . Let ρi be the canonical
volume radius of xi. Rescale the flow such that the canonical volume
radius at xi becomes 1. Taking limit, we will obtain a smooth flat

space in K̃ S (n, κ), which is nothing but Cn. Therefore, the canonical
volume radii of the base points xi should tend to infinity, which is a
contradiction.

Then we prove Zr ⊂ D 1
c
r. Suppose x ∈ Zr, then |Rm|(y) ≥ r−2 for

some y ∈ B(x, r). By the regularity improving property of canonical
volume radius, it is clear that cvr(x) ≤ 2

ca
r. In other words, x ∈ D 2

ca
r.

q.e.d.

Theorem 4.31 (Volume estimates of high curvature neigh-
borhood). Suppose LM ∈ K (n,A). Under the metric g(0), we have

|Zr| ≤ Cr4,

where C depends on n,A and the upper bound of
∫
M |Rm|

2dv.

Proof. Because of Proposition 4.30, it suffices to show |Dcr| ≤ Cr4.
In light of Theorem 4.29, if

r4−2n

∫
B(x,r)

|Rm|2dv < ε,

for some r < }, then x ∈ Fcr. In other words, if x ∈ Dcr(M, 0), then it
is forced that

r4−2n

∫
B(x,r)

|Rm|2dv ≥ ε.

Let
⋃N
i=1B(xi, 2r) be a finite cover of Dcr such that
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• xi ∈ Dcr.
• B(xi, r) are disjoint to each other.

Then we can bound N as follows.

Nεr2n−4 ≤
N∑
i=1

∫
B(xi,r)

|Rm|2dv ≤
∫
M
|Rm|2dv ≤ H.

Consequently, we have

|Dcr(M)| ≤
N∑
i=1

|B(xi, 2r)| ≤
H

ε
r4−2nκ−1ω2n(2r)2n ≤ Cr4.

Since both κ and ε depends only on n and A. It is clear that C =
C(n,A,H) where H is the upper bound of

∫
M |Rm|

2dv. q.e.d.

Corollary 4.32 (Volume estimates of singular neighborhood).
Suppose LMi ∈ K (n,A). Suppose

∫
Mi
|Rm|2dv ≤ H uniformly under

the metric gi(0). Let (M̄, x̄, ḡ) be the limit space of (Mi, xi, gi(0)). Let
Sr be the set defined in (2.22), then we have

|Sr| ≤ Cr4,

for each small r and some constant C = C(n,A,H). In particular, we
have the estimate of Minkowski dimension of the singularity

dimM S ≤ 2n− 4.

Following [30], the space M̄ = R∪S is called a metric-normal Q-Fano
variety if there exists a homeomorphic map ϕ : M̄ → Z for some Q-
Fano normal variety Z such that ϕ|R is a biholomorphic map. Moreover,
dimM S ≤ 2n− 4.

Theorem 4.33 (Limit structure). Suppose that LMi ∈ K (n,A).
Under the metric gi(0), suppose

Vol(Mi) +

∫
Mi

|Rm|2dv ≤ H,(4.27)

for some uniform H. Let (M̄, x̄, ḡ) be the limit space of (Mi, xi, gi(0)).
Then M̄ is a compact metric-normal Q-Fano variety.

Proof. It follows from (4.27) and the non-collapsing that diam(Mi)
is uniformly bounded. So the limit space M̄ is compact. Due to Theo-
rem 1.3, the partial C0-estimate, one can follow the argument in [37] to
show that M̄ is a Q-Fano, normal variety. The metric-normal property
follows from Corollary 4.32. q.e.d.

Based on the estimates developed in this subsection, we can easily
prove Corollary 1.8 and Corollary 1.9 in the introduction.

Proof of Corollary 1.8 and Corollary 1.9. It follows from the combi-
nation of Theorem 4.33, Corollary 4.32 of this paper and main results
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in [30]. Note that the line bundle metric choice in this paper is equiva-
lent to that in [30], due to the bound of ϕ̇. q.e.d.

4.5. Singular Kähler Ricci flows. In this subsection, we shall relate
the different limit time slices, without the assumption of |R|+ |λ| → 0.
We shall further improve regularity, by estimates essentially arising from
complex analysis of holomorphic sections.

We want to compare ωt, the Kähler Ricci flow metrics, and ω̃t, the
evolving Bergman metrics. We first show that ω̃t is very stable when t
evolves.

Lemma 4.34. Suppose G(t) is a family of (N+1)×(N+1) matrices

parameterized by t ∈ [−1, 1]. Suppose G(0) = Id, Ġ(0) = B. Let
λ0 ≤ λ1 ≤ · · · ≤ λN be the real eigenvalues of the Hermitian matrix
B+ B̄τ . If we regard G as a holomorphic map from CPN to CPN , then
we have

(λ0 − λN )ωFS ≤
d

dt
G(t)∗(ωFS)

∣∣∣∣
t=0

≤ (λN − λ0)ωFS .(4.28)

Proof. Let {zi}Ni=0 be the homogeneous coordinate of CPN . Let G =
G(t). Then we have

ωFS =
√
−1∂∂̄ log(|z0|2 + |z1|2 + · · · |zN |2)

=
√
−1

{
∂zi ∧ ∂̄z̄i
|z|2

+
(zi∂̄z̄i) ∧ (z̄j∂zj)

|z|4

}
,

G∗(ωFS) =
√
−1∂∂̄ log(|z̃0|2 + |z̃1|2 + · · · |z̃N |2)

=
√
−1

{
∂z̃i ∧ ∂̄ ¯̃zi
|z̃|2

+
(z̃i∂̄ ¯̃zi) ∧ (¯̃zj∂z̃j)

|z̃|4

}
,

where z̃i = Gijzj . Let {w1, · · · , wN} be local coordinate. At point z,
the matrix of ωFS is

E0 = J

(
Id

|z|2
− z̄τz

|z|4

)
J̄τ = JF0J̄

τ ,

where J is an N × (N + 1) matrix which is the Jacobi matrix
(
∂zj
∂wα

)
.

The matrix of ωG∗ωFS is

Et = JG

(
Id

|z̃|2
−

¯̃zτ z̃

|z̃|4

)
Ḡτ J̄τ = JFtJ̄

τ .

Clearly, we have

d

dt
Ft

∣∣∣∣
t=0

= B

(
Id

|z|2
− z̄τz

|z|4

)
+

(
Id

|z|2
− z̄τz

|z|4

)
B̄τ − z(B + B̄τ )z̄τ

|z|4
Id
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+
2z(B + B̄τ )z̄τ

|z|6
z̄τz − B̄τ z̄τz + z̄τzB

|z|4

=

{
B + B̄τ

|z|2
− (B + B̄τ )z̄τz + z̄τz(B + B̄τ )

|z|4
+
z(B + B̄τ )z̄τ

|z|6
z̄τz

}
− z(B + B̄τ )z̄τ

|z|4
F0

,M − z(B + B̄τ )z̄τ

|z|4
F0.

It follows that

d

dt
Et

∣∣∣∣
t=0

=
d

dt

{
JG

(
Id

|z̃|2
−

¯̃zτ z̃

|z̃|4

)
Ḡτ J̄τ

}∣∣∣∣
t=0

= J

(
M − z(B + B̄τ )z̄τ

|z|2
F0

)
J̄τ .

It is easy to check that

zMz̄τ = 0, zF0z̄
τ = 0, z

(
M − z(B + B̄τ )z̄τ

|z|4
F0

)
z̄τ = 0.

Without loss of generality, we can assume B + B̄τ is a diagonal matrix
diag(λ0, λ1, · · · , λN ). Let v = (v0, v1, · · · , vN ) be a vector in CN+1

satisfying

zv̄τ = v̄0z0 + v̄1z1 + · · ·+ v̄NzN = 0.

Then it is clear that

vMv̄τ =
v(B + B̄τ )v̄τ

|z|2
, vF0v̄

τ =
|v|2

|z|2
.

Therefore, we have

v

(
M − z(B + B̄τ )z̄τ

|z|2
F0

)
v̄τ

=
1

|z|4
{

(λ0|v0|2 + · · ·+ λN |vN |2)(|z0|2 + · · ·+ |zN |2)

−(λ0|z0|2 + · · ·λN |zN |2)(|v0|2 + · · ·+ |vN |2)
}

=
1

|z|4
{[

(λ0 − λ0)|z0|2 + (λ0 − λ1)|z1|2 + · · ·+ (λ0 − λN )|zN |2
]
|v0|2

+
[
(λ1 − λ0)|z0|2 + (λ1 − λ1)|z1|2 + · · ·+ (λ1 − λN )|zN |2

]
|v1|2

+ · · ·
+
[
(λN − λ0)|z0|2 + (λN − λ1)|z1|2 + · · ·+ (λN − λN )|zN |2

]
|vN |2

}
≤ (λN − λ0)

|v|2

|z|2
.
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Similarly, we have

v

(
M − z(B + B̄τ )z̄τ

|z|2
F0

)
v̄τ ≥ (λ0 − λN )

|v|2

|z|2
.

Note that zF0v̄
τ = 0. Therefore, we can apply the orthogonal de-

composition with respect to F0 to obtain that for every vector f =
(f0, f1, · · · , fN ) ∈ CN+1, we have∣∣∣∣f (M − z(B + B̄τ )z̄τ

|z|2
F0

)
f̄ τ
∣∣∣∣ ≤ (λN − λ0)

|f |2

|z|2
= (λN − λ0)fF0f̄

τ .

Let u ∈ T (1,0)
z CPN . Then we have

〈u, u〉ωFS = (uJ)F0(uJ)
τ
,∣∣∣〈u, u〉 d

dt
G∗(ωFS)|

t=0

∣∣∣ =

∣∣∣∣(uJ)

(
M − z(B + B̄τ )z̄τ

|z|2
F0

)
uJ

τ
∣∣∣∣

≤ (λN − λ0)(uJ)F0(uJ)
τ

≤ (λN − λ0)〈u, u〉ωFS .

By the arbitrary choice of u, then (4.28) follows directly from the above
inequality. q.e.d.

Lemma 4.35. Suppose LM ∈ K (n,A). Let ω̃t be the pull back of
the Fubini–Study metric by orthonormal basis of L with respect to ωt
and ht. Then we have the evolution inequality of ω̃t:

−2Aω̃t ≤
d

dt
ω̃t ≤ 2Aω̃t.(4.29)

Proof. Without loss of generality, it suffices to show (4.29) at time
t = 0.

Suppose {si}Ni=0 is an orthonormal basis at time 0, {s̃i}Ni=0 is an or-
thonormal basis at time t. They are related by s̃i = sjGji. Fix eL a
local representation of the line bundle L around a point x so that locally
we have sj = zjeL and s̃j = z̃jeL = zjGjieL. Then we have

ω̃0 =
√
−1∂∂̄ log

(
|z0|2 + |z1|2 + · · ·+ |zN |2

)
,

ω̃t =
√
−1∂∂̄ log

(
|z̃2

0 |+ |z̃1|2 + · · ·+ |z̃N |2
)
.

Let ι be the Kodaira embedding map induced by {si}Ni=0 at time 0.
Then it is clear that

ω̃0 = ι∗ωFS , ω̃t = ι∗(G∗ωFS).

Therefore, we have

d

dt
ω̃t

∣∣∣∣
t=0

= ι∗
(
d

dt
G∗(ωFS)

∣∣∣∣
t=0

)
.
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So (4.29) is reduced to the estimate

−2AωFS ≤
d

dt
G(t)∗(ωFS)

∣∣∣∣
t=0

≤ 2AωFS .(4.30)

However, note that

δik = GijḠkl

∫
M
〈sj , sl〉ht

ωnt
n!
.

Taking derivative on both sides at time 0 and denote Ġ by B, we obtain

0 = Bik + B̄ki +

∫
M

(−ϕ̇+ nλ−R)〈si, sk〉h0

ωn0
n!
.

Therefore, for every v ∈ CN+1, the following inequality holds.∣∣vi(Bij + B̄ji)v̄j
∣∣(4.31)

=

∣∣∣∣−viv̄j ∫
M

(−ϕ̇+ nλ−R)〈si, sj〉h0

ωn0
n!

∣∣∣∣ ≤ A|v|2.
In particular, each eigenvalue of the Hermitian matrix B + B̄τ has ab-
solute value bounded by A. Then (4.30) follows from Lemma 4.34.

q.e.d.

In view of Lemma 4.35, the following property is obvious now.

Proposition 4.36 (Bergman metric equivalence along time).
Suppose LM ∈ K (n,A). Then we have

e−2A|t|ω̃0 ≤ ω̃t ≤ e2A|t|ω̃0.(4.32)

In general, we cannot hope a powerful estimate like (4.32) holds for
metrics ωt, since such an estimate will imply the Ricci curvature is
uniformly bounded by A. However, if we only focus on points regular
enough, then we do have a similar weaker estimate.

Proposition 4.37 (Flow metric equivalence along time). Sup-
pose LM ∈ K (n,A), x ∈ Fr(M, 0). Then we have

1

C
ω0(x) ≤ ωt(x) ≤ Cω0(x),(4.33)

for every t ∈ [−1, 1]. Here C is a constant depending only on n,A and
r.

Proof. Recall that Theorem 1.3 is already proved at the end of Sec-
tion 4.1. In light of Theorem 1.3, up to raising the power of line bundle
if necessary, we may assume b is uniformly bounded from below. On the
other hand, for each holomorphic section S ∈ H0(M,L) satisfying the
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normalization condition
∫
M ‖S‖

2dv ,
∫
M ‖S‖

2
hdv = 1, it follows from

direct calculation that

∆‖S‖2 = ‖∇S‖2 − n‖S‖2 ≥ −n‖S‖2.

Moser iteration then implies that ‖S‖2 ≤ C point-wisely. Using the
expression (1.7), we then know b is uniformly bounded from above also.
Therefore, with out loss of generality, we can assume b is uniformly
bounded.

By short time two-sided pseudolocality, Theorem 4.7 and rescaling,
it suffices to show (4.33) for t = −1 and t = 1. At time 0, it is clear
that ω0(x) and ω̃0(x) are uniformly equivalent. The volume form ωn0 is
uniformly equivalent to ωnt . By the stability of ω̃, inequality (4.32), it
suffices to prove the following two inequalities hold at point x.

Λω1ω̃0 ≤ C,(4.34)

Λω0ω̃−1 ≤ C.(4.35)

We shall prove the above two inequalities separately.
Let w0 be defined as that before Lemma 3.3. Let w be the solution

of �w = 0, initiating from w0. By the heat kernel estimate and the
uniform upper bound of diameter of Bg(0)(x, r) under metric g(t) (c.f.
Lemma 4.21), we see that w(x, 1) is uniformly bounded away from 0.
Then Lemma 3.2 applies and we obtain that

Λω1(x)ω̃0(x) = F (x, 1) ≤ C

w(x, 1)
< C.

So we finish the proof of (4.34). The proof of (4.35) is similar. Modulo
time shifting, the only difference is that we do not know whether x is
very regular at time t = −1, so the construction of initial value of a
heat equation may be a problem. However, due to Proposition 2.12, we
can always find a point y0 ∈ Fcb}(M,−1) ∩ Bg(−1)(x, }). Consider the
heat equation w′, starting from a cutoff function supported around y0

at time t = −1. In light of uniform diameter bound of Bg(−1)(y0, })
under the metric g(0), w′(x, 0) is uniformly bounded away from 0. So
we can follow the proof of Lemma 3.2 to obtain that

Λω0(x)ω̃−1(x) <
C

w′(x, 0)
< C.

Therefore, (4.35) is proved. q.e.d.

Note that due to the two-sided pseudolocality, Theorem 4.7, we now
can use blowup argument, taking for granted that every convergence in
regular part takes place in smooth topology. Therefore, we can use the
blowup argument in the proof of Proposition 3.6, based on the Liouville
type theorem, Lemma 3.5. Then the following corollary follows directly
from Proposition 4.37.
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Corollary 4.38 (Long-time regularity improvement in two
time directions). Suppose LM ∈ K (n,A), r > 0, then

Fr(M, 0) ⊂
⋂

−1≤t≤1

Fδ(M, t),

for some δ = δ(n,A, r).

Now we are ready to prove Theorem 1.4, the long-time, two-sided
pseudolocality theorem.

Proof of Theorem 1.4. It follows from the combination of Corollary
4.38 and Proposition 4.6. q.e.d.

Suppose LMi ∈ K (n,A), xi ∈ Mi. Then for each time t ∈ [−1, 1]
we have

(Mi, xi, gi(t))
Ĉ∞−→ (M̄(t), x̄(t), ḡ(t)).(4.36)

Let us see how are the two time slice limits M̄(0) and M̄(1) related.
Clearly, by Theorem 1.4, the regular parts of M̄(0) and M̄(1) can be
identified. The relations among the singular parts at different time
slices are more delicate. For simplicity, we denote (M̄(0), x̄(0), ḡ(0)) by
(M̄, x̄, ḡ), denote (M̄(1), x̄(1), ḡ(1)) by (M̄ ′, x̄′, ḡ′). Let us also assume
Vol(Mi) is uniformly bounded. Then it is clear that both M̄ and M̄ ′

are compact by the uniform non-collapsing caused by Sobolev constant
bound. In light of the uniform partial-C0-estimate along the flow, with-
out loss of generality, we can assume that the Bergman function b is
uniformly bounded below. By the fundamental estimates in [37], we
obtain that the map

Id0 : (M̄, x̄, ḡ)→ (M̄, x̄, ˜̄g)

is a homeomorphism. Recall that (M̄, x̄, ˜̄g) is the limit of (Mi, xi, g̃i(0)),
where g̃i is the pullback of Fubini–Study metric. Similarly, we have
another homeomorphism map at time t = 1.

Id1 : (M̄ ′, x̄′, ḡ′)→ (M̄ ′, x̄′, ˜̄g′).

By Proposition 4.36, the pullback Fubini–Study metrics g̃i(t) are uni-
formly equivalent for t ∈ [−1, 1]. It follows that there is a Lipschitz map
Id01 between two time slices, for the pullback Fubini–Study metrics:

Id01 : (M̄, x̄, ˜̄g)→ (M̄ ′, x̄′, ˜̄g′).

Combining the previous steps and letting Ψ = Id−1
1 ◦ Id01 ◦ Id0, we

obtain that the map

Ψ : (M̄, x̄, ḡ)→ (M̄ ′, x̄′, ḡ′)

is a homeomorphism. By analyzing each component identity map, it is
clear that Ψ|R(M̄), where R(M̄) is the regular part of M̄ , maps R(M̄)
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to R(M̄ ′), as a biholomorphic map. Similarly, Ψ|S(M̄) is a homeomor-

phism to S(M̄ ′). Therefore, the variety structure of the M̄(t) does not
depend on time. We remark that the compactness of M̄ is not essen-
tially used here. If M̄ is noncompact, the above argument go through
formally if we replace the target embedding space CPN by CP∞. This
formal argument can be made rigorous by applying delicate localization
technique. However, in our applications, M̄ is always compact except
it is a bubble, i.e., a blowup limit. In this situation, we have the extra
condition |R| + |λ| → 0, then Ψ can be easily chosen as identity map,
due to Proposition 4.23.

From the above discussion, it is clear that the topology structure and
variety structure of M̄(t) does not depend on time. So we just denote
M̄(t) by M̄ . Then we can denote the convergence (4.36) by

(Mi, xi, gi(t))
Ĉ∞−→ (M̄, x̄(t), ḡ(t)),(4.37)

for each t. Hence, the limit family of metric spaces can be regarded as
a family of evolving metrics on the limit variety. Therefore, the above
convergence at each time t can be glued together to obtain a global
convergence

{(Mi, xi, gi(t)),−Ti < t < Ti}
Ĉ∞−→

{
(M̄, x̄, ḡ(t)),−T̄ < t < T̄

}
,(4.38)

where T̄ = lim
i→∞

ti. Clearly, ḡ(t) satisfies the Kähler Ricci flow equation

on the regular part of M̄ . Recall that we typically denote the Kähler
Ricci flow {(Mi, xi, gi(t)),−Ti < t < Ti} by Mi. Then we obtain the
convergence of Kähler Ricci flows (with base points):

(Mi, xi)
Ĉ∞−→ (M̄, x̄).(4.39)

If we further know the underlying space M̄ is compact, then the notation
can be even simplified as

Mi
Ĉ∞−→ M̄.(4.40)

Remark 4.39. The limit flow M̄ can be regarded as an intrinsic
Kähler Ricci flow on the normal variety M̄ . Actually, it is already clear
that M̄ is at least a weak super solution of Ricci flow, in the sense
of R.J. McCann and P.M. Topping ([44]). From the point of view of
Kähler geometry, when restricted to the potential level, the flow M̄
coincides with the weak Kähler Ricci flow solution defined by Song and
Tian ([56]), if M̄ is compact.

If we also consider the convergence of the line bundle structure, we
can obviously generalize the convergence in (4.39) as
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(LMi, xi)
Ĉ∞−→

(
LM, x̄

)
, if M̄ is non-compact,(4.41)

LMi
Ĉ∞−→ LM, if M̄ is compact.(4.42)

With these notations, we can formulate our compactness theorem as
follows.

Theorem 4.40 (Polarized flow limit). Suppose LMi ∈ K (n,A),
xi ∈Mi. Then we have

(LMi, xi)
Ĉ∞−→

(
LM, x̄

)
,

where LM is a polarized Kähler Ricci flow solution on an analytic nor-
mal variety M̄ . Moreover, if M̄ is compact, then it is a projective normal
variety.

Notice that we have already proved Theorem 1.5 now.

Proof of Theorem 1.5. The limit polarized flow on variety follows from
the combination of Theorem 4.40 and Theorem 4.19. The Minkowski di-
mension estimate of the singular set follows from Corollary 4.14.

q.e.d.

The properties of the limit spaces can be improved if extra conditions
are available.

Proposition 4.41 (KE limit). Suppose LMi ∈ K (n,A) satisfies∫ Ti

−Ti

∫
Mi

|R− nλ|dvdt→ 0.(4.43)

Then LM is a static, polarized Kähler Ricci flow solution. In other
words, ḡ(t) ≡ ḡ(0) and, consequently, are Kähler Einstein metric.

Suppose LM ∈ K (n,A) and λ > 0. Then it is clear that c1(M) > 0,
or M is Fano. Note that for every Fano manifold, we have a uniform
bound cn1 (M) ≤ C(n) (c.f. [34]). This implies that

1

A
≤ Vol(M) = cn1 (L) = λ−ncn1 (M) ≤ Cλ−n.

So λ is bounded away from above. If we assume λ is bounded away
from zero, then Vol(M) = cn1 (L) is uniformly bounded. Consequently,
diam(M) is uniformly bounded by non-collapsing, due to the Sobolev
constant bound. Therefore, if we have a sequence of LMi ∈ K (n,A)
with λi > λ0 > 0, we can always assume

λi → λ̄ > 0, LM Ĉ∞−→ LM,

without considering the base points.
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Proposition 4.42 (KRS limit). Suppose LMi ∈ K (n,A) satisfies

λi > λ0 > 0, µ

(
Mi, g(Ti),

λi
2

)
− µ

(
Mi, g(−Ti),

λi
2

)
→ 0,(4.44)

where µ is Perelman’s W -functional. Suppose LM is the limit of LM.
Then M is a gradient shrinking Kähler Ricci soliton. In other words,
there is a smooth real valued function f̂ defined on R(M̄) × (−T̄ , T̄ )
such that

f̂jk = f̂j̄k̄ = 0, Rjk̄ + f̂jk̄ − ĝjk̄ = 0.(4.45)

Proof. Without loss of generality, we may assume λi = 1. Let LM ∈
K (n,A). At time t = 1, let u be the minimizer of Perelman’s µ-
functional. Then solve the backward heat equation

�∗u = (−∂t −∆ +R− nλ)u = 0.

Let f be the function such that (2π)−ne−f = u. Then we have∫ 1

−1

∫
M

(2π)−n
{∣∣Rjk̄ + fjk̄ − gjk̄

∣∣2 + |fjk|2 + |fj̄k̄|2
}
e−fdv

≤ µ
(
M, g(1),

1

2

)
− µ

(
M, g(−1),

1

2

)
≤ µ

(
M, g(T ),

1

2

)
− µ

(
M, g(−T ),

1

2

)
→ 0.

At time t = 1, f has good regularity estimate for it is a solution of
an elliptic equation. For t ∈ (−1, 1), we have estimate of f from heat
kernel estimate. It is not hard to see that, on the space-time domain
R× (−1, 1), f converges to a limit function f̂ satisfying (4.45). Clearly,
the time interval of (−1, 1) can be replaced by (−a, a) for every a ∈
(1, T̄ ). For each a, we have a limit function f̂ (a), which satisfies equation
(4.45) and, therefore, has enough a priori estimates. Then let a → T̄

and take diagonal sequence limit, we obtain a limit function f̂ (T̄ ) which
satisfies (4.45) on R × (−T̄ , T̄ ). Without loss of generality, we still

denote f̂ (T̄ ) by f̂ . Then f̂ satisfies (4.45) on R× (−T̄ , T̄ ). q.e.d.

Remark 4.43. It is an interesting problem to see whether (M̄, ḡ(0))
is a conifold in Theorem 4.40. This question has affirmative answer
when we know (M̄, ḡ(0)) has Einstein regular part, following the proof
of Theorem 2.5 and Proposition 3.25. In particular, the limit spaces in
Proposition 4.41 and Proposition 4.23 are Kähler Einstein conifolds, in
the sense of Chen–Wang (c.f. Definition 1.2 of [29]).

5. Applications

In this section, we will focus on the applications of our structure
theory to the study of anti-canonical Kähler Ricci flows.
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5.1. Convergence of Kähler Ricci flows. Based on the structure
theory, Theorem 1.6 can be easily proved.

Proof of Theorem 1.6. In view of the fundamental estimate of Perel-
man (c.f. [55]), in order (1.4) to hold, we only need a Sobolev constant
bound, which was proved by Q. Zhang (c.f. [76]) and R. Ye (c.f. [75]).
Therefore, the truncated flow sequences locate in K (n,A) for a uni-
form A. It follows from Theorem 1.5 that the limit Kähler Ricci flow
exists on a compact projective normal variety. The limit normal variety
is Q-Fano since it has a limit anti-canonical polarization. According
to Proposition 4.42, the boundedness and monotonicity of Perelman’s
µ-functional force the limit flow to be a Kähler Ricci soliton. The vol-
ume estimate of r-neighborhood of S follows from Corollary 4.32 and
estimate (3.34) of [29]. q.e.d.

We continue to discuss applications beyond Theorem 1.6. The fol-
lowing property is well known to experts, we write it down here for the
convenience of the readers.

Proposition 5.1 (Connectivity of limit moduli). Suppose M =
{(Mn, g(t)), 0 ≤ t <∞} is an anti-canonical Kähler Ricci flows on Fano
manifold (M,J). Let M be the collection of all the possible limit space
along this flow. Then M is connected.

Proof. If the statement was wrong, we have two limit spaces M̄a and
M̄b, locating in different connected components of M . Let Ma be the
connected component containing M̄a. Since Ma is a connected com-
ponent, it is open and closed. So its closure Ma is the same as Ma.
Clearly, Ma is compact under the Gromov–Hausdorff topology. Define

d(X,Ma) , inf
Y ∈Ma

dGH(X,Y ),(5.1)

ηa , inf
X∈M \Ma

d(X,Ma).(5.2)

Clearly, ηa > 0 by the compactness of Ma and the fact that Ma is a
connected component.

Without loss of generality, we can assume (M, g(ti)) converges to M̄a,
(M, g(si)) converges to M̄b, for ti → ∞ and si > ti. For simplicity of
notation, we denote (M, g(ti)) by Mti , (M, g(si)) by Msi . For large i,
we have

dGH(Mti , M̄a) <
ηa
100

, dGH(Msi , M̄b) <
ηa
100

.(5.3)

In particular, the above inequalities imply that

d(Mti ,Ma) <
ηa
100

, d(Msi ,Ma) >
99

100
ηa.
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By continuity of the flow, we can find θi ∈ (ti, si) such that

d(Mθi ,Ma) =
1

2
ηa,

whose limit form is

d(M̄c,Ma) =
1

2
ηa,(5.4)

where M̄c is the limit of Mθi . However, (5.4) contradicts with (5.2) and
the fact ηa > 0. q.e.d.

Proposition 5.1 can be generalized as follows.

Proposition 5.2 (KRS limit moduli). Suppose that

Ms = {(Mn
s , gs(t)), 0 ≤ t <∞, s ∈ X}

is a smooth family of anti-canonical Kähler Ricci flows on Fano mani-
folds (Ms, Js), where X is a connected parameter space. We call (M̄, ḡ)
as a limit space if (M̄, ḡ) is the Gromov–Hausdorff limit of (M, gsi(ti))
for some ti →∞ and si → s̄ ∈ X.

Suppose f(s) = lim
t→∞

µ

(
gs(t),

1

2

)
is an upper semi-continuous func-

tion on X. Then we have the following properties.

• Every limit space is a Kähler Ricci soliton.

• Let M̃ be the collection of all the limit spaces. Then M̃ is con-
nected under the Gromov–Hausdorff topology.

Proof. We shall only show that every limit space is a Kähler Ricci

soliton. The connectedness of M̃ can be proved almost the same as
Proposition 5.1. So we leave the details to the readers.

Suppose si → s̄. Fix ε, we can choose Tε such that

µ

(
gs̄(Tε),

1

2

)
> fs̄ − ε.

By the smooth convergence of gsi(Tε) and the upper semi-continuity of
f , we have

µ

(
gsi(Tε),

1

2

)
> fsi − ε,

for large i. Recall that ti → ∞. Therefore, it follows from the mono-
tonicity of Perelman’s functional that

µ

(
gsi(Tε),

1

2

)
< µ

(
gsi(ti − 1),

1

2

)
< lim

t→∞
µ

(
gsi(t),

1

2

)
= fsi .

Hence, we have

0 ≤ µ
(
gsi(ti + 1),

1

2

)
− µ

(
gsi(ti − 1),

1

2

)
< ε,
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for large i. By the arbitrary choice of ε, we obtain

lim
i→∞

{
µ

(
gsi(ti + 1),

1

2

)
− µ

(
gsi(ti − 1),

1

2

)}
= 0.

Therefore, (M, gsi(ti)) converges to a Kähler Ricci soliton, in light of
Proposition 4.42. q.e.d.

The gap between singularity and regularity in Theorem 1.2 has a
global version as follows.

Proposition 5.3 (Gap around smooth KE). Suppose (M̃, g̃, J̃) is
a compact, smooth Kähler Einstein manifold which belongs to K (n,A)
when regarded as a trivial polarized Kähler Ricci flow solution. Then
there exists an ε = ε(n,A, g̃) with the following properties.

Suppose LM ∈ K (n,A) and dGH((M̃, g̃), (M, g(0))) < ε, then we
have

cvr(M, g(0)) >
1

2
cvr(M̃, g̃).

Proof. It follows from the continuity of canonical volume radius un-
der the Ĉ∞-Cheeger–Gromov convergence (c.f. Proposition 3.33 and
Corollary 3.41). q.e.d.

Proposition 5.3 means that there is no singular limit space around
any given smooth Kähler Einstein manifold. Clearly, the single smooth
Kähler Einstein manifold in this Proposition can be replaced by a fam-
ily of smooth Kähler Einstein manifolds with bounded geometry. The
gap between smooth and singular Kähler Einstein metrics can be con-
veniently used to carry out topology argument.

Theorem 5.4 (Convergence of KRF family). Suppose that

Ms = {(Mn
s , gs(t), Js), 0 ≤ t <∞, s ∈ X}

is a smooth family of anti-canonical Kähler Ricci flows on Fano mani-
folds (Ms, Js), where X is a connected parameter space. Moreover, we
assume that

• The Mabuchi’s K-energy is bounded from below along each flow.
• Smooth Kähler Einstein metrics in all adjacent complex structures

(c.f. Definition 1.4 of [23]) have uniformly bounded Riemannian
curvature.

Let Ω be the collection of s such that the flow gs has bounded Riemannian
curvature. Then Ω = ∅ or Ω = X.

Proof. It suffices to show that Ω is both open and closed in X.
The openness follows from the stability of Kähler Ricci flow around a

given smooth Kähler Einstein metric, due to Sun and Wang (c.f. [59]).
Suppose s ∈ Ω, then the flow gs converges to some Kähler Einstein
manifold (M ′, g′, J ′), which is the unique Kähler Einstein metric in its
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small smooth neighborhood. By continuous dependence of flow on the
initial data, and the stability of Kähler Ricci flow in a very small neigh-
borhood of (M ′, g′, J ′), it is clear that s has a neighborhood consisting
of points in Ω. Therefore, Ω is an open subset of X.

The closedness follows from Proposition 5.2. Suppose si ∈ Ω and
si → s̄ ∈ X. Due to the fact that the Mabuchi’s K-energy is bounded
from below along each Kähler Ricci flow we are concerning now, the limit
Perelman functional is always the same (c.f. [23]). Therefore, we can
apply Proposition 5.2 to show that every limit space is a possibly singu-
lar Kähler Einstein. However, along every gsi , we obtain a smooth limit
Kähler Einstein manifold (M ′, g′, J ′), which has uniformly bounded cur-
vature, as a Kähler Einstein manifold in an adjacent complex structure.
Note that the diameter of M ′ is uniformly bounded by Myers theorem.
The volume of M ′ is a topological constant. Therefore, the geometry
of (M ′, g′) are uniformly bounded. By a generalized version of Propo-
sition 5.3, (M ′, g′, J ′) is uniformly bounded away from singular Kähler
Einstein metrics. Due to Proposition 5.2, the connectedness of M forces
that the flow gs̄ must converge to a smooth (M ′, g′, J ′). In particular,
gs̄ has bounded curvature. Therefore, s̄ ∈ Ω and Ω is closed. q.e.d.

The two assumptions in Theorem 5.4 seem to be artificial. However,
if Js is a trivial family or a test configuration family, by the unique
degeneration theorem of Chen–Sun (c.f. [23]), all the smooth Kähler
Einstein metrics form an isolated family, then the second condition is
satisfied automatically. On the other hand, by the existence of Kähler
Einstein metrics in the weak sense, one can also obtain the lower bound
of Mabuchi’s K-energy (c.f. [2], [35], [16]). Consequently, Theorem 5.4
can be applied to these special cases and obtain the following corollaries.

Corollary 5.5 (Convergence to given KE, c.f. Tian–Zhu [68],
Collins–Székelyhidi [33]). Suppose (M,J) is a Fano manifold with a
Kähler Einstein metric gKE. Then every anti-canonical Kähler Ricci
flow on (M,J) converges to (M, gKE , J).

Proof. Let ωKE be the Kähler Einstein metric form. Then every met-
ric form ω can be written as ωKE +

√
−1∂∂̄ϕ for some smooth function

ϕ. Define

ωs = ωKE + s
√
−1∂∂̄ϕ, s ∈ [0, 1].

It follows from Theorem 5.4 that the Kähler Ricci flow from every ωs
has bounded curvature, and, consequently, converges to ωKE , by the
uniqueness theorem of Chen–Sun (c.f. [23]). In particular, the flow
start from ω converges to ωKE . q.e.d.

Corollary 5.6 (Convergence of a test configuration). Suppose
M is a smooth test configuration, i.e., a family of Fano manifolds
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(Ms, Js) parameterized by s in unit disk D ⊂ C1 with a natural C∗-
action. Suppose each fiber is smooth and the central fiber (M0, g0, J0) ad-
mits Kähler Einstein metric (M0, gKE , J0). Then each Kähler Ricci flow
starting from (Ms, gs, Js) for arbitrary s ∈ D converges to (M0, gKE , J0).

Proof. Theorem 5.4 can be applied for X = D. The central Kähler
Ricci flow converges by Corollary 5.5. Therefore, the Kähler Ricci flow
on each fiber has bounded curvature and converge to some smooth
Kähler Einstein metric, which can only be (M0, gKE , J0), due to the
uniqueness theorem of Chen–Sun again. q.e.d.

Remark 5.7. Corollary 5.5 was announced by G. Perelman. The
first written proof was given by Tian–Zhu in [68] whenever there is no
non-trivial holomorphic vector field. The general case was proved by
Collins–Székelyhidi in [33]. The strategy of Corollary 5.5 was inspired
by that in [69]. Corollary 5.5-Corollary 5.6 have the corresponding
Kähler Ricci soliton versions. These generalizations will be discussed in
a separate paper.

5.2. Degeneration of Kähler Ricci flows. In this subsection, we
shall prove Theorem 1.10 and related corollaries.

The following Theorem is due to Jiang (c.f. [40]). It is a generalization
of the estimate of Perelman (c.f. [55]).

Theorem 5.8 (Generalization of Perelman’s estimate). Sup-
pose that

M = {(Mn, g(t), J), 0 ≤ t <∞}

is an anti-canonical Kähler Ricci flow solution satisfying∥∥Ric−∥∥
C0(M)

+ | log Vol(M)|+ CS(M, g(0)) ≤ F(5.5)

at time t = 0. Then we have

|R|+ |∇ϕ̇|2 ≤ C

tn+1
,(5.6)

for some constant C = C(n, F ).

Note that (5.6) implies a uniform bound of diameter at each time
t > 0, by the uniform bound of Perelman’s functional. Then one can
easily deduce a uniform bound (depending on t) of ‖ϕ̇‖C1(M). Combing

this with the Sobolev constant estimate along the flow (c.f. [76], [75]),
we see that

‖R‖C0(M) + ‖ϕ̇‖C1(M) + CS(M, g(t)) ≤ C(n, F, t),(5.7)

for each t > 0. Therefore, away from the initial time, we can always
apply our structure theory.
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Theorem 5.9 (Weak convergence with initial time). Suppose
Mi = {(Mn

i , gi(t), Ji), 0 ≤ t < ∞} is a sequence of anti-canonical
Kähler Ricci flow solutions, whose initial time slices satisfy estimate
(5.5) uniformly. Then we have

(Mi, gi)
G.H.−→ (M̄, ḡ),(5.8)

where the limit is a weak Kähler Ricci flow solution on a Q-Fano normal
variety M̄ , for time t > 0. Moreover, the convergence can be improved
to be in the Ĉ∞-Cheeger–Gromov topology for each t > 0, i.e.,

(Mi, gi(t))
Ĉ∞−→ (M̄(t), ḡ(t)),(5.9)

for each t > 0.

Clearly, if (Mi, gi) is a sequence of almost Kähler Einstein metrics in
the anti-canonical classes (c.f. [67]), then (M̄(0), ḡ(0)) and (M̄(1), ḡ(1))
are isometric to each other, due to Proposition 4.41 and the estimate
in [67]. In this particular case, it is easy to see that partial-C0-estimate
holds uniformly at time t = 0 for each i, at least intuitively. Actually,
by the work Jiang [40], it is now clear that partial-C0-estimate at time
t = 0 only requires a uniform Ricci lower bound.

Note that the evolution equation of the anti-canonical Kähler Ricci
flow is

ϕ̇ = log
ωnϕ
ωn

+ ϕ− uω,(5.10)

where uω is the Ricci potential satisfying the normalization condition∫
M e−uω ω

n

n! = (2π)n. By maximum principle and Green function argu-
ment, we have the following property (c.f. [40]).

Proposition 5.10 (Potential equivalence). Suppose that

M = {(Mn, g(t), J), 0 ≤ t <∞}
is an anti-canonical Kähler Ricci flow solution satisfying (5.5). At time
t = 0, let ϕ = 0 and uω satisfy the normalization condition. Then we
have

C(1− et) ≤ ϕ ≤ Cet,(5.11)

for a constant C = C(n, F ).

Let b(·, t) be the Bergman function at time t. By definition, at
point x ∈ M and time t = 0, we can find a holomorphic section
S ∈ H0(M,K−1

M ) such that∫
M
‖S‖2h(0)

ωn

n!
= 1, b(x, 0) = log ‖S‖2h(0)(x).

Note that ‖S‖2h(1) = ‖S‖2h(0)e
−ϕ(1). By (5.11), it is clear that ‖S‖2h(1) and

‖S‖2h(0) are uniformly equivalent. On the other hand, ∆‖S‖2 ≥ −n‖S‖2.
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At time t = 0, applying Moser iteration implies that ‖S‖2h(0) ≤ C.

Hence, we obtain ‖S‖2h(1) ≤ C. At time t = 1, let S̃ be the normalization

of S, i.e., S̃ = λS such that
∫
M

∥∥∥S̃∥∥∥2

h(1)

ωn1
n! = 1. Then we have

λ−2 =

∫
M
‖S‖2h(1)

ωn1
n!
≤ C.

It follows that

b(x, 1) ≥ log
∥∥∥S̃∥∥∥2

h(1)
(x) = log ‖S‖2h(1)(x) + log λ2

= log ‖S‖2h(0)(x)− ϕ(1) + log λ2

= b(x, 0)− ϕ(1) + log λ2

≥ b(x, 0)− C.
By reversing time, we can obtain a similar inequality with reverse di-
rection. Same analysis applies to b(k) for each positive integer k. So we
have the following property.

Proposition 5.11 (Bergman function equivalence). Suppose that

M = {(Mn, g(t), J), 0 ≤ t <∞}
is an anti-canonical Kähler Ricci flow solution satisfying (5.5). For each
positive integer k, there exists C = C(n, F, k) such that

b(k)(x, 0)− C ≤ b(k)(x, 1) ≤ b(k)(x, 0) + C,(5.12)

for all x ∈M .

In view of Theorem 5.9, partial-C0-estimate holds at time t = 1,
which induces the partial-C0-estimate at time t = 0, by Proposition 5.11.
Therefore, the following theorem is clear now.

Theorem 5.12 (Partial-C0-estimate at initial time). Suppose
M = {(Mn, g(t), J), 0 ≤ t <∞} is an anti-canonical Kähler Ricci flow
solution satisfying (5.5). Then

inf
x∈M

b(k0)(x, 0) ≥ −c0,

for some positive integer k0 = k0(n, F ) and positive number c0 =
c0(n, F ).

By the Sobolev constant estimates for manifolds with uniform positive
Ricci curvature, it is clear that Theorem 1.10 follows from Theorem 5.12
directly. It is also clear that Corollary 1.11 follows from Theorem 5.12.

The proof of Corollary 1.12 is known in literature (c.f. [61]), provided
the partial-C0-estimate along the Kähler Ricci flow. We shall be sketchy
here. In fact, due to the work of S. Paul ([47], [48]) and the argument
in section 6 of Tian and Zhang ([70]), one obtains that the I-functional
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is bounded along the flow. Then the Kähler Ricci flow converges to a
Kähler–Einstein metric, on the same Fano manifold.

It is an interesting problem to study the K-stability through the
Kähler Ricci flow. Based on Theorem 1.6, the weak compactness of
polarized Kähler Ricci flow, we are able to give an alternative Kähler
Ricci flow proof of the stability theorem (Yau’s conjecture) of Chen–
Donaldson–Sun. Interested readers are referred to [24] for the de-
tails.
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