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1. Introduction

Foundational work of André and Quillen defined notions of homology and cohomology

for commutative rings [1,10]. This provided a natural way to understand the deforma-

tions of a commutative ring, connecting them to derivations, providing a condition for
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étale-ness, and building a natural long-exact sequence analogous to those from topology
for a triple. Unpublished work of Kriz lifted this to structured ring spectra, showing
that certain Postnikov invariants can be recast as André—Quillen cohomology groups [6].
Basterra extended this, producing the theory of topological André—Quillen homology of
a commutative ring spectrum [2]. This work was then extended by Basterra—Mandell,
who showed that TAQ with coefficients is essentially the only homology theory on com-
mutative ring spectra and who explored the basics of spectrum objects in commutative
ring spectra [3].

In the G-equivariant context for a finite group G, the role of abelian groups in non-
equivariant algebra is played by Mackey functors. The category of Mackey functors is a
closed symmetric monoidal category with symmetric monoidal product, the box product.
In addition to the expected generalization of commutative rings to simply commutative
monoids for the box product, there is a poset of generalizations of the notion of commu-
tative rings to the G-equivariant context: the incomplete Tambara functors [4]. These
interpolate between Green functors, the ordinary commutative monoids for the box prod-
uct, and Tambara functors [12]. The distinguishing feature for [incomplete] Tambara
functors is the presence of certain multiplicative transfer maps, called norm maps. For a
Green functor, we have no norm maps; for a Tambara functor, we have norm maps for
any pair of subgroups H C K of G.

This paper explores three closely related themes from classical commutative algebra
in the setting of Tambara functors: square-zero extensions, derivations, and Kéahler dif-
ferentials. Strickland initiated this study, showing that in stark contrast to the classical
case, Quillen’s abelian group objects in Tambara functors over a fixed Tambara functor R
properly contains the category of R-modules. In particular, the André-Quillen homology
groups are in general more complicated than simply the derived functors of derivations
into an R-module. In this paper, we explain how to rectify this situation, showing that
the correct analogue of the abelian group objects is the Mackey functor objects:

Theorem. The square-zero extension gives an equivalence of categories between the cat-
egory of R-modules and the category of Mackey functor objects in the category of
S-Tambara functors augmented to R.

Classically, maps into a square-zero extension are classified by derivations, and with
the appropriate notion, such a thing is true here. Classically, a derivation turns products
to sums. We define below (Definition 4.1) a “genuine derivation” which plays the equiv-
ariant role, converting twisted products (the norms) into twisted sums (the transfers).

Theorem. The set of maps from an S-Tambara functor C augmented to R to a square-
zero extension R x M is naturally isomorphic to the set of genuine S-derivations of C
into M.

Finally, there is an R-module of genuine Kéahler differentials (Definition 5.4) which
receives the universal genuin S-derivation from R.
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Theorem. There is an R-module Q}éfs and a universal genuine S-derivation d: R —

Q}é?s. This has the property that genuine S-derivations from R to an R-module M are

in natural bijective correspondence with S-module maps Q}fs - M.

Notational conventions

In this paper, G will always denote a finite group. We will usually reserve the letters
H and K for subgroups of GG. Additionally, we will denote coefficient systems, Mackey
functors, Tambara functors, and related constructions with underlined capital Roman
letters to distinguish them from the non-equivariant objects.

Acknowledgments
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2. Brief review of Tambara functors
2.1. Ordinary Tambara functors

Definition 2.1. Let P¢ denote the category of polynomials in G-sets. The objects are
finite G-sets, and the morphisms are isomorphism classes of diagrams

Composition in this category is a bit trickier to describe, so it is convenient to name
a generating collection of morphisms and then describe their commutation relations.

Definition 2.2. Let f: S — T be a map of finite G-sets. Then let
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Then any polynomial can be written as a composite of these:
_ f g h
ThoNgoRy=[S«—U =V —=T].
These have the following relations.

Proposition 2.3. R gives a contravariant functor from Set® into P¢. N and T give

covariant ones.

Proposition 2.4. If we have a pullback diagram of finite G-sets

then we have
RgONf :Nf/ ORg/ G/ﬂd RgOTf :Tf/ ORg/.

The interchange of N and T is trickier. Recall that if f: S — T is a map of finite
G-sets, then the pullback functor

£ Setfp — Setfy
has a right adjoint: the dependent product [] f-
Definition 2.5. An exponential diagram in Set is a diagram (isomorphic to one) of the

form

’

S<t A<l SurrA

T A.
e

Proposition 2.6. If we have an exponential diagram

gt A<l §xp]], A

T I1, 4.
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then
Ng OTh = Th/ ONg/ ORf'.

With these morphisms, the disjoint union of finite G-sets becomes the product in the
category PC.

Definition 2.7. A semi-Tambara functor is a product preserving functor P¢ — Set.
A Tambara functor is a semi-Tambara functor R for which R(T') is group-complete for
all T € Set®.

Tambara showed that the group-completion functor can be applied to any semi-
Tambara functor, giving a Tambara functor.

There are several related categories of polynomials which give other flavors of Tambara
functors. Recall that a subgraph of a category C is “wide” if it contains all of the objects.

Definition 2.8. Inside the category P¢ are three important wide sub-graphs:

(1) PS_ where the map g in a polynomial is an isomorphism,

(2) ngi where the map ¢ in a polynomial is an epimorphism, and

(3) 7396; where the map ¢ in a polynomial preserves isotropy in the sense that for all
u € U, the stabilizer of g(u) is that of u.

Proposition 2.9 (//, Prop. 2.12]). The subgraphs Pgo, ngw and Pﬁ are subcategories
of P in which the disjoint union of finite G-sets is the product.

Proposition 2.10 ([, Prop. /.5]). A product preserving functor PS, — Set is a semi-
Mackey functor.

Proposition 2.11 (/11, Prop. 12.11]). A product preserving functor 735;1 — Set is a semi-

Green functor.

The category of Mackey functors is a closed symmetric monoidal category. The sym-
metric monoidal product is called the box product and is the Day convolution product of
the tensor product of abelian groups with the Cartesian product of finite G-sets. Classi-
cally, a commutative Green functor is a commutative monoid under the box product. In
particular, there is an obvious notion of the category of modules over a Green functor,
and this is a symmetric monoidal category if the Green functor is commutative.

Expanding out what it means to be a commutative monoid under the box product,
we see that a [commutative] Green functor is a Mackey functor R such that for all
finite G-sets T, R(T') is commutative ring, such that all restriction maps are maps of
commutative rings, and such that if f: T — T’ is a map of finite G-sets, then we have
the Frobenius reciprocity relation
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a-Ty(b) =T¢(Ry(a) - b)

for all a € R(T") and b € R(T).
There is a similar description for Tambara functors.

Proposition 2.12 (/7/). A Tambara functor is a commutative Green functor R together
with norm maps

Nj;: R(G/H) — R(G/K)

for all H C K C G. These are maps of multiplicative monoids and they satisfy certain
universal formulae expressing the norm of a sum and the norm of a transfer.

The exact formulae for the norms of a transfer will not matter for us here; it suffices
that such a formula exists. For a sum, we need slightly more information. This was also
analyzed by Mazur, and her analysis relative to this proposition is visibly independent
of the form of the finite group [7, Thm. 2.3].

Definition 2.13. For finite G-sets T and S, let Map(.S,T') be the set of all (not necessarily
equivariant) maps from S to T, endowed with the conjugation action.

Proposition 2.14. Consider the maps V: G/HI1G/H — G/H and w: G/H — *. Then
we have an isomorphism of G-sets over *

[Iv= (Map(G/H, 0,11) *>

where {0,1} = (G/HU G/H)/G has a trivial action.
The diagram

G/H <~— G/HUG/H <— G/H x Map(G/H, {0,1})

* Map(G/H,{0,1})

is an exponential diagram, where
€(vH, f) := (vH, f(vH)) € G/H x {0,1} = G/H 1 G/H.
Proposition 2.14 gives the formula for the norm of a sum of elements:

Nfi(a+0b) =Ty 0 Ngo Ry(a,b).
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When discussing differentials and the universal differential, we will need to work with
non-unital Tambara functors. These can be defined simply from ngi.

Definition 2.15. A non-unital semi-Tambara functor is a product preserving functor
ngi — Set. It is a non-unital Tambara functor if it is group complete.

Just as with ordinary Tambara functors, we can view a non-unital Tambara functor
as a non-unital Green functor together with norm maps that satisfy the same universal
formulae.

2.2. Relative Tambara functors

If S is a Tambara functor, then we can talk about Tambara functors and non-unital
Tambara functors in the category of S-modules.

Definition 2.16. If S is a Tambara functor, then an S-Tambara functor is a Tambara
functor R together with a map S — R of Tambara functors.

Let S-Tamb denote the corresponding comma category of Tambara functors equipped
with a map from S.

Definition 2.17. A non-unital S-Tambara functor is an S-module R equipped with norm
maps Ny for any surjection f: T — T that satisfies

Ny(r-s) = Ng(r) - Ng(s)
for all s € S(T') and r € R(T).
Both of these have a more diagrammatic approach.

Proposition 2.18. Let S be a Tambara functor and let R be a [non-unital] Tambara func-
tor. Assume that R is a module over S, and let

p: SOR — R

be the action of S on R. Then R is a [non-unital] S-Tambara functor if and only if u is
a map of [non-unital] Tambara functors.

Remark 2.19. The category of modules over a Tambara functor S inherits a G-symmetric
monoidal structure from the category of Mackey functors. The G-commutative monoids
here are exactly the S-Tambara functors, and the non-unital G-commutative monoids
are exactly the non-unital S-Tambara functors.
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3. Abelian group and Mackey functor objects

We recall work of Strickland (building on work of Quillen) on the homology of a
Tambara functor.

Definition 3.1. Let R be an S-Tambara functor.

Let Aug, g be the category of R-Tambara functors augmented to R: R-Tambara func-
tors T with a map e: T — R splitting the unit. The maps are those R-Tambara functor
maps that commute with the augmentation.

Let Ab/gr denote the category of abelian group objects in Aug) .

Let R-Mod denote the category of modules over the underlying Green functor for R
in the category of Mackey functors.

There is an obvious “augmentation ideal” functor
I: Ab)r — R-Mod

which assigns to an abelian group object B the kernel of B — R. In commutative
rings, this functor is half of an equivalence of categories, with quasi-inverse given by the
square-zero extension. Strickland shows that square-zero extensions make perfect sense
here, but that these are not inverse equivalences.

Proposition 3.2 (/11, Prop. 14.7]). There is a “square-zero extension functor”
R x (—): R-Mod — Ab/p

which sends an R-module to the square-zero extension in Green functors and which
endows the module summand with trivial norms.
These are not inverse equivalences: the map R x (—) is not essentially surjective.

In the square-zero extension, the S-Tambara functor structure is induced by the nat-
ural maps of Tambara functors

S R0 B M.

The issue here is with norms in the augmentation ideal. The only condition we deduce
from this being an abelian group object is that all products vanish. However, this only
tells us about the restrictions of norms to various subgroups, not to the norms themselves.
To better explain the failure of this equivalence and to prove the more accurate statement,
we being with a simple observation.

Proposition 3.3. If R and B are Tambara functors, then the set of Tambara functor maps
between them has a natural extension to a coefficient system of sets:
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Tamb(R, B)(G/H) = Tamb" (i}, R, i} B) C Mackey™ (i} R, i} B).

The restriction maps on Mackey functors give rise to the restriction maps in Tamb. This
provides an enrichment in coefficient systems for the category T amb, where composition
and the units are level-wise.

The categories S-Tamb and Aug,g are also enriched in coefficient systems and form

a sub-coefficient system of Tamb.
The following is an immediate application of the Yoneda Lemma.

Proposition 3.4. An abelian group structure on B — R is the same as a natural lift of
.Aug/R(—,ﬁ) to a coefficient system of abelian groups.

The Yoneda Lemma also better explains the coeflicient system structure here. The
restriction functor ¢}, from G-Tambara functors augmented over R to H-Tambara func-
tors augmented over i}, R has a right adjoint: coinduction [11, Prop. 18.3]. This has a
very simple formulation: for any T € Set®,

Colndf(R)(T) := R(iT).

Similarly, if f: T — T’, then

Tf = Ti;{f
Nf = Nl}{f
Rf = Ri?lf'

Since CoIndg is the right adjoint to i};, we have a natural map of Tambara functors
nr: R — CoInd$ il R.

This gives us the right adjoint to i}; in the category S-Tamb: if R is an i};S-Tambara
functor, then CoIndg R is an S-Tambara functor via the composite

n G
S 2 Colnd %8 LA, (oInd€ R.

We can also define a relative version of coinduction.

Definition 3.5. If B N i5; R is a Tambara functor over %, R, then let Fy(G, B) be the
pullback
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Fu (G, B) CoInd$, B
Fu(G.f) \L \L CoIndg f
R CoIndg iy R.

Proposition 3.6. If B is an i}3;.S-Tambara functor and R is an S-Tambara functor, then
the pullback of the structure maps gives F (G, B) the structure of an S-Tambara functor.

Proof. Consider the diagram

Coln dH nB G
S =, CoInd$, ZHS —— Colnd; B

MR CoIndg Mg, R l /
G
ColndF €

R T CoInd$, %, R.

The square commutes since 7 is a natural transformation. The triangle commutes since
B is an i};S-Tambara functor augmented to i, R. O

Proposition 3.7. The functor Fy(G,—) is the right-adjoint to the restriction functor i}y
in the category of Tambara functors augmented over R.

The unit of the restriction-coinduction adjunction is induced by the natural commu-
tative square

B —>*Colnd% i, B

f l l CoInd% i f

R — CoIndH 1y R.

The Yoneda Lemma now also describes the restriction maps in the coefficient system

S-Tamb.
Proposition 3.8. The restriction maps in
Aug . (C, B)

are induced by the natural maps ng: B — Fu(G,i5B).
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To fully understand the structure, we extend this coefficient system in the obvious
way to a product preserving functor

Aug, . (C, B): (Set®H)™ — Set.
This part is also representable.

Proposition 3.9 ([}, Cor. 6.7]). If B is a Tambara functor and T is a finite G-set, then
the Mackey functor

By = B(T x -)

has a canonical Tambara functor structure.
When T = G/H, we have a natural isomorphism

Bgp = ColInd$, % B.
Since the Cartesian product distributes over disjoint union, the following is immediate.

Proposition 3.10. If B is a Tambara functor and Ty and Ty are finite G-sets, then we
have a natural isomorphism of Tambara functors

~J
Br,ur, = Br, X Br,.

Combining this with the units of the restriction-coinduction adjunction then gives the
following.

Proposition 3.11. If B is a Tambara functor, then for any finite G-set T, there is a
natural map of Tambara functors

B — Br.
In particular, if B is an S-Tambara functor, then B is canonically so for any T

Using all of this we can define a version of this in the category of S-Tambara functors
augmented to R.

Definition 3.12. If B — R is an S-Tambara functor augmented to R and if T is a finite
G-set, then let F(T, B) be the pullback
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Proposition 3.13. If B is an S-Tambara functor augmented to R and if Ty and Ty are
finite G-sets, then we have a natural isomorphism

F(T\ x Ty, B) = F(T, F(T1, B)).

Proof. Since the Cartesian product of finite G-sets is associative up to natural isomor-
phism, we have a natural isomorphism

(ﬁTl )T2 = ETl xXTy*

The result then follows from observing that both Tambara functors are the pullback of
the diagram

BTl X TQ D

|

E ETl X Tg N

Having symmetric monoidal functors which act as symmetric monoidal powers indexed
by a G-set is exactly one of the ways to parse the notion of a G-symmetric monoidal
category [5, Def. 3.3], so we conclude the following [5].

Theorem 3.14. With coinduction as categorical transfer maps, the category of Tambara
functors augmented over R becomes a G-symmetric monoidal category. The internal

tensoring with a finite G-set T is given by the functors F (T, —).

This lets us reformulate Strickland’s definition. In some sense, this proposition has no
real content: it is an immediate reformulation of Strickland’s result.

Proposition 3.15. The category Ab,g is the category of group-like commutative monoids
in Aug IR

Since Aug /R is a G-symmetric monoidal category, we have a notion of G-commutative
monoids [5, Def. 3.8].

Proposition 3.16. If B — R is a group-like G-commutative monoid in Aug/R, then for
all C — R, the coefficient system B

Aug , ,(C, B)

has natural extension to a Mackey functor.
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Proof. Let C — R be a Tambara functor augmented to R, and let

be the coefficient system in question. By construction, the value of this at a finite G-set
T is given by

By(T) := Aug , (C. F(T, B)).

In particular, Proposition 3.13 shows that we have a natural isomorphism of coefficient
systems

F(T,B)c = N"(Be),

where N7 is the endo-functor on coefficient systems of sets given by
(NTM)(T') := M(T x T").

By naturality, the G-commutative monoid structure of B makes B a G-commutative
monoid in the coinduction G-symmetric monoidal structure on coefficient systems. By
[5, Thm. 5.6], this is exactly a Mackey functor structure on Bo. O

Definition 3.17. A Mackey functor object in Aug R is a group-like G-commutative
monoid in Aug R The category of Mackey functor objects and maps is denoted
Mackey,g. B

We can immediately produce a collection of such objects. Recall that a strong

G-symmetric monoidal functor between G-symmetric monoidal categories is one for
which we have natural isomorphism

F(NT(-)) = NT(F(-)).
Proposition 3.18. The functor
Rx (—): R-Mod — M/E
is a strong G-symmetric monoidal functor.
Proof. The underlying Mackey functors for CoInd$ and for F(T, —) are determined by
the corresponding functors on Mackey functors. In this case, we have natural isomor-

phisms of Mackey functors augmented to R:

F(I,Re M) = R® M.
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In both cases, the augmentation ideal has trivial norms and products, meaning that this
identification is also one of Tambara functors. O

Corollary 3.19. The functor
Rx (—): R-Mod — Aug/E
lifts to a functor to Mackey,g.

Proof. Any Mackey functor is a group-like G-commutative monoid. A strong G-sym-
metric monoidal functor preserves these. 0O

We would like to better understand the category of Mackey functor objects augmented
to R, and for this, we unpack some the externalized transfer maps. It is helpful to compare
these with the transfer maps in the underlying Mackey functors.

Lemma 3.20. Any Mackey functor has a unique structure as a G-commutative monoid.

Proof. In Mackey functors, coinduction and induction agree. In particular, CoIndg is
the left-adjoint to the forgetful functor as well as the right, and hence a map

7,‘G
F(G/H,M) = Colnd% i, M =5 M

is determined by its adjoint i3;M — i3, M. The adjoint can be computed as

i ’I‘G
i M — i3 CoInd$; i M = i3y F(G/H, M) = F(i3G/H, i M)~ i, M,

where the first map is the unit of the adjunction. This corresponds to the inclusion
H/H — i5;G/H, and the composite is then just the identity map. Thus t_rfl must be
the adjoint to the identity map on i¢}; M, and hence is uniquely determined. O

Corollary 3.21. If B € Mackey g, then all external transfer maps in B are maps of
Tambara functors.

Proof. This is an immediate consequence of Lemma 3.20. O

This reformulation allows us to be explain the discrepancy seen by Strickland for
abelian group objects.

Theorem 3.22. If an augmented R-Tambara functor B is a group-like G-commutative
momnoid in Aug/R, then all norms and products in the non-unital Tambara functor I1(B)
are zero.
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Proof. Since the underlying product is zero in ordinary group-like commutative monoids,
the only possible norms that we would have are those of the form

Nf{ = Ng/i—c/k-

This map is determined by the norm in N = Ni/n—rk/k in i B, so it suffices to
assume that K = G. We therefore have to show that for any a € B(G/H), N§(a) = 0.
Consider the map of Tambara functors

TG
F(G/H,B) %%, B.

By Corollary 3.21, this is the Mackey refinement of the ordinary transfer on I(B). In
particular, at level G/H, the map is surjective. However, in F(G/H, B), the map N§ is
identically zero:

Nf = Ne/m s = Nizg/i v = Nair—s = po Id X Ny, = 0,

where p is the multiplication, where T' = (i5;G — H)/H, and where we have used that
the underlying Green functor has trivial products. 0O

Corollary 3.23. The functors
I: Mackey,r & R-Mod: R x (—)
are inverse equivalences of categories.

4. Genuine derivations

Definition 4.1. Let S and R be Tambara functors, : S — R a map of Tambara functors,
and let M be an R-module. We say that a map

d:R— M

is a genuine S-derivation if

(1) for all finite G-sets T and all 1,79 € R(T), we have
d(ry-re) =11 -d(re) +d(r1) -2 € M(T),
(2) for all a € R(G/H),
d(Nfja) = trfyNa, Rq, (a) - d(a),

where d; is the restriction of the projection onto the ith factor of the complement of
the diagonal in K/H x K/H, and
(3) donp=0.
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Let Dergc(ﬁ, M) be the set of all genuine S-derivations from R to M.

The intuition here is that just as an ordinary derivation turns ordinary multiplications
into sums, a genuine derivation turns twisted multiplications (norms) into twisted sums
(transfers).

The following is immediate from the definitions.

Proposition 4.2. Let d: R — M be a genuine S-derivation.

(1) If v: R — R is a map of S-Tambara functors, then d o is a genuine S-derivation,
where M is viewed as an R'-module via ¢.
(2) If f: M — M’ is a map of R-modules, then f od is a genuine derivation.

Proposition 4.3. If R is an S-Tambara functor, M is an R-module, and d: R — M is a
genuine S-derivation, then ker(d) is a sub-S-Tambara functor of R.

Proof. Since d is an ordinary derivation, ker(d) is a sub-Green functor of R. If a €
ker(d)(G/H), then since d is a genuine S-derivation,

d(Nga) =tr (N4, Ra, (a) - d(a)) =0,

showing that for all H C K C G, N (a) is again in the kernel. Thus the kernel is also
closed under all norm maps, making it a sub-Tambara functor. O

Remark 4.4. Without the “genuine” part for a genuine derivation, we could only conclude
that the kernel of a derivation was a sub-Green functor.

We connect now derivations and square zero extensions, showing that the usual results
apply with this definition. For this, we need a refinement of Proposition 2.14 describing
the norm of a sum, building an increasingly refined series of equations writing norm of
a sum as a sum of transfers of norms.

Definition 4.5. There is a natural grading on Map(G/H,{0,1}) given by

deg(f):== Y f(gH).

gHeG/H
For each 0 < k < [G : H], let
Ty = {f € Map(G/H,{0,1})| deg(f) = k}.

Proposition 4.6. For each 0 < k < [G : H], the subsets Ty, C Map(G/H,{0,1}) are equiv-
ariant subsets, inducing a coproduct decomposition

ToIl-- -1 Tig. g = Map(G/H, {0,1}).
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Moreover, the map G/H x Map(G/H,{0,1}) — Map(G/H,{0,1}) respects this decom-
position in the sense that G/H x T; maps to T;.

Proof. Since the degree is defined by summing together all values of f and the G-action
is given by pre-composition, we have deg(f) = deg(g - f) for all f € F(G/H,{0,1}) and
g € G. In particular, these are equivariant subsets. The decomposition in question then
follows from the observation that these are disjoint and that the degree of any function
is between 0 and [G : H]. The second part is obvious from the fact that the map in
question is just the projection onto the second factor. O

In light of this, we have the following formula which is true for any Tambara functor.

Proposition 4.7. Let R be a Tambara functor and let a,b € R(G/H). For each 0 < k <
[G: H], let fr: T, — * and gx: G/H x Ty, — T}, be the projections, let hy: G/H X Ty, —
G/H 1 G/H be the restriction of € to Ty,. Then

[G:H]

N§(a+0b) = Z Tt Ny, Rn, (a,b).

Proposition 4.7 allows us to restrict attention to each homogeneous piece. To get our
desired result, we need a more explicit formula for Ny, o Ry, .

Proposition 4.8. Let T, C G/H x Ty be e *(G/H x {1}) N (G/H x Ty). Then T}, — T
s a k-fold covering map.

Proof. The G-set T}, is
Ty ={(gH, )| f(gH) = 1} C G/H x Ty,
so by construction, the fiber over a map f € T}, has cardinality exactly k. O

Theorem 4.9. Let R be a Tambara functor, let M be an R-module, let C be an S-Tambara
functor, and €: C — R a map of Tambara functors. Let d: C — M be a map of Mackey
functors. Then

s=exd:C—-Rx M
s a map of S-Tambara functors if and only if d is a genuine S-derivation.

Proof. For notational ease, we suppress explicit mention of e R and M become
C-modules via € and we use the ordinary notation for such.

Since d is a map of Mackey functors and since Mackey functors form an additive
category, s is necessarily a map of Mackey functors. Since the underlying Green functor
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multiplication is square-zero, the classical argument shows that s is map of Green functors
if and only if d is a derivation. We therefore need only show that for all H C K and
a € C(G/H),

N (a+d(a)) = Nfj (a) + d(Nf; (a)) (4.1)

if and only if d is a genuine derivation. By replacing C' with i3, C, we see that it suffices
to verify this for K = G.
By Proposition 4.7, the left-hand side is

(G:H] (G:H)
NH a+d Z Ty, N, th a,d(a ) Z Ty, N, th a,d(a ))
where here (a,d(a)) € R(G/H) x M(G/H). In particular, we conclude that Equa-
tion (4.1) holds if and only if
(G:H]

Z Tfk th a, d( ))

By Proposition 4.8, for all £k > 1, on each summand of T} the map gi is k-to-1. In
particular, it is a surjective map which is not an isomorphism. The corresponding norm
is then necessarily zero on the M summand, and hence the product of all of these with
terms coming from R is still zero. Thus Equation (4.1) holds if and only if

d(Nfi(a)) = Ty, Ny, Rp, (a,d(a)).

The functions fi, g1, and hy are also easy to understand, since Ty = GG/ H, generated by
the function which sends eH to 1 and all other cosets to 0. The map

hi: G/H xTy — G/H x {0,1}
is then isomorphic to
(G/HxG/H-AUIG/H=G %y ((i5G—H)/HIUG/H — G/H x {0,1}.
This gives us
Ry, (a,d(a)) = (Rd1 (a),d(a)).

The map ¢ is just the projection onto the second factor G/H x G/H — G/H. With
respect to the decomposition used above, this just becomes

(G/H x G/H — A 11G/H — G/H,
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where on the first summand, we use the projection onto the second factor and where on
the second summand we use the identity. Thus

Ng, Ry, (a7 d(a)) = Ng, Ry, (a) - d(a).

Since f; is the quotient map G//H — *, the associated transfer is just ¢r$. Putting this
together shows that Equation (4.1) holds if and only if

d(N§(a)) = tr§ (Na, Ra, (a) - d(a)),

which is the definition of d being a genuine derivation.
Since the map n: § — R x M giving the S-Tambara functor structure factors as the
composite

S+ RI Ru M

we see that d on = 0, automatically. O

5. Kahler differentials

One of the tricky parts of generalizing the notion of Kéhler differentials is finding
the right way to work with ideals in the context of Tambara functors. Work of Nakaoka
describes the right version of Tambara ideals, and we build on that here [8]. In the
language of Definition 2.17, if R is a Tambara functor, then a Tambara ideal is simply a
sub-non-unital R-Tambara functor.

Definition 5.1. Let R be a Tambara functor and let I be a non-unital R-Tambara functor.
Let

>1 ., G A T -
= > TaNTiyLc L
HCG,TeSet™ ||T|>1

where here TfIN Ti% I stands for the image of the corresponding structure map.
We call this the submodule of genuine equivariant decomposable elements.

Proposition 5.2. For any non-unital Tambara functor I in R-modules, I”' is a Tambara
ideal of I.

Proof. Interpreting the norm as a generalized product over a possibly non-trivial G-set,
we see that I”! is the sub-Mackey functor generated by possible products with more
than one factor. This is visibly closed under products by elements in I and by products
in itself. The universal formulae for norms of sums and of transfers also preserve the
underlying cardinality of the exponents, showing that linear combinations are also still
in this collection. 0O
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Proposition 5.3. If f: B — R is a map of Tambara functors, then the kernel of f is a
non-unital Tambara functor.

Proof. The zero-map is a map of non-unital Tambara functors. Since the kernel is the
equalizer of f and the zero map and since the category of non-unital Tambara functors
is complete, the kernel is a non-unital Tambara functor. O

Definition 5.4. Let S be a Tambara functor and let R be an S-Tambara functor. Let [
denote the kernel of the multiplication map

ROR — R.
S
The R-module
1,.G | _ 1
Oy =1/,

is defined to be the module of genuine K&hler differentials, and let
1,6
d: R— Q R/S

be the difference between the left and right inclusions R — E%@.

Proposition 5.5. The R-module Q}%/GS is generated by the image of d.

Proof. It suffices to prove the simpler, Green functor version of this statement, where
we let I? simply be the usual box-square of I and show that I /1 2 is generated by the
corresponding image of d. Since I2 C I”!, this implies our result.

Here, we copy the classical argument. The collection R(G/H)®g(q/m) R(G/H) for all
H C G generates ROg R as a Mackey functor. The map EEE — R is a map of Tambara

functors, and
R I AN EE R

is a map of Mackey functors. Since the ordinary tensor products generate as Mackey
functors, we can simply copy the classical proof, giving the result. O

Lemma 5.6. The map d: R — Q}é/GS is a genuine S-derivation.

Proof. The sequence of R-modules

O%lﬁﬂg\ﬂﬁﬂﬁo
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is split by the left unit. This splitting gives an identification

(BRI = B S,

of Tambara functors augmented over R. The map d is the difference between the left
and right units, and since both the left and right units are maps of Tambara functors,
d is a genuine derivation. Since the box product is over S, both the left and right units
agree on S, and hence d is a genuine S-derivation. 0O

Theorem 5.7. If M is an R-module, then there is a natural isomorphism

DergG(ﬁ, M) = HOmE(QE?§7 M).

Proof. By Corollary 5.6, the map d: R — QE% is a genuine derivation. Proposition 4.2
shows then that given any map of R-modules Q}?fs — M, we can compose with d to get
a derivation into M.

For the other direction, let d be a genuine derivation R — M. Then d induces a map
of Tambara functors

of Tambara functors augmented over R, where the source is augmented by the multipli-
cation map. In particular, the augmentation ideal I maps to M. Since M is equivariantly
square zero, this map descends to a map

(BQR)/I" = Rx QO35 — B x M

of Tambara functors augmented over R. This gives us a map of R-modules

1,G
QE/QHM.

Since QE/GQ is generated by the image of d: R — ngﬁ, we know that this map is
unique. 0O

Corollary 5.8. For any Tambara functor R and any R-module M, the set DerEG(E, M)
has a natural extension to a Mackey functor whose value at G/H is

Der:/s (i R, i M).
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Definition 5.9. A map S — R of Tambara functors is formally étale if QE% =0and R

is a flat S-module.

Just as classically, localizations are formally étale. Here, we can invert a set of elements
that come from the value of the Tambara functor at various G-sets T' [4]. We first show
that localizations in Tambara functors are flat.

Proposition 5.10. Let N be a collection of elements from R. Then R[N~ is a flat
R-module.

Proof. If all elements of N come from R(G/G), then the localization R[N~!] can be
G

&(n)), where

formed as a filtered colimit of copies of R along maps of the form N (res
n € N. In particular, this is flat.

More generally, since we are forming the localization in Tambara functors, inverting
any n € R(G/H) also inverts N§(n), and by the multiplicative double coset formula,
inverting Nﬁ(n) also inverts n. In particular, it suffices to consider only localizations at

a set of elements in R(G/G) and the result follows. O

Remark 5.11. It was essential here that we could write any localization as a filtered
colimit of free modules which in turn required that we could write any localization as one
which inverts a collection of elements in R(G/G). For any arbitrary Green or incomplete
Tambara functor, this is no longer the case, so it is not obvious that localization is a flat
operation here.

Remark 5.12. One of the surprising consequences of the proof of Proposition 5.10 is
that the basic Zariski open sets in Nakaoka’s spectrum of a Tambara functor arise by
inverting elements in R(G/QG), rather than in any other level of the Tambara functor [9].
This suggests a much more rigid behavior than initially expected.

Proposition 5.13. If N is a multiplicative subset in R, then R — R[N~!] is formally
étale.

Proof. Both R[N ~!] and its box-square over R satisfy the same universal property, so
we conclude that the multiplication map

RIN™'] = R[N ]

is an isomorphism. In particular, I defined above is itself zero. 0O
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