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Abstract

In this paper, we study the extent to which Bousfield and finite localizations relative
to a thick subcategory of equivariant finite spectra preserve various kinds of highly
structured multiplications. Along the way, we describe some basic, useful results for
analyzing categories of acyclics in equivariant spectra, and we show that Bousfield
localization with respect to an ordinary spectrum (viewed as an equivariant spectrum
with trivial action) always preserves equivariant commutative ring spectra.
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1 Introduction

Bousfield localization is a fundamental tool in modern algebraic topology. The ability
to focus on pieces of the stable homotopy category allows in many cases for more
conceptual or algebraic descriptions and computations. Just as in ordinary algebra,
classical Bousfield localization is always a lax monoidal functor, preserving commu-
tative ring objects and allowing one to talk about localizations in categories of modules
or algebras.

Bousfield localization plays an equally important role in equivariant homotopy,
but here, the functors need not preserve commutative ring spectra. This was origi-
nally shown by McClure for the Greenlees—May Tate spectrum [17], and in work with
Hopkins, we showed sufficient conditions for when a general Bousfield localization
preserves equivariant commutative ring spectra [12]. Moreover, we showed that Bous-
field localization always preserves algebras over a trivial Eo, operad (so an E, operad
viewed as a G-equivariant operad by endowing it with a trivial action), and in work
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with Blumberg, we verified that this is sufficient to have a good symmetric monoidal
catgegory of modules [6]. Thus essentially all of the desired classical properties hold.

For equivariant homotopy, however, we can ask for more. If R is a genuine equiv-
ariant commutative ring spectrum, then the category of R-modules has a natural
G-symmetric monoidal enhancement. More generally, if R is an algebra over a linear
isometries operad, then the category of R-modules inherits those norms which the
linear isometries operad parameterizes. It is therefore a natural question to see if a
particular Bousfield localization preserves these richer structures.

In this paper, we study Bousfield and finite localizations for equivariant chro-
matic localizations. Using Balmer’s notion of the spectrum of a tensor triangulated
category, Balmer and Sanders determined the prime spectrum of the category of G-
spectra for finite groups G and describe the topology up to a small indeterminacy [3].
Barthel, Hausmann, Naumann, Nikolaus, Noel, and Stapleton resolve this ambiguity
for finite abelian groups [4]. Coupled with the natural Balmer—Zariski topology on
this spectrum, this provides a complete classification of the thick subcategories of
finite G-spectra. Associated to any such thick subcategory are corresponding Bous-
field and finite localizations, and these are our primary focus. In particular, we prove
in Theorem 5.2 below sufficient conditions for these localizations to preserve various
operadic algebras.

Along the way, we provide several tools which are helpful in analyzing equivariant
Bousfield localizations. The role of geometric fixed points here cannot be overstated,
as it provides elegant (and surprisingly checkable) reformulations of what it means for
a G-spectrum Z to be acyclic. This has several amusing consequences for the kinds
of spectra which arose in the solution to the Kervaire invariant one problem which we
could not resist including.

Notation and conventions

In all that follows, G will denote a fixed finite group. In general, the letters H, J and
K will be reserved for subgroups of G. Capital letters close to X in the alphabet will
denote G-spaces, while capital letters close to T will denote G-sets. Spectra will be
often denoted with letters like £ (or Z when the role as an acyclic is being stressed).
By “genuine equivariant equivalences”, we will always mean equivariant maps
which induce a weak equivalence on all fixed points. In particular, “equivariantly
contractible” spectra are those for which all fixed points are [weakly] contractible.

Category names and assumptions

We work in the category of genuine G-spectra, and all of our statements are implicitly
homotopical. For concreteness, the reader is invited to use orthogonal G-spectra, where
all the needed homotopical properties were checked in [11, Appendix B]. The category
of genuine G-spectra will be denoted S p© and the category of spectra will be denoted
S p. For either of these, the full subcategory of compact objects will be indicated by
a subscript “c”.

@ Springer



Equivariant chromatic localizations and commutativity 649

The category of genuine equivariant commutative ring spectra (the commutative
monoids in one of the good symmetric monoidal model categories of G-spectra) will
be denoted Comm©.

The category of finite G-sets and G-equivariant maps will be denoted Set©.
Familiar functors

The geometric fixed points functor will be denoted ®¢.

If H C G, then i}, will denote the restriction functor from G-spectra to H-spectra.
The functor ®# will also be used to denote the composite functor & oi 7; on genuine
G-spectra.

2 Equivariant commutativity
2.1 The norm and geometric fixed points

One of the most important tools developed in the solution of the Kervaire invariant
one problem was a homotopically meaningful norm functor

Ng: Spfl — Sp°.

This is a strong symmetric monoidal left Quillen functor, and on equivariant com-
mutative ring spectra, it participates in a Quillen adjunction as the left adjoint to the
forgetful functor:

NG: Comm™ = Comm©: i;.

In particular, for any G-equivariant commutative ring spectrum R, there is a canon-
ical map of G-equivariant commutative ring spectra

NS5 R — R.

It is the requirement that a localization play nicely with these maps that confounds
equivariant Bousfield localization. From a homotopical point of view, these are extra
structure which we must control the behavior of. In our analysis of various trivial and
chromatic localizations, we will also need to understand the geometric fixed points of
the norm functor. Luckily, this is easily determined by a kind of generalized diagonal.

Lemma 2.1 ([11, Proposition B.209], [1, Proposition 2.19]) For any K, H C G and
for any H-spectrum E, the diagonal gives an equivalence of spectra

N\ X HE S ofNGE.
g€K\G/H

Itis conceptually convenient to also include notation for several other endo-functors
of the category of G-spectra.
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650 M. A Hill

Definition 2.2 For any H C G and for any G-spectrum E, let
NC/H(E) .= NSi%E.
If
T =G/H U---UG/H,

is a finite G-set, then let

n
NTE = /\NG/HiE.
i=1

Remark 2.3 Although the definition as given involves choices of orbit decompositions,
one can make this coordinate free by defining the 7-norm as the symmetric monoidal
pushforward of the constant BgT-shaped diagram with value E, where BgT is the
translation category of 7', mirroring the original discussion in [11, Appendix A.3].

2.2 N, operads and algebras

The failure of equivariant Bousfield localization to preserve commutative ring spectra
should be viewed as a peculiarity of the monoidal model structure: in genuine G-
spectra, the commutative monoids have not only a homotopy coherent commutative
multiplication (an ordinary E, structure) but also coherent norm maps relating the
value of the ring at various subgroups. Classically, this is packaged viaa G- E , operad.
In work with Blumberg, we generalized the notion of a G- E, operad to cover all kinds
of coherently commutative multiplications with some norms on genuine G-spectra.
We briefly review the relevant details now.

Definition 2.4 [7, Defintion 3.7] An N, operad is an operad O in G-spaces such that

(1) The space Qg is G-contractible,

(2) the action of X, on O, is free, and

(3) the space O, is a universal space for a family F,,(O) of subgroups of G x %,
which contains all subgroups of the form H x {e}.

There is a purely combinatorial way to package the collection of subgroups which
show up in the families for an N, operad, and this is closely connected to the structure
of algebras over the operad. For this, recall that a symmetric monoidal coefficient
system is a contravariant functor from the orbit category of G to the category of
symmetric monoidal categories and strong monoidal functors. The prototype of such
a symmetric monoidal category is Set, for which

Set(G/H) = Set".

Definition 2.5 An indexing system O is a full, symmetric monoidal sub-coefficient
system of Set such that
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Equivariant chromatic localizations and commutativity 651

(1) For all orbits G/H, O(G/H) is closed under finite limits, and
) iftH/K €e O(G/H)and T € O(G/K),then H xg T € O(G/H).

In particular, any indexing system contains all trivial sets and is closed under passage
to subobjects.
Associated to any N, operad O is an indexing system O.

Definition 2.6 [7, Definition 4.3] Let O be an N, operad. Let T be a finite H-set
of cardinality n, classified by a map H — X,, and let I'7 be the graph of this
homomorphism. Then 7 is in O(G/H) if and only if (’),l;T ~x If T € O(G/H),
then we say that 7' is admissible.

This construction gives an equivalence of categories, so we will henceforth ignore
the distinction between an Ny, operad and an indexing system.

Theorem 2.7 The assignment O +— O gives a fully-faithful embedding of the homo-
topy category of Noo operads into the poset of indexing systems [7, Theorem 3.24]
which is essentially surjective [18], [9, Corollary IV], [10, Section 4].

Since the poset of indexing systems has an initial object O'" consisting of the
indexing system of sets with a trivial action, there is a homotopy initial N, operad.
This is just an ordinary, non-equivariant £, operad viewed as a G-operad by endowing
it with a trivial G-action. Thus any O-algebra has a canonical coherently commutative
multiplication, since it is an algebra over a trivial E, operad. The role of the indexing
system here is to parameterize the additional norms present in an O-algebra.

Theorem 2.8 [7, Lemma 6.6] If H/K is an admissible H-set for O, and R is an
O-algebra in spectra, then we have a contractible space of maps

NEit R — i%R.

3 Equivariant Bousfield classes
3.1 Equivariant localizing subcategories

Definition 3.1 If E is a G-spectrum, let Zg denote the category of E-acyclics: the full
subcategory of SpY consisting of all Z such that E A Z is equivariantly contractible.

If we are working non-equivariantly, then the acyclics will be denoted simply Zg
with no superscript.

Since geometric fixed points detect weak equivalences and are strong symmetric
monoidal, this gives another, conceptually simpler way to understand membership in
ZE.

Proposition 3.2 A G-spectrum Z is a G-equivariant E-acyclic spectrum if and only
ifforall H C G, ®"(Z) is a non-equivariant ® (E)-acyclic spectrum:

28 = (") (Eenp).
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Proof A genuine G-spectrum E’ is equivariantly contractible if and only if for all
H C G, ®"(E’) is contractible. Thus if E is a fixed G-spectrum and Z is any other
G-spectrum, then E A Z is contractible if and only if for all H C G,

STEANZ)~ " (E)A DT (Z) ~ x.
O

The category of E-acyclics is also an equivariant subcategory in that it is closed
under restriction and induction.

Proposition 3.3 Forall H C G, we have natural inclusions
iR ZF C 2l pand G np 2 C ZF.

Proof The first inclusion is obvious, since i}, is a strong symmetric monoidal functor.
For the second, let Z be in Zi?; g. The Frobenius relation

(G4 AH Z)NE =Gy Ay (Z NiGE)
then shows that G4 Ay Z is E-acyclic. O
Corollary 3.4 Forall H C G and Z € ZS we have
G/Hy NZ e 28,

3.2 Application: acyclics for Kervaire spectra

Proposition 3.2 gives a way to readily determine the acyclics for the kinds of chromatic
spectra which arose in the proof of the Kervaire invariant one problem. In particular, we
can determine the acyclics for any of the spectra which arise as particular localizations
of the norms of the Landweber—Araki Real bordism spectrum M Ur.

Recall from [11, Section 5.4.2] that if G = C»n, then there are classes

-G G
l"i [S n(zi—l)pzNCZMUR

such that
Con G G ~G\—1
o (NG MUR[(NEFO™])

is contractible [11, Proposition 5.50]. More generally, if Co C H C G, then the unit
of the norm-forget adjunction on commutative ring spectra produces a canonical map

NEMUR — i NE MUR.
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Equivariant chromatic localizations and commutativity 653

Via the unit map, we can then have elements

-H G

rl- S ﬂ(zi_l)pchzMUR
such that

H{( G G =H\—1

@ (NC2MUR[(NC2ri ) ])

is contractible.
Proposition3.5 Let G = Con. Let D be any class in 7wy, pyn Ngzzn MUR such that for

all Co C H C G, there is a jg such that Ng;" fﬁl divides D. Finally, let M be any

module over the commutative ring spectrum Nchzn MUR[D™"]. Then
G . —1
ZM = (l*e}) Zi(*e)M'

Proof The conditions ensure that all non-trivial geometric fixed points of M are con-
tractible. The result then follows from Proposition 3.2. O

Corollary 3.6 If M is a wedge of spectra M;, each of which is a module over
NCC;" MUR[Dfl]for some D as in Proposition 3.5, then

ZAGJ = (l.*e})ilzi?;)M.

We deduce an immediate application to the Real Morava K -theories and Johnson—
Wilson theories introduced by Hu—Kriz and studied extensively by Kitchloo—Wilson
[14,16].

Corollary 3.7 The equivariant Bousfield classes of Er(n), of MUR[f)n’l], and of
Kr() Vv ---Vv Kr(n) agree.

Proof By Corollary 3.6, the Bousfield class of Kr(0) Vv - - - V Kr(n) is determined by
the underlying spectrum:

i (Kr(0) V-V Kr(n)) ~ K(©0) V-V K(n).
Similarly, a direct application of Proposition 3.5 shows that the Bousfield classes of

Er(n) and MUR[v, 1 are also determined by the underlying spectra, which are E (n)
and MUR[v, I, respectively. The result is now classical. O

3.3 Localizations of O-algebras
Since the smash product is associative, we know that Zg is always a tensor ideal of

SpY. In particular, it is a non-unital symmetric monoidal subcategory of Sp®. This
gives another way to interpret Proposition 3.3.
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654 M. A Hill

Proposition 3.8 For any G-spectrum E, the assignment
G/H +— Z,(G/H) := Z’;E cSph

defines a non-unital symmetric monoidal sub-coefficient system of S p.

This reformulation allows us to most easily state the sufficient conditions for a
localization to preserve OJ-algebra structures for an Ny, operad O. The sufficiency of
the following theorem was proved in [12]; the thesis of White built upon this in a more
general context and also showed necessity as well [19,20].

Theorem 3.9 [12, Theorem 7.3], [19, Section 5] Let O be an Ny, operad, and let
L be a Bousfield localization on G-spectra. If for every subgroup H C G and for
every admissible T € O(G/H) the category of acyclics is closed under NT then L
preserves O-algebras.

In this paper, we are also concerned with finite localizations (which are always
known to be smashing). Here, the same result holds; the proof is identical.

Theorem 3.10 Let O be an Ny, operad, and let V be a thick subcategory of S p©. If for
every H C G and for every admissible T € O(G/H), NT restricts to an endofunctor

of V, then the finite localization L{; preserves O-algebras.

Proposition 3.11 If V is the thick subcategory generated by an object E, then the
conditions of Theorem 3.10 are met provided N (E) € V for all admissible T.

Proof This is essentially [11, Proposition B.170]. In short, the norms commute with
sifted colimits, and there is a formula for describing the norm of a cofiber in terms
of the norms of the pieces. This reduces checking for a general object in the thick
subcategory to checking for the generator. O

Since categories of acyclics are always non-unital symmetric monoidal subcate-
gories, and since the equivariant thick subcategories are tensor ideals, we conclude
that these localizations always preserve at least the trivial E,-structure.

Corollary 3.12 If L is any Bousfield or finite localization on G-spectra, then L pre-
serves trivial E~o algebras.

Although this is less structured than we might like, it is enough structure to guarantee
a good, symmetric monoidal category of modules.

Corollary 3.13 [6, Theorem 1.1] Let O be an Ny operad. If R is an O-algebra in
G-spectra, and if L is any Bousfield or finite localization, then there is a symmetric
monoidal category of L(R)-modules.

The richer structure in a general (O-algebra translates to a richer structure on the
category of modules for an O-algebra R.

Corollary 3.14 [6, Section 5.2] Let O be an Ny operad of the homotopy type of the
linear isometries operad for a G-universe U. If R is an O-algebra in G-spectra, and
if L is any Bousfield or finite localization which preserves O-algebras, then there is
an O-symmetric monoidal category of L(R)-modules.
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Equivariant chromatic localizations and commutativity 655

Remark 3.15 There s also a very exciting co-categorical approach to the norm functors
and various kinds of G-symmetric monoidal enhancements which arise in equivariant
homotopy theory due to ongoing work of Barwick, Dotto, Glasman, Nardin, and Shah
[5]. This will elegantly remove the “linear isometries” hypothesis, giving O-symmetric
monoidal categories of modules over any O-algebra.

3.4 Pushfowards and localization

There is an interesting family of localizations which always preserves all of the desired
multiplicative structure: localizations with respect to an ordinary ring spectrum viewed
as a G-spectrum with a trivial action. We begin with a classical observation.

Proposition 3.16 If R — S is a map of ring spectra, then
ZRr C Z5 C Sp.

Proposition 3.17 If E is a ring spectrum, then for any sub-conjugate K C H, we
have

ZEH - ZEK C Sp
Proof For any subgroup H, there is a map of equivariant ring spectra
E — Mapy (G4, i E).

Applying fixed points gives a map of ring spectra E¢ — E* giving the result. O

Corollary 3.18 The assignment of G/ H to the Bousfield class of EY is a contravariant
functor from the orbit category to the Bousfield lattice of spectra.

The fixed points functor is a categorical right adjoint, with left adjoint the “push
forward”.

Definition 3.19 Let i, denote the push-forward functor
is: Sp — SpY,

which is the left-adjoint to the G-fixed points functor.

While in general it is very difficult to determine the fixed points of a smash product,
when one of the factors is in the image of the pushforward, we can readily do so. In
particular, we can simply move the fixed points past the smash product in this case.

Proposition 3.20 [15] If E' is a spectrum and E is a G-spectrum, then we have a
natural equivalence of spectra

(E'ANEYY ~E' AEC,
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In particular,
(i+ENC ~ E' A (8HC.

Corollary 3.21 For any subgroup H of G, for any ordinary spectrum E', and for any
G-spectrum E,

o1 (i, E' NE) ~ E' A ®H(E).

Combined with Proposition 3.2, this gives another way to understand the acyclics
for i E.

Proposition 3.22 A G-spectrum Z is i, E-acyclic ifand only if forall H C G, ® (Z)
is E-acyclic:

20 = ﬂ (‘DH)_I(ZE).
HCG

Proposition 3.22 gives a readily checkable collection of criteria for acyclicity. In
particular, since the geometric fixed points of the norm is well-understood, this quickly
gives the following.

Theorem 3.23 [f E is any non-equivariant spectrum, then L; g and the associated
Ll{ g preserve G-equivariant commutative rings.

Proof Theorems 3.9 and 3.10 show that a sufficient condition for L; g or Li g to
preserve commutative rings is for the category of acyclics to be closed under all
norms. In other words, we need to show that if Z € gi*E(G/H), and H C K C G,
then

NKZ e Z; ;(G/K).
G plays no role in this, since il*((i*E) =i, E, so it suffices to check this for K = G.
Proposition 3.22 then shows that it suffices to show that if Z is an H-acyclic, then for
all subgroups K of G, we have
X (NG Z) € Zg.

Lemma 2.1 shows that we have an equivalence

o (Nfz)~ N\ oFNHZ
g€K\G/H

Proposition 3.22 then tells us again that since Z is an H-acyclic for i, E, we know

that for all subgroups J of H that ®/(Z) is E-acyclic. In particular, for any K and
any double coset, we know ®X*"# 7 is E-acyclic, giving the result. O
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Equivariant chromatic localizations and commutativity 657

This gives us a nice selection of equivariant chromatic types that preserve commu-
tative ring spectra.

Corollary 3.24 If V is any type n-spectrum that is not type (n + 1) (at some prime

p if n > 0), then the finite chromatic localization L;Z v preserves commutative ring
spectra.

These equivariant chromatic types are the first one considers, as they are lifted
directly from the unstable information. Work of Balmer and Sanders describes all of
the thick subcategories equivariantly, and we turn now to understanding which of their
localizations preserve (J-algebras.

4 Review of equivariant thick subcategories

The equivariant thick subcategories of S pf have been classified by Balmer—Sanders
using Balmer’s notion of the spectrum of a tensor triangulated category [3], where again
SpC is the full subcategory of compact objects in G-spectra. The Balmer spectrum
of a tensor triangulated category should be thought of as an extension of the classical
Zariski spectrum to a context which formally looks like the derived category of modules
over a ring [2]. Balmer describes a notion of a “prime” tensor triangulated ideal, and
these form the points in his Zariski spectrum. Out of this space, one can recover the
thick subcategories of the (essentially small) tensor triangulated category.

The heart of the Balmer—Sanders result is that the geometric fixed points functors,
being a tensor triangulated functor, induces maps

Spec(®): Spec(Spe) — Spec(SpCG)

for all subgroups H C G. The “Thick subcategory theorem” of Hopkins—Smith deter-
mines all of the prime ideals in S p,.

Definition 4.1 Let p be a prime. For each 0 < m < oo, let K (m, p) denote a Morava
K -theory of height m at the prime p. Finally, for m > 1, define a full subcategory of
finite spectra by

Con,p = {X | K(m — 1, p)(X) = 0}.

Theorem 4.2 [13] The prime ideals in S p are given by Cy, ,, for all primes p and all
natural numbers m > 1. Their inclusions and intersections are as follows:

(1) Forallprimes p andq, C1,, = C1 4, whichis the category of torsion finite spectra.

(2) If m < m', then Cpy ), C Cpyp.

(3) If p and q are distinct primes and m and n are greater than one, then Cy, p is not
contained in Cy, 4.

Definition 4.3 [3, Definition 4.1] For each subgroup H of G, each prime p, and each
natural number m, let

PH,m, p) = (") ' Cp.p-
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Theorem 4.4 [3, Theorem 4.9] For any finite group G, the spectrum of S pCG is
Spec(SpCG) ={P(H,m,p)| HC G,m €N, p prime} .

For a fixed subgroup H and prime p, we have the usual chromatic inclusions: if
n < m, then

P(H,m, p) C P(H,n, p).
Balmer—Sanders determine almost all of the other inclusions, and Barthel-Hausmann—
Naumann—Nikolaus—Noel-Stapleton determined all remaining ones in the case of

abelian groups. This gives a complete description of the topology.

Theorem 4.5 [4, Corollary 1.3] When G is an abelian group, K C H C G, pisa
prime, and 1 < n < oo, then the minimal i such that

:P(K5nap) C?(Han_l7p)

is the p-rank of H/K, the dimension of the largest elementary abelian p-group in
H/K.

The topology on the Balmer—Zariski spectrum gives a complete classification of the
thick subcategories. These are determined by the notion of “support” for an element.

Definition 4.6 If X € SpC, then the support of X is the set of prime ideals not
containing X:

Supp(X) ={p | X ¢ p}.
The vanishing locus of X is the complement of the support:
V(X) = Spec(Sp®) — Supp(X) = {p | X € p}.

Thick subcategories are determined by the support. Thick subcategories are equiv-
alent to the condition that their support be a Thomason closed subset.

Proposition 4.7 Let X and Y be finite G-spectra. Then the thick subcategory generated
by X contains Y if and only if

Supp(Y) C Supp(X),
or equivalently

V(X) C V().
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5 Chromatic localizations and structured multiplications
5.1 General results for arbitrary G

We now restrict attention to determining conditions which guarantee that the Bousfield
and finite localizations with respect to an equivariant thick subcategory preserve O-
algebras.

Theorem 5.1 Let X be a thick subcategory of S pf. Then the norm N Ilg preserves X

if for all P(J, m, p) € V(X) with J C H, there exists an h € H such that
PK"N T, m, p) e V().
Proof By Proposition 4.7, this is equivalent to
V(i X) c VINEi% X).
Thus a sufficient condition is that if K (m, p)*CDJ X =0, then
K(m, p)«®'Nfix X = 0.
By Lemma 2.1, we have an isomorphism
K(m, p)(®' N{ipX) =

h h
K(m, p). A o x]= QR K p(@ KX)
KhJeK\H/J KhJeK\H/J

This vanishes if and only if there is an 4 € H such that U’(]h N H,m, p) is in the
vanishing locus of X, as desired. O

As an immediate corollary, we deduce sufficient conditions for chromatic Bousfield
and finite localizations to preserve O-algebras, by Theorems 3.9 and 3.10.

Theorem 5.2 The Bousfield and finite localizations with respect to a thick subcategory
X preserve O algebras if for all H/K € O(G/H) and for all P(J, m, p) € V(X)
with J C H, there exists an h € H such that

PK"N T, m, p) e V(X).

Remark 5.3 In some sense, Theorems 4.5 and 5.1 describe closure conditions in oppo-
site directions. Theorem 4.5 describes how a prime being in a thick subcategory
guarantees the inclusions of certain primes for larger groups. Theorem 5.1 shows
how a prime being in a thick subcategory closed under norms guarantees the inclusion
of certain primes for smaller groups.
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5.2 Application: the p-local cases for G = Cpn

When G is a cyclic group of order a power of a fixed prime p, then we can reduce
the conditions from Theorem 5.2 to a collection of inequalities. These, together with
the inclusions of Theorem 4.5, greatly cuts down the number of possible localizations
which preserve commutative rings.

For simplicity, we restrict attention to the p-local subcategory. Localized at primes
q # p, the category of Cp,n spectra splits, and the problem essentially becomes
algebra. This splitting is in general not a splitting of G-symmetric monoidal categories,
however, so it is not immediately clear how to couple this with the localization results
above. Work of Bohme exactly addresses this point [8].

For G = Cn, a p-local thick subcategory is completely determined by a finite
collection of extended natural numbers (so a natural number or infinity).

Definition 5.4 Let X’ be a p-local thick subcategory of Spf”n .Foreach0 < k <n,
let

£ = max [z | P(C s £, p) € V()()]

provided this set is non-empty, and if for no £ is P(C, £, p) in the vanishing locus

of X, then let £, = 0. Denote this sequence of extended integers by 1 (X).
Conversely, given a sequence £ = ({o, ..., £,), let X/Z be defined by

n Z,‘

vy =J U, i p,

i=0 j=1
where if £; = 0, then that union is empty.
e, . Cyn
By definition, if X is a p-local thick subcategory of Sp.”", then

X:XZ(X)'

However, not every sequence of integers works to give thick subcategories (as
there is an implicit closure condition here). The inclusions of Barthel-Hausmann—
Naumann—-Nikolaus—Noel-Stapleton (described above as Theorem 4.5) provide
constraints connecting the ¢; for various i.

Theorem 5.5 For all 0 < i < j < n, if X} is a p-local thick subcategory, then we
have inequalities

6 <+ 1.

Proof The p-rank of any cyclic groupis 1, so foranyi < j and for any m, Theorem 4.5
shows that we have inclusions

TP(Cpi,m,p) C (P(ij,m -1, p).
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Applying the analysis for Theorem 5.2, we deduce the following.

Cyn Cj
Theorem 5.6 Let X be a p-local, thick subcategory of Sp." . The norm Ncp,: pre-
P

serves X if
b > by, -0 .

Proof Since every subgroup is normal and the subgroups are nested, this is an imme-
diate application of Theorem 5.1. O

Putting this all together gives a condition for chromatic localizations to preserve
commutative ring spectra.

C i
Corollary 5.7 Let X be a p-local, thick subcategory of Sp.” . Then the finite and
Bousfield localizations nullifying X preserve commutative ring spectra if for all 0 <
i <j<n,

i<t <tj+1
Corollary 5.8 Let
Zk:(m,...,m,m—l,...,m—l),

where we have k copies of m. Then the Bousfield and finite localizations nullifying
X 7, Dreserve commutative ring spectra.

The case that the sequence is constant (i.e. k = n + 1) is one we have already
studied: these are the thick subcategories generated by the pushforward for a type
(n 4 1)-complex. The other cases are new.

As a final corollary, the finite localizations by construction are smashing. Thus all
of these results can be restated in terms of certain structured multiplications on the
localized sphere spectrum.

Corollary 5.9 For G = Cpn, let € denote a sequence of extended integers such that for
all0 <i < j <n, we have

L <4t <tj+1,
Then the chromatically localized spheres
L, s°
g4
are Cpn-equivariant commutative ring spectra.

Acknowledgements The author thanks Tyler Lawson and Andrew Blumberg for careful readings of inter-
minably many drafts of this short paper. The author thanks Justin Noel also for sharing an early draft of [4]
with him. Extra special thanks go to Paul Balmer for carefully explaining to the author on several occasions
the construction and properties of his spectrum and for closely reading an early draft.

@ Springer



662 M. A Hill

References

1. Angeltveit, V., Blumberg, A., Gerhardt, T., Hill, M., Lawson, T., Mandell, M.: Topological cyclic
homology via the norm (2016). arXiv:1401.5001
2. Balmer, P.: The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math. 588,
149-168 (2005)
3. Balmer, P, Sanders, B.: The spectrum of the equivariant stable homotopy category of a finite group.
Invent. Math. 208(1), 283-326 (2017)
4. Barthel, T., Hausmann, M., Naumann, N., Nikolaus, T., Noel, J., Stapleton, N.: The Balmer spectrum
of the equivariant homotopy category of a finite abelian group (2017). arxiv.org:1709.04828
5. Barwick, C., Dotto, G., Saul, E., Nardin, D., Shah, J.: Parameterized and equivariant higher algebra
(2016)
6. Blumberg, Andrew J., Hill, Michael A.: G-symmetric monoidal categories of modules over equivariant
commutative ring spectra. arXiv:1511.07363, (2015)
7. Blumberg, A.J., Hill, M.A.: Operadic multiplications in equivariant spectra, norms, and transfers. Adv.
Math. 285, 658-708 (2015)
8. Bohme, B.: Multiplicativity of the idempotent splittings of the Burnside ring and the G-sphere spectrum
(2018). arxiv.org:1802.01938
9. Bonventre, P., Pereira, L.A.: Genuine equivariant operads (2017). arXiv:1707.02226
10. Gutiérrez, J.J., White, D.: Encoding equivariant commutativity via operads. Algebr. Geom. Topol.
18(5), 2919-2962 (2018)
11. Hill, M.A., Hopkins, M.J., Ravenel, D.C.: On the nonexistence of elements of Kervaire invariant one.
Ann. Math. (2) 184(1), 1-262 (2016)
12. Hill, Michael A., Hopkins, Michael J.: Equivariant symmetric monoidal structures (2016).
arXiv:1610.03114
13. Hopkins, M.J., Smith, J.H.: Nilpotence and stable homotopy theory. II. Ann. Math. (2) 148(1), 1-49
(1998)
14. Po, H., Kriz, I.: Real-oriented homotopy theory and an analogue of the Adams—Novikov spectral
sequence. Topology 40(2), 317-399 (2001)
15. Hu, P, Kriz, I.: The homology of BP O. In: Recent progress in homotopy theory (Baltimore, MD,
2000), volume 293 of Contemp. Math., pages 111-123. Amer. Math. Soc., Providence (2002)
16. Kitchloo, N., Stephen Wilson, W.: On the Hopf ring for ER(n). Topol. Appl. 154(8), 1608-1640
(2007)
17. McClure, J.E.: E-ring structures for Tate spectra. Proc. Am. Math. Soc. 124(6), 1917-1922 (1996)
18. Rubin, J.: On the realization problem for Noo operads (2017). arXiv:1705.03585
19. White, D.: Monoidal Bousfield localization and algebras over operads (2014). arxiv.org:1404.5197
20. White, D.: Monoidal Bousfield Localizations and Algebras over Operads. ProQuest LLC, Ann Arbor,
MI. Thesis (Ph.D.)-Wesleyan University (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1401.5001
http://arxiv.org/abs/org:1709.04828
http://arxiv.org/abs/1511.07363
http://arxiv.org/abs/org:1802.01938
http://arxiv.org/abs/1707.02226
http://arxiv.org/abs/1610.03114
http://arxiv.org/abs/1705.03585
http://arxiv.org/abs/org:1404.5197

	Equivariant chromatic localizations and commutativity
	Abstract
	1 Introduction
	Notation and conventions
	Category names and assumptions
	Familiar functors


	2 Equivariant commutativity
	2.1 The norm and geometric fixed points
	2.2 Ninfty operads and algebras

	3 Equivariant Bousfield classes
	3.1 Equivariant localizing subcategories
	3.2 Application: acyclics for Kervaire spectra
	3.3 Localizations of O-algebras
	3.4 Pushfowards and localization

	4 Review of equivariant thick subcategories
	5 Chromatic localizations and structured multiplications
	5.1 General results for arbitrary G
	5.2 Application: the p-local cases for G=Cpn

	Acknowledgements
	References




