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Abstract
Traffic accident anticipation is a vital function of Automated Driving Systems (ADS) in providing a safety-guaranteed driving
experience. An accident anticipation model aims to predict accidents promptly and accurately before they occur. Existing
Artificial Intelligence (AI) models of accident anticipation lack a human-interpretable explanation of their decision making.
Although these models perform well, they remain a black-box to the ADS users who find it to difficult to trust them. To this
end, this paper presents a gated recurrent unit (GRU) network that learns spatio-temporal relational features for the early
anticipation of traffic accidents from dashcam video data. A post-hoc attention mechanism named Grad-CAM (Gradient-
weighted Class Activation Map) is integrated into the network to generate saliency maps as the visual explanation of the acci-
dent anticipation decision. An eye tracker captures human eye fixation points for generating human attention maps. The
explainability of network-generated saliency maps is evaluated in comparison to human attention maps. Qualitative and quan-
titative results on a public crash data set confirm that the proposed explainable network can anticipate an accident on average
4.57 s before it occurs, with 94.02% average precision. Various post-hoc attention-based XAI methods are then evaluated
and compared. This confirms that the Grad-CAM chosen by this study can generate high-quality, human-interpretable sal-
iency maps (with 1.23 Normalized Scanpath Saliency) for explaining the crash anticipation decision. Importantly, results con-
firm that the proposed AI model, with a human-inspired design, can outperform humans in accident anticipation.
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Autonomous driving research is advancing rapidly. Deep
learning and computer vision are contributing technolo-
gies in this exciting journey (1–3). While autonomous
vehicles are blooming, there are still cases where autono-
mous vehicles are involved in crashes (4, 5). Accident
anticipation and avoidance are essential safety functions
required for autonomous vehicles. From the dashboard
camera (dashcam) video, an accident anticipation model
aims to predict if an accident would occur shortly.
Specifically, the model classifies the driving scene of the
near future as one with or without accident risk. This acci-
dent anticipation model is a desired safety-enhancement
capability not only for autonomous vehicles but also for
countless human-driving vehicles. Successful anticipation
of accidents from the widely deployed dashcams even just
a few seconds ahead would effectively increase the situa-
tional awareness of human drivers, Advanced Driver
Assistance Systems (ADAS), and autonomous vehicles to
trigger a higher level of preparedness for accidents
prevention.

Multiple computer vision-based deep learning models
for the early anticipation of traffic accidents have been
developed recently with outstanding performance (6–9).
Each of the models may have millions of abstract para-
meters to learn from big data. Those learnable para-
meters are not directly attached to the physical nature of
the problem to be solved. Therefore, despite the out-
standing performance, the models’ complex, black-box
nature discourages societal acceptance. This issue is more
acute for accident prediction models than many other
Artificial Intelligence (AI) models. Accident anticipation
is a high-stake, safety-critical function directly related to
human lives. Thus, making AI models’ decisions
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explainable to users who put their lives in the hands of
AI is indispensable.

Importantly, human trust in autonomous driving
technologies is a prerequisite for the mass adoption of
autonomous vehicles (10–15). Shariff et al. (11) found
that 78% of Americans reported fear of riding in an
autonomous vehicle, and only 19% indicated that they
would trust autonomous vehicles. If people cannot verify
the safety and reliability of autonomous driving technol-
ogies, the perceived trustworthiness of the technologies is
compromised (12). Shariff et al. also concluded that fur-
ther research will need to identify the information
required to form trustable mental models of autonomous
vehicles. Ha et al. (16) experimentally confirmed that
explanations increase human trust in autonomous driv-
ing. Researchers have reached a consensus that it is nec-
essary to explain AI decisions for humans to trust AI
systems. The European Union has already enacted a
legal regulation allowing people to request an explana-
tion of AI decisions if they are significantly affected by
those decisions (17). Besides, the ability to explain the
decision of an accident anticipation model would sup-
port insurance, legal, and regulatory entities to assess the
model for the liability purpose (18). It is, therefore,
imperative to make it transparent to people why AI
models can anticipate traffic accidents. Achieving this
goal will help remove the obstacle of integrating AI-pow-
ered accident anticipation into people’s daily lives.

Explainable AI (XAI) is a rapidly growing research
topic that aims to develop algorithms and tools to gener-
ate high-quality, interpretable, intuitive, and human-
understandable explanations of AI models’ decisions.
Saliency maps are among the XAI tools that visually
explain the decision made by a computer vision-based
deep neural network. Salient regions in an image are
those firmly relevant to the AI model’s decision. Various
methods exist for creating high-quality, easily interpreta-
ble saliency maps (19–27). While these models have built
a methodological foundation for XAI, their assessment
is challenging. Questions remain open on the trustworthi-
ness of the explanation generated by XAI. One possible
method to assess the quality of an XAI tool or algorithm
is to let humans provide additional annotation and then
evaluate the match level of human annotation with the
explanation produced by saliency maps. However,
human annotation can be expensive to acquire. XAI has
been receiving growing attention in autonomous driving.
Attempts have been made to explain the functions of var-
ious AI models for autonomous driving (28–33). Yet,
XAI studies have not kept pace with the accelerating
pace of AI-powered accident anticipation research.

This paper aims to develop an explainable deep neural
network for early accident anticipation. The network
comprises two major components. The first is a gated

recurrent unit (GRU) network that analyzes the video
captured by the dashcam to determine if an accident may
occur shortly. This network mimics the human visual
perception of accident risks during driving. Like the eyes
of a driver, the dashcam captures the driving scene that
contains comprehensive information about the surround-
ings. Similar to the brain of the driver, the deep neural
network processes complex visual information to per-
ceive the accident risk. The second component is the
Gradient-weighted Class Activation Map (Grad-CAM)
method that generates saliency maps to explain decisions
made by the accident anticipation network. The saliency
maps highlight pixels in a video that causally affect deci-
sions made by the AI model. The explanation generated
will help lift the psychological barrier humans have to
enjoying the benefits promised by the AI-powered acci-
dent anticipation network. This study compares where
the AI focuses with where the drivers look in predicting a
future accident. This comparison reveals the quality of
the saliency maps as a visual explanation.

In summary, the contributions of this paper are
threefold:

� development of a deep neural network that learns
the spatio-temporal relationship among visual fea-
tures embedded in dashcam videos to predict if a
traffic accident will occur shortly;

� integration of the developed deep network with
the Grad-CAM method and its variants to prod-
uct high-qualify saliency maps for interpreting the
network’s prediction; and

� collection of human gaze points to assess the qual-
ity of the XAI methods, which are affordable and
efficient.

The remainder of this paper is organized as follows.
The next section summarizes the related literature. The
proposed methodology for creating the explainable acci-
dent anticipation network is then delineated. After that,
the implementation details and experimental evaluation
of the proposed method are discussed, followed by quali-
tative and quantitative analysis of the results. Finally, the
conclusion and future work are summarized.

Literature Review

Saliency Maps as XAI Tools

Saliency maps can explain the decision of a neural net-
work by highlighting regions of input images where the
network responds the most in relation to its decision.
Creating saliency maps for computer vision-based deep
networks has become an XAI approach. Simonyan et al.
(19) introduced a gradient-based method to generate sal-
iency maps for Convolutional Neural Networks (CNN).
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Their approach visualizes regions relevant to a CNN’s
decision after one forward and one backward propaga-
tion. The gradients from the end of the network are
backpropagated and projected onto input images. Still,
the vanilla gradient calculation produces noisy saliency
maps. Therefore, subsequent methods, such as Guided
Backpropagation (20), Deep Taylor (21), and Layerwise
Relevance Propagation (LRP) (22), were developed to
create better saliency maps by modifying the backpropa-
gation algorithm.

Another line of research developed a method to create
Class Activation Maps (CAM) that smooth saliency
maps by localizing the class-specific regions in images
(23). CAM requires removing the fully connected layers
from the top of a trained CNN to put a global average
pooling (GAP) layer followed by a single fully connected
layer. The saliency map is then computed by summing
up the activations of the last convolutional layer for indi-
vidual output classes. However, a modification of the
original architecture requires retraining the network. To
overcome this drawback, Gradient-weighted CAM
(Grad-CAM) generates high-quality saliency maps on
the original network architecture without any modifica-
tion (24). Recent extensions of Grad-CAM such as
Grad-CAM++ (25), XGrad-CAM (26), and Eigen-
CAM (27) are powerful XAI tools for visualizing the
class-specific decision that deep neural networks make.

XAI for Autonomous Driving

XAI is receiving growing attention in autonomous driv-
ing. For example, Bojarski et al. (28) proposed an
activation-based method to backpropagate activations
for obtaining smooth heat maps. This method for

explaining CNN works in a real-time manner to be inte-
grated by autonomous driving. Kim et al. (29) adopted
an attention-based method to filter out non-salient image
regions and display only those causally affecting the
steering control of a stand-alone vehicle. Similarly,
Cultrera et al. (30) also used an attention model to visua-
lize the perception of deep networks for autonomous
driving. Autonomous driving has employed saliency to
explain AI models for navigation, lane change detection,
and driving behavior reasoning (e.g., hazard stop or red
light stop) (33). All these methods achieved an impressive
performance in explaining decisions that AI models
made for critical tasks of autonomous driving. However,
the explanation of deep networks for early anticipation
of traffic accidents is less common. One XAI study par-
tially related to accident anticipation is noticed, which
attempts to explain object-induced actions of vehicles
(34). This study focuses on scene understanding, high-
lighting salient objects in the input images which poten-
tially lead to a hazard. The network architecture selects
potential objects from the region proposals proposed by
Faster R-CNN (35) without considering spatio-temporal
relational information. It, therefore, disregards motion
information that is an essential determinant of accidents.

Methodology

Figure 1 illustrates the proposed method for creating the
explainable accident anticipation network. The video
captured by the dashcam, as a sequence of frames
indexed by t, flows into a feature extractor. The feature
extractor extracts a feature map At from frame t. After
passing a dense layer, the feature map becomes a feature

Figure 1. Overview of the proposed method to create the explainable accident anticipation network.
Note: GRU = gated recurrent unit.
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vector, xt, which goes to a GRU to learn the hidden rep-
resentation of the frame, ht. Using the hidden representa-
tion, the network predicts the scores of the accident class
c and non-accident class !c, denoted by ŷt = ½ŷct , ŷ!ct �.
Gradient maps are calculated by backpropagating the
prediction score with respect to the feature maps
obtained from the feature extractor. Then, importance
weights ac are calculated from the gradients to aggregate
all channels of the feature map into the Grad-CAM map
that is further used to compute the final Grad-CAM sal-
iency maps. Details of the method are discussed below.

Feature Extraction

The base feature extractor used in this study is the
ResNet50 network, initialized using parameters pre-
trained on ImageNet (36). The feature extractor extracts
a feature map At 2 R

K3U 3V from frame t, for any t. That
is, the feature map has K channels, and the height and
width of each channel are U and V , respectively. Then, the
flattened feature maps are passed through a dense layer to
become a d dimensional feature vector, xt 2 R

d .

Spatio-temporal Relational Learning with GRU

A Recurrent Neural Network (RNN) is a powerful tool
for spatio-temporal sequential learning. Spatio-temporal
relationships among image features contain important
cues for accident anticipation. This study uses GRU, a
particular type of RNN, to learn spatio-temporal rela-
tionships among the features by updating the hidden rep-
resentation of each frame, ht. GRU has two gates, a reset
gate g

(r)
t and an update gate g

(u)
t , which retain the most

relevant information from the video sequence by filtering
out irrelevant information. The data flowing through the
GRU are expressed mathematically in Equations 1–4:

g
(r)
t =s(W(r)

g xt +B(r)
g h0t�1), ð1Þ

rt = tanh (Wrxt +Br(g
(r)
t 8h0t�1)), ð2Þ

g
(u)
t =s(W(u)

g xt +B(u)
g h0t�1), ð3Þ

ht =(1� g(u)t )8rt + g(u)t 8h0t�1, ð4Þ

where
s represents the sigmoid activation,
8 is the element-wise product operator,
W’s and B’s (2 R

d3 d) are learnable parameters, and
h0t�1 is the average pooled hidden representations of

the past M frames:

h
0

t�1 = avgpool(½ht�1, ht�2, . . . , ht�M �): ð5Þ

This study found that the average pooling of the most
recent M frames’ hidden representations is better than

the hidden representation of the last single frame in learn-
ing the contextual information.

The hidden state ht is then projected onto the predic-
tion scores of the two classes—accident and no-acci-
dent—using a fully connected layer, fc, with parameters
W0 and B0 (2 R

d3 d):

ŷt = ½ŷct , ŷ!ct �= fc(ht;W0,B0): ð6Þ

After that, the probability of seeing an accident
shortly, predicted at time t, is obtained by the softmax
operation on ŷt:

ât = exp (ŷc)=½exp (ŷc)+ exp (ŷ!c)� ð7Þ

Generating Saliency Maps with Grad-CAM

This study uses Grad-CAM for generating saliency maps
for the prediction of accident class c. Input video frames
indexed by t are fed to the network to calculate the Grad-
CAM saliency maps for class c. Let yct be the score for
class c predicted at frame t, calculated in Equation 6.
First, the gradients of yct on the k th channel of the fea-
ture map At, k are computed for all channels. Then, the
gradients are averaged along the width and height of each
channel to obtain the channel-wise importance weights
ac
t, k :

ac
t, k =

1

UV

XU
u= 1

XV
v= 1

∂yct
∂At, k(u, v)

: ð8Þ

Afterwards, the importance weights are used to aggregate
the K channels of the feature map to get the Grad-CAM
map. Finally, the activation function ReLU is applied to
find the rectified Grad-CAMmap for class c:

f cG�CAM=ReLU
XK
k= 1

ac
t, kAt, k

 !
: ð9Þ

The Grad-CAM map f cG�CAM has the same spatial
dimension as At, k . That is, f

c
G�CAM 2 R

U 3V . Its resolu-
tion is lower than that of the original video frame.
Therefore, f cG�CAM is up-sampled to have the same size
of the input frame via the bilinear interpolation. The
resized Grad-CAM map is superimposed with the input
frame to explain the network’s decision visually.

Implementation and Experimental
Evaluation

The Data Set

A publicly available data set called the Car Crash
Dataset (CCD) (6) is used to train and evaluate the pro-
posed accident anticipation network. CCD comprises
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videos that were captured by dashcams mounted on
vehicles. The positive class of the data set contains 1,500
videos that each contain an accident. The negative class
has 3,000 videos without any accident. The data set has
diverse driving environment attributes. All the videos in
CCD are trimmed to 5 s, and each video has 50 frames
(i.e., 10 frames per second [fps]). The data set is split into
the training data set with 3,600 videos and the testing
data set with 900 videos.

Model Training

The training data set, which comprises N (=3,600)
videos indexed by n, is used to train the network. The
video-level label is ln = 1 if video n is positive and ln = 0

if it is negative. Negative videos use the vanilla cross
entropy loss function. Positive videos use an exponential
cross entropy loss function to encourage early anticipa-
tion of accidents. That is, the loss for a positive video is
near zero when time is far away from the accident,
increases gradually as time is approaching the accident
occurrence, and reaches the same level for negative
videos at the accident occurrence and onward. Finally,
the total loss on the training data set is:

L=
PN
n= 1

�(1� ln)
PT
t= 1

log (1� ât, n)

�

�ln
PT
t= 1

exp �max t�t
f
, 0

� �h i
log (ât, n)

�
:

ð10Þ

where ât, n is the softmax probability that video n belongs
to the accident class, predicted at frame t.

The proposed network was trained and tested using
an Nvidia V100 GPU with 32GB of memory. Input
video frames were down sampled to 2243 224 before
being fed to the network. The dimension of the feature
map At at the last convolution layer of the feature extrac-
tor is 14(U )3 14(V ) with 512 (K) channels. The dimen-
sion of the feature vector before going to the GRU is
2,048 (d). The dimension of hidden representations out-
put from the GRU is 256. The number of hidden repre-
sentations for average pooling is 3 (M). The network was
trained with the learning rate 0.0001, the batch size 10,
and ReduceLROnPlateu as the learning rate scheduler.
Adam optimizer was used to optimize the network for 30
epochs.

Evaluation Metrics for the Accident Anticipation Model

Assessment of the accident anticipation network was per-
formed to determine how precisely and early the network
can anticipate traffic accidents. Two metrics described
below are used for the assessment.

Average Precision. On a testing video, if the softmax prob-
ability of accident, ât, exceeds a pre-specified threshold
value �a before an accident occurs, the video is predicted
as positive. Otherwise, the prediction is negative.
Accordingly, the recall (R) and precision (P) for the
model were calculated based on the testing data set:

R =
# true positive predictions

#positive videos
, ð11Þ

P =
# true positive predictions

#positive predictions
: ð12Þ

Recall and precision values depend on the choice of clas-
sification threshold. A precision-recall curve can be cre-
ated given various threshold values, and average
precision (AP) is the area below this curve:

AP =

ð
P RdR : ð13Þ

where P R is the precision at a given recall value. AP
measures how accurate the network is in anticipating
accidents.

For a real-world implementation, the user may require
a relatively high recall value. Therefore, precision at the
recall value 80%, denoted by P80R , was also calculated in
this study.

Time-to-Accident. A positive video where the accident
occurs at t is predicted as positive when the probability
ât exceeds the classification threshold for the first time.
The time-to-accident (TTA) is the time from the predic-
tion to the accident occurrence:

TTA(�a)= maxft� tjât.�a, 0ł tł tg: ð14Þ

TTA measures how early the network can predict an
accident, which is subject to the choice of the threshold
value. The expected value of TTA(�a) is the mean TTA:

mTTA = E�a½TTA(�a)�: ð15Þ

This study also calculates TTA 80R in correspondence to
P 80R .

Creating Human Attention Maps as a Reference

Drivers’ visual attention is influenced by important visual
cues in the traffic scene, such as a pedestrian, a cyclist,
changes of traffic lights, or abnormal behavior of other
vehicles. Therefore, drivers’ gaze behavior can be used as
the proxy for their attention. In this study, to evaluate
the explainability of the developed network, human
attention maps are computed and compared with the sal-
iency maps generated by Grad-CAM.

Karim et al 5



To obtain human attention maps, an eye tracking
experiment was designed and performed using a Tobii
Pro Fusion (37) eye tracker. Tobii Pro Fusion is a screen-
based eye tracker. Twelve volunteers participated in the
experiment including three females and nine males. The
age of the participants ranged from 20 to 43. Their driv-
ing experience ranged from 3months to 18 years. All the
participants passed the eye tracker calibration test and
are thus qualified for the eye tracking experiment.

The experiment chose 100 videos randomly from the
test data set of CCD to create an XAI test data set. Fifty
of the videos are positive videos, and the rest are nega-
tive videos. To assure the diversity of the scenes, the
selected video clips contain a proportional number of
environmental attributes. For example, 67% of the video
clips are normal weather and the remaining 33% are
snowy and rainy weather. These videos are in a random
sequence so that participants do not know the class of
the next video to watch. Furthermore, all the video clips
are 5 s in length. For any positive video, the crash start-
ing time is randomly placed in the last 2 s of the video
clip. Given the randomness, participants cannot predict
the timing of crash occurrence from their experiences of
watching other videos but the visual cues of the accident
risk. Participants assume they are drivers when watching
these videos. The eye tracker captures the participants’
gaze data, including the timestamp and coordinates of
each gaze point on the video frames. Each participant
performed the experiment once. In total, the experiment
recorded about 720,000 gaze points, approximately 144
gaze points per frame. Gaze points could be classified
into fixation, saccade, and unknown based on the angu-
lar speed of drivers’ gaze movement.

A Gaussian filter of 303 30 pixels was used to convo-
lute the count of gaze points on each frame into the
human attention map. Figure 2 shows a few samples of
such human attention maps. The green dots in the first
row of the figure are human gaze points. The second row
shows the attention maps created after applying the
Gaussian filter.

While fixation points are usually used to create human
attention maps, either licensed software is required or a
complex algorithm needs to be developed, to extract fixa-
tion points from gaze points. This study found that fixa-
tion points are the dominant class for drivers, accounting
for 93% of the collected gaze points. Therefore, it intro-
duced a simplified method that uses all the gaze points to
create human attention maps. While this approximation
introduces a small amount of noise to the attention maps,
objects that drivers attend to still stand out in the maps.

Obtained human attention maps are passed through a
step filter to create fixation maps of binary pixel values.
Pixels of value 1 in a fixation map are considered as
fixated pixels.

Evaluation Metrics for XAI

This study evaluated the Grad-CAM method’s ability to
explain the prediction by the accident anticipation network
by comparing the generated saliency maps to human fixa-
tion maps. The study considered both location-based and
distribution-based metrics delineated below.

Normalized Scanpath Saliency. Normalized Scanpath
Saliency (NSS) measures the correspondence between sal-
iency maps of the accident anticipation network and
human fixation maps. Let Ŝ be the Grad-CAM saliency
map of a frame and F be the fixation map of the same
frame.

NSS(Ŝ,F)=
1P

i

Fi

X
i

Ŝi � mŜ

sŜ

Fi ð16Þ

where
i is the pixel index of Ŝ and F,
Ŝi is the value of Ŝ at pixel i, and
Fi is the value of F at pixel i.

Mathematically, NSS is the average of normalized values
at pixels of the saliency map where human fixations fall

Figure 2. Human attention maps obtained from recorded gaze points.
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on. A positive NSS value means at a positive chance that
the AI-rendered saliency map and the human fixation
map have correspondence. The larger the NSS value, the
stronger the correspondence.

Area Under Receiver Operating Characteristic (ROC) Curve. The
saliency map of a video frame can be seen as the predic-
tion of the human fixation map of the frame. After
applying a specific threshold value to the saliency map,
the false positive rate and true positive rate of the binary
classification result by the saliency map are obtained.
The Receiver Operating Characteristic (ROC) curve can
be created to measure the trade-off between true and
false positives at various thresholds. The Area Under the
Curve (AUC) is then computed to measure how well the
model performs. Two different variants of AUC, AUC-J
(38) and AUC-B (38), are computed in this study. The
range of AUC is [0, 1]. The larger the AUC value, the
higher chance that the saliency map and the human fixa-
tion map have correspondence.

Kullback–Leibler Divergence. Kullback–Leibler (KL) diver-
gence is generally used to estimate dissimilarity between
two distributions. This study used KL to compare the
network-generated saliency maps with human fixation
maps. Given a saliency map Ŝ and the corresponding
human fixation map F, KL divergence can be approxi-
mated as:

KL(Ŝ,F)=
X
i

Fi log E+
Fi

E+ Ŝi

� �
, ð17Þ

where E is a regularization constant. The range of KL
divergence score is [0, ‘ ]. A low KL divergence score
indicates a better approximation of the fixation map by
the network-generated saliency map.

Results and Discussion

Performance of the Accident Anticipation Model

The accident anticipation model was assessed on the test
data set of CCD. Two different experiments were con-
ducted in this study by changing the number of hidden
representations (M) fed to the GRU. During training,

the network optimized the parameters by backpropa-
gating the loss function. A set of trade-off solutions
between AP and mTTA were obtained from different
epochs of the training process. This paper only reports
the results when the highest AP is achieved; these are
shown in Table 1.

In Table 1, the first experiment used the hidden repre-
sentation of that last frame (M = 1) to update the hidden
representation of the current frame, whereas the second
experiment mean-pooled the hidden representations of
the last three frames (M = 3). The result shows how the
integration of several recent frames’ hidden representa-
tions helps the network learn the temporal information
better than if it were only using a single frame. The per-
formance achieved in the second experiment confirms
that the proposed model can predict accidents very ear-
lier (mTTA=4.57 s and TTA 80R =4.50 s) with a very
low false alarm rate (AP=94.02% and P 80R =93.02%).

Figure 3 further illustrates an example of accident
anticipation by the proposed network. In the figure, sam-
ple frames of a video clip are shown on the top, the cor-
responding saliency maps are in the middle, and the time
series of the accident anticipation probability ât denoted
by the red colored curve is at the bottom. In the video,
the accident starts at frame #38. For illustration pur-
poses, a threshold value of 0.5 (�a) is set to trigger the pre-
diction of an accident in this example. The probability of
accident anticipation reached the threshold at frame #7,
which yields a TTA of 3.2 s. That is, the network pre-
dicted the accident 3.2 s before it happenned. Hot spots
in the saliency maps describe the network’s concentra-
tion in the accident anticipation. Very early in the video
(e.g., frame #0), activations of the accident class were rel-
atively sparse. Through learning the spatio-temporal
relationships, the network concentrated more on objects
that might be involved in or be affected by an accident.
In this example, two vehicles, A and B, at a relatively
long distance from the ego-vehicle, were first involved in
a crash. Two additional vehicles, C and D, closer to the
ego-vehicle were affected by the crash. The one on the
left adjacent lane (vehicle C) failed to avoid the crash,
whereas the one in front (vehicle D) successfully avoided
the accident. The saliency maps show that the network
started attending to vehicles C and D very earlier (see
frames #10 and #30). At frame #38, the crash started

Table 1. Accident Anticipation Performance on CCD

Experiment ID M (#) AP (%) mTTA (s) P 80R (%) TTA 80R (s)

1 1 93.77 4.45 92.31 4.32
2 3 94.02 4.57 93.02 4.50

Note: CCD = car crash data set; AP = average precision; TTA = time-to-accident; mTTA = mean time-to-accident.
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with vehicles A and B that were involved first, and the
saliency on vehicles C and D are split, and part of the
saliency split apart goes toward vehicles A and B.

Performance of Explainable Artificial Intelligence (XAI)
Methods

Qualitative Comparison. Figure 4 illustrates the qualitative
results of several examples selected from the tested acci-
dent videos. The first column shows input video frames,
the second column lists drivers’ fixation maps. The third
column is the human attention maps overlaid with the
input image to show where drivers attend. The last four
columns, from the left to the right, are the saliency maps
generated by Grad-CAM, Grad-CAM++, XGrad-
CAM, and Eigen-CAM, respectively. The saliency maps
are also overlaid with their respective input images to
conveniently explain the accident anticipation decision
made by the proposed accident anticipation network. All
the selected sample frames are within 2 s of the accident
occuring, where objects involved in or affected by the
accident are within the frames.

Humans have a natural tendency to focus on salient
objects that have visual significance in understanding the
situation. From the human attention maps (column 3 of
Figure 4), it is evident that humans attend to vehicles or
pedestrians that may be involved in or affected by a traf-
fic accident. The hottest spots in the saliency maps cre-
ated by the Grad-CAM method (in column 4) closely
overlap with the locations where humans fixate. This
indicates the proposed accident anticipation network

predicts high saliency values on the traffic agents
involved in or affected by the incident and, accordingly,
derives the prediction successfully. Saliency maps created
by XGrad-CAM (column 6) are very similar to those
generated by Grad-CAM (column 4). Saliency maps
obtained by Grad-CAM++ (Column 5) are sparser,
where a lot of regions irrelevant to the accident are also
considered as salient regions. Those are less capable of
describing the network’s decision. Similarly, Eigen-CAM
creates very random saliency maps (column 7) that do
not explain the network’s decision well.

The comparative analysis based on Figure 4 reveals
that the accident anticipation network developed in this
study predicts a future accident by focusing on the most
salient regions, just like a human does. The Grad-CAM
method, as well as the XGrad-CAM method, can gener-
ate high-quality saliency maps to explain how the pro-
posed accident anticipation network makes a decision.
Since the saliency maps generated by Grad-CAM and
XGrad-CAM are interpretable to humans, they help
users of the accident anticipation network establish their
faith and trust in the underlying AI model.

Quantitative Assessment. The study further compared sal-
iency maps generated by the XAI methods with human
fixation maps using the evaluation metrics NSS, AUC-J,
AUC-B, and KL divergence. For computing the NSS, a
filter with a threshold value of 0.1 was applied to human
attention maps to obtain binary fixation maps. Results
for both the positive and the negative classes are sum-
marized in Table 2. It should be noted that an XAI

Figure 3. Visualizing the accident anticipation by the proposed network for explanation.
Note: TTA = time-to-accident.
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method is more favorable if it has larger values of NSS
and AUC and a smaller value of KL divergence.

It can be observed from Table 2 that Grad-CAM and
XGrad-CAM achieve a similar performance in that they
have near-identical values on all the metrics and on both
classes. On the positive class, both of these two XAI
methods receive reasonably good scores on all metrics. It
should be mentioned that human fixation maps do not

set an ideal performance benchmark for the XAI meth-
ods, but a reasonable reference. This is because humans
attend to one spot at one time, and they may miss some
critical salient regions in fast-changing driving scenes.
Whereas the proposed AI network can attend to many
salient regions or traffic agents in a video frame. Since
human fixation maps, which are used as the ground
truth for assessing the XAI method, are not perfect

Figure 4. Visualizing the explanation generated by different explainable artificial intelligence methods.

Table 2. Performance Comparison of Explainable Artificial Intelligence (XAI) Methods

XAI methods
Positive Negative

NSS AUC-J AUC-B KL NSS AUC-J AUC-B KL

Grad-CAM 1.23 0.70 0.65 4.55 0.50 0.63 0.60 4.63
Grad-CAM++ 1.13 0.76 0.75 12.75 0.86 0.73 0.72 8.02
XGrad-CAM 1.23 0.70 0.65 4.55 0.50 0.62 0.60 4.63
Eigen-CAM 0.10 0.50 0.49 13.13 0.04 0.50 0.48 13.24

Note: NSS = Normalized Scanpath Saliency; AUC-J = Area under Receiver Operating Characteristic Curve-Judd; AUC-B = Area under Receiver

Operating Characteristic Curve-Borji; KL = Kullback-Leibler divergence.
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saliency maps of accident risks, values of the metrics on
the positive class were underestimated. The Grad-
CAM++ method receives a lower NSS value (1.13) but
higher AUC-J value (0.76) and AUC-B value (0.75) on
the positive class than both Grad-CAM and XGrad-
CAM. The higher AUC values that the Grad-CAM++
method achieved on the positive class are a result of the
AUC metrics not penalizing false positives whereas NSS
does. Therefore, Grad-CAM++ achieves better AUC
values although it generated sparse saliency maps that
are visually different than human attention maps on the
positive classes. Eigen-CAM performs poorly on all four
metrics on the positive class. The quantitative results
suggest that the Grad-CAM method and the XGrad-
CAM method can better explain the decision of the
accident anticipation network by rendering high-quality
saliency maps on the positive class.

The performance of the XAI methods on the negative
class was also evaluated in this study, with results pre-
sented in the right portion of Table 2. Values of the
metrics on the negative class differ from the values on
the positive class. Using the metric NSS as an example,
the NSS value of any XAI method on the negative class
is smaller than that on the positive class. This is because,
when a driving scene is normal and low in the accident
risk, the saliency maps that XAI methods generate for
frames of the negative class are sparsely dispersed among
different traffic agents or regions in the frames. However,
humans always have a certain degree of fixation, regard-
less of the class of the driving scene. When the driving
scene is normal, drivers fixate on regions and traffic
agents for the purposes of navigating and conforming
with driving rules. When the driving scene is risky, their
attention is partially attracted by the traffic agents
involved in or affected by the accident. On videos of the
negative class, regions with human eye fixations do not,
therefore, have much saliency value for the accident risk.
This explains the reason for obtaining low NSS values on
the negative class.

The NSS value of any XAI method on the negative
class is below 1 and lower than the value on the positive
class. In particular, the between-class differences in the
NSS values that Grad-CAM and XGrad-CAM obtain
(1.23 versus 0.50) are the largest among the four meth-
ods. The AUC values of Grad-CAM, Grad-CAM++,
and XGrad-CAM on the negative classes are also lower
than the values on the positive classes. Again, the
between-class differences in AUC values that Grad-
CAM and XGrad-CAM achieve are greater than Grad-
CAM++. Compared with the KL divergence values on
the positive class, the KL values of Grad-CAM, XGrad-
CAM, and Eigen-CAM on the negative classes increase
a little, whereas the value of Grad-CAM++ decreases.
The comparison shows that Grad-CAM and XGrad-

CAM are better than Grad-CAM++ and Eigen-CAM
in differentiating risky driving scenes from normal
scenes. The effectiveness of the metrics, in descending
order, is NSS, AUC, and KL.

Inference Speed

The inference speed of the proposed accident anticipa-
tion model is critical because accident anticipation needs
to be real-time. This study thus evaluated the efficiency
of the proposed method with regard to inference speed.
By testing on the test data set, it is found that the pro-
posed method can process a video at a speed of 8.5 fps
from loading a video frame to generating the prediction
score. This study further evaluated the inference speed
for the saliency map generation process. On average,
Grad-CAM, Grad-CAM++, and XGrad-CAM take
11ms, 13ms, and 12ms, respectively, for producing the
saliency map for each video frame. However, Eigen-
CAM takes a longer time, about 1.3 s per frame.

Challenges and Opportunities

The output of the accident anticipation network devel-
oped in this paper is binary because the network classifies
the driving scene of the near future as one with or with-
out the accident risk. The current system can anticipate
traffic accidents regardless of the accident type. Once suf-
ficient training data become available, the current net-
work could be be extended to become a multiclass
network to differentiate the accident type if an accident
is anticipated to occur shortly. According to the Traffic
Safety Facts Annual Report provided by National
Highway Traffic Safety Administration (NHTSA), acci-
dents resulting in fatalities, injuries, or property damages
are associated with various types of harmful events: (1)
no collision with a motor vehicle in transport; (2) rear-
end; (3) head-on; (4) angle; (5) sideswipe; and (6)
unknown. In the period from 2015 to 2019, 163,350
(96.65%) of fatal crashes in the United States were of the
first four types (39).

Indeed, a forward-facing dashcam will not capture all
types of accident. For example, in a potential sideswipe
accident, the vehicle being collided with cannot capture
the risk from its dashcam. However, dashcams are a low-
cost sensor type widely deployed in many vehicles. The
field of view limitation can be addressed well if most vehi-
cles are equipped with dashcams and are accessible to an
accident anticipation system. For example, the vehicle
likely to cause a sideswipe accident may see the risk from
its dashcam. Other surrounding cars not involved in the
accident may also perceive the sideswipe risk from their
cameras. Likewise, in a potential rear-end accident, the
car appraoching from behind can perceive the accident
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risk from its dashcam and thus try to avoid it, although
the vehicle in front does not. Furthermore, adding addi-
tional camera sensors can increase the field of view. As
we are moving toward the era of Vehicle-to-Vehicle
(V2V) communication, vehicles that have anticipated an
accident can share the information with others to alert
them to possible accidents. V2V communication will fur-
ther broaden the impact of dashcam-based accident
anticipation.

Conclusions

This paper presented an explainable deep neural network
for early anticipation of traffic accidents from dashcam
videos. The proposed network is a GRU that learns the
spatio-temporal relationship between visual features of
accidents by updating its hidden representations.
Aggregating the hidden representations of multiple
recent frames, the GRU learns the temporal-contextual
information better, thus improving the network’s perfor-
mance. The experimental evaluation on the CCD data
set confirms that the proposed network can anticipate
accidents very early (with 4.57-s mTTA) and accurately
(with 94.02% AP). Additionally, the Grad-CAM is inte-
grated into the proposed accident anticipation network
to produce saliency maps that explain the network’s deci-
sion visually. Human gaze data on a dashcam video data
set were collected to compare with the saliency maps
generated by the explainable network. Four variants of
XAI methods were further evaluated in this study. Out
of these four methods, Grad-CAM and XGrad-CAM
methods are most suitable because they generate a high-
quality visual explanation for the accident anticipation
decision made by the network. Qualitative and quantita-
tive evaluations both confirm that the proposed accident
anticipation network has reliable and visually interpreta-
ble performance. The proposed explainable network can,
therefore, not only build drivers’ confidence in reliable
AI models but address some drivers’ blind trust in unreli-
able AI models.

This paper has identified room for improvement. For
example, the human subject experiment was performed
in a laboratory setting. However, field testing scenarios
can be more complex than in the controlled laboratory
experiment, thus affecting human attention. Capturing
human gaze data from actual driving conditions will help
calibrate the results of evaluating the XAI methods. This
study also found that the proposed AI method can sur-
pass humans in finding salient regions to support the
accident anticipation. Thus, to further strengthen peo-
ple’s trust in AI, an evaluation method will be developed
to measure the strengths of AI over humans or vice
versa. The accident anticipation network can enhance its

performance further using human attention maps as a
separate input channel.

Camera sensors have certain limitations as well as
merits, just like every other sensor type. For example,
cameras may be blocked by dirt or mud while driving.
The limitations of cameras do not restrict them from
making positive contributions to transportation safety
and autonomous driving. Moreover, it is unlikely that
autonomous vehicles can rely on a single system to sense
the environment and navigate themselves. This study
envisions sensor fusion as a solution to address the lim-
itations of individual sensor types. Individual sensor
technologies should be developed to maximize the effec-
tiveness of sensor fusion. The advancement and synergy
of these sensor technologies will positively contribute to
the full driving automation.
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Explainability of Vision-Based Autonomous Driving Systems:

Review and Challenges. arXiv Preprint arXiv:2101.05307, 2021.
19. Simonyan, K., A. Vedaldi, and A. Zisserman. Deep Inside

Convolutional Networks: Visualising Image Classification

Models and Saliency Maps. Proc., Workshop at Interna-

tional Conference on Learning Representations, Citeseer,

Banff, Canada, 2014.

20. Mahendran, A., and A. Vedaldi. Salient Deconvolutional

Networks. Proc., European Conference on Computer Vision,

Springer, 2016, pp. 120–135.
21. Montavon, G., S. Lapuschkin, A. Binder, W. Samek, and

K.-R. Müller. Explaining Nonlinear Classification Deci-

sions With Deep Taylor Decomposition. Pattern Recogni-

tion, Vol. 65, 2017, pp. 211–222.
22. Montavon, G., A. Binder, S. Lapuschkin, W. Samek, and

K.-R. Müller. Layer-Wise Relevance Propagation: An

Overview. Explainable AI: Interpreting, Explaining and

Visualizing Deep Learning, 2019, pp. 193–209.
23. Zhou, B., A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-

ralba. Learning Deep Features for Discriminative Locali-

zation. Proc., IEEE Conference on Computer Vision and

Pattern Recognition, Las Vegas, NV, 2016, pp. 2921–2929.
24. Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D.

Parikh, and D. Batra. Grad-CAM: Visual Explanations

from Deep Networks via Gradient-Based Localization.

Proc., IEEE International Conference on Computer Vision,

Venice, Italy, 2017, pp. 618–626.
25. Chattopadhay, A., A. Sarkar, P. Howlader, and V. N.

Balasubramanian. Grad-CAM++: Generalized Gradient-

Based Visual Explanations for Deep Convolutional Net-

works. Proc., IEEE Winter Conference on Applications of

Computer Vision (WACV), Lake Tahoe, NV, IEEE, New

York, 2018, pp. 839–847.
26. Fu, R., Q. Hu, X. Dong, Y. Guo, Y. Gao, and B. Li.

Axiom-Based Grad-CAM: Towards Accurate Visualiza-

tion and Explanation of CNNs. arXiv Preprint

arXiv:2008.02312, 2020.
27. Muhammad, M. B., and M. Yeasin. Eigen-CAM: Class

Activation Map Using Principal Components. Proc., 2020

International Joint Conference on Neural Networks

(IJCNN), Padova, Italy, IEEE, New York, 2020, pp. 1–7.
28. Bojarski, M., A. Choromanska, K. Choromanski, B. Fir-

ner, L. J. Ackel, U. Muller, P. Yeres, and K. Zieba. Visual-

backprop: Efficient Visualization of CNNs for

Autonomous Driving. Proc., 2018 IEEE International Con-

ference on Robotics and Automation (ICRA), Brisbane,

Australia, IEEE, New York, 2018, pp. 4701–4708.
29. Kim, J., A. Rohrbach, T. Darrell, J. Canny, and Z. Akata.

Textual Explanations for Self-Driving Vehicles. Proc., Eur-

opean Conference on Computer Vision (ECCV), Munich,

Germany, 2018, pp. 563–578.

12 Transportation Research Record 00(0)



30. Cultrera, L., L. Seidenari, F. Becattini, P. Pala, and A. Del
Bimbo. Explaining Autonomous Driving by Learning
End-to-End Visual Attention. Proc., IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition Work-

shops, Nashville, TN, 2020, pp. 340–341.
31. Sauer, A., N. Savinov, and A. Geiger. Conditional Affor-

dance Learning for Driving in Urban Environments. Proc.,
Conference on Robot Learning, Zürich, Switzerland,
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