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Abstract—Over 600 000 bridges in the U.S. must be inspected 
every two years to identify flaws, defects, or potential problems that 
may need follow-up maintenance. Bridge inspection has adopted 
unmanned aerial vehicles (or drones) for improving safety, effi- 
ciency, and cost-effectiveness. Although drones can operate in an 
autonomous mode, keeping inspectors in the loop is critical for 
complex tasks in bridge inspection. Therefore, inspectors need to 
develop the skill and confidence to operate drones in their jobs. This 
article presents the design and development of a virtual-reality- 
based training and assessment system for inspectors assisted by a 
drone in bridge inspection. The system is composed of four inte- 
grated modules: a simulated bridge inspection developed in Unity, 
an interface that allows a trainee to operate the drone in simulation 
using a remote controller, data monitoring and analysis to provide 
real-time in-task feedback to trainees to assist their learning, and 
a post-study assessment supporting personalized training. This 
article also conducts a proof-of-concept pilot study to illustrate the 
functionality of this system. The study demonstrated that the train- 
ing and assessment system for bridge inspection with an assistant 
drone, as a tool for the early-stage training, can objectively identify 
the training needs of individuals in detail and, further, help them 
develop the skill and confidence in collaborating with a drone in 
bridge inspection. The system has built a modeling and analysis 
platform for exploring advanced solutions to the human–drone 
cooperative inspection of civil infrastructure. 

Index Terms—Human in the loop, infrastructure inspection, 
performance assessment, sensing, training, unmanned aerial 
vehicle, virtual reality (VR). 

 
 

I. INTRODUCTION 

HE U.S. Highway Bridge Inventory has approximately 

617 000 bridges. 42% of them are over 50 years old, 

and 7.5% are structurally deficient [1]. To avoid catastrophic 

incidents, all bridges are required to be inspected every two years 

for identifying flaws, defects, or potential problems that may 

need follow-up maintenance. Traditional bridge inspection may 
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require closing the traffic and the use of heavy equipment such as 

a snooper truck. Inspecting a bridge needs a crew of inspectors 

working at the site for many hours. Some field operations are 

dangerous, such as climbing up to high bridge columns. 

To make bridge inspection safer, faster, cheaper, and less in- 

terruptive to the traffic, unmanned aerial vehicles or drones have 

been adopted for use. A drone can conveniently access various 

locations of a bridge to capture a large amount of inspection data 

efficiently using sensors that it carries, such as RGB cameras and 

infrared cameras. Bridge inspectors can collect bridge inspection 

data using a drone if they have a license issued by the Federal 

Aviation Administration (FAA) and a waiver of the regulation 

“keeping the drone within visual line of sight” in FAA’s Small 

UAS (Part 107) Regulations. Then, inspectors will bring the data 

back to their offices and analyze the data with the assistance 

of machine learning algorithms [2]. The use of drones for data 

collection also minimizes the traffic closure and the use of heavy 

expensive equipment. A survey conducted by the American As- 

sociation of State Highway and Transportation Officials shows 

that using drones for bridge inspection can reduce the cost by 

74% [3]. Besides bridges, other low-accessible infrastructures 

have also been adopting drones for inspection, such as dams and 

penstocks [4], transmission lines [5], and railways [6]. 

Current studies on the bridge inspection with an assistant 

drone mainly focus on the drone technology (see, e.g., [7]) 

and data analysis using image processing and computer vision 

(see, e.g., [2]). The human factors aspect is largely ignored. The 

use of drones for bridge inspection is not to eliminate bridge 

inspectors but to augment their ability [8]. Although a drone 

can fly in the autonomous mode by following a pre-planned 

path, keeping human in the loop will enhance the safety, effi- 

ciency, and effectiveness of bridge inspection. There are various 

situations that the inspector needs to disengage the autonomous 

mode and take control of the drone. For example, if the inspector 

identifies a severe concern with a certain spot of the bridge 

during the inspection, the inspector can temporarily pause the 

autonomous mode to collect desired data around that spot. After 

that, the autonomous mode can be resumed to continue the 

planned inspection. In response to an alarming situation or 

a suddenly emerging need anticipated by the inspector or an 

artificial intelligence model, the inspector may also have to take 

control of the drone [9]. 

Training is essential to help inspectors gain and retain the 

skill and confidence in inspecting bridges with an assistant 

drone. Training inspectors to collect data using an assistant 

drone should take place progressively in multiple stages. Like 
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aviation training systems or driving simulators, a virtual reality 

(VR)-based training and assessment system is a cost-effective 

tool for the early-stage training. After that, inspectors can move 

to the augmented-reality-based training that uses either a virtual 

drone at a real inspection site or a real drone in a virtual 

inspection scene. Ultimately, the training will be at a real bridge 

site with a real drone. VR-based training systems have been 

developed for civil engineers in pipe maintenance [10], bridge 

construction process [11], and bridge crane operation [12]. Some 

commercial drone flight simulators have been developed as well. 

For example, AeroSim Drone Simulator [13] offers training 

scenarios of inspecting wind turbines, power lines, towers, and 

solar panels. Moud et al. [14] also developed a first-ever drone 

flight simulator for construction sites. To our best knowledge, no 

simulator has been developed for inspector–drone cooperative 

bridge inspection, nor a data-driven framework for assessing the 

training performance of bridge inspectors. 

A dedicated simulator is required for training bridge 

inspectors to operate a drone in their jobs. Commercial drone 

simulators are not tailored toward the need for training bridge 

inspectors, according to our discussions with researchers in 

human factors and a center for training inspectors. Some unique 

features of bridge inspection differentiate it from other types of 

inspection, such as the traffic passing the bridge, complex and 

diverse structures, and narrow irregular spaces between struc- 

tural elements, such as diaphragms and interlayers. Moreover, 

factors that may impact the drone-assisted bridge inspection 

are broad, including job-site-related, drone-related, task-related, 

and human-related factors. However, commercial drone simula- 

tors only considered some of those, such as the wind speed and 

direction, battery level, and task difficulty level (see, e.g., [13]– 

[16]). The skill and confidence developed using simulators for 

inspecting other types of infrastructure are not transferred to the 

bridge inspection effectively. 

A dedicated assessment method for training bridge inspectors 

is also desired. The assessment utilizes the data captured from 

the simulation training to measure inspectors’ performance us- 

ing specially designed metrics. The stakeholder of the training 

system usually would like to set a baseline for rating inspectors’ 

overall performance in utilizing an assistant drone as excellent, 

good, acceptable, and others, for example. Without well-defined 

performance metrics, the baseline is difficult to determine objec- 

tively. Feedback to inspectors, both in-training and post-training, 

helps accelerate their learning processes. Effective feedback to 

an inspector should be built on measurements of the inspec- 

tor’s tasks performance and human states (e.g., cognitive load, 

physical load, emotion, and other psychological states). The 

measurements are from multiple dimensions, including time, 

quality, productivity, safety, cost, and others. Commercial drone 

simulators do not include a module that provides desired mea- 

sures and metrics for monitoring and assessing bridge inspectors 

in training. While task performance measurements have been 

studied widely in operations management [17], many metrics 

are output-based, such as the completion time and productivity, 

not applicable to providing in-task feedback. The evaluation 

of task performance and human states can be performed by 

subjects themselves, peers, or evaluators. However, subjective 

judgment lacks reliability, timeliness, and accuracy. Despite 

these limitations, subjective evaluation is still often used due 

to the low cost and the ease of implementation. The NASA 

Task Load Index [18] is a questionnaire commonly used by 

pilots for reporting their physical demand, time pressure, effort, 

performance, mental demand, and frustration level [15], [19]. 

Filling gaps in the literature, contributions of this article are 

twofold: 

1) the design and development of a VR-based training and 

assessment system for bridge inspection with an assistant 

drone (TASBID); 

2) a data-driven method with unique measures and metrics 

for analyzing and understanding inspectors’ needs for 

training and assistance. 

The source code of TASBID is publicly available for down- 

load at Github [20]. The rest of this article is organized as 

follows. Section II presents the proposed system. Section III 

exhibits the functionality of the system using a small-scale pilot 

study. Finally, Section IV concludes this article. 

 
II. TRAINING AND ASSESSMENT SYSTEM 

The architecture of the TASBID is illustrated in Fig. 1. The 

system is designed to consist of four modules: 1) the bridge 

inspection simulation; 2) an interface that allows the bridge 

inspector (the trainee) to operate the drone in the simulated in- 

spection; 3) monitoring and data analysis; and 4) the post-study 

assessment. The trainee, who could be equipped with biometric 

sensors, operates the drone in the simulated inspection using 

a remote controller. Streaming data of the inspector and the 

drone are monitored to provide real-time in-task feedback to 

the inspector. The data on job specifications, the bridge, and the 

site are references for monitoring and analysis. Upon completing 

a training, a comprehensive assessment based on the collected 

data is performed to provide both the required information for 

designing an individualized training plan and the post-study 

feedback to the trainee. The four modules are discussed in detail 

in the following. 

 
A. Simulated Bridge Inspection 

The inspection simulation created in Unity is illustrated in 

Fig. 1. The simulation provides the trainee with the visual 

stimulus of drone-assisted bridge inspection. To assure that it is 

close to the real-world work context, the simulation is designed 

to include five major elements of bridge inspection: the ground 

team, the drone, bridges, the job site, and example tasks. 

1) Ground Team: The ground team in the simulation com- 

prises an inspector (the virtual counterpart of the trainee) and 

a truck. The simulation defines the location of the ground team 

where the drone takes off and returns to. The simulation provides 

two views side by side on the screen to the trainee. The left is 

the inspector’s view at the site, and the right is the camera’s 

view from the drone. During the simulation training, the trainee 

can switch her/his gazes between the two views to focus on 

the most useful one. For example, the inspector’s view can be 

useful during taking-off and landing. The camera’s view is what 



LI et al.: VR-BASED TRAINING AND ASSESSMENT SYSTEM FOR BRIDGE INSPECTORS WITH AN ASSISTANT DRONE 593 

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 17,2022 at 11:46:23 UTC from IEEE Xplore. Restrictions apply. 

 

 

 

 
 

Fig. 1.  Architecture of the TASBID. 

 
 

the trainee would concentrate on during the inspection and for 

the visual navigation. 

2) Drone: The simulation adopts a drone simulation model 

from a Unity drone controller asset [21] and revises it for the 

bridge inspection. Parameters for modeling the drone include 

the drone model, mass and load, movement force, maximum 

forward speed, maximum sideward speed, rotation speed, slow- 

down time, movement sound, propellers’ rotation, battery ca- 

pacity, and movement types. In this simulation, eight types of 

movement are sufficient for the bridge inspection. They are 

forward and backward, right-sideward and left-sideward, up and 

down, and right-rotation and left-rotation. The trainee controls 

the movement, rotation, and speed of the drone using the remote 

controller. The battery level is a dynamic constraint for the 

drone operation, which drops gradually during the inspection. 

This simulation does not include the return-to-home function 

that can bring the drone to the home point when the battery 

level drops to a prespecified level. Instead, the battery level 

is displayed for examining the trainee’s time stress. The drone 

has a snapshot function that the inspector can straightforwardly 

use to label an event on the timeline of the inspection video. 

Later, the inspector can retrieve and review the labeled frames. 

The snapshot function is also a simple way of confirming the 

inspector’s visual attention to an area of concern. 

3) Bridges: The simulation uses a Unity asset named Road 

Architect [22] to create the bridge models, wherein multiple 

types of bridges are available for choice and redesign. The 

simulation includes an arch bridge and a suspension bridge 

to provide trainees with different experiences in training. For 

example, the arch bridge in the simulation has cramped spaces, 

where controlling the drone is challenging to the trainee. Road 

 

Architect defines the structural elements of the bridges. Ac- 

cordingly, the spatial–temporal relationship between the drone 

and specific bridge elements during the simulated inspection 

can be determined. Defects, such as cracks, are added to the 

surface of some bridge elements to assess the trainee’s situational 

awareness during the inspection. 

4) Job Site: Simulation of the bridge inspection site focuses 

on creating the geographic context, the environmental condition, 

and the traffic condition at the bridges. Bridges to be inspected 

sit on a lake in a mountain area. Bridge inspection needs to 

be conducted in the daytime with clear weather although a 

sudden change in the weather may occur in rare cases. Therefore, 

only wind under level 5 of the Beaufort Wind Scale has been 

considered as a possible weather impact in the system. The wind 

factor is simulated by adding the force value and direction in 

Unity. Since most commercial drones can be flown in the wind 

between 10 and 30 mi/h, TASBID considers three levels of wind: 

light, gentle, and medium. They correspond to the wind speed 

around 2, 11, and 22 mi/h and cause the force of 0.12, 3, and 12 N, 

respectively. A 3-D vector can set up the wind direction. Lighting 

condition is another common factor impacting the inspection. To 

create a more realistic lighting condition, the simulation turns 

on the Global Illustration in Unity to simulate the light reflected 

from the water surface. Some dark areas of bridges, such as the 

bridge bottom, are still present although the natural lighting is 

good. TASBID is designed to include tasks that inspect dark 

areas of bridges. The drone in the simulation is equipped with 

a light. Trainees can turn it ON or OFF according to their needs 

by pressing “B” on the keyboard. Traffic volume is modeled as 

well because inspectors may feel pressure when flying the drone 

near the traffic. Vehicles moving on the bridges are included 



594 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 52, NO. 4, AUGUST 2022 

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 17,2022 at 11:46:23 UTC from IEEE Xplore. Restrictions apply. 

 

 

− 
− 
− 

− 

{ | } 

Σ 

i 

i 

 

in TASBID using a free traffic simulation asset [23]. The total 

number of vehicles can be increased or decreased as desired. 

5) Inspection Tasks: Tasks selected for the simulation train- 

ing must capture representative scenarios of the real-world in- 

spection. TASBID includes four tasks that have various shapes 

of inspection paths (e.g., a long straight line versus multiple short 

lines, and a large curve versus a small circle), types of acces- 

sible space (spacious and narrow), lighting conditions (bright 

versus dark), and various levels of complexity in controlling the 

drone (gross versus fine control, and movement versus rotation 

control). 

1) Task 1 is to inspect the slab of the arch bridge from one 

side. The accessible space is spacious, and the lighting 

condition usually is not a concern. The recommended 

inspection path for this task is a straight line along one side 

of the bridge. The trainee controls the drone and moves it 

along the slab from one end to another end of the bridge. 

2) Task 2 is to inspect the bridge bottom. The accessible space 

is spacious, but the lighting condition might not be ideal. 

The trainee needs to adjust the drone’s position frequently 

when moving it along the arch-shaped bridge bottom. 

3) Task 3 is to inspect the interlayer of the arch bridge in 

a narrow space, and the lighting condition might not be 

ideal. The trainee needs to delicately control the movement 

(e.g., the battery drains or the drone crashes into the traffic), 

whichever occurs the first. Let Oi and Di denote the trainee’s 

operation data and the drone flight data, respectively, collected 

at any frame i. 

The trainee operates the remote controller that has four-axis 

inputs for controlling the movement, rotation, and speed of the 

drone. Besides, the trainee can press “B” on the keyboard to 

turn ON/OFF the light and “P” to take “snapshots” during the 

inspection. Therefore, the trainee’s operation data are time-series 

data in six dimensions: 

Oi = [ofb,i, orl,i, oud,i, ort,i, ob,i, op,i] (1) 

where 

ofb,i forward (+) and backward ( ); 

orl,i right (+) and left ( ) sideward; 

oud,i up (+) and down ( ); 

ort,i right (+) and left ( ) rotation; 

ob,i turning ON (1) and OFF (0) the light; 

op,i taking a snapshot (1) and not (0). 

The drone flight data include the position, velocity, and the 

remaining battery level of the drone 

Di = [ L→  
i, vi, bi] = [lx,i, ly,i, lz,i, vi, bi] (2) 

and rotation of the drone to capture both the upper side and 
the down side of the interlayer area safely. where L→ 

i = (l 
 
x,i , ly,i , lz,i ) are the 3-D coordinates of the drone’s 

4) Task 4 is to inspect the corrosion situation of the suspen- 

sion bridge at a pier. The path for the drone is a circle with 

a small radius near the water surface. The trainee needs to 

rotate the drone when moving around the pier frequently. 

The task sequence presented above is just a recommendation. 

The trainee can plan and decide the sequence of tasks. 

 
B. Interface Between the Trainee and the Drone 

The trainee operates the drone in the simulated inspection 

using a remote controller. Currently, TASBID uses a Phantom 

2 DJI controller for this purpose. The controller is connected 

to Unity using the vJoy device driver [24] and the method in 

mDjiController [25]. The trainee adjusts the joysticks of the 

location in the earth reference system, vi is the linear speed of 

drone, and bi is the remaining battery level in percentage. 

2) On-Path Analysis: Although the drone has the gimbal and 

zoom functions to make the data collection more flexible, the 

flexibility is bounded. Therefore, the inspector’s ability to send 

the assistant drone to suitable locations is still critical to obtain- 

ing desired inspection data in desired quality. For the training 

purpose, TASBID recommends reference paths appropriate for 

performing individual tasks, but not for the entire job, to the 

trainee. Let t be the index of tasks and n be the index of reference 

points. p→ t ,n  n = 1 , . . . ,  Nt defines the reference flying path 

for the drone in task t. 

Denote Xt,i as the binary variable indicating if the drone 

in frame i is on the reference path of task t, for any t and i. 
controller to control the movement, rotation, and speed of the drone. The trainee’s operations of the drone are recorded as time 

T 
t=1 Xt,i ≤ 1 for any i, indicating that the drone cannot be 

series data. 

 
C. Monitoring and Data Analysis 

TASBID can collect six types of data from the study, as 

illustrated in Fig. 1. The work site characteristics, the bridge 

models, the drone model, and job specifications are prespecified 

data that do not change during a study. The flight data of the drone 

and the trainee’s operation data are the frame-level streaming 

data that vary in each time of the study. 

1) Streaming Data: A simulated inspection is captured by 

a sequence of N frames, indexed by i. Given the fixed frame 

rate, f , the total duration of an inspection is N/f . The starting 

frame is defined as the time when the drone is taking off. The 

ending frame corresponds to the time when the drone lands near 

the ground team or it cannot continue to finish the inspection 

on more than one task simultaneously. Using Algorithm 1, the 

analysis module evaluates if the drone is on the reference path 

for task t. Specifically, the algorithm uses the reference path of 

task t and the location of the drone as inputs to determine the 

value of the binary variable Xt,i. 

Using the outputs of Algorithm 1, the starting frame of task 

t, It,s, and the ending frame, It,e, are determined accordingly. 

The analysis module treats the first frame when Xt,i is one as 

the starting frame for task t and the last frame when Xt,i is one 

as the ending frame: 

It,s = min{i|Xt,i = 1} 

It,e = max{i|Xt,i = 1} (3) 

3) On-Speed Analysis: A speed limit v is also specified for 

the inspection tasks. Setting a speed limit for the drone would 
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Algorithm 1: On-Path Analysis for Task t in Any Frame i. 

// p→ t ,n  n = 1 , . . . ,  Nt : reference points that define the 

reference path for the drone in task t, 
// L→ 

i: position of the drone in frame i, 

// l (L→  
i, p→t,n ): the distance between the drone and the 

reference point pt,n, 

// n∗: the index of the reference point with the shortest 

distance to the drone, 

// vt,n: the segment of the reference path, defined by p→ t ,n  

and its adjacent point(s), 

// l (L→  
i, vt,n): the distance from the drone to any location 

Crashing into other objects will not terminate the study. At the 

end, the total number of crashes into other objects will be 

 
N 

Xo = 1{Xo,i /=0 & Xo,i−1 = 0}. (7) 
i=1 

 

5) Visual Attention Analysis: The study randomly places Xd 

surface defects on the bridges. The trainee can take a snapshot 

if she/he believes an area of concern is found. The total number 

of snapshot events is 

on the segment v , N 

// ∗ 

 
 

t,n 

X = 
Σ 

o 
 

 

. (8) 

// lt: the threshold distance for identifying if the drone is 

on the reference path for task t, 

// Xt,i: binary variable indicating whether the drone in 

frame i is on the reference path of task t. 

Step 1: find the reference point with the shortest distance 

to the drone, p→ t ,n ∗  , where 

n∗ := arg minn l (L→  
i, p→t,n ) n = 1,..., Nt . 

Step 2: The shortest distance from the drone to the 
reference path is computed as: 

lt
∗
,i = min l(Li, vt,n∗ ) 

Step 3: Determine if the drone in frame i is on path: 
 

 

Xt,i = 1 l∗ lt 

Return (Xt,i, lt
∗
,i ) 

 

 
 

help lower the chance of motion blur in the inspection video 

data. The value of v is 10 mi/h in TASBID. Similarly, a binary 

variable Xs,i is defined to indicate if the drone in frame i is 

speeding when performing inspection tasks 

The snapshots may include false detection. The number of true 

detection is Xtd. 

6) Real-Time In-Task Feedback: Using the monitoring data 

and measurements calculated from the data, real-time in-task 

feedback is provided to the trainee. To raise the trainee’s atten- 

tion to job safety and task specifications, TASBID provides five 

types of information, illustrated in Fig. 2. 

The remaining battery level is updated in real time and dis- 

played at the upper right corner of the camera view, as illustrated 

in Fig. 2. The battery icon is in green color when the remaining 

power is 70% or higher, yellow if between 30% and 70%, and in 

red otherwise. The battery icon starts to flush once the remaining 

power drops below 30%. The displayed battery level set a 

time constraint to encourage the trainee to finish the inspection 

before the drone runs out of power. The drone’s speed is always 

displayed at the upper left corner of the camera view. Three 

types of messages may appear at the bottom left when certain 

conditions occur. 

1) A message about speeding will show up at the bottom left 

corner if Xs,i in (4) is 1. 

Xs,i = 1{vi > v̄ , i ∈ ∪T
 [It,s , It,e ]}. (4) 

2) A message to remind the recommended distance from the 

bridge elements will appear if the drone is off-path, far 

away from the bridge element to inspect (i.e., Algorithm 
4) Crash Analysis: A crash in the simulation is defined as 

an event that the drone touches traffic agents, the bridges, the 

terrain, or the water body. The simulation can sense the type 

of an object the drone crashes into and track timings of crash 

events. Xh,i is a binary variable indicating if the drone in frame 

i touches a human in the traffic. Xv,i is another binary variable 

indicating if the drone crashes into a vehicle in the traffic. Xo,i 

is a categorical variable indicating if the drone touches any other 

objects. A crash event may last for multiple frames. Therefore, 

whenever Xh,i turns from 0 to 1, the simulation identifies the 

occurrence of a crash into a human, indicated by a binary variable 

Xh 
 

Xh = 1{∃Xh,i = 1} (5) 

and another binary variable Xv indicates if a crash into a vehicle 

happened 

 

Xv = 1{∃Xv,i = 1}. (6) 

1 returns Xt,i =0 and lt
∗
,i 8 m for the inspection task 

t). 
3) A message appears if the drone senses any object within 

2.5 m to the center of the drone or crashes into anything 

(i.e., whenever Xh,i, Xv,i, or Xo,i turns from zero to a 

positive value). 

 
D. Post-Study Assessment 

After a simulation training ends, data collected from the 

training are further used to perform a comprehensive post-study 

assessment. The assessment covers the trainee’s task perfor- 

mance and self-assessment using a questionnaire. 

1) Task Performance: It is desired to make the bridge inspec- 

tion faster, cheaper, safer, more objective, and less interruptive 

to the traffic. Therefore, TASBID evaluates trainees’ job/tasks 

performance from multiple dimensions: conformity, efficiency, 

safety, and accuracy, which are important to the bridge inspec- 

tion. 

i=1 

p,i 
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Fig. 2.  (a)–(d) Illustration of real-time in-task feedback. 

 
 

The trainee’s ability to conform with task specifications is 

term conformity. Conformity captures inspectors’ essential abil- 

ity to operate the drone along desired paths, move it to desired 

Then, the conformity is an aggregation of Pp,t and Ps,t for all 

tasks 

T T 
locations, and maintain the recommended speed, during the 
inspection. Conformity positively contributes to the quality of PC = ωp 

Σ 
Pp,t + ωs 

Σ 
Ps,t (11) 

data collection. The ability to be on-path in performing task t is 
t=1 t=1 

measured by the percentage of task time when the drone is on 

the reference paths of the tasks 

where ωp is the gain coefficient for on-path and ωs is the 
loss coefficient for speeding. The range of PC in TASBID is 

[−100,100]. The maximum score occurs if the drone is always 
It,e 

P = 
i=It,s Xt,i 

 
. (9) 

on-path and never speeding in all tasks. The minimum score 
occurs when the drone is never on-path and always flying at its 

p,t 
It,e − It,s +1  maximum speed. The maximum speed of the drone in TASBID is 

To measure the trainee’s on-speed ability in performing task t,a 

weighted sum of times when the drone is speeding is calculated, 

and the weights are the ratios of speed to speed limit 

30 mi/h and the speed limit for inspection is 10 mi/h. Therefore, 

ωp and ωs are set to be 25 and  25/3, respectively. 

The trainee’s ability to finish the inspection with fewer re- 

sources and less waste is termed time efficiency. It is selected 

as a training performance metric for encouraging inspectors to 
It,e 

P = 
i=It,s (vi/v¯)Xs,i . (10) keep the inspection cost-effective. Multiple critical values are 

s,t 
It,e − It,s +1  defined with respect to the time efficiency of trainees. τ defines 



LI et al.: VR-BASED TRAINING AND ASSESSMENT SYSTEM FOR BRIDGE INSPECTORS WITH AN ASSISTANT DRONE 597 

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 17,2022 at 11:46:23 UTC from IEEE Xplore. Restrictions apply. 

 

 

− 

− 

— − 
∞ 

− 

− 

− 

 

the cutoff point of the inspection time for receiving the highest 
score and τ¯ is the maximum allowable flight time for the drone. 

The battery drains if the inspection would go beyond τ¯. Let 

Xb be a binary variable indicating if the drone fails to return 

to the ground team due to running out of power. Xb equals 1 

if N/f > τ¯ and 0 otherwise. Accordingly, the score of time 

efficiency, PE, is calculated as 

PE = [ωe0 + ωe1(N/f − τ )+](1 − Xb)+ ωbXb. (12) 

The range of PE score is [ 100,100]. ωe0 in (12) is set to be 100, 

representing the highest efficiency score a trainee receives if the 

inspection is done by τ . ωb is set to be 100, indicating that 

the trainee fails to complete the inspection within the maximum 

allowable time τ and, thus, loses 100 points. PE score will be 0 

if the inspection is completed at the defined maximum allowable 

time τ . ωe1 = ωe0/(τ  τ ), representing the score deduction 

for every additional unit of time exceeding τ . In TASBID, τ 

is assumed to be 25 min, estimated based on the maximum 

flight time of representative commercial lithium-battery-based 

drones [26]. τ is set to be 15 min. 

Job safety is the trainee’s ability to keep the drone and other 

traffic agents safe during the inspection. The lack of ability to 

keep safe in inspection is measured by the total lost score due 

to crashes 

TABLE I 

SELF-ASSESSMENT QUESTIONNAIRE 

 
  

 

 

 

 

 
 

 

 
 

 
 

indicates that precision is dominantly important, and setting it 

as  means that recall is dominantly important. β is equal to 

1 if precision and recall are equally important. Fβ is within [0, 

100%]. Accordingly, the score of accuracy is measured as 

PA = ωf Fβ. (17) 

ωf in (17) is set to be 100 and so the range of PA is [0, 100]. 

The trainee’s scores on conformity, efficiency, safety, and 

accuracy are further standardized to be within the range from 

PS = max[ωhXh + ωvXv + ωoXo, PS
′ ] (13) 

0% to 100%. Then, the standardized scores are presented as a 

Kiviat diagram to show the trainee’s task performance on the 

where ωh, ωv, and ωo are losses from each crash into a human, 

a vehicle, and any other object, respectively. In TASBID, ωh 

and ωv are set to be 100, indicating that a crash into a traffic 

agent usually has severe consequences such as a fatality or a 

hospitalized incident. ωo is set to be 3, indicating that the 

consequence of crash into other objects is more related to the 

drone damage. PS
′ is set to be 100 in TASBID, meaning that 

no more points will be further deducted if the cumulative loss 

has reached PS
′ . Therefore, the range of PS score is [−100,0]. 

Limiting the loss by PS
′ can avoid the scenario that safety 

dominates other performance metrics. 
Accuracy is the trainee’s ability to keep alert during the 

inspection and, thus, develop the visual perception of the bridge 

condition. With situational awareness, inspectors can efficiently 

utilize the assistant drone in data collection and, later, effectively 

collaborate with machine learning algorithms in analyzing the 

inspection video data. The assessment module calculates the 

recall (the portion of the surface defects that the trainee detected 

correctly) 

four dimensions. 

2) Questionnaire-Based Workload Assessment: After a sim- 

ulation training is completed, the trainee is invited to fill out 

a questionnaire adopted from [15] and revised for TASBID. 

The questionnaire complements the objective assessment of 

TASBID. Table I lists the six aspects that the questionnaire 

asks. “Time pressure,” “Frustration,” and “In-task feedback” are 

three aspects asked regarding the overall simulated inspection. 

“Performance,” “Mental demand,” and “Physical demand” are 

asked with respect to each phase or task of the inspection, includ- 

ing calibration, taking-off, individual tasks 1–4, and landing. 

Responses to questions are on a five-point Likert scale: strongly 

agree (1), agree (2), neutral (3), disagree (4), and strongly dis- 

agree (5). “Strongly agree” stands for the most positive response, 

and “strongly disagree” stands for the most negative response. 

Heavy physical or mental demand may cause frustration 

and time pressure, and these psychological states may further 

influence the task performance. In-task feedback may mitigate 

the negative effect of the physical and mental loads posed on 

Rc = Xtd /Xd (14) 
inspectors. The questionnaire can assist in causation analysis 

of the aforementioned relationship among causal factors (phys- 

and the precision (the portion of snapshots with a surface defect) ical and mental demands), psychological states (time pressure 

Pr = Xtd /Xpd (15) 
and frustration), task performance, and the moderator (in-task 

feedback). 

to measure the accuracy. Fβ further integrates the recall and the 

precision as a single metric 

(1 + β2)PrRc 

3) Repetitive Training for Improvement: Practice using TAS- 

BID would help improve a trainee’s task performance and the 

tolerance to physical and mental demands. The improvement 

Fβ = (16) 

β2Pr + Rc 
is manifested by progressive changes in both the performance 

measurements and subjective evaluation results. A hypothesis 

where β is a nonnegative coefficient indicating the relative 

importance of recall with respect to precision. Setting β as zero 

is that the post-study feedback would accelerate the learning of 

the trainee. 
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Fig. 3.  Participant in the simulated inspection. 

 

 
III. CAPABILITY DEMONSTRATION 

A small-scale pilot study was conducted to demonstrate the 

functionality of TASBID. This study obtained the Institutional 

Review Board approval, which requires that participants are 

at least 18 years old and their participation is fully voluntary. 

Twenty-two participants voluntarily contributed to the study. 

Among them, four are female, and 18 are male. Their ages 

are from 18 to 45, and their education backgrounds are civil 

engineering, aerospace engineering, earth and space science, 

physics, computer science and engineering, and others. All 

participants have no prior experience with operating drones or 

serious games, but ten out of 22 have the experience of playing 

video games for entertainment. 

 

A. Experiment Protocol 

The experiment protocol for the simulation training is the 

following. In the beginning, an introduction to TASBID will be 

presented to the participant using a few PowerPoint slides. Then, 

a short tutorial [27] on the simulation training is presented as im- 

ages and video clips with annotations. After that, the participant 

is offered an opportunity to practice the drone operation using 

the provided remote controller. The practice scene has some 

random variations from the scene for the simulation training. The 

simulated inspection starts after the participant feels she/he has 

enough practice and is ready for the study. After the training, the 

participant will fill out the questionnaire and then exit the study. 

The duration of the entire study can last 20–60 min, depending on 

the participant’s prior experience with TASBID. Fig. 3 illustrates 

a participant operating the drone in the simulated inspection. 

Vivid videos of the inspection simulation can be found at the 

project website [27]. 

 

B. Performance in the Placement Training 

The task performance of a participant in the simulated inspec- 

tion is calculated according to the assessment method presented 

in Section II-D1. The maximum overall score is 400, with 

100 points allocated to each of the four performance metrics: 

conformity, efficiency, safety, and accuracy. The left chart in 

Fig. 4 is the distribution of the 22 participants’ overall scores in 

their first training. The chart indicates the heterogeneity in task 

Fig. 4. Overall score distribution and marginal distributions on the four 
performance metrics. 

 

 

 
Fig. 5.  Individuals’ conformity scores by tasks. 

 

 
 

performance. The participants’ overall score ranges from 220 to 

370. The mean value is 316.59 and the distribution is skewed to 

the low end. The distribution of the overall score indicates a room 

for improvement. The four charts on the right of Fig. 4 further 

show the score distributions on the four performance metrics, 

respectively. Efficiency has the largest mean (91.68) and the 

second smallest distribution range (38), indicating that it is the 

best achieved performance metric compared to others. Safety has 

the largest distribution range (97) but the smallest mean value 

(68.86), making it the most critical dimension for improvement. 

The mean scores of conformity (78.32) and accuracy (77.73) 

are well below the maximum 100, suggesting the need for 

improvement. 

Fig. 5 further visualizes the conformity score of individual 

participants, broken down by their on-path and on-speed abil- 

ities in each of the four tasks. The figure shows that every 

participant has a unique conformity score profile in the first 

training; therefore, personalized feedback to individuals would 

be more helpful. For example, participant 9 needs more practice 

for task 4 because of the low on-path score and the large 

loss due to speeding in that task. However, this is not true 

for participant 7 who needs to improve the on-path ability on 

task 1. 

During the first training, the 22 participants had 203 crashes 

in total. Fig. 6 counts the number of crashes by participants 

and tasks. The figure shows that participants’ ability to avoid 

crashes varies largely. Participants 3 and 7 each had only one 

crash, whereas participant 8 had 24 crashes. The figure also 

indicates that the distribution of crashes on tasks varies largely 
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Fig. 6.  Individuals’ safety scores split by tasks. 

 

 

 
Fig. 7. 22 participants’ responses to the post-study questionnaire in the first 
training. 

 

 

 

from one participant to another. For example, participants 4, 17, 

and 19 all had 13 crashes, but their safety concerns are different. 

Cumulatively, the proportion of crashes when inspecting the 

bridge bottom (63) is the largest, and the proportion when 

inspecting the pier (15) is the smallest. 

 
C. Self-Assessment of the Placement Training 

Fig. 7 summarizes the distributions of the 22 participants’ 

responses to the questionnaire after they completed the first train- 

ing. Only 45.5% (10) participants agreed or strongly agreed that 

they were not frustrated by the job, and 68.2% (15) participants 

agreed or strongly agreed that they did not feel time pressure 

in the job. However, 90.1% (20) participants agreed or strongly 

agreed that the in-task feedback is helpful. Operating a drone 

in a narrow space is likely to increase the mental demand. For 

example, the task of inspecting the bridge interlayer received the 

most negative answers compared to other tasks. Only 40.9% (9) 

participants agreed or strongly agreed this task is low in mental 

demand, and only 50% (11) participants agreed or strongly 

agreed that they performed well in this task. Operating a drone 

along the curved path with frequent position adjustments, like 

in task 2, seems to require more physical demand. Only 59.1% 

(13) participants agreed or strongly agreed that task 2 is low in 

physical demand. 

 

 

 

 

 
Fig. 8.  Performance measurements from three times of training. 

 
 

TABLE II 

PAIRED t TESTS OF THE LEARNING EFFECT 

 
 

 
  

 

   
 

 
  

 

   

Note: “b” versus “a”: the increment tested is the score in “a” minus the score in “b.” 

The superscripts “u,” “l,” and “t” indicate the upper-tail test, lower-tail test, and two-tail 

test, respectively. 

 

 

D. Performance Improvement From the Repetitive Training 

Trainees can improve their skill of operating the assistant 

drone gradually through the repetitive training on TASBID. 

The post-study assessment result provided to participants may 

positively influence their learning outcome. For the illustration 

purpose, a focused group of eight participants repeated the 

training for three times. The group was randomly drawn from 

the 22 participants, without referring to their placement training 

performance or other information. Chi-squared homogeneity 

tests at the level of significance 0.05 confirm that the focused 

group can represent the 22 participants. The interval between 

two successive training sessions is at least two days. The overall 

inspection scene does not change over the repetitive training, 

but locations and size of surface defects are changed from one 

training to another. Fig. 8 uses box plots to visualize the group’s 

performance achieved from the repetitive training. It is clear 

that, in the second or the third training, the group’s average 

performance is improved on multiple performance metrics and 

the within-group variation was reduced. 

Table II further performed paired t tests on the mean incre- 

ments of performance scores. Compared to the first training, 

the group improved the mean conformity score in the second 

training (p value of the upper tail test = 0.018) and maintained 

the achieved improvement in the third training (p value of the 

two-tail test = 0.312). The group’s mean improvement of the 

safety score after completing the second training was significant 

(p value of the upper tail test = 0.006), and the improvement 

was maintained in the third training (p value of the two-tail 
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Fig. 9. Participants’ responses to the post-study questionnaires in the repetitive 
training. 

 

 

test = 0.649). The improvements of conformity and safety in the 

second and third training did not worsen the time efficiency. The 

group maintained the efficiency throughout the three times of 

training (p values of two-tail tests 0.380). The group improved 

the mean accuracy after completing the second training (p value 

of the upper tail test = 0.048). However, the mean accuracy was 

reduced after finishing the third training (p value of the lower tail 

test = 0.000), mainly due to the increased difficulty to visually 

detect surface defects. 

 
E. Self-Assessment of the Repetitive Training 

The repetitive training helps trainees improve not only their 

task performance, but also confidence and comfort in operating 

an assist drone for bridge inspection. Fig. 9 summarizes the 

self-assessment of the eight participants after finishing each 

training. The figure implies that participants struggle more when 

inspecting the bridge from a narrow space (task 2) or on curved 

paths (tasks 3 and 4). However, overall, the response to the 

questionnaire turns to be more positive after they practiced the 

inspection using the TASBID. 

 
F. Performance Analysis for Individual Trainees 

TASBID can determine the specific strengths and weaknesses 

for any trainee, identify causes of the weaknesses, and track the 

training progress. Fig. 10 presents participant 18’s performance 

in the three times of training as an illustrative example. The par- 

ticipant improved the accuracy score from 40 to 70 in the second 

training. Although the accuracy score dropped to 60 in the third 

training, that change was mainly caused by the increased chal- 

lenge in recognizing the cracks visually in that experiment. The 

Fig. 10.  Performance of participant 18. 

 
efficiency score of participant 18 did not change much, ranging 

from 22.5 to 24 min in the repetitive training. The participant 

improved the conformity score in the third training, from 72 to 

80. The upper-right figure further shows the on-path scores of the 

participant in performing each of the four tasks. In the second 

training, the participant improved the on-path scores on tasks 

1 and 2, but she/he did not perform task 3 due to insufficient 

time. In the third training, the participant significantly improved 

the on-path score for task 3. Overall, the participant needs more 

practice to improve the ability to fly the drone along reference 

paths. The participant clearly improved her/his safety score in 

the second training and maintained the safety performance in 

the third training. The plot at the bottom-right indicates that the 

participants crashed into the bridge 12 times in the first training, 

but not at all in the second and third training. The number of 

crashes to the terrain or the water body has a decreasing trend 

over the three times of training. 

 
G. Subjective Versus Objective Evaluations 

Overall, this pilot study shows a consistency between the 

subjective evaluation result and the objective assessment result. 

However, self-assessment is subject to a certain degree of bias, 

which may lead to inconsistent results [28], [29]. The self-ratings 

of task performance by a few trainees seem to contradict their 

actual performance. For example, participant 8 made 28 out of 

100 points on safety from the first training due to many crashes. 

Although the participant should know that (because a warning 

message is shown on the screen if a crash happened), the par- 

ticipant strongly agreed that she/he performed well in the tasks. 

Participant 13 made 100 out of 100 on safety and 97 out of 100 

on conformity, but the participant did not strongly agree that she 

performed well. Biases are present in their responses to another 

question “I finished the inspection without stress regarding the 

required time.” Two striking contrasts are the answers from 

participants 10 and 18. Participant 10 spent 13.75 min to finish 

all four tasks, but her/his response to this statement is a disagree. 

Participant 18 spent 24 min completing three tasks only, but the 

answer is neutral. Another example of the contradictory response 

is from participant 2. This participant kept on the reference path 

for inspecting the bridge interlayer for about 30% of the task 
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time, but the participant believes she/he performed well in this 

task. The relatively good performances on some dimensions 

(i.e., quick completion and few crashes) probably made the 

participant underestimate the consequence of the insufficient 

data collection. From the aforementioned contradictory exam- 

ples, the pilot study supports the use of objective assessment. 

The post-study analysis can tell what happened by analyzing 

the captured training data to provide objective feedback to the 

trainee. 

 
IV. CONCLUSION 

This article designed and developed a VR-based training 

and assessment system named TASBID for bridge inspectors 

collaborating with an assistant drone to collect data at inspection 

sites. The pilot study, although is in a small scale, demonstrated 

that TASBID can objectively identify the training needs of 

individuals in detail and further help them develop the skill and 

confidence in collaborating with a drone in bridge inspection. 

This study shares the source code with the public. Prospective 

users can easily revise it to adapt to their own specific studies or 

needs [20]. 

The training and assessment introduced in this article have 

built a foundation for adding the semi-autonomous mode to 

TASBID. With the semi-autonomous mode, the drone will fly 

automatically, but the inspector can disengage the autonomous 

mode of the drone and take control of it when needed. Besides, 

a gap is present between the simulation created in Unity and the 

real-world inspection scene. A generative adversarial network 

can convert the simulation to a more realistic scene, thus pro- 

viding improved visual stimuli to inspectors. Furthermore, this 

article focuses on the system design and development, thus only 

conducting a small-size pilot study to demonstrate the system 

functionality. Factorial experiments at a larger scale would be 

necessary for comprehensive system testing and improvement. 

TASBID can integrate a multimodal biometric sensor system 

comprised of an eye tracker, electromyography, and inertial mea- 

surement units. Deep neural networks need to be developed for 

analyzing the biometric sensor data to reliably detect and classify 

human states and for creating other methods of human–drone 

interactions. This article has built a foundation for exploring the 

above-discussed opportunities. 
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