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A Virtual-Reality-Based Training and Assessment
System for Bridge Inspectors With an Assistant Drone

YuLi

Abstract—Over 600 000 bridges in the U.S. must be inspected
every two years to identify flaws, defects, or potential problems that
may need follow-up maintenance. Bridge inspection has adopted
unmanned aerial vehicles (or drones) for improving safety, effi-
ciency, and cost-effectiveness. Although drones can operate in an
autonomous mode, keeping inspectors in the loop is critical for
complex tasks in bridge inspection. Therefore, inspectors need to
develop the skill and confidence to operate drones in their jobs. This
article presents the design and development of a virtual-reality-
based training and assessment system for inspectors assisted by a
drone in bridge inspection. The system is composed of four inte-
grated modules: a simulated bridge inspection developed in Unity,
an interface that allows a trainee to operate the drone in simulation
using a remote controller, data monitoring and analysis to provide
real-time in-task feedback to trainees to assist their learning, and
a post-study assessment supporting personalized training. This
article also conducts a proof-of-concept pilot study to illustrate the
functionality of this system. The study demonstrated that the train-
ing and assessment system for bridge inspection with an assistant
drone, as a tool for the early-stage training, can objectively identify
the training needs of individuals in detail and, further, help them
develop the skill and confidence in collaborating with a drone in
bridge inspection. The system has built a modeling and analysis
platform for exploring advanced solutions to the human—drone
cooperative inspection of civil infrastructure.

Index Terms—Human in the loop, infrastructure inspection,
performance assessment, sensing, training, unmanned aerial
vehicle, virtual reality (VR).

1. INTRODUCTION

HE U.S. Highway Bridge Inventory has approximately

617000 bridges. 42% of them are over 50 years old,
and 7.5% are structurally deficient [1]. To avoid catastrophic
incidents, all bridges are required to be inspected every two years
for identifying flaws, defects, or potential problems that may
need follow-up maintenance. Traditional bridge inspection may
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require closing the traffic and the use of heavy equipment such as
a snooper truck. Inspecting a bridge needs a crew of inspectors
working at the site for many hours. Some field operations are
dangerous, such as climbing up to high bridge columns.

To make bridge inspection safer, faster, cheaper, and less in-
terruptive to the traffic, unmanned aerial vehicles or drones have
been adopted for use. A drone can conveniently access various
locations of a bridge to capture a large amount of inspection data
efficiently using sensors that it carries, such as RGB cameras and
infrared cameras. Bridge inspectors can collect bridge inspection
data using a drone if they have a license issued by the Federal
Aviation Administration (FAA) and a waiver of the regulation
“keeping the drone within visual line of sight” in FAA’s Small
UAS (Part 107) Regulations. Then, inspectors will bring the data
back to their offices and analyze the data with the assistance
of machine learning algorithms [2]. The use of drones for data
collection also minimizes the traffic closure and the use of heavy
expensive equipment. A survey conducted by the American As-
sociation of State Highway and Transportation Officials shows
that using drones for bridge inspection can reduce the cost by
74% [3]. Besides bridges, other low-accessible infrastructures
have also been adopting drones for inspection, such as dams and
penstocks [4], transmission lines [5], and railways [6].

Current studies on the bridge inspection with an assistant
drone mainly focus on the drone technology (see, e.g., [7])
and data analysis using image processing and computer vision
(see, e.g., [2]). The human factors aspect is largely ignored. The
use of drones for bridge inspection is not to eliminate bridge
inspectors but to augment their ability [8]. Although a drone
can fly in the autonomous mode by following a pre-planned
path, keeping human in the loop will enhance the safety, effi-
ciency, and effectiveness of bridge inspection. There are various
situations that the inspector needs to disengage the autonomous
mode and take control of the drone. For example, if the inspector
identifies a severe concern with a certain spot of the bridge
during the inspection, the inspector can temporarily pause the
autonomous mode to collect desired data around that spot. After
that, the autonomous mode can be resumed to continue the
planned inspection. In response to an alarming situation or
a suddenly emerging need anticipated by the inspector or an
artificial intelligence model, the inspector may also have to take
control of the drone [9].

Training is essential to help inspectors gain and retain the
skill and confidence in inspecting bridges with an assistant
drone. Training inspectors to collect data using an assistant
drone should take place progressively in multiple stages. Like
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aviation training systems or driving simulators, a virtual reality
(VR)-based training and assessment system is a cost-effective
tool for the early-stage training. After that, inspectors can move
to the augmented-reality-based training that uses either a virtual
drone at a real inspection site or a real drone in a virtual
inspection scene. Ultimately, the training will be at a real bridge
site with a real drone. VR-based training systems have been
developed for civil engineers in pipe maintenance [10], bridge
construction process [11], and bridge crane operation [12]. Some
commercial drone flight simulators have been developed as well.
For example, AeroSim Drone Simulator [13] offers training
scenarios of inspecting wind turbines, power lines, towers, and
solar panels. Moud et al. [14] also developed a first-ever drone
flight simulator for construction sites. To our best knowledge, no
simulator has been developed for inspector—drone cooperative
bridge inspection, nor a data-driven framework for assessing the
training performance of bridge inspectors.

A dedicated simulator is required for training bridge
inspectors to operate a drone in their jobs. Commercial drone
simulators are not tailored toward the need for training bridge
inspectors, according to our discussions with researchers in
human factors and a center for training inspectors. Some unique
features of bridge inspection differentiate it from other types of
inspection, such as the traffic passing the bridge, complex and
diverse structures, and narrow irregular spaces between struc-
tural elements, such as diaphragms and interlayers. Moreover,
factors that may impact the drone-assisted bridge inspection
are broad, including job-site-related, drone-related, task-related,
and human-related factors. However, commercial drone simula-
tors only considered some of those, such as the wind speed and
direction, battery level, and task difficulty level (see, e.g., [13]—
[16]). The skill and confidence developed using simulators for
inspecting other types of infrastructure are not transferred to the
bridge inspection effectively.

A dedicated assessment method for training bridge inspectors
is also desired. The assessment utilizes the data captured from
the simulation training to measure inspectors’ performance us-
ing specially designed metrics. The stakeholder of the training
system usually would like to set a baseline for rating inspectors’
overall performance in utilizing an assistant drone as excellent,
good, acceptable, and others, for example. Without well-defined
performance metrics, the baseline is difficult to determine objec-
tively. Feedback to inspectors, both in-training and post-training,
helps accelerate their learning processes. Effective feedback to
an inspector should be built on measurements of the inspec-
tor’s tasks performance and human states (e.g., cognitive load,
physical load, emotion, and other psychological states). The
measurements are from multiple dimensions, including time,
quality, productivity, safety, cost, and others. Commercial drone
simulators do not include a module that provides desired mea-
sures and metrics for monitoring and assessing bridge inspectors
in training. While task performance measurements have been
studied widely in operations management [17], many metrics
are output-based, such as the completion time and productivity,
not applicable to providing in-task feedback. The evaluation
of task performance and human states can be performed by
subjects themselves, peers, or evaluators. However, subjective

judgment lacks reliability, timeliness, and accuracy. Despite
these limitations, subjective evaluation is still often used due
to the low cost and the ease of implementation. The NASA
Task Load Index [18] is a questionnaire commonly used by
pilots for reporting their physical demand, time pressure, effort,
performance, mental demand, and frustration level [15], [19].

Filling gaps in the literature, contributions of this article are
twofold:

1) the design and development of a VR-based training and
assessment system for bridge inspection with an assistant
drone (TASBID);

2) a data-driven method with unique measures and metrics
for analyzing and understanding inspectors’ needs for
training and assistance.

The source code of TASBID is publicly available for down-
load at Github [20]. The rest of this article is organized as
follows. Section II presents the proposed system. Section II1
exhibits the functionality of the system using a small-scale pilot
study. Finally, Section IV concludes this article.

II. TRAINING AND ASSESSMENT SYSTEM

The architecture of the TASBID is illustrated in Fig. 1. The
system is designed to consist of four modules: 1) the bridge
inspection simulation; 2) an interface that allows the bridge
inspector (the trainee) to operate the drone in the simulated in-
spection; 3) monitoring and data analysis; and 4) the post-study
assessment. The trainee, who could be equipped with biometric
sensors, operates the drone in the simulated inspection using
a remote controller. Streaming data of the inspector and the
drone are monitored to provide real-time in-task feedback to
the inspector. The data on job specifications, the bridge, and the
site are references for monitoring and analysis. Upon completing
a training, a comprehensive assessment based on the collected
data is performed to provide both the required information for
designing an individualized training plan and the post-study
feedback to the trainee. The four modules are discussed in detail
in the following.

A. Simulated Bridge Inspection

The inspection simulation created in Unity is illustrated in
Fig. 1. The simulation provides the trainee with the visual
stimulus of drone-assisted bridge inspection. To assure that it is
close to the real-world work context, the simulation is designed
to include five major elements of bridge inspection: the ground
team, the drone, bridges, the job site, and example tasks.

1) Ground Team: The ground team in the simulation com-
prises an inspector (the virtual counterpart of the trainee) and
a truck. The simulation defines the location of the ground team
where the drone takes off and returns to. The simulation provides
two views side by side on the screen to the trainee. The left is
the inspector’s view at the site, and the right is the camera’s
view from the drone. During the simulation training, the trainee
can switch her/his gazes between the two views to focus on
the most useful one. For example, the inspector’s view can be
useful during taking-off and landing. The camera’s view is what
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Fig. 1.

Architecture of the TASBID.

the trainee would concentrate on during the inspection and for
the visual navigation.

2) Drone: The simulation adopts a drone simulation model
from a Unity drone controller asset [21] and revises it for the
bridge inspection. Parameters for modeling the drone include
the drone model, mass and load, movement force, maximum
forward speed, maximum sideward speed, rotation speed, slow-
down time, movement sound, propellers’ rotation, battery ca-
pacity, and movement types. In this simulation, eight types of
movement are sufficient for the bridge inspection. They are
forward and backward, right-sideward and left-sideward, up and
down, and right-rotation and left-rotation. The trainee controls
the movement, rotation, and speed of the drone using the remote
controller. The battery level is a dynamic constraint for the
drone operation, which drops gradually during the inspection.
This simulation does not include the return-to-home function
that can bring the drone to the home point when the battery
level drops to a prespecified level. Instead, the battery level
is displayed for examining the trainee’s time stress. The drone
has a snapshot function that the inspector can straightforwardly
use to label an event on the timeline of the inspection video.
Later, the inspector can retrieve and review the labeled frames.
The snapshot function is also a simple way of confirming the
inspector’s visual attention to an area of concern.

3) Bridges: The simulation uses a Unity asset named Road
Architect [22] to create the bridge models, wherein multiple
types of bridges are available for choice and redesign. The
simulation includes an arch bridge and a suspension bridge
to provide trainees with different experiences in training. For
example, the arch bridge in the simulation has cramped spaces,
where controlling the drone is challenging to the trainee. Road

Architect defines the structural elements of the bridges. Ac-
cordingly, the spatial-temporal relationship between the drone
and specific bridge elements during the simulated inspection
can be determined. Defects, such as cracks, are added to the
surface of some bridge elements to assess the trainee’s situational
awareness during the inspection.

4) Job Site: Simulation of the bridge inspection site focuses
on creating the geographic context, the environmental condition,
and the traffic condition at the bridges. Bridges to be inspected
sit on a lake in a mountain area. Bridge inspection needs to
be conducted in the daytime with clear weather although a
sudden change in the weather may occur in rare cases. Therefore,
only wind under level 5 of the Beaufort Wind Scale has been
considered as a possible weather impact in the system. The wind
factor is simulated by adding the force value and direction in
Unity. Since most commercial drones can be flown in the wind
between 10 and 30 mi/h, TASBID considers three levels of wind:
light, gentle, and medium. They correspond to the wind speed
around 2, 11, and 22 mi/h and cause the force of 0.12, 3, and 12 N,
respectively. A 3-D vector can set up the wind direction. Lighting
condition is another common factor impacting the inspection. To
create a more realistic lighting condition, the simulation turns
on the Global Illustration in Unity to simulate the light reflected
from the water surface. Some dark areas of bridges, such as the
bridge bottom, are still present although the natural lighting is
good. TASBID is designed to include tasks that inspect dark
areas of bridges. The drone in the simulation is equipped with
a light. Trainees can turn it ON or OFF according to their needs
by pressing “B” on the keyboard. Traffic volume is modeled as
well because inspectors may feel pressure when flying the drone
near the traffic. Vehicles moving on the bridges are included
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in TASBID using a free traffic simulation asset [23]. The total
number of vehicles can be increased or decreased as desired.

5) Inspection Tasks: Tasks selected for the simulation train-

ing must capture representative scenarios of the real-world in-
spection. TASBID includes four tasks that have various shapes
of inspection paths (e.g., a long straight line versus multiple short
lines, and a large curve versus a small circle), types of acces-
sible space (spacious and narrow), lighting conditions (bright
versus dark), and various levels of complexity in controlling the
drone (gross versus fine control, and movement versus rotation
control).

1) Task 1 is to inspect the slab of the arch bridge from one
side. The accessible space is spacious, and the lighting
condition usually is not a concern. The recommended
inspection path for this task is a straight line along one side
of the bridge. The trainee controls the drone and moves it
along the slab from one end to another end of the bridge.

2) Task 2 is to inspect the bridge bottom. The accessible space
is spacious, but the lighting condition might not be ideal.
The trainee needs to adjust the drone’s position frequently
when moving it along the arch-shaped bridge bottom.

3) Task 3 is to inspect the interlayer of the arch bridge in
a narrow space, and the lighting condition might not be
ideal. The trainee needs to delicately control the movement
and rotation of the drone to capture both the upper side and
the down side of the interlayer area safely.

4) Task 4 is to inspect the corrosion situation of the suspen-
sion bridge at a pier. The path for the drone is a circle with
a small radius near the water surface. The trainee needs to
rotate the drone when moving around the pier frequently.

The task sequence presented above is just a recommendation.

The trainee can plan and decide the sequence of tasks.

B. Interface Between the Trainee and the Drone

The trainee operates the drone in the simulated inspection
using a remote controller. Currently, TASBID uses a Phantom
2 DII controller for this purpose. The controller is connected
to Unity using the vJoy device driver [24] and the method in
mDjiController [25]. The trainee adjusts the joysticks of the
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series data.

C. Monitoring and Data Analysis

TASBID can collect six types of data from the study, as
illustrated in Fig. 1. The work site characteristics, the bridge
models, the drone model, and job specifications are prespecified
data that do not change during a study. The flight data of the drone
and the trainee’s operation data are the frame-level streaming
data that vary in each time of the study.

1) Streaming Data: A simulated inspection is captured by
a sequence of N frames, indexed by i. Given the fixed frame
rate, f, the total duration of an inspection is N/ f. The starting
frame is defined as the time when the drone is taking off. The
ending frame corresponds to the time when the drone lands near
the ground team or it cannot continue to finish the inspection

(e.g., the battery drains or the drone crashes into the traffic),
whichever occurs the first. Let O; and D; denote the trainee’s
operation data and the drone flight data, respectively, collected
at any frame i.

The trainee operates the remote controller that has four-axis
inputs for controlling the movement, rotation, and speed of the
drone. Besides, the trainee can press “B” on the keyboard to
turn ON/OFF the light and “P” to take “snapshots” during the
inspection. Therefore, the trainee’s operation data are time-series
data in six dimensions:

O; = [0,i> Ort,i> Oud,i> Ort,i> Ob,i» Op,] (1)
where

oy, forward (+) and backward ();
or,i right (+) and left (—) sideward;
Oud,i up (+) and down (- );

or,i right (+) and left (—) rotation;

opb,i turning ON (1) and OFF (0) the light;
op,i taking a snapshot (1) and not (0).

The drone flight data include the position, velocity, and the
remaining battery level of the drone

Di= [P i, vi, b = [Ix, lyi, Iz, Ui, b 2)

where £; = (Lxis lyi» Li ) are the 3-D coordinates of the drone’s
location in the earth reference system, v; is the linear speed of
drone, and b; is the remaining battery level in percentage.

2) On-Path Analysis: Although the drone has the gimbal and
zoom functions to make the data collection more flexible, the
flexibility is bounded. Therefore, the inspector’s ability to send
the assistant drone to suitable locations is still critical to obtain-
ing desired inspection data in desired quality. For the training
purpose, TASBID recommends reference paths appropriate for
performing individual tasks, but not for the entire job, to the
trainee. Let ¢ be the index of tasks and n be the index of reference
points. pt,n|n =1,..., N} defines the reference flying path
for the drone in task t.

Denote Xz, as the binary variable indicating if the drone
ig- frame iis on the reference path of task ¢, for any tand ¢

tT:1 Xti < 1 for any i, indicating that the drone cannot be
on more than one task simultaneously. Using Algorithm 1, the
analysis module evaluates if the drone is on the reference path
for task t. Specifically, the algorithm uses the reference path of
task t and the location of the drone as inputs to determine the
value of the binary variable Xt..

Using the outputs of Algorithm 1, the starting frame of task
t, I s, and the ending frame, I, are determined accordingly.
The analysis module treats the first frame when X is one as
the starting frame for task ¢ and the last frame when Xt is one
as the ending frame:

Iys = min{{ X = 1}
1

Ite = max{iXz: = 1} (3)
1

3) On-Speed Analysis: A speed limit ©'is also specified for
the inspection tasks. Setting a speed limit for the drone would

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 17,2022 at 11:46:23 UTC from IEEE Xplore. Restrictions apply.



LI et al.: VR-BASED TRAINING AND ASSESSMENT SYSTEM FOR BRIDGE INSPECTORS WITH AN ASSISTANT DRONE 595

Algorithm 1: On-Path Analysis for Task tin Any Frame

// {pr.an=1,..., Nt}: reference points that define the
reference path for the drone in task ¢,

/| £ position of the drone in frame {,

/I L( E i, pt,n): the distance between the drone and the
reference point pin,

// n*: the index of the reference point with the shortest
distance to the drone,

// vgn: the segment of the reference path, defined by p¢, n
and its adjacent point(s),

/i theislsmethe distance from the drone to any location

tn

/1 l¥;: the minimum distance from the drone to the
reference path,

// Iz. the threshold distance for identifying if the drone is
on the reference path for task ¢,

/I Xt binary variable indicating whether the drone in
frame iis on the reference path of task t.

Step 1: find the reference point with the shortest distance
to the drone, p ¢, n+, where

nt = argmin, {{( E , pt,A) n=1,..., Ne}

Step 2: The shortest distance from the drone to the
reference path is computed as:
;,i = min l(LL, Ut,n*)

Step 3: Determine if the drone in frame iis on path:

Xii = 1{l* < It}

Return (Xui, I} ;)

help lower the chance of motion blur in the inspection video
data. The value of D is 10 mi/h in TASBID. Similarly, a binary
variable Xs,i is defined to indicate if the drone in frame i is
speeding when performing inspection tasks

Xsi=Hvi>v,i€ UL [Ls, Lel} 4)

4) Crash Analysis: A crash in the simulation is defined as
an event that the drone touches traffic agents, the bridges, the
terrain, or the water body. The simulation can sense the type
of an object the drone crashes into and track timings of crash
events. Xp,i is a binary variable indicating if the drone in frame
i touches a human in the traffic. Xu,i is another binary variable
indicating if the drone crashes into a vehicle in the traffic. Xo,i
is a categorical variable indicating if the drone touches any other
objects. A crash event may last for multiple frames. Therefore,
whenever Xp i turns from 0 to 1, the simulation identifies the
occurrence of a crash into a human, indicated by a binary variable
Xn

Xn = 1{IXn,i = 1} (%)

and another binary variable X, indicates if a crash into a vehicle
happened

Xo=H{IXpi= 1} (6)

Crashing into other objects will not terminate the study. At the
end, the total number of crashes into other objects will be

>
1{Xo,i /:0 & Xo,i*l - 0}.

=1

(N

5) Visual Attention Analysis: The study randomly places Xa
surface defects on the bridges. The trainee can take a snapshot
if she/he believes an area of concern is found. The total number
of snapshot events is

N
=
Xpd =  Opi- (®)

=1

The snapshots may include false detection. The number of true
detection is Xta.

6) Real-Time In-Task Feedback: Using the monitoring data
and measurements calculated from the data, real-time in-task
feedback is provided to the trainee. To raise the trainee’s atten-
tion to job safety and task specifications, TASBID provides five
types of information, illustrated in Fig. 2.

The remaining battery level is updated in real time and dis-
played at the upper right corner of the camera view, as illustrated
in Fig. 2. The battery icon is in green color when the remaining
power is 70% or higher, yellow if between 30% and 70%, and in
red otherwise. The battery icon starts to flush once the remaining
power drops below 30%. The displayed battery level set a
time constraint to encourage the trainee to finish the inspection
before the drone runs out of power. The drone’s speed is always
displayed at the upper left corner of the camera view. Three
types of messages may appear at the bottom left when certain
conditions occur.

1) A message about speeding will show up at the bottom left

corner if Xs,iin (4) is 1.

2) A message to remind the recommended distance from the
bridge elements will appear if the drone is off-path, far
away from the bridge element to inspect (i.e., Algorithm
1 returns X¢; =0 and [} ; < 8 m for the inspection task
0.

3) A message appears if the drone senses any object within
2.5 m to the center of the drone or crashes into anything
(i.e., whenever Xni, Xvi or Xoi turns from zero to a
positive value).

D. Post-Study Assessment

After a simulation training ends, data collected from the
training are further used to perform a comprehensive post-study
assessment. The assessment covers the trainee’s task perfor-
mance and self-assessment using a questionnaire.

1) Task Performance: It is desired to make the bridge inspec-
tion faster, cheaper, safer, more objective, and less interruptive
to the traffic. Therefore, TASBID evaluates trainees’ job/tasks
performance from multiple dimensions: conformity, efficiency,
safety, and accuracy, which are important to the bridge inspec-
tion.
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Speed: 5,59 mph
Crash into the terrain
Speed: 11.75 mph
(c)
Fig.2. (a)-(d) lllustration of real-time in-task feedback.

The trainee’s ability to conform with task specifications is
term conformity. Conformity captures inspectors’ essential abil-
ity to operate the drone along desired paths, move it to desired
locations, and maintain the recommended speed, during the
inspection. Conformity positively contributes to the quality of
data collection. The ability to be on-path in performing task tis
measured by the percentage of task time when the drone is on
the reference paths of the tasks

()

To measure the trainee’s on-speed ability in performing task ¢,a
weighted sum of times when the drone is speeding is calculated,
and the weights are the ratios of speed to speed limit

2 5.
_ Eks (U/V)Xsi,
It,e - It,s +1

P (10)

S,t
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Watch out!
The front is too close to the bridge.
The down side is too close to the terrain .

Speed: 0.00 mph

Crash into the bridge

(d)

Then, the conformity is an aggregation of Pp,t and Ps for all
tasks
T T
> >
PC:GOp Pp,tJr @s Ps,t
1 1

QY

where @p is the gain coefficient for on-path and ws is the
loss coefficient for speeding. The range of Pc in TASBID is
[—100,100]. The maximum score occurs if the drone is always
RIS By SheRese g dp il b R
maximum speed. The maximum speed of the drone in TASBID is
30 mi/h and the speed limit for inspection is 10 mi/h. Therefore,
@p and ws are set to be 25 and _25/3, respectively.

The trainee’s ability to finish the inspection with fewer re-
sources and less waste is termed time efficiency. It is selected
as a training performance metric for encouraging inspectors to
keep the inspection cost-effective. Multiple critical values are
defined with respect to the time efficiency of trainees. T defines
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the cutoff point of the inspection time for receiving the highest
score and T is the maximum allowable flight time for the drone.
The battery drains if the inspection would go beyond T . Let
Xp be a binary variable indicating if the drone fails to return

to the ground team due to running out of power. Xp equals 1
if N/f >t and 0 otherwise. Accordingly, the score of time
efficiency, Pk, is calculated as

Pr = [@ey + @i (N/f —0)*(1 — Xb)+ opXp.  (12)

The range of P score is [—100,100]. @e in (12) is set to be 100,
representing the highest efficiency score a trainee receives if the
inspection is done by T . @» is set to be_— 100, indicating that
the trainee fails to complete the inspection within the maximum
allowable time T and, thus, loses 100 points. Pr score will be 0
if the inspection is completed at the defined maximum allowable
time T . ®e1 =—mey/ (T —T ), representing the score deduction
for every additional unit of time exceeding . In TASBID, t —
i1s assumed to be 25 min, estimated based on the maximum
flight time of representative commercial lithium-battery-based
drones [26]. zis set to be 15 min.

Job safety is the trainee’s ability to keep the drone and other
traffic agents safe during the inspection. The lack of ability to
keep safe in inspection is measured by the total lost score due
to crashes

Ps = max[@nXn + 0uXo + @oXo, Ps | (13)

where @n, @y, and wo are losses from each crash into a human,
a vehicle, and any other object, respectively. In TASBID, wn
and wv are set to be _100, indicating that a crash into a traffic
agent usually has severe consequences such as a fatality or a
hospitalized incident. @o is set to be_3, indicating that the
consequence of crash into other objects is more related to the
drone damage. Pg is set to be— 100 in TASBID, meaning that
no more points will be further deducted if the cumulative loss
has reached Pg . Therefore, the range of Ps score is [—100,0].
Limiting the loss by Ps can avoid the scenario that safety
dominates other performance metrics.

Accuracy is the trainee’s ability to keep alert during the
inspection and, thus, develop the visual perception of the bridge
condition. With situational awareness, inspectors can efficiently
utilize the assistant drone in data collection and, later, effectively
collaborate with machine learning algorithms in analyzing the
inspection video data. The assessment module calculates the
recall (the portion of the surface defects that the trainee detected
correctly)

Re = X/ Xa (14)
and the precision (the portion of snapshots with a surface defect)
Pr = X/ Xpa (15)

to measure the accuracy. Fg further integrates the recall and the

precision as a single metric

(1 4+ B)PrRe

R (16)
B?Pr + Rc

where S is a nonnegative coefficient indicating the relative

importance of recall with respect to precision. Setting 3 as zero

TABLE I
SELF-ASSESSMENT QUESTIONNAIRE

QUESTIONS
Time Pressure: T finished the inspection without stress in
- regard of the required time.
g Irustration: T never Telt insecure, irritated, stressed, or
5 discomforted during this task.
In-task Feedback: The in-tusk Teedbuck (e.g. battery
level, speed, messages) were helpful for me.
Performance: T finished the task with a good perfor-
2 mance.
§ Mental Demand: IU's easy to fimish the task.
> | Physical Demand: There was no physical activity (includ-
M ing pressing, pulling, twrning, controlling, and holding)
required in the task.

indicates that precision is dominantly important, and setting it
as comeans that recall is dominantly important. S is equal to
1 if precision and recall are equally important. Fg is within [0,
100%]. Accordingly, the score of accuracy is measured as

Pa = orFg. (17)

0rin (17) is set to be 100 and so the range of Pa is [0, 100].

The trainee’s scores on conformity, efficiency, safety, and
accuracy are further standardized to be within the range from
0% to 100%. Then, the standardized scores are presented as a
Kiviat diagram to show the trainee’s task performance on the
four dimensions.

2) Questionnaire-Based Workload Assessment: After a sim-
ulation training is completed, the trainee is invited to fill out
a questionnaire adopted from [15] and revised for TASBID.
The questionnaire complements the objective assessment of
TASBID. Table I lists the six aspects that the questionnaire
asks. “Time pressure,” “Frustration,” and “In-task feedback” are
three aspects asked regarding the overall simulated inspection.
“Performance,” “Mental demand,” and “Physical demand” are
asked with respect to each phase or task of the inspection, includ-
ing calibration, taking-off, individual tasks 1-4, and landing.
Responses to questions are on a five-point Likert scale: strongly
agree (1), agree (2), neutral (3), disagree (4), and strongly dis-
agree (5). “Strongly agree” stands for the most positive response,
and “strongly disagree” stands for the most negative response.

Heavy physical or mental demand may cause frustration
and time pressure, and these psychological states may further
influence the task performance. In-task feedback may mitigate
the negative effect of the physical and mental loads posed on
inspectors. The questionnaire can assist in causation analysis
of the aforementioned relationship among causal factors (phys-
ical and mental demands), psychological states (time pressure
and frustration), task performance, and the moderator (in-task
feedback).

3) Repetitive Training for Improvement: Practice using TAS-
BID would help improve a trainee’s task performance and the
tolerance to physical and mental demands. The improvement
is manifested by progressive changes in both the performance
measurements and subjective evaluation results. A hypothesis
is that the post-study feedback would accelerate the learning of
the trainee.
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Inspector’s view.

Drone’s view

Fig. 3. Participant in the simulated inspection.

III. CAPABILITY DEMONSTRATION

A small-scale pilot study was conducted to demonstrate the
functionality of TASBID. This study obtained the Institutional
Review Board approval, which requires that participants are
at least 18 years old and their participation is fully voluntary.
Twenty-two participants voluntarily contributed to the study.
Among them, four are female, and 18 are male. Their ages
are from 18 to 45, and their education backgrounds are civil
engineering, aerospace engineering, earth and space science,
physics, computer science and engineering, and others. All
participants have no prior experience with operating drones or
serious games, but ten out of 22 have the experience of playing
video games for entertainment.

A. Experiment Protocol

The experiment protocol for the simulation training is the
following. In the beginning, an introduction to TASBID will be
presented to the participant using a few PowerPoint slides. Then,
a short tutorial [27] on the simulation training is presented as im-
ages and video clips with annotations. After that, the participant
is offered an opportunity to practice the drone operation using
the provided remote controller. The practice scene has some
random variations from the scene for the simulation training. The
simulated inspection starts after the participant feels she/he has
enough practice and is ready for the study. After the training, the
participant will fill out the questionnaire and then exit the study.
The duration of the entire study can last 20—60 min, depending on
the participant’s prior experience with TASBID. Fig. 3 illustrates
a participant operating the drone in the simulated inspection.
Vivid videos of the inspection simulation can be found at the
project website [27].

B. Performance in the Placement Training

The task performance of a participant in the simulated inspec-
tion is calculated according to the assessment method presented
in Section II-D1. The maximum overall score is 400, with
100 points allocated to each of the four performance metrics:
conformity, efficiency, safety, and accuracy. The left chart in
Fig. 4 is the distribution of the 22 participants’ overall scores in
their first training. The chart indicates the heterogeneity in task

Sample size: 22
Mean: 78.32
Std: 9.59

Min: 61.00
Max: 93.00

Sample size: 22
Mean: 91.68
Std: 10.99

Min: 62.00
Max: 100.00

M |
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Fig. 4. Overall score distribution and marginal distributions on the four
performance metrics.
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Fig. 5. Individuals’ conformity scores by tasks.

performance. The participants’ overall score ranges from 220 to
370. The mean value is 316.59 and the distribution is skewed to
the low end. The distribution of the overall score indicates a room
for improvement. The four charts on the right of Fig. 4 further
show the score distributions on the four performance metrics,
respectively. Efficiency has the largest mean (91.68) and the
second smallest distribution range (38), indicating that it is the
best achieved performance metric compared to others. Safety has
the largest distribution range (97) but the smallest mean value
(68.86), making it the most critical dimension for improvement.
The mean scores of conformity (78.32) and accuracy (77.73)
are well below the maximum 100, suggesting the need for
improvement.

Fig. 5 further visualizes the conformity score of individual
participants, broken down by their on-path and on-speed abil-
ities in each of the four tasks. The figure shows that every
participant has a unique conformity score profile in the first
training; therefore, personalized feedback to individuals would
be more helpful. For example, participant 9 needs more practice
for task 4 because of the low on-path score and the large
loss due to speeding in that task. However, this is not true
for participant 7 who needs to improve the on-path ability on
task 1.

During the first training, the 22 participants had 203 crashes
in total. Fig. 6 counts the number of crashes by participants
and tasks. The figure shows that participants’ ability to avoid
crashes varies largely. Participants 3 and 7 each had only one
crash, whereas participant 8 had 24 crashes. The figure also
indicates that the distribution of crashes on tasks varies largely
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Fig. 7. 22 participants’ responses to the post-study questionnaire in the first
training.

from one participant to another. For example, participants 4, 17,
and 19 all had 13 crashes, but their safety concerns are different.
Cumulatively, the proportion of crashes when inspecting the
bridge bottom (63) is the largest, and the proportion when
inspecting the pier (15) is the smallest.

C. Self-Assessment of the Placement Training

Fig. 7 summarizes the distributions of the 22 participants’
responses to the questionnaire after they completed the first train-
ing. Only 45.5% (10) participants agreed or strongly agreed that
they were not frustrated by the job, and 68.2% (15) participants
agreed or strongly agreed that they did not feel time pressure
in the job. However, 90.1% (20) participants agreed or strongly
agreed that the in-task feedback is helpful. Operating a drone
in a narrow space is likely to increase the mental demand. For
example, the task of inspecting the bridge interlayer received the
most negative answers compared to other tasks. Only 40.9% (9)
participants agreed or strongly agreed this task is low in mental
demand, and only 50% (11) participants agreed or strongly
agreed that they performed well in this task. Operating a drone
along the curved path with frequent position adjustments, like
in task 2, seems to require more physical demand. Only 59.1%
(13) participants agreed or strongly agreed that task 2 is low in
physical demand.

100

score

401 mmm First Experiment
W Second Experiment
EmE Thrid Experiment

Conformity Efficiency Safety Accuracy
performance
Fig. 8. Performance measurements from three times of training.
TABLE II
PAIRED t TESTS OF THE LEARNING EFFECT

Conformity Efficiency
I ws, 2 v, 3 2ws 3 I ws. 2 lvee 3 2ws. 3
t value 2.609 2.969 1.090 -0.175 -0.938 -0.661
pyalue | 0018Y  0.010% 03120 | 08660 03800 0.530

Safety Accuracy
I vs, 2 Fvs. 3 2ws 3 I vs. 2 lvs.3  2ws. 3
t value 3.340 3.498 0.475 1.930 -0.662 -7.638
p value 0.006" 0.005" 0.649" | 0.048" 0.529¢ 0.000

FIeTN ey

Note: “b” versus “a”: the increment tested is the score in “a” minus the score in “b.”
The superscripts “w,” “I,” and “t” indicate the upper-tail test, lower-tail test, and two-tail
test, respectively.

D. Performance Improvement From the Repetitive Training

Trainees can improve their skill of operating the assistant
drone gradually through the repetitive training on TASBID.
The post-study assessment result provided to participants may
positively influence their learning outcome. For the illustration
purpose, a focused group of eight participants repeated the
training for three times. The group was randomly drawn from
the 22 participants, without referring to their placement training
performance or other information. Chi-squared homogeneity
tests at the level of significance 0.05 confirm that the focused
group can represent the 22 participants. The interval between
two successive training sessions is at least two days. The overall
inspection scene does not change over the repetitive training,
but locations and size of surface defects are changed from one
training to another. Fig. 8 uses box plots to visualize the group’s
performance achieved from the repetitive training. It is clear
that, in the second or the third training, the group’s average
performance is improved on multiple performance metrics and
the within-group variation was reduced.

Table II further performed paired ¢ tests on the mean incre-
ments of performance scores. Compared to the first training,
the group improved the mean conformity score in the second
training (p value of the upper tail test = 0.018) and maintained
the achieved improvement in the third training (p value of the
two-tail test = 0.312). The group’s mean improvement of the
safety score after completing the second training was significant
(p value of the upper tail test = 0.006), and the improvement
was maintained in the third training (p value of the two-tail

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 17,2022 at 11:46:23 UTC from IEEE Xplore. Restrictions apply.



600 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 52, NO. 4, AUGUST 2022

B . oW oEr g i
Entire Operation LR LEEL HREE —
? 5 = [ | I Agree
[ Agree
:é - mms Netural
- W Disagree
5=
= Strongly
= v 5y : W= pisagree
y In-tas ;
Time Frustration
Performance Feedback
o T e .2 LT . T - e T B
Z&4% &% AR Li%h &% AR AN
= 0 NEN NEE RN BEE BB
B B
i i
8 3-
5=
i-
Calibration Taking-off  Task 1 Task 2 Task 3 Task 4 Landing
Mental Demand
« B B - T ® - 2 s B u © o s B
LA AL LRH LAR LA LAR RAW
8- m .-= IE. !- EEE EEN
7 -
6 -
5 - -
§ 4 -
S 3-
B
1-
i ' . v ' ' '
Calibration Taking-off  Task1 Task 2 Task 3 Task 4 Landing
Physical Demand
) . e B s e I w2
£8RE Li&% 5RE &&E &&E LRER LAk

Count
HNWAUON®

Calibration Taking-off  Task 1 Task 2 Task 3 Task 4 Landing

Fig. 9. Participants’ responses to the post-study questionnaires in the repetitive
training.

test = 0.649). The improvements of conformity and safety in the
second and third training did not worsen the time efficiency. The

group maintained the efficiency throughout the three times of
training (p values of two-tail tests >0.380). The group improved

the mean accuracy after completing the second training (p value
of the upper tail test = 0.048). However, the mean accuracy was
reduced after finishing the third training (p value of the lower tail
test = 0.000), mainly due to the increased difficulty to visually
detect surface defects.

E. Self-Assessment of the Repetitive Training

The repetitive training helps trainees improve not only their
task performance, but also confidence and comfort in operating
an assist drone for bridge inspection. Fig. 9 summarizes the
self-assessment of the eight participants after finishing each
training. The figure implies that participants struggle more when
inspecting the bridge from a narrow space (task 2) or on curved
paths (tasks 3 and 4). However, overall, the response to the
questionnaire turns to be more positive after they practiced the
inspection using the TASBID.

F. Performance Analysis for Individual Trainees

TASBID can determine the specific strengths and weaknesses
for any trainee, identify causes of the weaknesses, and track the
training progress. Fig. 10 presents participant 18’s performance
in the three times of training as an illustrative example. The par-
ticipant improved the accuracy score from 40 to 70 in the second
training. Although the accuracy score dropped to 60 in the third
training, that change was mainly caused by the increased chal-
lenge in recognizing the cracks visually in that experiment. The
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Fig. 10. Performance of participant 18.

efficiency score of participant 18 did not change much, ranging
from 22.5 to 24 min in the repetitive training. The participant
improved the conformity score in the third training, from 72 to
80. The upper-right figure further shows the on-path scores of the
participant in performing each of the four tasks. In the second
training, the participant improved the on-path scores on tasks
1 and 2, but she/he did not perform task 3 due to insufficient
time. In the third training, the participant significantly improved
the on-path score for task 3. Overall, the participant needs more
practice to improve the ability to fly the drone along reference
paths. The participant clearly improved her/his safety score in
the second training and maintained the safety performance in
the third training. The plot at the bottom-right indicates that the
participants crashed into the bridge 12 times in the first training,
but not at all in the second and third training. The number of
crashes to the terrain or the water body has a decreasing trend
over the three times of training.

G. Subjective Versus Objective Evaluations

Overall, this pilot study shows a consistency between the
subjective evaluation result and the objective assessment result.
However, self-assessment is subject to a certain degree of bias,
which may lead to inconsistent results [28], [29]. The self-ratings
of task performance by a few trainees seem to contradict their
actual performance. For example, participant 8 made 28 out of
100 points on safety from the first training due to many crashes.
Although the participant should know that (because a warning
message is shown on the screen if a crash happened), the par-
ticipant strongly agreed that she/he performed well in the tasks.
Participant 13 made 100 out of 100 on safety and 97 out of 100
on conformity, but the participant did not strongly agree that she
performed well. Biases are present in their responses to another
question “I finished the inspection without stress regarding the
required time.” Two striking contrasts are the answers from
participants 10 and 18. Participant 10 spent 13.75 min to finish
all four tasks, but her/his response to this statement is a disagree.
Participant 18 spent 24 min completing three tasks only, but the
answer is neutral. Another example of the contradictory response
is from participant 2. This participant kept on the reference path
for inspecting the bridge interlayer for about 30% of the task
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time, but the participant believes she/he performed well in this
task. The relatively good performances on some dimensions
(i.e., quick completion and few crashes) probably made the
participant underestimate the consequence of the insufficient
data collection. From the aforementioned contradictory exam-
ples, the pilot study supports the use of objective assessment.
The post-study analysis can tell what happened by analyzing
the captured training data to provide objective feedback to the
trainee.

IV. CONCLUSION

This article designed and developed a VR-based training
and assessment system named TASBID for bridge inspectors
collaborating with an assistant drone to collect data at inspection
sites. The pilot study, although is in a small scale, demonstrated
that TASBID can objectively identify the training needs of
individuals in detail and further help them develop the skill and
confidence in collaborating with a drone in bridge inspection.
This study shares the source code with the public. Prospective
users can easily revise it to adapt to their own specific studies or
needs [20].

The training and assessment introduced in this article have
built a foundation for adding the semi-autonomous mode to
TASBID. With the semi-autonomous mode, the drone will fly
automatically, but the inspector can disengage the autonomous
mode of the drone and take control of it when needed. Besides,
a gap is present between the simulation created in Unity and the
real-world inspection scene. A generative adversarial network
can convert the simulation to a more realistic scene, thus pro-
viding improved visual stimuli to inspectors. Furthermore, this
article focuses on the system design and development, thus only
conducting a small-size pilot study to demonstrate the system
functionality. Factorial experiments at a larger scale would be
necessary for comprehensive system testing and improvement.
TASBID can integrate a multimodal biometric sensor system
comprised of an eye tracker, electromyography, and inertial mea-
surement units. Deep neural networks need to be developed for
analyzing the biometric sensor data to reliably detect and classify
human states and for creating other methods of human—drone
interactions. This article has built a foundation for exploring the
above-discussed opportunities.
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