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Abstract: This study reports the preliminary results from a statistical screening of tree-ring width
records from the International Tree-Ring Data Bank (ITRDB), to evaluate the strength of the
hydrological signal, in dendrochronological records from the Tennessee Valley. We used United
States Geological Survey (USGS) streamflow data from 11 gages, within the Tennessee Valley, and
regional tree-ring chronologies, to analyze the dendroclimatic potential of the region, and create
seasonal flow reconstructions. Prescreening methods included correlation, date, and temporal
stability analysis of predictors to ensure practical and reliable reconstructions. Seasonal correlation
analysis revealed that large numbers of regional tree-ring chronologies were significantly correlated
(p < 0.05) with the May—-June-July streamflow. Stepwise linear regression was used to create the
May-June-July streamflow reconstructions. Ten of the 12 streamflow stations were considered
statistically skillful (R? > 0.40). Skillful reconstructions ranged from 208 to 301 years in length, and
were statistically validated using leave-one-out cross validation, the sign test, and a comparison of
the distribution of low flow years. The long-term streamflow variability was analyzed for the
Nolichucky, Nantahala, Emory, and South Fork (SF) Holston stations. The reconstructions revealed
that while most of the Western United States (U.S.). was experiencing some of its highest flow years
during the early 1900s, the Tennessee Valley region was experiencing a very low flow. Results
revealed the potential benefit of using tree-ring chronologies to reconstruct hydrological variables
in the Southeastern U.S., by demonstrating the ability of proxy-based reconstructions to provide
useful data beyond the instrumental record.

Keywords: Tennessee Valley; tree-ring; reconstruction; streamflow; dendroclimatology

1. Introduction

Water planners and managers can make more accurate decisions based on information provided
by the expanding hydrological records. Tree rings have been widely used as a proxy to reconstruct
hydrological variables in the Western United States (U.S.) [14]. Relatively little dendroclimatological
research has been conducted within the Southeastern U.S. during the past 20 years, when compared
to the number of studies conducted in the Southwestern, Northwestern, and Rocky Mountain regions
of the U.S. In the Southeastern U.S., many misconceptions still linger among scientists that tree-ring
research is not possible due to the high decomposition and decay rates, a lack of trees that are long-
lived, and the absence of climatically sensitive patterns of tree rings to facilitate cross-dating [5].
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Furthermore, a lower priority is put on the hydrological reconstructions in the Southeast U.S., due to
the abundant water supplies.

The limited number of reconstructions for the Southeastern U.S. can be explained by several
factors. The Tennessee Valley Authority (TVA) dam construction has limited the number of
undisturbed streams in the region. The region’s natural topography divides the area into many small
catch basins and obstructs rainfall pathways within watersheds. The effects of the topography may
explain why tree-ring chronology to a streamflow gage is not always indicative of a statistically
significant streamflow—tree-growth relationship. In addition, the Southeastern U.S. receives more
precipitation than most parts of the country, especially when compared to the Western U.S,,
providing less motivation for water quantity studies. The lack of streamflow gage and tree-ring
datasets spanning cooperative lengths, contributes to the difficulty of obtaining long calibration
windows.

Although misconceptions still exist regarding the applicability of dendroclimatology in the
southeast, tree rings in the region have been used to investigate the relationships between climate
and tree-growth. Blasing et al. [6] found that tree-rings were a good predictor of May-June
precipitation for East Tennessee. Phipps [7] reconstructed the Occoquan River monthly summer
streamflow in Virginia, finding June streamflow to be the strongest predictand. Stahle et al. [8] created
a 1,000-year spring—summer precipitation reconstruction within North Carolina, South Carolina, and
Georgia, which was found to replicate most of the multidecadal variability apparent in the available
instrumental rainfall data. More recent studies have found strong climate signals in tree-ring
patterns, from Texas to Florida to Virginia, and sites that are further inland [9-12], confirming the
potential for the development of a more extensive network of sites, for spatial reconstructions of the
past climate.

The first objective of this research was to analyze the dendroclimatic potential of a critical flood
control and hydropower region in the Southeastern U.S. (Tennessee Valley), using streamflow and
regional tree-ring chronology datasets. The streamflow gages selected, contribute to the Tennessee
River. The Tennessee River is the largest tributary of the Ohio River and has a length of over 1,000
km and a watershed area of over 100,000 km?2. It originates in eastern Tennessee and, thus, the
streamflow gages selected are, in and adjacent to, the headwaters of the basin. Based on previous
studies, we hypothesized that regional tree-growth would be significantly correlated with spring-
summer streamflow. This study focused on the development of skillful reconstructions of streamflow
and did not assess the relationship between climate signals and ring growth variations. Our second
objective was to create statistically skillful (based on the overall variance explained and model
stability) streamflow reconstructions for 11 gages within the Tennessee Valley. Our final objective
was to examine the long-term hydrological variability of the Tennessee Valley streamflow, on a
timescale exceeding the instrumental record. The current research evaluated the hydrological
reconstruction potential in the Tennessee Valley and the need for additional sampling of tree ring
proxies in the region, to improve the understanding of past climates. Doing so might provide
valuable water availability information to the Tennessee Valley water resource planners and
managers.

2. Materials and Methods

The methodology for developing streamflow reconstructions begins with the collection of
streamflow and tree-ring chronology datasets. The streamflow data collected was converted from
flowrate to seasonal volume, and was the dependent variable in the regression model. Tree-ring
chronology data was then collected and was the independent variable in the regression model.
Prior to inputting the tree-ring chronology data into the regression model, prescreening (date of
collection, correlation, and stability) was performed. Regression models were then developed and
model fit (skill) was evaluated.
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2.1. Streamflow (United States Geological Survey (USGS))
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Streamflow data for 11 gages within the Tennessee Valley were obtained from the United States
Geological Survey (USGS) website, via the National Water Information System [13]. One of the most
important components in a streamflow reconstruction is the accuracy and length of the existing
streamflow gage records. Although the USGS streamflow-gaging program began collecting
streamflow data as early as 1887, not all USGS gage stations had the same period of record. Some
USGS gage stations had missing data, due to technical, mechanical, or otherwise unknown reasons.
The USGS gage stations that were used in this study contained no missing data and most of the
stations had an acceptable record to calibrate with the regional tree-ring chronologies. Although these
rivers were in close proximity (Figure 1), the elevation and drainage area of each station was unique
(Table 1). Monthly cumulative flow in million cubic meters (hm? MCM) was used. The monthly
variability of streamflow for the four stations (Nolichucky, Nantahala, Emory, and SF Holston) was

provided (Figure 2).
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Figure 1. Location map showing the 11 United States Geological Survey (USGS) streamflow stations
analyzed and all the International Tree-Ring Data Bank (ITRDB) tree-ring chronologies (TRCs) in the
Southeastern U.S. Reconstruction TRCs indicate tree-ring chronologies that were found to be
statistically correlated with streamflow and were used in the developed reconstructions. Non-
Reconstruction TRCs indicate tree-ring chronologies that were not found to be statistically correlated
with streamflow and were not used in the developed reconstructions.

Table 1. Descriptions of the 11 USGS streamflow stations used for analysis.

Station Description State Drainage Area  Elevation Start Date
(km?) (m)
03528000 Clinch River above Tazewell N 3818 323 1920
03524000 Clinch River at Cleveland VA 1380 457 1921
03540500 Emory River at Oakdale TN 1979 232 1928
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03500000 Little Tennessee River near Prentiss NC 363 612 1945
03504000 Nantahala River near Rainbow Springs NC 134 937 1941
03488000 NF Holston River near Saltville VA 572 519 1921
03465500 Nolichucky River at Embreeville TN 2085 463 1921
03512000 Oconaluftee River at Birdtown NC 477 562 1949
03473000 SF Holston near Damascus VA 785 546 1932
03550000 Valley River at Tomotla NC 269 474 1919
03479000 Watauga River near Sugar Grove NC 239 795 1941
18
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Figure 2. Monthly streamflow for four stations (Nolichucky, Nantahala, Emory, and SF Holston).

2.2. Tree-Ring Chronologies (ITRDB)

Tree-ring chronology datasets within and around the Southeastern U.S. were retrieved from the
International Tree-Ring Data Bank (ITRDB) [14], which was maintained by the National Oceanic and
Atmospheric Administration (NOAA) Paleoclimatology Program. All ring width series were
uniformly processed and standardized, using the AutoRegressive STANdardization (ARSTAN)
program [15] and those results are available on the ITRDB. Conservative detrending methods
(negative exponential/straight line fit or a cubic spline two thirds the length of the series) were used
to combine all series into a single site chronology [16]. Low-order autocorrelation in the chronologies
that may, in part, be attributed to biological factors [17], was removed by autoregressive modeling,
and the resulting residual chronologies were used for analysis. The residual chronology type has
been previously found to be appropriate (rather than the standard chronology type which retains
autocorrelation), when modeling hydrological variables in the Western [1-4] and Southeastern U.S.
[18]. As the reconstruction length and moisture sensitivity of Eastern U.S. tree species were unknown
at the time of data collection, we initially examined 102 chronologies across 12 states (Figure 1), for
the strength of their responses to the Tennessee Valley streamflow.

2.3. Predictor Prescreening Methods

Three prescreening methods were used to identify the most suitable tree-ring chronologies to
use as predictors for the reconstruction models. First, a date screen was used. Many of the tree-ring
samples within the Southeastern U.S. were last collected during the early 1980s. We used the year
1980 as the cutoff date for initial predictor pool tree-ring chronologies, and removed any chronologies
cored before 1980, from the analysis.

Next, we inspected correlation coefficients between various streamflow seasons and residual
tree-ring chronologies (in and adjacent to the Tennessee Valley), to identify the streamflow season
most influential to tree growth and, therefore, most suitable for reconstruction. One of the most
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important aspects of the seasonal correlation analysis was to determine a common streamflow season
to reconstruct for all 11 of the streamflow gages. Based on similar studies in the surrounding regions,
we hypothesized that a strong relationship would be found between tree growth and the spring—
summer (April-August) streamflow. However, numerous streamflow seasons of various lengths
were analyzed for completeness. We considered the relationship between tree growth and ten
different streamflow seasons of various durations. Three-month seasonal streamflow periods
investigated, included January-March, April-June, May-July, July-September, and October—
December. Six-month seasonal streamflow periods included January-June, April-September, and
July-December. May-June and annual streamflow were also considered. We retained significant (p <
0.05), positive r-values for the analysis.

The last pre-screening method involved temporal stability analysis. Temporal stability analysis
consisted of performing a 30-year moving correlation window (using MS Excel), similar to Biondi
and Waikul [19], between the various streamflow seasons and residual chronologies. Chronologies
containing negative 30-year correlation values with seasonal flow were considered unstable and
removed from analysis. Stability analysis ensured that reliable and practical streamflow
reconstructions were generated.

2.4. Reconstruction Methodology

Model calibration windows were controlled by the date that streamflow was first collected at
each gage station. While all calibration windows ended at 1980, the beginning dates of the calibration
windows ranged from 1919 to 1949 (Table 1). The ability of the statistically significant and stable
moisture sensitive tree-ring chronologies to predict streamflow, was tested using a forward and
backward (standard) stepwise regression model. A standard stepwise regression adds and removes
predictors, as needed, for each step. The model stops when all variables not in the model have p-
values that are greater than the specified alpha-to-enter value and when all variables in the model
have p-values that are less than or equal to the specified alpha-to-remove value. Following the
procedure of Woodhouse et al. [20], the F-level for a predictor chronology had to have a maximum
p-value of 0.05 for entry and 0.10 for retention in our stepwise regression model.

Numerous statistical measures were used to establish the statistical skill of each streamflow
reconstruction. R? explained the amount of variance being explained by each model. R?-predicted
was calculated from the Predicted REsidual Sums of Squares (PRESS) statistic. The PRESS statistic is
based upon a leave-one-out cross-validation, in which a single year or observation is removed when
fitting the model. As a result, the prediction errors are independent of the predicted value at the
removed observation [21]. The Variation Inflation Factor (VIF) indicates the extent to which
multicollinearity is present in a regression analysis. Generally, a VIF value close to 1.0 indicates low
correlation between predictors, and is ideal for a regression model [22]. The Durbin—-Watson (D-W)
statistic was used to analyze the autocorrelation structure of model residuals. The sign test, a
nonparametric procedure to count the number of agreements and disagreements between
instrumental and reconstructed flow, was used for additional model validation.

3. Results

After the date screening, 72 of the 102 chronologies were retained and used for seasonal
correlation analysis. As seen in Blasing et al. [6], the two-month period May-June, contained the
largest number of significant tree-ring chronologies for the majority of the 11 gages. Furthermore, the
winter months never yielded many highly correlated tree-ring chronologies. While the number of
significant tree-ring chronologies was similar for the seasons of April-June and May-July, tree-
growth contained a stronger moisture signal (higher correlation) with the May-July streamflow,
when compared to the April-June streamflow. Rather than reconstructing May-June streamflow as
performed in Blasing et al. [6], we reconstructed the May-July streamflow, because reconstructing a
three-month season provides more information on temporal characteristics of climate variability,
over a longer season. The number of chronologies containing positive, significant (p < 0.05) r-values
after seasonal correlation, varied for each streamflow station, and ranged from three (Watauga gage)
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to thirty-five (NF Holston, Nolichucky, and Valley gages). Following stability analysis, the final
number of chronologies that were entered as initial predictors in the calibration models, ranged from
three (Watauga gage) to thirty-four (NF Holston gage).

For all streamflow gages, the most feasible calibration models and reconstructions were chosen
(Table 2). We based feasibility on the length of the reconstruction, the overall variance explained of
the model, and the predictability of the model. Ten of the 12 calibration models were considered to
be statistically skillful (R? > 0.40). The D-W test for autocorrelation in the residuals from regression
showed that the autocorrelation was not significant for most of the models, indicating that the
residuals were random and the models were appropriate [23]. The D-W value for the Nolichucky
calibration suggested that the model had a serial correlation, but results were not conclusive. VIF
values for all models were within the acceptable ranges and the sign test results were significant (p <
0.01) for 11 of the 12 calibration models.

Table 2. May—June-July streamflow reconstruction statistics and Tree-Ring Chronologies (TRCs)
used for each model.

Reconstruction Sign Test

Station Date Rz Rxp) D-W VIF (Hit/Miss) TRCs Retained
Clinch TN 1752 045 034 187 1.1 49/12 2 LH, LCT, KJ, FBS
Clinch VA 1752 036 027 205 1.2 46/14 2 K], LCT, LH

Emory ! 1772 042 033 206 1.1 38/152 HH, LBL, LS

Little TN 1679 042 031 206 1.0 28/8 2 KT, PR
Nantahala ! 1679 048 036 225 1.1 31/92 KT, PC, PR
NF Holston 1797 050 042 211 1.3 48/12 2 SG, KJ, HH, HWFB
Nolichucky ! 1686 052 043 155 1.1 45/152 SG, LS, GM, K]
Oconaluftee 1679 048 039 208 1.0 24/82 PC, KT
SF Holston ! 1772 056 045 188 1.2 37/122 KJ, PC, PW, HH
Valley 1772 047 033 189 1.1 44/18 2 BRSC, SG, RDR, HH
Watauga 1797 012 003 139 1.0 23/17 HWFB

1 Calibration and reconstruction figures shown; 2 p <0.01, indicating calibration models for all stations,
aside from Watauga, yielded significant sign test results.

Tree-ring chronologies that were retained by at least one of the stepwise regression models were
comprised of various locations (Figure 1) and species (Table 3). The Knob Job chronology (eastern
red cedar) was retained by the highest number of calibration models. More oak chronologies were
available on the ITRDB in the Southeastern U.S. than any other species, and they were retained by
the greatest number of models. While the Hampton Hills chronology (white oak) contained a strong
moisture signal and was retained in four of the models, it only dated to 1772, which limited the
reconstruction length of those gages. Furthermore, many of the bald cypress tree-ring chronologies
on the Atlantic coast previously found to contain a high moisture signal [8], were also retained in
many of our models.

Table 3. Tree-ring chronologies retained in the stepwise regression models and used for the

reconstructions.
Code Chronology State Species! Elevation (m) Period

BRSC Black River South Carolina SC TADI 1 551-1993
FBS Francis Beidler Swamp SC QULY 12 1643-1992
GM Grandfather Mountain NC PCRU 1800 1563-1983
HH Hampton Hills NC QUAL 108 1772-1992
HWFB Hen Wallow Falls B TN TSCA 218 1797-1995
KJ Knob Job A% JUVI 500 1477-1982
KT Kelsey Tract NC TSCR 1000 1679-1983

LBL Land Between the Lakes KY QuUSsT 175 1692-2005
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LCT Lilley Cornet Tract KY QUAL 500 1666-1982
LH Lynn Hollow TN QUPR 700 1752-1997
LS Lassiter Swamp NC TADI 2 1527-1984

PCPW  Piney Creek Pocket Wilderness TN QUAL 300 1652-1982
PR Pearl River MS TADI 116 1549-1983

PW Pulaski Woods IN QUAL 250 1694-1985

RDR Ramseys Draft Recollection VA TSCA 1000 1598-1982
SG Scotts Gap TN LITU 520 1686-1981

1 TADI = Taxodium distichum, QULY = Quercus lyrata, PCRU = Picea rubens, QUAL = Quercus alba,
TSCA = Tsuga Canadensis, JUVI = Juniperus virginiana, TSCR = Tsuga caroliniana, QUST = Quercus
stellata, QUPR = Quercus Montana, LITU = Liriodendron tulipifera.

We chose four streamflow stations (Nolichucky, Nantahala, Emory, and SF Holston) that had
sufficient calibration windows (=40 years) and covered a large spatial region of the Tennessee Valley
(Figure 1) for analysis. These four calibration models (Figure 3) explained 42%-52% of the variance
in the May-June-July streamflow records. The models generally captured the year-to-year trends and
the peaks of the regional streamflow (Figure 3).
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Figure 3. May-June-July streamflow calibration models for (a) Nolichucky River (1921-1980), (b)
Nantahala River (1941-1980), (c) Emory River (1928-1980), and (d) SF Holston (1932-1980). Observed
(dark, solid line), reconstructed (gray, dashed line).

May-June-July streamflow reconstructions, smoothed with five-year end year filters, were
created for the Nolichucky, Nantahala, Emory, and SF Holston gages (Figure 4). Flow at the
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Nolichucky gages was reconstructed back to 1686, Nantahala (1679), and flow at the Emory and SF
Holston gages was reconstructed back to 1772. The reconstructions revealed numerous wet and dry
periods that varied slightly at each gage. The distribution of flow years in the lowest 10th percentile
from 1772-1980 was analyzed for the visual validation of the streamflow reconstructions (Figure 5).
The distribution of low flow years across the four stations was consistent from 1772 to 1910. The
period from 1910 to 1940 revealed numerous dry years that matched favorably across the four
stations. In the Western U.S., specifically the Upper Colorado River Basin, the highest sustained flows
in the last 500 years occurred in the early decades of the 20th century [20]. The Tennessee Valley
experienced numerous May-June-July low flow years from 1910 to 1940. Studies done by Stahle et
al. and Stahle and Cleaveland [8,24] also found dry periods in their reconstructions of North Carolina,
South Carolina, and Georgia, in the spring—summer precipitation, during this period. We noted for
the first time that, while most of the Western U.S. was experiencing some of its highest flow years
during the early 1900s, the Tennessee Valley region was experiencing very low spring—summer
conditions. In comparing the observed and reconstructed extreme (low and high) flows for the four
streams by applying the five-year-end year filter (Figure 4), generally the most extreme observed low
flows (when compared to the reconstructed flows) occurred in the late 1980's, while the most extreme
high flows were in the recent (1990's and 2000's) records. Additionally, the Emory River and SF
Holston displayed a decline in streamflow at the end of the observed record.
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Figure 4. May-June-July streamflow reconstructions for (a) Nolichucky River (1686-1980), (b)
Nantahala River (1679-1980), (c) Emory River (1772-1980), and (d) SF Holston (1772-1980) are shown
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in black. Values have been smoothed with a five-year-end year filter. May—June-July instrumental
streamflow values after 1980 are shown in gray. Also shown is the long-term mean for each record
(horizontal, dashed line).
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Figure 5. Distribution of the May-June-July flows in the lowest 10th percentile for the streamflow
reconstructions from 1772 to 1980.

Although our reconstructions were not as robust (in terms of length and explained variance) as
those found in the Western U.S., they could provide regional water managers with a visual tool to
analyze current and future spring—summer streamflow patterns and extremes within the Tennessee
Valley. Climatic persistence from year to year and biological persistence in tree growth in the
Southeastern U.S. makes it difficult to create statistically skillful hydrological reconstructions,
because tree growth is likely driven by several environmental variables. Value would be found in the
collection of more recent samples from tree species that were found to contain a significant response
to precipitation, in our research. Many of the chronologies in the region available on the ITRDB were
last cored in the 1980s, making it difficult to compare the recent changes in climate with the climate
of past centuries.

4. Discussion

Reconstructions of the hydrological parameters provide valuable information to water managers
and planners given the limited period of record of the observed data. While preliminary, the current
research represents the first comprehensive evaluation of the streamflow reconstruction potential in
eastern Tennessee and Western North Carolina. Statistically skillful reconstructions of the seasonal
streamflow were developed for multiple gages, providing useful information about past periods of
drought and pluvial periods in the region. As noted previously, the distribution of low flow years
across the four stations was consistent from 1772 to 1910. Additionally, the most recent period (1990's
and 2000’s in the observed record) appeared to be a pluvial period, when compared to the
reconstructed flows. Climate signals (e.g., El Nino Southern Oscillation—ENSO, Atlantic
Multidecadal Oscillation— AMO) are well established in Southeast U.S. and have been shown to
influence streamflow [25] and, in turn, tree growth [8,26]. While these climate signals have not been
shown to extend to the Midwest U.S., streamflow [25] and tree-ring-based reconstructions of drought
[27] have been linked to the North Atlantic Oscillation (NAO), indicating that the method of utilizing
tree ring proxies influenced by climate signals would be applicable in other regions. Future
collections of new tree ring proxies would likely increase the statistical skill of the reconstructions
and, perhaps, increase or lengthen the season (i.e., May-June-July) of the streamflow reconstruction,
providing increased information on past water availability.
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