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Abstract— Collaborative robots that physically interact with
humans in an ergonomic and safe manner are essential to
the future of industry. A common task across many industrial
applications is robot-to-human handover, in which the location
of object exchange is vital in cultivating a seamless interaction.
Most prior work on computing these exchange locations aims to
adjust human posture towards a better ergonomic state during
a single handover. This procedure typically involves the robot
estimating the human’s biomechanical properties, e.g. center
of mass and base of support, before determining an optimal
handover location according to some ergonomics assessment
scale. In a similar vein, we compare two methodologies for
object handover, whereby the handover location is computed
to either “assist” or “stimulate” the human receiver. Unlike
existing approaches, we posit that improvements in human
posture can be derived by stimulating the receiver’s movement
dynamics to facilitate posture variability, rather than constrain
or stabilize it. To compare methodologies, we conduct a within-
subjects study where participants perform 78 object handovers
with a collaborative robot architecture. Our findings indicate
an improvement in ergonomics scores for the “stimulating”
approach, hinting at the importance of productive inconvenience
in long-term robot-to-human handover.

I. INTRODUCTION

Work-related musculoskeletal disorders (MSDs) are the
largest factor responsible for absence from work in both
Europe [1] and the US [2]. As such, reducing the risk of
work-related injuries by improving workplace ergonomics
is a critical goal in any industrial setting, especially those
involving human-machine interaction. Nevertheless, injury
and fatality rates remain high, with 13% of occupational
fatalities being caused by equipment and machines [3].

In many industries, robots have replaced conventional
machines and human-robot collaboration (HRC) is becoming
more prevalent in the workplace. Existing approaches
to improving ergonomics during HRC involve estimating
human posture, evaluating an ergonomic score [4], [5], and
then having the robot act in a way that induces the human to
adjust into a more ergonomic posture. One common example
of this procedure in HRC is robot-to-human handover, in
which the robot must decide an object transfer point (OTP)
that will maximally improve ergonomic metrics [6]. Most
prior studies focus on human biomechanics to determine
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Fig. 1. Overview of our robot-to-human handover setup and the robotic
architecture components. For each experimental trial, the robot would pick
up a package from the pile and move to its computed handover location,
allowing the participant to complete the exchange.

OTPs, stipulating that an OTP should guarantee the least
deviation in a receiver’s Center of Mass (CoM), while
maintaining it within their Base of Support (BoS) [7]–[9].

Despite the plausibility of using this policy in some
settings, e.g. standing idle, stabilizing a receiver’s CoM
constrains how humans naturally perform whole-body
reaching tasks [10]. In contrast, humans allow their
CoM to be freely displaced during natural whole-body
movement that is not machine-mediated, enabling transitions
between comfortable postures. Although workplace setups
and machines tend to optimize towards reducing posture
change, some studies underline the importance of human
posture variability in work processes [11], [12]. Based on this
perspective, a robot-to-human handover strategy that elicits
more dynamic and varied receiver movement can be overall
less restraining and potentially more ergonomic.

In this work, we hypothesize that a more variable strategy
for robot-to-human handover, one that is not centered around
CoM regulation, may lead to healthier receiver postures,
as reflected by standard ergonomic metrics [5]. To test
this hypothesis, we develop an “assistive” and “stimulating”
mode of handover. In the assistive behavior, the robotic
system monitors human biomechanics to hand objects over at
an OTP deemed more convenient and CoM-stabilizing for the
receiver. On the other hand, the stimulating mode introduces
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variability into its handover behavior, nudging the receiver
to go beyond repetitive body postures, seeking to maintain
their attention, engagement, and healthy posture flow.

Key to this proposition is the notion of productive
inconvenience, which we anticipate holds great promise for
the future of work. The core idea is to develop machines that
are convenient for humans – “convenient” meaning literally
“to come together” from its Latin origin. As workplace
machines become robotic, however, they are capable of more
than coming towards the human, e.g. for ergonomic posture
improvement. On the contrary, a robotic agent behaving in an
inconvenient manner, under some constraints, may result in
their human counterpart being more attentive and hence more
cognizant of their posture when performing physical HRC
tasks, such as object handover. Productive inconvenience is,
therefore, a way to look at variability in HRC as a more
comprehensive understanding of ergonomics, i.e. a human
worker’s productivity and well-being.

To investigate this claim, we conducted a robot-to-human
handover experiment comparing the proposed assistive
and stimulating methods in a simulated workplace, where
participants performed multiple object exchanges (see Fig. 1
for overview). In summary, this paper’s experimental findings
are the following:

• Stimulating receiver motion, as opposed to optimizing
for stability, yielded safer ergonomic scores of posture;

• More dynamic receiver movement generated heightened
levels of alertness at no expense to frustration, perceived
workload, or preference;

• Over multiple handovers, human receivers entered into
closer proximity with the robot, hinting at improvements
in “trust” or “comfort”.

II. RELATED WORK

Robot-to-human handovers, where robots are givers and
humans are receivers, have been extensively investigated
in collaborative robotics [6], [13]. Previous research has
focused on developing robot handover policies that ensure
ergonomic human posture and healthy physical behavior
throughout the exchange by selecting an “optimal” OTP. To
that end, numerous approaches have been developed, each
with different criteria defining the robot’s handover policy.

Most studies propose that robots should choose OTPs to
maintain the human receiver’s CoM within the BoS [7],
[8]. While constraining CoM in this framework presents an
elegant formulation for optimization, it may not produce
entirely natural human movement. In fact, certain studies
have shown that in bimanual whole-body lifting tasks,
humans perform anticipatory postural adjustments that do
not minimize CoM displacements [14].

Another line of research exists that advocates for robot
handover strategies to optimize biomechanically-derived
metrics [15], in addition to CoM. For example, Kim et al.
developed a method of estimating overloaded human joint
torques, and then framed the interaction as an optimization
problem with the cost function being a weighted sum of joint
torques and CoM deviations from the BoS [8], [9]. A similar

Algorithm 1: Assistive/Stimulating Handover Policy

Input: CoM projection on the BoS plane ~Ct; BoS
center ~Bt; scale parameter ε; previous OTP ~Ot

Output: next OTP ~Ot+1;
if Stimulating then

Pick random corner point ~Et of BoS polygon−−→
CEt = ~Et − ~Ct
~Ot+1 = ~Ot + ε ·

−−→
CEt // Nudge OTP towards

random BoS corner

else−−→
CBt = ~Bt − ~Ct
~Ot+1 = ~Ot + ε ·

−−→
CBt // Deviate OTP towards

BoS polygon centroid

end if

technique was developed in [7], with CoM displacements
replaced by deviations in center of pressure.

Finally, some studies have instead directly applied human
posture and ergonomics as the target criteria for the
interaction. In these works, the robot policy chooses OTPs
that optimize standard ergonomic assessments of human
posture, such as the Rapid Upper Limb Assessment [16]
and Rapid Entire Body Assessment (REBA) [17], [18].
In this work we introduce a collaborative robotic (cobot)
architecture designed to indirectly augment REBA scores by
relying solely on a human receiver’s adaptive capabilities.

III. COBOT ARCHITECTURE

In this section, we present a cobot architecture for robot-
to-human handover in industrial scenarios, based on our more
comprehensive Gymnast CoBot project1. This architecture is
composed of three core processes: handover control policies,
3D human pose estimation, and user interfacing.

A. Robot Platform

The main platform was a Universal Robot 10 e-Series
(UR10e) robotic arm, chosen due to its long reaching
motions, high working payload, and inherent joint force
limitation to foster safe physical HRC. Given that we were
primarily concerned with handovers in industrial settings, the
UR10e’s end-effector was extended with a Robotiq AirPick
Vacuum gripper, which can suction a maximum payload of
16 kg (sufficient for most corrugated industrial packages).
To capture the environment and human receiver during
handovers, a wide-angle webcam NexiGo N980P with 120◦

field-of-view was positioned near the robot. Additionally,
human subjects were equipped at their waist with an HTC
Vive (3.0) motion tracker purely for the post-evaluation of
their position in a “world” frame of reference. As a user
interface, a projector and display in the vicinity provided
real-time feedback on the task and robot state. Fig. 1 outlines
the hardware components of this cobot architecture.

1xdlab.camd.northeastern.edu/gymnast_cobot/
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Fig. 2. Base of support polygon estimated as a convex hull between the
left and right heels (A & B, respectively), and the intersections of the first
toe tips with the outermost toe edges (C & D).

B. Handover Control Policies

Two handover control policies governed the robot’s
behavior: assistive and stimulating. These control “modes”
are formulated in Algorithm 1 and described below.

Assistive: In this control mode, the robot attempted to
keep the human receiver’s CoM within the BoS. More
specifically, OTPs were selected to push the CoM towards
the BoS center based on prior handover estimates of these
biomechanical properties. Numerous studies have shown
that the distance between the CoM and BoS center is a
good predictor of human stability, especially when lifting
packages [19], [20]. This mode of interaction thus aimed
to maintain stability in the hopes of healthier and more
ergonomic posture.

Stimulating: By contrast, for this mode the robot sought
to “stimulate” the human user into making more dynamic
movements. As such, the robot opted for OTPs that nudged
human receivers into configurations where their CoM was
momentarily outside of their BoS. The motivation here was
to keep human movement active and their posture dynamic
during whole-body reaching, even if it resulted in temporary
destabilization [10], [21], rather than imposing a stabilizing
policy on motion. As per our hypothesis on productive
inconvenience, this mode helped us examine whether a
randomly varying and unstructured policy causes receivers to
be more attentive and engaged, resulting in posture variability
that is overall favorable and ergonomic.

Across both control modes, the tempo of robot motion was
dictated by the receiver’s pace, such that the robot and human
arrive near the OTP almost simultaneously. This synchronous
design improved smoothness of the HRC by reducing idle
time for the human receiver.

C. Real-Time Estimation of Human 3D Pose

Rapid yet accurate analysis of 3D skeletal information
serves as the basis for ergonomic posture assessment [22].
While using full-body motion-capture suits for pose tracking
is common [18], [23], our work relied on a vision-based
approach, BlazePose [24], due to its markerless, non-invasive
setup, which is ideal for in-work environments. BlazePose is
a lightweight framework that performs real-time 3D body

A2

A3

A4

A1

Fig. 3. User interface projected onto each handover package. Four intuitive
icons inform the human receiver about the current robot state. A1: Package
is ready to be taken. A2: No package picked by the robot yet. A3: Robot
is delivering the package. A4: Package successfully handed over.

pose estimation from RGB images by combining a neural
network pose detector with a fast skeleton keypoint tracker.

Given these tracked 3D keypoints, we can determine two
imperative parameters of a human subject in real-time: the
CoM and BoS. The CoM was estimated using an approach
similar to [25], where the human body was approximated as
a system of particles, with each particle representing a body
segment, such as the head, shoulder, trunk, etc. Each body
segment was assigned a percentage of body mass. To account
for the mass of the package being lifted, hands were assigned
different masses before and after handover. Provided with 3D
positions of each body segment, the CoM was calculated as:

~C =

∑
imixi∑
imi

, (1)

where xi ∈ R3 denotes the instantaneous 3D location of the
ith body segment, and mi ∈ R denotes its mass.

The BoS was then defined as the area beneath the person
that includes every point of contact made with the ground.
In this work, we approximated the BoS as the convex hull
between the left and right heels, and the intersection of the
first toe tips with the outermost toe edges of each foot. This
is illustrated by the polygon ABCD in Fig. 2.

D. User Interface

To create fluent and smooth HRC, mutual trust must be
established between the robot and human [26]. In terms of
robotic behavior, our system monitored the human receiver’s
physical activity and generated trajectories using the methods
described above. Nonetheless, there was also a need for the
humans to understand the robot’s intent and plan their actions
accordingly. In line with this need for transparency, we
designed a user interface consisting of an on-board projector
(see Fig. 3) and an external monitor display (see Fig. 1). The
projection system is flexible enough to project interface icons
onto any industrial package with a flat surface, becoming
an ad-hoc shared workspace between human and robot.
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Fig. 4. Top-down diagram of the experiment setup.

The external monitor also served to guide receivers who
might either approach or leave the handover zone. To avoid
unnecessary distractions, four simple but intuitive icons
demonstrated the robotic system’s current state, as shown
in Fig. 3.

IV. EXPERIMENT

In order to explore the effects of different control
strategies for robot-to-human handover, we conducted a
within-subjects study replicating typical pick-and-place tasks
found in industry. An overview of the experiment layout and
environment is provided in Fig. 4.

A crucial aspect of the experiment was that there were
multiple, repeated package handovers.

The hypotheses for this experiment were threefold:
• H1: Human receivers will exhibit heightened movement

depending on the handover policy, as measured by CoM
displacements and torso rotations.

• H2: Stimulating receiver movement will garner
improvements in ergonomic scores.

• H3: Subject comfort with a robot engaging in dynamic
handover will grow over the experiment duration, as
reflected by diminished proximity to the end-effector.

User perceptions of workload, frustration, alertness and
preference are also reported.

A. Experimental Protocol

A total of 16 subjects (6 female; aged 20-34) participated
in the study. All participants provided written consent
prior to data collection and were naive to the purpose of
the experiment. The experimental protocol was approved
by Northeastern University’s Institutional Review Board.
Participants were recruited using online advertisements
around the university campus and the robotics facility
where the experiments took place. In turn, the subject
demographic is a young (median age 23) and robotics-
oriented adult population (75% with prior experience).
Nevertheless, ergonomics and the emergence of MSDs is
not only a concern for older workforces [1], [2], nor is it an
unfair assumption that workers are trained prior to handling
the robot.

The experiment was comprised of three blocks: Training,
followed by Assistive and Stimulating. Subjects always began
with Training and the order of subsequent blocks was
counterbalanced. Importantly, subjects were unaware that
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Fig. 5. Physical motion characteristics of participants for each control
mode: (a) Average CoM displacement recorded on a handover basis; (b)
Maximum torso rotation angle registered per handover.

the robot control policy differed between Assistive and
Stimulating. For the Training block, subjects were requested
to move 7 packages (each weighing 6.8 kg), one at a time,
by receiving the package from the robot at a fixed OTP.
Participants then had to carry the package over to a drop-off
location approximately 4 m away from the shared handover
workspace, where they were required to place the package.
In Assistive and Stimulating, participants repeated this task
for a total of 39 packages per block at varying OTPs.

B. Evaluation Metrics

An array of quantitative and qualitative metrics was
employed to assess the differences between Assistive and
Stimulating. The aim of these metrics was to decipher
whether a less “convenient” handover strategy in a workplace
HRC task, such as package transfer, could foster a trade-
off in benefits for the human receiver. In particular, we
examined the ergonomic safety and physical characteristics
of receivers’ movement, as well as cognitive workload and
other general subjective interpretations.

For quantitative evaluation of ergonomics and physical
variation in receiver posture, we measured deviations in
CoM, torso rotation, and divergence in REBA scores [5].
We elected to compute REBA over estimated 3D joint
poses from Section III-C, as it is a widely accepted scoring
mechanism for ergonomic posture in whole-body motion
(one-sided view), and has been applied in similar prior work
on robot-to-human handover [16]–[18]. Another metric of
major importance in manufacturing settings with HRC is
execution time, e.g. to measure efficiency. As this metric
can be partly controlled by the robot’s generated trajectories,
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REBA scores range from 1-15.

and as participants were not requested to complete the task
quickly, we chose not to evaluate time-to-completion.

To evaluate user perceptions of the two control modes,
a selection of subjective questionnaires was provided to
subjects. The well-known NASA-TLX [27] tool was used
to assess perceived workload, as well as custom-designed
surveys specific to our handover experiment to identify traits
of preference, alertness and frustration. At the end of each
block, subjects were asked to complete the NASA-TLX
questionnaire and answer the custom-designed mode-specific
survey. Participants filled out an additional survey comparing
the two control modes at the end of the experiment.

V. RESULTS

To test each of the three hypotheses for significance, one-
way repeated ANOVAs were run on the aforementioned
evaluation metrics, treating the control modes as the within-
subjects factor.

A. Wider Range of Torso Movement in Stimulating Mode

Fig. 5 demonstrates the deviations in physical motion
characteristics between subjects, for both control modes.
The results of a repeated-measures ANOVA found
no main effect of mode on the CoM displacement
(F (1, 15)=0.256, p=0.621), with average displacement
per handover shown in Fig. 5(a). However, there is a
significant effect revealed in maximum torso rotation
(F (1, 15)=4.89, p=0.043), where higher maximum
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Fig. 7. CoM of participants relative to the robot’s end-effector, i.e. using
coordinates in the world frame: (a) Box plot of relative distances; (b) Mean
and standard error in relative distances across the two modes, with later
handovers occupying closer proximity to the end-effector, as reinforced by
the horizontal lines delineating each mode’s half-trial average.

rotation angles are observed for Stimulating mode
(mean=68.7; SD=11.8) in comparison to Assistive
(mean=63.5; SD=13.7). The distribution of maximum
angles recorded per handover are plotted in Fig. 5(b).
Maximum torso angles were considered, since they are
more indicative of the full extent of unconstrained whole-
body motion [10]. This result partially supports H1 in
favor of our Stimulating handover policy inducing greater
variability in range of receiver motion.

B. Improved Ergonomic Scores in Stimulating Mode

Average REBA scores per handover for the two modes
are depicted in Fig. 6, where lower scores qualify as more
ergonomic. A significant main effect between modes was
found (F (1, 15)=9.88, p≤ 0.01) with Stimulating scores
determined to be less (mean=5.25; SD=0.41) than those of
Assistive (mean=5.51; SD=0.32). This test result suggests
that Stimulating garners better ergonomic postures on the
basis of REBA. Furthermore, Fig. 6(b) portrays how
subjects sustained improved ergonomic postures even as the
experiment progressed. One might argue that variability in
OTPs generated by the Stimulating mode helped maintain
consistency by preventing subjects from losing attention
and becoming sloppy, which pertains to postural awareness.
Taken together with the previous result on range of motion,
these results validate the second hypothesis, H2, and provide
evidence to support the claim that a stimulating robot
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handover policy can lead to improved ergonomics for the
human receiver.

C. Closer Proximity between Human and Robot in
Prolonged Interaction

By attaching a HTC Vive tracker to participants,
we were also able to explore the patterns in receivers’
movement around the handover workspace shared
with the robot, termed the “world” frame. For
example, Fig. 7(a) illustrates a significant effect in
the relative distance between receivers and the robot’s
end-effector (F (1, 15)=8.51, p=0.011). The repeated-
measures ANOVA reveals higher proximity from the robot
in the Stimulating setting (mean=0.70; SD=0.12) than
Assistive (mean=0.66; SD=0.10). These findings are to
be expected, as receivers occupied a wider span of the
shared workspace due to the nature of OTPs selected by the
Stimulating variant. This is graphically portrayed in Fig. 8,
where a subject spread further about the world frame
across three consecutive handovers during the Stimulating
mode, echoing our previous claims on heightened receiver
dynamics.

Another interesting observation on receiver movement
across both handover modes is how proximity to the robot
diminishes over a prolonged interaction. Fig. 7(b) captures
this trend through half-trial average delimiters in subject
distances to the end-effector, where 78.95% and 89.47%
of the remaining handovers are closer for the Assistive and
Stimulating modes, respectively. This relationship supports
H3, notably so for the Stimulating case, and implies gradual
increases in user “trust” or “confidence”.

D. Survey Results

Fig. 9 demonstrates the subjective feedback results.
Fig. 9(a) identifies no significant differences between the
perceived workload of subjects when conducting the task in
either Stimulating or Assistive mode. Though a general trend

Stimulating
Assistive

Training
BoS

CoM
CoM Deviation

Fig. 8. Movement in whole body pose and CoM across three consecutive
handovers (Stimulating in red, Assistive in blue, Training in green). Change
in shading represents sequence order, with bolder colors for later handovers.
The BoS and CoM displacements relative to the world frame appear to be
of greater magnitude for Stimulating than that of the other modes.

(a) NASA-TLX

(b) Survey Ratings

Fig. 9. Subjective responses to: (a) NASA-TLX following each control
mode; (b) A post-experiment survey comparing the control modes in terms
of preference, alertness and frustration.

towards higher physical exertion, effort and frustration is
perceived for the Stimulating variant. Post-experiment survey
results in Fig. 9(b) observe similarities in “Preference”
and “Effort”, yet noticeably higher “Alert” ratings for our
proposed Stimulating method.

VI. DISCUSSION

Before proceeding with key takeaways, we acknowledge
certain experimental limitations. From a system design
perspective, errors in sensing and camera-based body pose
estimation will directly influence the handover behavior,
as well as our metrics for evaluation. As a result, a
more robust perception system, e.g. using motion-capture,
is required for future work. Even with perfect sensing
capabilities, improving ergonomics via CoM is questionable,
given that CoM is itself a debatable measurement of a
postural system [28]. Likewise, we admit OTPs produced
using our specific method of Stimulating receiver motion
failed to significantly deviate CoM away from the BoS.
However, movement across the handover zone was still
observed to be of greater proportion. Another variable that
likely influenced our results is the handover object’s weight.
Different package weights would impact the preferred OTP,
thus requiring further investigation. Lastly, future studies
should be conducted over a wider subject age range to better
represent the entire workforce population.

A few major insights on the relevance of productive
inconvenience in robot-to-human handover are drawn from
this study. First, our proposed approach of computing OTPs
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obtained significantly more dynamic receiver behavior (H1)
with improved posture ergonomics (H2), at no expense to
frustration or trust (H3). Second, underpinning this notion on
productivity is the objective of augmenting user engagement.
Many participants validated this objective, citing that for
Stimulating they “had to pay more attention/be more aware”
or found it “more engaging, as if working with a partner”.
Yet this also created mixed interpretations of preference and
frustration, with some subjects criticizing Stimulating on its
“more random/harder to predict/inconsistent” behavior and
others advocating for its “excitement/fluidity/smoothness”.
Finally, we re-emphasize the impact of investigating multiple
handovers, especially as this temporal factor shed light on
substantial findings, including “trust” being established.

VII. CONCLUSIONS

In this paper, we introduced the idea of “stimulating”,
rather than optimally “assisting”, human receivers of
robot handovers to facilitate posture variability for
enhanced ergonomics. At the crux of this idea is
productive inconvenience, where we proved that perceptually
inconvenient forms of robot handover can have surprisingly
positive effects on human receivers. Yet to uncover these
effects, it is of paramount importance that a longitudinal
HRC study be conducted, e.g. multiple exchanges. Inspired
by our preliminary findings on the benefits of productive
inconvenience, we plan to extend this concept beyond the
scope of handover and into the broader area of physical HRC.
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