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Random Forests (RFs) are at the cutting edge of supervised machine learning in
terms of prediction performance, especially in genomics. Iterative RFs (iRFs) use a
tree ensemble from iteratively modified RFs to obtain predictive and stable nonlinear
or Boolean interactions of features. They have shown great promise for Boolean
biological interaction discovery that is central to advancing functional genomics and
precision medicine. However, theoretical studies into how tree-based methods discover
Boolean feature interactions are missing. Inspired by the thresholding behavior in
many biological processes, we first introduce a discontinuous nonlinear regression
model, called the “Locally Spiky Sparse” (LSS) model. Specifically, the LSS model
assumes that the regression function is a linear combination of piecewise constant
Boolean interaction terms. Given an RF tree ensemble, we define a quantity called
“Depth-Weighted Prevalence” (DWP) for a set of signed features S¥. Intuitively
speaking, DWP(S¥) measures how frequently features in S* appear together in an RF
tree ensemble. We prove that, with high probability, DWP(S*) attains a universal upper
bound that does not involve any model coefficients, if and only if S* corresponds to
a union of Boolean interactions under the LSS model. Consequentially, we show that
a theoretically tractable version of the iRF procedure, called LSSFind, yields consistent
interaction discovery under the LSS model as the sample size goes to infinity. Finally,
simulation results show that LSSFind recovers the interactions under the LSS model,
even when some assumptions are violated.

decision trees | interaction selection | ensemble methods | consistency | interpretable machine learning

Supervised machine learning (ML) algorithms have been proven to be extremely powerful
in a wide range of predictive tasks from genomics to cosmology to pharmacology.
Understanding how a model makes predictions is of paramount value in science and
business alike (1). For example, when a geneticist wants to understand a particular
disease—e.g., breast cancer—a black-box algorithm predicting the risk of breast cancer
from genotype features is useful, but it does not offer biological insight.

That is, discovery of genes and gene interactions driving a particular disease provides
not only understanding as a basic goal in science, but also opens doors for therapeutic
treatments. It is a pressing task, in genomics and beyond, to interpret supervised ML
models or algorithms and extract mechanistic information in addition to prediction.

Among many supervised ML algorithms, tree ensembles, such as those from Random
Forests (RFs) (2) and gradient-boosted decision trees (3), stand out, as they enjoy both
state-of-the-art prediction performance in a variety of practical problems and lead to
relatively simple interpretations (4-8). To interpret a tree ensemble model, two questions
are central:

* Feature importance: What features are important for the model’s prediction?
* Interaction importance: What interactions among features are important for the
model’s prediction?

While many studies (refs. 4 and 6-8 and the references therein) focus on the RF feature
importance, there are relatively few results on the second question. In genetics, Wan et al.
(9) and Yoshida and Koike (10) seek (higher-order) gene interactions (or epistasis) by
extracting genetic variant interactions from paths of ensembles of fitted decision trees.
Wan et al. (9) use MegaSNPHunter based on boosting trees and interpret all groups of
features that jointly appear on one of the decision paths as a candidate interaction. Yoshida
and Koike (10) propose to rank interactions of genetic variants based on how often they
appear together on decision paths in an RF tree ensemble. Recently, iterative RFs (iRFs)
(11) were proposed to seek predictive, stable, and high-order nonlinear or Boolean feature
interactions. Even though iRF uses the idea that the set of interacting features often appear
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together on individual decision paths of a tree in an RF ensemble,
as in Yoshida and Koike (10), it uses several other ideas. That
is, iRF incorporates a soft dimension-reduction step via iterative
reweighting of features in terms of their Gini importance, in
order to stabilize individual decision paths in the trees. Using
the random intersection trees (RIT) (12) algorithm, iRF extracts
stable interactions of arbitrary order in a computationally efficient
way, even when the number of features is large. There is very
positive evidence that iRF extracts predictive, stable, and high-
order Boolean interaction information from RF in genomics and
other fields (11, 13, 14). While all the works mentioned above
provide strong empirical evidence that interactions extracted from
the ensemble of decision trees via RF or iRF are informative
about underlying biological functional relationships, there are no
theoretical results regarding interaction discovery using RE, iRE
or other tree-based methods. In this paper, as a first step toward
understanding the interaction-discovery property of tree-based
methods, we investigate a key idea in the previous works (9-11)—
namely, that frequent joint appearance of features on decision
paths in the RF tree ensemble suggests an interaction.

One of the most common assumptions made in previous
theoretical analyses of RF is a family of smoothness conditions
on the underlying mean regression function, such as the Lipschitz
smoothness condition (see, e.g., refs. 15-17). However, many
biological processes show thresholding or discontinuous inter-
acting behavior among biomolecules (18, 19), which strongly
violates the Lipschitz assumption. It is therefore necessary to
introduce a model that can capture the thresholding behavior
through discontinuous mean regression function.

The Locally Spiky Sparse Model. Motivated by this thresholding
behavior of biomolecules and inspired by RF’s predictive perfor-
mance successes in genomics data problems (20-22), we consider
the locally spiky sparse (LSS) model:" an additive regression model
where the mean regression function is assumed to be a linear com-
bination of Boolean interaction functions. The linear coefficients,
as well as the threshold coefficients of the Boolean functions, are
called “model coefficients.” Via Boolean functions, the LSS model
is able to capture discontinuous thresholding behavior in biology;
hence, it can be more relevant for biologists than models with
smoothness constraints. We believe the LSS model is suitable and
useful as a benchmark model under which to evaluate theoretically
(and computationally) interaction-discovery performance of tree-
based ML algorithms, including RE

Our Contributions. Assume that independent and identically
distributed (i.i.d.) data samples from the LSS model are given and
an RF is fit to these data.

1. For an RF tree ensemble, we first define “signed features.” For a
decision path of a set of signed features S £ in the ensemble,
we then define a quantity called “depth-weighted prevalence”
(DWP). Intuitively speaking, DWP of S* measures how
frequently the features in S¥ appear together in an RF tree en-
semble. We show that DWP has a universal upper bound that
depends only on the size of the set of signed features. Moreover,
the upper bound is attained with high probability as the sample
size increases if and only if the signed features represent a union
of interactions in the LSS model. Based on DWP, we show
that a simple algorithm—i.e., LSSFind, defined in Algorithm
1—can consistently recover interaction components in the LSS
model, regardless of the model coefficients.

*The LSS model was first introduced by the authors of ref. 11 (including one of us) and has
already been used in simulations to evaluate the performance of iRF/siRF in ref. 13.
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2. Our theoretical results imply that feature subsampling of RF
is essential to recover interactions by the RF tree ensemble.
When too few features are sampled at each node, the tree
ensemble is close to extremely randomized trees, and DWP
of any set of signed features is independent of the response,
which means that it does not contain information on the LLS
model; when too many features are sampled, all the trees in the
ensemble will be very similar to one another, and that turns out
to make it difficult to use tree structures to distinguish between
interactions and noninteractions. More specifically, the ratio
between the number of subsampled features my;, and the total
number of features p should be a nonzero constant in order
for our algorithm to learn higher-order interactions from tree
paths.

Existing Theoretical Works on RF. Existing theoretical studies of
RF and its variants belong to two categories. The first focuses
on estimating the regression function under Lipschitz or related
conditions on the underlying regression function via averaging the
decision trees in the RF tree ensemble. The second category studies
feature importance measures as an RF output. In contrast, we
provide a study on feature interaction selection consistency under
an LSS model using DWP extracted from the RF tree ensemble.

In particular, in the first category, Biau (15) considers “median
forests” (23), originally considered as a theoretical surrogate by
Breiman (24), and obtains the Ly convergence rate under the
Lipschitz continuous models. Scornet et al. (16) give the first
consistency result for Breiman’s original RF with subsampling
instead of bootstrapping in the low-dimensional setting when data
are generated via an additive regression model with continuous
components. Wager and Athey (17) consider a variant of RE called
honest RE, in the causal inference setup and prove its point-wise
consistency and asymptotic normality when the conditional mean
function is Lipschitz continuous. Similarly, Mentch and Hooker
(25) showed that, under some Lipschitz-type conditions, a mod-
erately large number of trees approximate well the infinite number
of trees. Based on these asymptotic normality results, ref. 26
derived hypothesis tests for the null hypothesis that the regression
function is additive. Thus, if one defines features interaction as
the deviation from a continuous additive regression function, then
their results enable testing on a particular candidate. In contrast,
in this work, we define feature interaction via the noncontinuous
Boolean functions in the LSS model, and we derive consistent
interaction selection via the RF tree ensemble, as opposed to a
test for an individual interaction, as in ref. 26.

The second category focuses on theory regarding individual
feature importance measures. Results in this line of work do
not rely on Lipschitz conditions. However, to the best of our
knowledge, these works study statistical properties of only noisy
features, but do not provide results for signal features in finite
samples. Louppe et al. (5) show that Mean Decrease in Impurity
(MDI) feature importance for randomized trees has a closed-form
formula with an infinite number of samples. Zhou and Hooker (6)
use out-of-sample data to improve the MDI feature importance
with unbiased theoretical guarantees. Li et al. (8) show that the
MDI feature importance of noisy features is inversely proportional
to the minimum leaf-node size and suggest a way to improve the
MDI using out-of-bag samples. Loecher (7) gives a family of MDI
feature importance via out-of-bag samples that are unbiased for
the noisy features. Moreover, many studies focus on permutation-
based feature importance measures—in particular, Shapley effects
(27-33). Among these works, ref. 33 shows some conceptual
similarities to the DWP approach considered in this paper, as the
authors also consider the concept of joint appearance of features
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on decision paths in the RF tree ensemble. However, instead of
using this concept to extract feature interactions, as done in this
work, they use it to define an importance sampling scheme to
estimate the Shapley effects.

Also related to our work is the recent work ref. 34, which
analyzes the extraction of rule sets from an RF tree ensemble.
This is very similar to interaction selection, as considered in this
work, except that the extracted rules in ref. 34 also include specific
estimated thresholds for the individual features. The theoretical
analysis in ref. 34 focuses on the stability of the selected rules
without specifying a particular data-generating model. In contrast,
this paper obtains model-selection-consistency results for LSSFind
to estimate signed interactions of signal features under the LSS
model.

The rest of the paper is organized as follows: Section 1 intro-
duces the LSS model and Boolean interactions in more detail.
Section 2 reviews the RF algorithm and formally defines DWP
for a given set of signed features relative to an RF tree ensemble.
Section 3 presents our main theoretical results for DWP and
introduces LSSFind, a theoretically inspired algorithm to detect
interactions from RF tree ensembles via DWP. Section 4 contains
simulation results. We conclude with a discussion in Section 5.

1. LSS Model to Describe Boolean Interactions

In this section, we introduce necessary notations and a precise
mathematical definition of the LSS model. To this end, for an inte-
ger N € N,let [N]:={1,2,..., N}.Foraset S of finite elements
of [N], let | S| denote its cardinality or the number of elements
in S. For any event A, let 1(A) denote the indicator function of
A. We assume a given dataset D = {(x1, ¥1), ..., (Xn, Yn)} of n
samples, with x; = (%1, ..., Tin) € RP and y; € R. We say that
the data D are generated from an LSS model when the following
assumptions hold true.

LSS Model 1. Assume D = {(X1, Y1), - - - (Xn, Yn)} arei.id.
samples from a distribution P(X,Y'), such that for some fixed
constants Cg >0, Cy € (0,0.5), the regression function takes the
Sfollowing form:

J
E(Y|X)=80+>_ 8 [] 1(X Z ), [1]

=1 keS;

where Z in Eq. 1 means either < or >, potentially different for every

k. Coej%cimts B; are bounded from below, i.c.,
J
mig 18;1 > Cs, (2]

and thresholds vy; are bounded away from 0 and 1, i.c.,
v € (C'ya 1- C’y)a (3]

forj=1,...,J.81,...,8; Cp] are sets of features called basic
interactions. We associate < in Eq. 1 with a negative sign (—1) and >
with a positive sign (+1), such that a signed feature can be written as
a tuple (k, by) € [p] x {—1,+1}. Wecall Si7, ..., ST C [p] x
{—1,+1} basic signed interactions with Sji ={(k,bg): ke S}

Note that for interactions with only one feature 4, due to
the sign ambiguity in the LSS model—i.e., 1(X}; < a)=1-—
1(X; > a)—both {(k,—1)} and {(k,+1)} are counted as an
interaction.

The LSS model aims to capture interactive thresholding be-
havior, which has been observed for various biological processes
(18, 35-39). For example, in gene regulatory networks, often a
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few different expression patterns are possible. Switching between
those patterns can be associated with individual components that
interact via a threshold effect (36—38). Such a threshold behavior is
also observed for other signal-transduction mechanisms in cells—
e.g., protein kinase (35) and cell differentiation (18). Another
example of a well-studied threshold effect is gene-expression regu-
lation via small RNA (39). Although for most biological processes,
the precise functional mechanisms between different features and
a response variable of interest are much more complicated than
what the LSS model can capture, theoretical investigations of a
particular learning algorithm, such as RF, are only feasible within a
well-defined and relatively simple mathematical model and useful
for practice when such a model is empirically relevant. Given
the empirically observed interactive threshold effects in many
real biological systems, the LSS model clearly provides a useful
enrichment to the current state of theoretical studies of RF and
related methods, since current theoretical models do not capture
the often-observed interactive threshold behavior.

In order to prove our main Theorem 2, we further impose the
following constraints on the LSS model.

Constraint 1 (C1) (Uniformity): X is uniformly distributed on
[0,1]7.

This uniformity assumption implies that each feature is inde-
pendent of each other. Because any decision tree remains invariant
under any strictly monotone transform of an individual feature,
the uniform distribution assumption of X can be relaxed to the
assumption that individual features X, j € [p] are independent
with a distribution that has Lebesgue density. We note that such
an independence assumption might be violated in real-world
problems. For example, for genetic data with single-nucleotide
polymorphisms or gene expression as features Xj, there will
typically be a strong correlation between features that are located
close by on the chromosome. However, in many cases, it is
feasible to restrict to a subset of features (e.g., those that are
located sufficiently far apart on the genome) in order to obtain
approximate independence. In Section 4, we also demonstrate in
simulations that for sufficiently weak feature correlation, one can
still obtain accurate interaction selection with LSSFind.

C2 (Bounded-Response): ¥ is bounded—i.e., | Y| < 1.

Note that although we assume | Y| < 1, the constant one can
be changed to any constant, as we can scale ¥ by any positive
number, and the conclusions in our main results will remain
intact. This boundedness condition can be further relaxed so
that the residue Z := Y — E(Y|X) is independent of X and 1-
subgaussian if we assume a slightly stronger assumption on p and
n than the conditions in C4. See SI Appendix, Proposition S5 for
more detail.

C3 (Nonoverlapping Basic Interactions): Si,..
overlap—i.e., 5, N S;, = Ofor allj; # jo.

The nonoverlapping assumption that different interactions
S, S;, with 71 # jo are disjoint might not always be justified
in real-world problems. However, it is a crucial assumption for
our theorem to hold. The general problem with overlapping
interactions in the LSS model is that such models can be
nonidentifiable, meaning that different forms of Eq. 1 can
imply the same regression function E(Y|X). For example,
for the response 1(X; < 0.5, X5 <0.5) 4+ 1(X; > 0.5, X5 >
0.5), by the definition of signed interactions in the LSS
model, it has two basic signed interactions, {(1,—1),(2,—1)}
and {(1,+1),(2,41)}. However, we can also write it as
1—1(X; < 0.5, Xo > 0.5) — 1(X; > 0.5, Xo < 0.5), which
has two different basic interactions, {(1,—1),(2,+1)} and
{(1,+1),(2,—1)}. This means that a set of signed features that
is an interaction in one of the representations is not an interaction

., Sy do not
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in the other. Due to this identifiability problem, overlapping
features can lead to both false positives and false negatives in
terms of interaction recovery with RE One may try to define
interaction more broadly to avoid this identifiability problem.
For the previous example 1(X; < 0.5, X5 <0.5) + 1(X; >
0.5, X2 > 0.5), although the basic signed interactions are not
unique, they alwa ]S constitute both X7 and X,. Whether the
coefficients {f3;};_ are allowed to have different signs also
affects the identlﬁablhty The previous example is identifiable if
we only allow positive coeflicients. For domain problems, where
interactions are believed to be overlapping, one should investigate
different identifiability conditions, but as this depends on the
precise application, we leave this for future work. Our work in
this paper provides a pathway to investigate this in detail later.
We demonstrate how overlapping features affect our results with
a simulation study in Section 4.

In Section 3, we show that a simple algorithm, LSSFind, that
takes an RF tree ensemble as input can consistently recover basic
interactions 51, ..., .Sy in the LSS model. Besides recovering
S; C [p], LSSFind can also recover the signs of each feature
ke Ulesj in the LSS model, which indicates whether the
corresponding threshold behavior in Eq. 1 is given by a <- or
>-inequality. Without loss of generality, in the rest of the paper,
we assume that all inequalities are < in Eq. 1—that s,

J
E(Y|X)=80+> 8 [] 1(Xx <) [4]

j=1 keS;

We stress, however, that all our results also hold for the general case
Eq. 1. Because we assume that all the features in basic interactions
have minus signs, we denote Sy ,...,S5; C[p] x {-1,+1}
with 57 = {(k,—1) : k € S;} as basic signed interactions of
the LSS model. As our theoretical results will show, the RF tree
ensemble can recover not only the basic interactions S; C [p],
butalso basic signed interactions S;” C [p] x {—1,+1}.In other
words, through DWP and under the LSS model, the RF tree
ensemble can recover not only which features interact with each
other in the LSS model, but also whether a particular feature in
an interaction has to be larger or smaller than some threshold for
this interaction to be active. Besides basic signed interactions, we
also define a “union signed interaction” as a union of individual
basic signed interactions, as made more precise in the following
definition.

Definition 1 (Union Signed Interactions): In the LSS model
with basic signed interactions Sy, ..., S; C[p] x {-1,+1},a
(nonempty) set of signed features S* c [p] {=1,+1} is called
a union signed interaction, if

= U Sj_ U {(k, bk}, [5]

JET JETLs,keS;,bre{—1,+1}

for some (possibly empty) set of indices Z C {j € [J] :
1}, T {ie ) : |5 = 1}

In other words, a union signed interaction is a union of one
or more basic signed interactions. For a single-feature signed
interaction, its sign-flipped counterpart can also be added to the
union. For example, for an LSS model with E(Y|X) =1(X; <
0.5) + 1(X2 < 0.5, X3 < 0.5), there are two basic signed
interactions—namely, {(1,-1)} and {(2,-1),(3,-1)}—
and five union signed interactions—namely, {(1,-1)},
{(2,-1), (3.~ )}, {(L + Db {(1,—1), (2, ~1), (3, ~1)}, and
{00410, (2 -1), (3, 1)},

551 >

https://doi.org/10.1073/pnas.2118636119

The theoretical results that we present in Section 3 are asymp-
totic, in the sense that they assume the sample size 7 to go to
infinity. Denote the number of signal features U}-I:l S in the LSS

model to be s—i.e., Zle |S;| = s. We assume s is uniformly
bounded, regardless of 7 and p. However, the overall number of
features p or the number of noisy features p — s can grow to
infinity as 7 increases. Our theoretical results also assume
C4 (Sparsity): s = O(1) and lOg 2 0.

'This means that, in contrast to many theoretical works (16,
17, 40)," our results hold in a high-dimensional setting, as long
as the overall number of signal features s is bounded. The limit

1 . . o . .
% — 0 isa common assumption for high-dimensional settings

when analyzing consistency properties of Lasso (see, for instance,

refs. 41-43).

2. DWP for an RF Tree Ensemble

In this section, we first review the RF algorithm and then define
DWP for a given RF tree ensemble.

A. Review of RF. RF is an ensemble of classification or regression
trees, where each tree 7" defines a mapping from the feature
space to the response. Trees are constructed on a bootstrapped or
subsampled dataset D(T) of the original data D. Note that each
tree is conditionally independent of one another, given the data.
Any node ¢ in a tree 7 represents a hyper-rectangle R, in the
feature space. A split of the node # is a pair (k¢, y; ), which divides
the hyper-rectangle R, into two hyper-rectangles R; ;(ki,v:) =
Rt N l(ka § ")/t) and Rt,r(kta'yt) = Rt N 1(Xk, > "}/t), cor-
responding to the left child ¢, and right child ¢. of node 7
respectively. For a node 7 in a tree 7, N,,(t) = |{i e D7) : x; €
R, }| denotes the number of samples falling into R;.

Each tree 7 is grown using a recursive procedure (denoted as
the CART algorithm (2)), which proceeds in two steps for each
node . First, a subset M, C [p] of features is chosen uniformly
at random. The size of Mgy is mgy. Then, the optimal split
ki € Myy,v: € Ris determined by maximizing impurity decrease
defined in Eq. 6:

Nn(tl)
N, (t)

Ny (tr)

In(tl) -

L,(t.), 6]

where t; () is the left (right) child of # and for sample size 7,
I,,(t) is the impurity measure defined in this paper as

I,,(t) = variance of{y;, i € R},

which is the variance of the response y;’s for all the samples in
the region R;. Note that the analysis of this paper holds only
for the variance impurity measure, but it is possible to extend
to other impurities measures, which is left as future work. The
procedure terminates at a node ¢ if two children contain too few
samples—e.g., min{N,, (), Ny, (¢)} < 1—or ifall responses are
identical—e.g., I,,(¢) = 0. For any tree 7" and any leaf node
lleaf € T', denote P(fieaf) to be a path to that leaf node.
Definition 2 (Depth of a Path): Given a path p(#c,f) that connects
root node t1 and leaf node fi,f in a tree 7, we define the depth of
the path p(#e.r) to be the number of nonroot nodes contained in
the path.

For any hyper-rectangle R, 1(R;) denotes its volume. We
make the following assumptions on an RF tree ensemble:

TNote that ref. 15 covers the high-dimensional setting, too, but their results only depend
ons, and not p.

pnas.org
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Assumption 1 (Al) (Increasing Depth of a Tree in the RF
Ensemble). The minimum depth of any path in any tree goes ro
infinity—i.e.,

min min_ D (fiesf) 5 o0,

T tes€T

as n — 0.
A2 (Balanced Split in a Tree of the RF Ensemble). Each split
(kt,~vt) is balanced: for any node t,

i (M(Rt,l(kn%)) u(Rt,r(kt,%))) S Gy
(R (ke,ve)) " p(Rei(ke,ve)) 1-a,

Note that, without loss of generality, we use the same C, here
as in the LSS model. Otherwise, we can always let C., to be the
minimum of the two.

A3 (myy Is of Order p). Cpp+ (1 — Cp)s < Mgy < (1 —
Cn)(p — 8), where Cyy, € (0,0.5) is a constant.

A4 (No Bootstrap or Subsampling of Samples). A/l the trees
in REF are grown on the whole dataser withoutr bootstrapping or
subsampling—i.e., D(T) = D forany T.

A4 is a technical assumption that simplifies our notation
and analysis. We assume that each tree is grown using all of
the samples, which is quite different from the assumptions on
subsampling in recent theoretical works on RF (e.g., refs. 15 and
17). The subsampling rate plays a crucial role in the analysis of the
asymptotic distribution of the RF predictor (15, 17), where it is
assumed that the subsampling rate converges to zero at a desirable
rate. However, since we focus on the features selected at each node,
and not on the asymptotic distribution of the predictor, we do not
require such assumptions on the subsampling rate.

A1l ensures that the length of any decision path in any tree tends
to infinity. This assumption is reasonable as tree depths in RF is
usually of order O(log 1), which tends to infinity as n — co. A2
ensures that each node split is balanced. Similar conditions are
used commonly in other papers (17). A3 shows the important
role of the parameter myy,. Roughly speaking, my, cannot be
too small or too big. When myy is too small, there will be too
many splits on irrelevant features, which makes the tree noisy.
When myy is too big, there will be too little variability in the tree
ensemble. This motivation will be made rigorous in the proof of
Theorem 2.

B. DWP. In this section, for a tree ensemble from RE we formally
introduce DWP. Given a decision tree 7" in an RF tree ensemble,
we can randomly select a path P of 7 as follows: We start at
the root node of 7" and then, at every node, randomly go left or
right until we reach a leaf node. This is equivalent to selecting a
path in 7" of depth D with probability 272 from all the paths
in a decision tree. Denote the nodes in P to be 1, ..., tp, ficaf.
As such, any path P in a decision tree 7" can be associated
with a sequence of signed features (ki , by, ), ..., (ki,, bs,) €
[p] x {—1,+1}, where D is the depth of the path, and for any
inner node t € [D] on the path, the sign b; indicates whether
the path at node ¢ followed the < direction (by = —1) or the >
direction (b; = +1) for the split on feature k; € [p]. For a given
RF tree ensemble depending on data D, the randomly selected
path P of tree 7, and any fixed constant € > 0, we now define
F.(P, T,D) to be the set of signed features on P, where the cor-
responding node in the RF had an impurity decrease of at least e—
that is,

Fe(P, T,D) :={(k, bt) | tis an inner node of P

7
withA7Y(t) > eand featurek:appears first time onP}. 7]
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We use F, as a shorthand for F,(P, T, D) when the path P

from tree 7" and the data D of interest are clear. Note that if a
feature appears more than once on the path P, its sign in F, is
the sign when the feature appears the first time with the impurity
decrease above the threshold. Our main theorem will be stated in
terms of the DWP of a signed feature set S* C [p] x {—1,+1}
on the random path P within F,. To formally define the DWP of
S%, we first need to identify the sources of randomness underlying

Fe. There are three layers of randomness involved:

1. (D : Data randomness): The randomness involved in the data

generation;

2. (T: Tree randomness): The randomness involved in growing

an individual tree with parameter My, given data D;

3. (P : Path randomness): The randomness involved in selecting

a random path P of depth 4 with probability 2%, given a
tree 7" from an RF tree ensemble with parameter my, based on

data D.

In the following definition of the DWP of signed feature sets,

the probability is conditioned on data D and taken only over the
randomness of the tree 7" and the randomness of selecting one of
its paths, as in P.

Definition 3 (DWP): Conditioning on data, for any signed
feature set ST C [p] x {—1,+1}, we define the DWP of S* as
the probability that ST appears on the random path P within the

set F.,—that is,

DWP,(8%) =Pp 1) (ST C F. | D). 8]

We emphasize that the probability of selecting a path in a tree T
is P(P|T) =24, where d is the depth of the path P.

While we only have a fixed sample size, which means that

the data randomness is inevitable, the tree randomness and path
randomness are generated by the algorithm and thus can be
eliminated by sampling as many trees and paths as we like. Because
the DWP in Eq. 8 is only conditioned on data, for any given e > 0
and set of signed features S, it can be computed with arbitrary
precision from an RF tree ensemble with sufficiently many trees
(recall that, conditioned on data D, the different trees in an RF
tree ensemble are generated independently).

3. Main Results

In this section, we present our main theoretical results, which are
concerned with DWD, as introduced in the previous section. Our
results show that LSSFind (Algorithm 1), which is based on DWP
at an appropriate level € described in Theorem 3, consistently
recovers signed interactions under an LSS model. Before we state
our main results in full detail, we want to illustrate it with a simple
example.

Algorithm 1: LSSFind (myy,€, 1, Smax)

Input: Dataset D, RF hyperparameter myy,, impurity
threshold € >0, prevalence threshold 7 >0, and
maximum interaction size Spu € N.

Output: A collection of sets of signed features. Train
an RF using dataset D with parameter my,,; return
{S* C[p] x {~1,+1} such that |S*|< sy, and
2151 . DWP, (%) > 1 — n}.
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Exemplary RF decision trees trained on data as in Eq. 9 to illustrate the results that will appear in Theorem 2. (Upper) Response surface of £ (Y| X1, X2),

as in Eq. 2, with X7 € [0, 1] on the x axis and X, € [0, 1] on the y axis. (Lower Left) A decision tree that splits on feature X; at the root node with the respective
regions and conditional response surfaces for the left and right child of the root node. (Lower Right) A decision tree that splits on feature X, at the root node.
The red-marked decision paths contain all signed features from the basic signed interaction S~ = {(1, —), (2, —) } from an LSS model, as in Eq. 9. For both of
the trees, if one starts at the root node and randomly goes left or right at every node, then the probability of the basic signed interaction to appear on the path

is DWP.(S™) =272 =2~ 1°7 | In contrast, for any other set of signed features S*  [p] x {—1, 41}, it holds that DWP. (5*) < 27151, This provides a simple

example for the more general result in Theorem 2.

Illustrative Example: Assume that p = 2, and there are just
two features X7 and Xp. Assume there is a single interaction
J =1, and the regression function is given by

E(Y|X1, X2) =1(X; £0.5) - 1(X3 <£0.5). [9]

The response surface of Eq. 9 is shown in Fig. 1, Upper. We
consider the population case, where we have full access to the joint
distribution P(X, Y')—that is, we have access to an unlimited
amount of data (n = 00). When we apply the RF algorithm as in
Section 2, then, for each individual tree in the forest, the root node
either splits on feature X; or on feature X5. Since X7 and X, are
completely symmetric in the distribution P(X, Y'), thus, if the
RF algorithm grows more and more trees, in the limit, half of them
will split on X7 at the root node and half of them split on X at
the root node. For infinite data, this 50/50 split is introduced by
the CART algorithm, since the two splits have identical decreases
of impurities. Furthermore, the split at any node will be at 0.5
for any of the two features, since the two splits corresponding
to X7 < 0.5 and X5 < 0.5 maximize the impurity decrease given
infinite data. This is illustrated in Fig. 1, where Left Lower shows
a tree that splits on feature X; at the root node, and Right Lower
shows a tree that splits on feature X5 at the root node. As each tree
in RF grows to purity, when the root node splits at feature Xj,
then, for the path of the tree that follows the (1, +1) direction—
that is, the X7 > 0.5 direction—the tree will stop growing, as the
respective response surface is already constant. However, for the
path of the tree that follows the (1, —1) direction—that is, the
X1 <0.5 direction—the tree will further split on the remaining
feature Xo. Then, the tree will stop because the node reaches
purity. Thus, we conclude that the forest consists of exactly the two
different trees shown in Fig. 1 and in the limit, where the number
of trees grows to infinity, each of the two trees appears equally
often.

https://doi.org/10.1073/pnas.2118636119

For each node 7 in these trees, the impurity decrease satisfies
AT(t) > 1/16. Thus, for any € < 1/16, we can show that the
DWP of the basic signed interaction S~ = {(1,—1),(2,—1)} is

2-1571, To show this, we can get:

DWP.(57) = P(S~ c F.|D)

= Pp(T’s root splits on featurel)

=0.5,correspond to the left tree

- P(8™ C F.|D, T’s root splits on featurel) +

=0.25,0nly the red path satisfies this.

Pp(T’s root splits on feature2)

=0.5,correspond to the right tree

. P(8™ C F.|D, T’s root splits on feature2)

=0.25,0nly the red path satisfies this.

=0.5-272405.272=2"2_297157]

In the above example with infinite data, the tree depth is not
going to infinity, which means it does not satisfy Al. Al is needed
only for the finite sample case because, for finite samples, internal
nodes in a tree can never reach purity due to noise.

In Fig. 1, the paths that contain the basic signed interaction
S—={(1,-1),(2,—1)} are marked red. For all the other sets
of signed features ST C [p] x {—1,+1}, it is easy to check that

DWP (5%) < 2-15%1 For example,
DWP({(1,-1),(2,+1)}) =0.5-272 +0.5- 0 < 272,

pnas.org
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and

= P7(T’s root splits on featurel)

=0.5,correspond to the left tree

- P({(1,-1)} € F.|D, T’ root splits on featurel) +

=0.5,any path that goes left at the root satisfies this.

Pp(T’s root splits on feature2)

=0.5,correspond to the right tree

- P(8~ C F.|D, T’s root splits on feature2)

=0.25,0nly the red path satisfies this.
=05-27"405-272 <27,

As we will formally state in the two theorems below, the
same reasoning holds true asymptotically for any RF trained on
the data from the LSS model—namely, the DWP of a set of
signed features S C [p] x {—1,+1} is always upper-bounded

by 2715 “I, and this upper bound is attained if and only if S is
a union-signed interaction. Recall that the DWP depends on the
data D. It turns out that the general upper bound follows directly
from the construction of DWP and holds for any data D—i.e.,
independent of the LSS model—as the following theorem shows.

Theorem 1. For any impurity threshold € >0 and any set of
signed features ST C [p] x {—1,+1} for the RF algorithm from
Section 2, it holds true that

o (General upper bound) DWP(S%) < o—IS*I,

In addition, when the data D are generated from an LSS model,
asymptotically (as the sample size increases), the general upper
bound is attained if and only if S is a union signed interaction,
as the following theorem shows.

Theorem 2. Assume that the data D are generated from an
LSS model with uniformity, bounded-response, nonoverlap basic
interactions, and sparsity constraints (see C1—C4). For any impurity
threshold € > 0, let

2s
b(e) = (de/(CZ 02~ 1)) O /W) )
with constants Cg as in Eq. 2, C,, as in Eq. 3, s as in C4, and Cy,

as in A3. Given a set of signed features S* C [p] x {—1,+1}, for
the RF algorithm from Section 2, it holds true that,

o (Interaction lower bound) when ST is a union signed interaction
as in Definition 1, we have

DWP,(S%) > 271551 — b(e) — (D, €);

o (Noninteraction upper bound) when S* is not a union signed
interaction, then,

DWP,(§%) < 27157 (1 - %”) + (D, €),

with
r(D,e) 50 asn — oo,

where 25 denotes convergence in probability.

PNAS 2022 Vol. 119 No.22 e2118636119

Proof Sketch: The detailed proof of Theorem 2 is deferred to
SI Appendix, Section S1. It has two major parts: first, showing the
assertion for the idealized population case and, second, extending
the population case to the finite sample case.

In the first part, we define a population version of the set

]:'6, which we denote as F. The set F only contains desirable
features, which are features of a path P that correspond to a
positive decrease in impurity if the RF gets to see the full dis-
tribution P(X, V) (not just a finite sample D). Note that desir-
able/nondesirable features are different from signal/noisy features.
The definition of desirable/nondesirable features depends on the
concerned path in a tree. A noisy feature is always a nondesirable
feature, but a signal feature can become a nondesirable feature
when it has been split in the path. See S/ Appendix, Definition S1.
The set F is an oracle, in the sense that its construction depends
on the true underlying LSS model. This is in contrast to the set

F., which can be computed for any given path from a tree of
REF. Given this definition of F, a sketch of the proof of the major
assertions of Theorem 1 and 2 is as follows:

1. When a set of signed features ST appears in F, this implies
that every time a signed feature (k, b) € S appears on the way
from the root node to the leaf, the splitting direction implied
by & was selected for P, which gives rise to the general upper

bound of DWP(S%) < 2-15*] (Theorem 1).

2. If S* is a union interaction, then (assuming all leaf nodes
of the tree are pure) a correct splitting direction for each of
its features already implies that S* appears on P and, thus,

DWP, (5§%) ~ 92— 157 (see first part of Theorem 3).

3. If ST is not a union interaction, then there will always be the
possibility that, although every split for an encountered feature
that is an element of S* was done in the correct direction,
some of the features in ST were just never encountered, and,
therefore, a correct splitting direction does not imply that S+

appears on P; hence, DWP(S%) < 2-15% (see second part
of Theorem 3).

In the second part of the proof, we show that the observed set
F. and the oracle set F are the same, with probability going to
one as € goes to zero and 7 goes to infinity. That would be nice
and easy if a tree grown using finite samples will converge to a
tree grown using the population in terms of the splitting features
and thresholds when sample size tends to infinity. However, that is
not true. The obstacle is that, when a node splits on a nondesirable
feature, since all the thresholds yield the same impurity decrease
in the population case, the threshold selected via finite samples
can deviate from the threshold via the population, no matter
how many samples are used. Thus, we need to carefully analyze
desirable features and nondesirable features separately based on
uniform convergence results. [

Remark 1: Theorems 1 and 2 demonstrate that recovery of
interactions becomes exponentially more difficult as the size of an
interaction increases. An interaction ST corresponds to a region

of size 0(2*‘5&‘), which means the sample size must be much

+ . .
larger than 21571 to have enough samples in that region. Also,
the DWP at an appropriate level € of a basic interaction S £ s

+ . . .
2-1571, To have a consistent estimate, the number of independent
+

paths should be much larger than 2571, Thus, when one wants
to recover an interaction of size 5, the number of samples and the
number of trees must be much larger than 2°. That shows the
intrinsic difficulty of estimating high-order interactions.
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Using the conclusions in Theorem 2, one can show that LSS-
Find (Algorithm 1) can consistently recover all the basic interac-
tions from the LSS model, as stated in Theorem 3.

Theorem 3. Ler the output of LSSFind (Algorithm 1) be
S (Mury, €,1, Smax). Under the same settings as in Theorem 2,as
long as My, €,m satisfies the assumptions in Theorem 2 and the
Sfollowing condition:

2 b(e) < < ol [11]

with b(¢€) defined in Eq. 10 and C,, in A3, then, with probability
approaching one as n — 00, . is a superset of the basic signed
interactions with size at most Sm,x and a subset of union signed
interactions. In particular, if we define

U ={S €. | Thereis no setS’ € Is.t., S C S},

then U equals the set of basic signed interactions of size at most Spay.
Note that to recover all the basic interactions, s, needs to be
larger than or equal to the order of all the basic signed interactions,
but the latter is unknown, as we do not know the underlying LSS
model.
Proof: If S¥ is not a union signed interaction, then it follows

from the second part of Theorem 2 and n < [C};,]° /2 that 2I5*1 .
DWP,(S*) < 1 — n, with probability approaching one as n —
0. Thus, . is a subset of union signed interactions. If S* is a
basic signed interaction of size at most Sy, then it follows from
the first part of Theorem 2 and the fact that 2° - b(e) < n that
2I5*1. DWP,(S*) > 1 — 5, with probability approaching one
as n — 00. Thus, . is a superset of the basic signed interactions
with size at most $y.y. [

Remark 2: One important assumption in our theorem is the
sparsity of signal features. If there are many “weak” signal features,
it is very hard for RF to work well. For RE at each node of a tree,
only one feature is used. That means the total number of features
used along each path is limited by the depth of the tree, which
is usually of order O(logn). For our assertions of Theorem 2,

the hard threshold € in the set F, has the purpose to select the
signal features. Clearly, the choice of an appropriate value of € is
hard in practice. The fitting procedure in iRFs (11) (which uses
joint prevalence on decision paths in RF to recover interactions,
similar as suggested by Theorem 2) filters noisy features not with a
hard, but with a soft thresholding procedure: It grows several RFs
iteratively and samples features at each node, according to their
feature importance from the previous iteration. In that way, one
does not need to chose a single hard threshold, which leads to a
much more practical algorithm. Unfortunately, such an iterative
soft thresholding makes theoretical analysis much harder, which
is why we restrict to the hard threshold for the theoretical analysis
in this work.

One of the remarkable aspects of the result in Theorem 3 is
that the range of 77 is independent of any model coefficients in the
LSS model (that is, the linear 3 coefficients and the  thresholds).
For sufficiently small €, it only depends on the number of signal
features s and the bound of my,—i.e., C;,—and nothing else.
In a sense, this shows that the tree ensemble of RF contains the
qualitative or discrete-set information of which features interact
with each other, independently of the quantitative information
about what are the numerical parameters or model coefficients in
the LSS model.

Another interesting aspect about the results from Theorem 3
is that they shed some light on the influence of m, on the

https://doi.org/10.1073/pnas.2118636119

interaction recovery performance of RE For the third assertion
in Theorem 2, we actually show that

DWP, (5%) < (D, €) +

0.55%! <1 — 0.5 min P(root node splits on featurek)) .

key; S,

When my, is too large, mingey;s; P(root node splits on
feature k) can get very small, as particularly strong features
(large initial impurity decrease) can mask weaker features. As
an extreme example, consider the situation where m¢,, = p, and,
thus, the root node gets to see all the features. In that case, the
single feature that has the highest impurity decrease, say, X7, will
always appear at the root node, and, hence, for S* = {(1, 1)}
or % ={(1,+1)}, one will get DWP (5%) = 2-15%1 = 0.5,
independent of whether S¥ is an interaction or not. This shows
that when m,y is too large, DWPs corresponding to false

interactions can attain the universal upper bound 2% “I, which
leads to false positives in terms of interaction recovery. On the
other hand, when my, is too small, for a signal feature k € U; 5},
it can take a long time until it gets selected into the candidate
feature set at a node. In particular, for a finite sample, it can
happen that the tree reaches purity due to lack of samples without
having split on any of the signal features. Hence, the reasoning
of Theorem 2—namely, that correct split direction + pure path
implies that a union interaction appears on the path does not hold
anymore. This can lead to union interactions having significantly

smaller DWP than the universal upper bound 9-18% |_i.c., false

negatives in terms of interaction recovery.

4. LSSFind and Simulation Results

In this section, motivated by our theoretical results in the previous
section, we evaluate LSSFind empirically in terms of its ability
to recover interactions.” Simulated experiments are carried out to
assess the ability of LSSFind to correctly recover interactions from
the LSS model, even when some of the LSS model assumptions
are violated.

In LSSFind, one needs to search over all possible sets with size
at most Smax to obtain the final result. That is computationally
very intensive. One more efficient way is to only look for sets with
size at most Sy,ax and also with

DWP(S*) > (1 —n) - 275, [12]

which implies that we don’t need to search over all possible sets
with sizes at most Smax; instead, we need to search only for sets
whose DWP,’s are larger than (1 — 7)) - 27 %m=x_ Because many
sets with sizes at most Syax are filtered out, this significantly
reduces the search space. We use the FP-growth algorithm (44) to
obtain those sets of signed features that have a DWP higher than
some threshold. Note that DWP requires an infinite number of
trees. To approximate DWP, we use 100 trees in the simulation.
Since each tree contains thousands of paths, we have hundreds of
thousands of paths to estimate the DWP for.

A. Simulated Data from LSS Models. In the following, we present
simulation results, where we generated data D from the LSS model
for different numbers and orders of basic interactions and different
signal-to-noise ratios (SNRs). We find that LSSFind recovers
the true interactions from the LSS model with high probability

*Source code is available at GitHub (https://github.com/Yu-Group/interaction_selection).
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whenever the overall number of basic interactions and their orders
are small.

More precisely, we consider p = 20 features and n = 1,000
samples, where each feature X; is generated from an uniform
distribution U ([0, 1]), independent from one another. The num-

er of basic interactions is denoted as /, and the order of each
interaction is denoted by L. We consider the same threshold 7
for all features. The noise is Gaussian with variance o2, and the
response is:

1(X <7) +N(0,07). [13]

We consider different values for /, L, and 02—namely, J=1,2,
L=2,3,4, and o2 s such that the SNR is 0.5, 1, 2, or 5.
For a given J and L, the threshold 7 is chosen such that about
50% of samples fall into the union of hyper-rectangles—that is,

Uj_y mgc.i(jfl)lﬁrl {X\ < 7}. As we know that the number of
samples falling into U&le ﬂi':L(j_l),L_H {X\ < 7}, which can
also be roughly thought as the label imbalance, has a high impact
on the results, keeping this number the same across different
simulation settings makes sure that the simulation outcomes are
more comparable. The results are averaged across 40 independent
Monte Carlo runs. We grow RF using the scikit-learn package
with 100 trees. We apply LSSFind with parameters = 0.01,
€ =0.01, and S;.x = L + 1. Recall that we use Eq. 12 to select
candidate interactions. If Sy, is set to L, the condition Eq. 12
would be too restrictive for challenging situations, such as when
the LSS model is violated, and LSSFind can end up finding no
interactions. Given a set #* of K true basic signed interactions
from the respective LSS model and output from LSSFind .¥, we
evaluate their proximity based on their Jaccard distance:

0

score(S*,. ) = U

(14]

Note that any element in .* and . is a set of signed features.
This score gives no credit for partial recovery: If one interaction
S§*in.#*is {(1,+1), (2,+1)}, there will be no credit for . if
it contains subsets of ST, such as { (1, +1)}, or same features with
differentsigns, such as {(1, +1), (2, —1) }. While this score can be
overly restrictive for practical problems, it is suitable for our sim-
ulation because we would like to evaluate whether LSSFind can
consistently recover the interactions in the LSS model. The sim-
ulation results are shown in S/ Appendix, Fig. S1. In general, the
performance of LSSFind sharply degrades when the number of ba-
sic interactions and the order of interactions increases. For K =1
and L =2, 3,4, LSSFind almost always recovers the correct basic
signed interactions. For K = L = 2, it mostly recovers the correct
basic signed interactions, except for small SNR. When K = 2 and
L = 3,4, LSSFind rarely recover the basic signed interactions for
this simulation setup, resulting in a score of almost zero. Note that
this is consistent with our results in Theorem 2, which indicates
that the problem is much harder for more interactions and higher-
order interactions. We also explored the high-dimensional case.
When p = 20,50, 100, 200 and 7 = 1000 - (1 + log(p/20), the
score for LSSFind is shown in SI Appendix, Fig. S5. The scaling
of p and 7 is chosen to make sure logp/n =~ 0.001, and also
when p = 20, # will be 1,000, which corresponds to our previous
numerical setting for better comparison. Recall that Theorems 2
and 3 require condition log(p)/n — 0, as stated in condition
C4. We also note that log(p)/n — 0 is commonly imposed
when analyzing lasso problems, too (41-43). As can be seen in
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SI Appendix, Fig. S5, the score increases and approaches to one
as the dimension p increases. This is consistent with Theorem 3,
which shows that LSSFind can recover the underlying interactions
for the high-dimensional case.

B. Robustness to LSS Model Violations. In the following, we
present simulation results for LSSFind when the data are gen-
erated from a misspecified LSS model, which means that some
of the LSS model assumptions are violated. We find that LSS-
Find deteriorate when the LSS model is violated. We consider a
misspecified LSS model with SNR =5 and two order-2 inter-
actions with p = 20 features and n = 1,000 samples, analog as
in 87 Appendix, Fig. S1, second row, first column, third bar. We
consider the following violations of LSS model assumptions:

* Opverlapping interactions: Different basic interactions have
overlapping features. When overlap = 1, the basic interactions
are (1, —1), (2, ~1), ((2,—1), (3,~1)).

¢ Correlated features: Different features are correlated instead
of independent. When corr = «, the correlation between fea-
ture j1 and js is ali=rl,

* Heavy-tail noise: Tthe noise follows a Laplace or Cauchy
distribution, which have heavier tails than (sub)Gaussian dis-
tributions. The noise is normalized such that the SNR is 50.

Results of LSSFind are shown in SI Appendix, Fig. S2. For
heavy-tail noise, we observe a gradual drop in performance. For
the correlated feature case, one can see that LSSFind has reason-
able performance when the correlation is close to zero, but its
performance deteriorates when the correlation is high. Similarly,
for the overlapping feature case, the performance worsens.

C. Empirical Comparison between LSSFind and iRF. Our original
motivation to study DWP in RF tree ensemble came from the
strong positive empirical evidence of iRF (11, 13). There are
three major reasons why the full iRF procedure is hard to analyze
theoretically: First, the iterative reweighting in iRF is based on
the feature importance metric of MDI. Analyzing MDI for the
RF algorithm is a challenging task on its own. In particular,
MDI of noisy features in deep trees are known to have a bias
(6-8), which may propagate through various iterations in iRF
and make a theoretical analysis very challenging. Second, the
iRF procedure selects interactions from the paths of the RF tree
ensemble via the RIT algorithm (12). Thereby, individual paths
are weighted according to the number of observations which
fall into their respective leaf nodes. This means that the selected
feature interactions of iRF cannot be derived from the RF tree
ensemble directly, but depend on the data in a more complex
way. Third, the outer stability layer of iRE, where interactions
are evaluated based on their consistent appearance among several
bootstrap replications of the procedure, adds an additional layer
of complexity for theoretical analysis.

In order to still analyze the major aspects of iRF theoretically,
we proposed the related LSSFind algorithm. Instead of iterative
reweighting via MDI, LSSFind introduces a single hard threshold
on the impurity index at individual tree nodes. Moreover, instead
of selecting interactions via RIT, LSSFind is based on DWP, which
is derived from the tree ensemble directly, without an additional
data-dependent sampling scheme. In other words, although a
high DWP in LSSFind does not exactly correspond to the RIT
interaction selection strategy employed in iRE, they both build
on similar high-level quantities—namely, sets of stable features,
which often appear together on decision paths in an RF tree
ensemble. Therefore, our theoretical results on DWP and LSSFind
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provide evidence that the general interaction discovery strategy of
iRF is theoretically justified. In the following, we complement our
theoretical findings about LSSFind with an empirical comparison
between iRF and LSSFind.

We consider the same simulation setting as in Section A.
However, we replace the very strict performance measure in Eq.
14 by a weaker one.® Specifically, given a set .#* of K true basic
signed interactions from the respective LSS model and output
from LSSFind and iRE respectively, .7, we now evaluate their
proximity based on:

_ HUs-eo- 85} N{Us-cr S}
HUs-es+S}U{Ug-esS}

score(S*, .Y) [15]

Note that Eq. 15 corresponds to the Jaccard distance on the set of
unsigned features that appear in any of the detected interactions.
While the stricter metric in Eq. 14 is more appropriate to evaluate
finite sample validity of Theorem 2, the relaxed version in Eq.
15 is arguably of more practical interest. This is because it gives
partial credit for interactions that are almost, but not perfectly,
recovered. If score(.7*,.%) is high, it means that the features in
the discovered interactions overlap with the features in the true
interactions, which would greatly narrow down the interaction
search space and save tremendous effort for subsequent analysis
for a practical problem.

For the iRF algorithm, we used the signed iRF algorithm
(siRF) from the Python iRF package iREY with default parameter
settings and a threshold on iRF’s stability score of 0.5 for inter-
action selection, as recommended in ref. 13. Simulation results
are shown in S7 Appendix, Fig. S3. When the LSS model as in
Eq. 13 is relatively simple—for example, when it has only a
single signed interaction (K = 1) or only a single feature per
signed interaction (L =1)—iRF and LSSFind perform comparably
(first row and second row, first column, of ST Appendix, Fig. S3).
However, when the LSS model gets more complex, with sev-
eral additive interactions (K > 1) each having more than one
signed features (L > 1) (second row, second and third columns
in SI Appendix, Fig. S3), iRF outperforms LSSFind in terms of
the metric Eq. 15.I In summary, we find that iRF outperforms
LSSFind in situations where the underlying LSS model is more
complex and when a flexible performance metric is chosen. This
appears to be consistent with the fact that the iRF algorithm
has witnessed empirical success on specific domain data problems
(11), whereas LSSFind was specifically constructed in such a way
that it reflects our result in Theorem 2.

5. Discussion

Relevant statistics theory starts with a model that is a good
approximation to reality. Thus, it is important to derive theoret-
ical results under a model that is scientifically motivated. Our
proposed LSS model class provides such a family that reflects
the biological phenomena of biomolecules interacting through
thresholding. Also, analyzing RF-based algorithms under different
models, rather than the smoothness classes in the literature, can
give insights into their empirical adaptivity. Our results give a

SThe results of iRF for the set-wise Jaccard distance in Eq. 14 are shown in S/ Appendix,
Fig. S4.

9see GitHub (https://github.com/Yu-Group/iterative-Random-Forest).

Iin contrast, for the stricter performance metric Eq. 14, which precisely captures the
interaction detection property of Theorem 2, we note that LSSFind outperforms iRF;
Sl Appendix,Fig. S4.

https://doi.org/10.1073/pnas.2118636119

theoretical result that DWP of a set of features in an RF tree
ensemble recovers high-order interactions under the LSS model
and reasonable conditions on the RF hyperparameters. Moreover,
the universality of interaction’s DWP in LSS models gives insights
into the general difference between quantitative (e.g., prediction
accuracy) and qualitative (e.g., interaction recovery) information
extraction. In scientific problems, often the latter is of higher
interest. Thus, this work narrows the gap between theory and
practice for Boolean interaction discovery and is of general interest
to the fields of statistics, data science, ML, and scientific fields,
such as genomics.

Our theoretical analysis also gives some insights of RF for
tuning a crucial hyperparameter my,: Given an interaction with
a fixed size, the noninteraction DWP upper bound in Theorem
2 depends only on Cp,, and Cy, is only constrained by myy,
(A3). Therefore, one can find an optimal my, that minimizes
this upper bound. The optimal choice of myy, turns out to

be mg, =p-(0.5—s/(2(p — 2)). If one-third of all features

are signal features—that is, s = p/3 —my;, recovers the default

choice in standard RF implementations for regression—namely,
*

mg, ~ p/3. However, when p > s, the optimal choice from our
theoretical results corresponds to myy ~ p/2, which suggests that
with the presence of many noisy features, my, should be larger
than p/3, as in the default choice. Further investigations through
data-inspired simulations and theoretical analyses are needed.

One might wonder whether the form of interaction defined by
the LSS model constitutes a particularly difficult or a particularly
easy form of feature interaction. In general, there appears to be no
clear (mathematical) answer to this question, as one cannot define
what is meant by feature interaction in a clear way for a generic
(possibly discontinuous) regression function f(X)= E(Y|X).
For example, it is easy to check that for any multivariate function
f:10,1]?— > R, one can find (possibly discontinuous) univariate
functions g, h1, ..., hy, such that f(z1,...,2p) = g(hi(z) +
...+ hp(zp)). We stress that the reason why we considered the
LSS model in this work was not because it defines a particularly
easy form of interaction, but rather its biological relevance, as the
thresholding relationships captured in the LSS model are observed
in various biological data.

Although, the LSS model is motivated from biological phe-
nomena, some of the assumptions that we made in order to derive
our theoretical results might be difficult to justify directly in real-
world problems, in particular, the independence condition C1 and
the nonoverlapping interaction-set condition C3. Note, however,
that in many application settings, it is possible to overcome these
limitations by appropriate data preprocessing—e.g., decorrelating
features (recall the discussion after condition C1). Nevertheless,
for future work, it will be interesting to extend our results to a
general LSS model (with possibly overlapping interaction sets and
correlated features) or even interaction models beyond Boolean
interactions, in order to further close the gap between theory and
practice.

Finally, it will also be of interest to compare LSSFind and
iRF with methods that, more generally, employ an ML black-
box model to extract interactions. For example, when individual
features are independent, as we assume in C1, one can use Monte
Carlo methods (45) to estimate higher-order Sobol indices for the
fitted ML model.

Data Availability. All source code to reproduce the simulation results and
data of this paper is publicly available at GitHub, https://github.com/Yu-Group/
interaction_selection. The Python iRF package which was used in the simulations
is publicly available at GitHub, https://github.com/Yu-Group/iterative-Random-
Forest.
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