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Abstract—We introduce a deep learning (DL) based network
and an associated performance guarantees for imaging from
intensity-only measurements using low dimensional encoded
representations. Phaseless imaging constitutes a non-convex and
ill-posed problem that is relevant to a wide range of applications,
where accurate measurement of phase information is challenging.
State-of-the-art methods solve the original non-convex optimiza-
tion problem using sophisticated initialization schemes that lead
to locally benign loss function topographies. However, these
are commonly contingent upon high sample complexity and
restrictive conditions on the forward maps, which limit their
practical applicability. To circumvent fundamental limitations,
we utilize a model-based deep network for phaseless imaging
that implements a fixed-step size realization of gradient descent
directly on the lower dimensional encoded representation domain.
Accordingly, the iterative algorithm is combined with a non-
linear encoder-decoder pair that govern the mapping between
low dimensional representations and the image manifold of our
interest. This results in feasible regimes beyond those dictated by
the standard sufficient conditions of the exact recovery theory
used in non-convex optimization. We empirically demonstrate
the effectiveness of our lower dimensional formulation of signal
recovery through numerical simulations on a number of practical
deterministic imaging geometries at reduced sample complexities.

Index Terms—deep learning, phase retrieval, phaseless imag-
ing, decoding prior, generative prior, kernel PCA

I. INTRODUCTION

Phase retrieval problem is commonly encountered in a wide
range of imaging applications including synthetic aperture
imaging [1], [2], optical imaging [3], [4], x-ray crystallog-
raphy [3], coded diffraction imaging [5]. In many wave-based
imaging applications, accurate measurement of phase infor-
mation of the back-scattered signal can be challenging due
to random variations in the transmission medium properties,
or maintaining phase coherence at high frequency operating
regimes. Sophisticated and expensive hardware become neces-
sary to facilitate coherent processing for reliable performance
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of conventional imaging algorithms in such acquisition con-
ditions. Therefore, towards deployment of low cost, spatially
diverse sensing systems in wave-based imaging it is important
to design algorithms that can reconstruct the underlying scene
using only the magnitude or the intensity-only measurements.

Phase retrieval is a severely ill-posed inverse problem, for
which a range of approaches have been introduced in the
literature involving both convex [6] and non-convex optimiza-
tion [7]–[15]. Most crucially, the latter provides improved
applicability to high dimensional inverse problems in imag-
ing due to lower computational and memory requirements
of directly operating on the signal domain, in lieu of the
convexification in the lifted parameter space. A prominent
iterative approach within this category is the Wirtinger flow
(WF) algorithm [9], [13], with its performance guarantees
contingent upon properties of the equivalent lifted forward
map to facilitate a provably good accuracy via spectral initial-
ization (SI) [16]. However, computationally expensive nature
of this step, and stringency of the corresponding sufficient
conditions for deterministic measurement maps beyond Gaus-
sian sampling or coded diffraction models still pose critical
bottlenecks for the practical applicability of these techniques
for high resolution imaging problems. Notably, the underlying
linear map prior to the loss of phase information in the
measurements is seldom well-conditioned in practical imaging
applications, or even constitutes an underdetermined system of
equations corresponding to a sample-starved regime beyond
the information theoretic limits for injectivity [17]. Further
theoretical limitations arise in phaseless imaging with models
sampled from Fourier integral operators, where ambiguity
from translation invariance is unavoidable without additional
redundancy from diverse illuminations [18], [19].

The aforementioned limitations ultimately necessitate the
use of a-priori information for both feasibility of the problem
up to trivial ambiguities, and for computationally tractable
optimization for structurally meaningful image reconstruction.
Prior models have been considered in phase retrieval literature
using functional regularizers such as sparsity [12], [20], and
low-rank models [21], [22]. However, existing theoretical guar-
antees for these methods pertain to i.i.d. Gaussian distributed
sampling vectors [12], [20], [23], which is inadequate for prac-



tical imaging applications. More recently, deep learning-based
priors have been deployed using two primary mechanisms,
namely, decoding or generative priors [11], [15], [24], [25]
and denoising priors [26]–[28], which utilize either plug and
play or regularization by denoising (RED) framework [28].
Under decoding or generative prior, an encoded representation
of the unknown image is recovered from the measurements,
which is then applied to a DN to generate the reconstructed
imagery. If this DN is pre-trained and is incorporated as part
of an iterative algorithm using random initialization for the
encoded representations, then this prior is typically referred to
as the generative prior [11], [15], [24]. We use the decoding
prior terminology to differentiate when the encoder-decoder
components are trained in cascade a recurrent neural network
(RNN) architecture for an end-to-end imaging network that
also incorporates an initialization step for the lower dimen-
sional encoded representation [25]. Theoretical exact recovery
guarantees have been established for both prior cases with
sufficient conditions that rely on deterministic properties of
the forward maps [24], [25].

Another line of research has been focused on improving the
accuracy and sample efficiency of initialization step. In [29],
a truncated SI step is presented that uses sparsity prior during
initialization. An alternative orthogonalilty promoting initial-
ization technique have been introduced in [30]. Another ini-
tialization approach applied to the reweighted amplitude flow
algorithm is presented in [31]. Other initialization methods
include SI step using a Gaussian optimal sample processing
function, Bregman divergence minimizing sample processing,
and a composite initialization methods introduced in [32], [33]
and [34], respectively. Although these techniques result in
improved initialization accuracy than the standard SI, their
computational requirement are of same complexity as SI and
thus still prohibitive for practice, especially in the training
of an architecture implementing a decoding prior. As a result,
while [25] overcomes the reliance on large amounts of training
data common to generative prior approaches via its end-to-end
formulation, its existing implementation is instead limited by
the high computational cost of the SI step.

To address the limitations of existing phaseless imaging
methods, in this paper we propose a DL based approach
that applies a computationally efficient initialization step with
a decoding prior based unrolled WF algorithm. Our overall
imaging network is composed of two parts, namely, the ini-
tialization and imaging modules. The imaging module consists
of the RNN and the decoder modules of the imaging network
in in [25], and implements a fixed step realization of the WF
algorithm over a lower dimensional encoded representation
manifold. However, unlike [25], here we implement a model-
based initialization network, in lieu of the computationally ex-
pensive SI step and an encoder, with the goal of addressing an
optimization problem formulated to imitate the one associated
with SI within a DL framework. While the decoding prior
addresses the sample complexity limitation as in [25], our
proposed DL based initialization step is designed to directly
encode the intensity measurements into an initial encoded

representation. The initialization module involves unrolling
another optimization problem in the range of a non-linear
kernel function, thus enables the lower dimensional encoded
representations as the search space of similarity assessment.
This is coupled with learned sample processing of the inten-
sity measurements to induce the structure promoted by the
choice of the synthesizing kernel. As a result, the unrolled
initialization relieves the computational burden of the decoder
gradient in generating the lower dimensional representations,
and boasts lower implementation cost compared to the imaging
module. We verify the feasibility of our approach by numerical
evaluations using MNIST images with the numerical transmis-
sion matrix estimated through a spatial light modulator setup
published in [35].

II. PROBLEM STATEMENT

Let the ground truth image, which is an N -length vector of
either complex or real valued elements, be denoted by ρ∗. We
assume that the intensity values of the measurements corre-
sponding to M sampling vectors, {am}Mm=1, where am ∈ CN ,
are available during imaging. We denote the mth intensity
measurements by dm ∈ R+, and it is relates to ρ∗ and am as
follows:

dm = aHmρ
∗ρ∗Ham. (1)

Phaseless imaging refers to the task of estimating ρ∗ from a
given measurement related vector d, where d defined as

d =
[
d1 . . . dM

]T
. (2)

We represent the linear mapping from the outer product of
ρ ∈ CN , commonly referred to as the lifted or Kronecker
image, to the corresponding measurement vector by F in-
dicating that d can be expressed as F(ρ∗ρ∗H). Unless the
number of measurements is large and the sampling vectors
satisfy properties that are sufficient for inducing necessary
redundancies in the measurements required for counteracting
the loss of phase information, it is an ill-posed problem if no
prior information is utilized during imaging.

Suppose T denotes the manifold formed by our image class
of interest. Under a decoding prior framework, we assume
that all ρ ∈ T is can be expressed as the decoding of a lower
dimensional representation y ∈ CNy via a non-linear mapping
H : CNy 7→ CN as ρ = H(y). Ny denotes the encoded
representation length with Ny ≤ N . This, in effect, induces
a non-linearity from the unknown component y∗ ∈ CNy ,
where ρ∗ = H(y∗), to the mth measurement aHmρ

∗ even
before its phase information is lost. Given this underlying
model assumption, the data model from (1) can be modified
as follows:

d = F(H(y∗)H(y∗)H). (3)

In [25], we introduced a DL and WF based phaseless imaging
approach, which we refer to as DL-WF, for estimating the
unknown image under the data model in (3). DL-WF models
the non-linear mapping H using a DN, while a second DN
is deployed to encode the output from the SI step to an



optimal initial encoded representation. As the reconstructed
images are constrained to the range of the decoder, the model
assumption in (3) and the modelling of H via a DN lead to
the imposition of structural prior information captured by the
decoding network architecture and its parameter values.

Our objective in this paper is to estimate ρ∗ from the
measurement related vector d under the data model in (3).
Towards this goal, first, we address the following optimization
problem similarly to DL-WF [25]:

argmin
{yt}T

t=1,H

1

TM

T∑
t=1

M∑
m=1

(
|aHmH(yt)|2 − dt

)2
,

s.t. ∥H(yt)− ρ∗t ∥ ≤ ϵ, ∀t ∈ [T ], (4)

where ϵ ∈ R+ and the subscript t is used to indicate the tth

sample from a training set of size T . In this paper, we incorpo-
rate the WF update stage of the DL-WF network for imaging
and thereby similarly address the optimization problem in (4).
However, unlike [25], here we consider a separate modified
data model than (3) during initialization in order to attain a
more computationally efficient initialization step compared to
DL-WF. This modified data model only indirectly relates to
H, but explicitly depends on the measurement vector d via a
non-linear mapping P : RM

+ 7→ RM
+ . It can be expressed as

follows:

g := P(d) ≈
[
|k(ψ1,y

∗)|2 . . . |k(ψM ,y
∗)|2

]T
, (5)

where ψm ∈ CNy , for m ∈ [M ] and k(v1,v2) is a non-linear
function of v1,v2 ∈ CNy with positive real-valued output.

In particular, {ψm}Mm=1 serve as learnable parameters to
form a Ny-dimensional dictionary, where the similarity to
representations are assessed under a fixed kernel, k. The
motivation of this model is to capture the Euclidean sense
similarity in the higher N−dimensions that is encoded in the
measurements d by virtue of the kernel trick, up-to a transfor-
mation P . We refer to P as the sample processing operator,
which is inserted for the data to reflect the structure enforced
by the assumed kernel function on higher dimensional feature
space. Letting k ∈ RM

+ as a function of v ∈ CNy defined as
follows:

k(v) =
[
|k(ψ1,v)|2 . . . |k(ψM ,v)|2

]T
. (6)

During initialization, under the data model in (5), we aim to
address the following optimization problem to calculate an
initial encoded representation:

argmin
{y(0)

t }T
t=1,H,

P,{ψm}M
m=1

1

TM

T∑
t=1

∥k(y(0)
t )− P(dt)∥2,

s.t. ∥H(y
(0)
t )− ρ∗t )∥ ≤ ϵ0, ∀t ∈ [T ], (7)

where ϵ0 ∈ R
+. Although the data model in (5) is not

explicitly related to the one in (3), the two constraints in (4)
and (7) contains the same decoder H and thereby imposes an
indirect correlation during implementation.

Fig. 1. Schematic diagram of the initialization module.

Fig. 2. Schematic diagram of the overall imaging network using WF and
deep prior with efficient initialization.

Ultimately (7) amounts to a searching for a simplified
structure where the decoder H is approximated via a fixed
kernel, for the benefit of less computational burden. The initial
estimate can then refined using the WF iterations under the
definition of the decoder using the ideal problem formulation
in (4). This is akin to the nature of standard phase retrieval and
the formulation of the spectral initialization, which approxi-
mates the ideal ℓ2-loss minimization procedure by the leading
eigenvector of the backprojection estimate FHF(ρ∗ρ∗H),
where FH denotes the adjoint of the lifted forward model
F . While the accuracy of such approximation in the stan-
dard setting is pursued under certain restricted isometry-type
properties [33], the kernel-based formulation in (7) addresses
the initialization by an analogous approximation using the
training data, where the end-to-end design of our architecture
is leveraged.

III. OUR DL BASED APPROACH

We model the non-linear decoder H and the sample pro-
cessor P by distinct DNs. Under this setting, we design the
initialization and the imaging modules based on solving the
two optimization problems in (4) and (7), respectively, by
applying the gradient descent algorithm. For the initialization
module, we refer to the initial encoded representation by
y0 ∈ CNy , and the representation after the kth gradient
descent update by yk ∈ CNy . Let the data fidelity term
associated with the initialization phase is represented by K(y),
where

K(y) =
1

M
∥k(y)− g∥2. (8)

Let λk ∈ R
+ is the learning rate for the kth step of the

initialization module. The updated signal yk is calculated as

yk = yk−1 − λk∇yK(yk−1), (9)



(a) Ground truth (b) SI (c) TSI (d) OI (e) WI (f) OptSI (g) CI (h) KI

(i) Ground truth (j) SI (k) TSI (l) OI (m) WI (n) OptSI (o) CI (p) KI

Fig. 3. Two example images from the testset are shown in the first column. Column 2 to 8 includes the corresponding reconstructed images using the SI, TSI,
OI, WI, OptSI, CI and our kernel PCA based methods for an under-sampled case using M = 0.5N . We implemented our algorithm using our initialization
module with 10 RNN layers and Laplace RBF kernel function, no additional layers were used for the imaging module.

where the gradient term is calculated as follows:

∇yK(y) =
4

M

M∑
m=1

(|k(ψm,y)|2 − gm)k(ψm,y)
∂k(ψm,y)

∂y
.

(10)

Estimated encoded signal from the initialization module
after the LI

th update, represented by yLI
∈ CNy , is set as

the initial value of the imaging module y(0), i.e., y(0) = yLI
.

As it is in [25], the cost function minimized within the imaging
module, KWF (y) calculated as follows:

KWF (y) =
1

M
∥|aHmH(y)|2 − d∥2, (11)

and the associated lth update step is the following:

y(l) = y(l−1) − µl∇yKWF (yl−1), (12)

where µl ∈ R+ is the learning rate for the lth step. We map the
LI and L updates from (9) and (12), respectively, are mapped
into two RNNs with LI and L stages. Detailed diagram of
the initialization part is shown in Fig. 1. We calculate initial
image y0 for this network from the processed measurements
using the following expression:

y0 =
1

M

M∑
m=1

gmψm. (13)

This formulation can be justified by observing from the data
model in (5). The objective function in (7) implies that if the
ground truth encoded representation y∗ is mostly aligned to
the mth frame vector ψm, then the corresponding processed
intensity value gm is the largest element of g.

The schematic diagram of our overall imaging network,
composed of the initialization and the imaging modules, are
shown in Fig. 2. The final estimated encoded representation
from the imaging module, denoted by ŷWF ∈ CNy , is
set equal to y(L). The reconstructed image ρ̂WF ∈ CN is
calculated from this value as H(ρ̂WF ).

IV. NUMERICAL SIMULATIONS

For the purpose of advancing our results on the image
module with [25], we focus our efforts to the study of the
initialization module. Accordingly, we apply our proposed
kernel-based approach to a phaseless imaging problem on the
simulated dataset. We considered 10000 images of dimension
28× 28 from the public MNIST dataset of handwritten digits
for training, where each of the 10 digit corresponds to 1000
images. Similarly, we selected another randomly drawn 100
images, 10 for each digit, constitute the ground truth images
in the test set. We generate the intensity measurements using
the numerical transmission matrix from in [35] to simulate an
optical diffraction problem. We consider an under-sampling
ratio of 0.5 with number of unknowns and measurements equal
to 784 and 392, respectively.

For modelling the initialization module, we consider a
10 layer RNN with a convolutional neural network (CNN)
based sample processing network. We modelled the non-linear
function k(., .) by the Laplace RBF kernel, i.e.,

k(v1,v2) = exp

(
−∥v1 − v2∥

σ2

)
, (14)

where σ ∈ R. We applied a 5-layer CNN to realize the sample
processing function, with leaky relu(.) activation functions
for the first four layers and an relu(.) activation function for
the output layer. Three 3× 3 dimensional convolution filters,
with 16 output channels each, are used in this CNN with the
same filters shared in the second to fourth layer. Moreover, we
considered encoded representation length of 64 and applied a
5 layer feed-forward neural network with relu(.) activation
functions as the decoding network.

We consider a number of existing initialization approaches
for performance comparison with our method. This include
the spectral initialization [9] approach, truncated spectral ini-
tialization method from [29], initialization method described
in [31] for the re-weighted amplitude flow approach for phase
retrieval, spectral initialization using optimal sample pro-
cessing function introduced in [32], orthogonality-promoting



initialization approach presented for the truncated amplitude
flow algorithm in [30], and the composite initialization method
for phase retrieval introduced in [34]. We refer to our proposed
kernel function based initialization approach as KI, and pro-
vide the reconstructed images for the MNIST dataset in Fig. 3
when the number of measurements is half the number of the
unknown, i.e., M = 0.5N .

V. CONCLUSION

We introduced a DL based phaseless imaging approach that
incorporates a computationally initialization step with an RNN
type network. Similarly to our DL-WF approach, proposed
imaging network incorporates prior information via a learned
decoding network that enables lower sampling complexity by
effectively reducing the number of unknown quantities to be
estimated. However, compared to our previous approach, we
simultaneously attain improved initialization efficiency for the
encoded signal by directly estimating it from the intensity
measurements and bypassing the spectral initialization in the
higher dimensional image manifold. We verified the feasibility
of our proposed phaseless imaging approach by training a our
network under a specific kernel function assumption using a
simulated image set. For future work, we will integrate the
initialization module with the refinement stage, and pursue
numerical evaluations for synthetic aperture imaging.
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