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Abstract—Applications for data-driven systems are expected
to be correct implementations of the system specifications, but
developers usually test against a few indicative scenarios to verify
them. In the absence of exhaustive testing, errors may occur
in real time scenarios, especially when dealing with large data
streams from moving objects like multicopters, vehicles, etc.
Model checking techniques also lack scalability and completeness.
We present a novel approach based on some existing tools which
enables a developer to write high level code directly as system
specifications and simultaneously be able to prove the correctness
of the generated code.

We present a fault detection and identification (FDI) software
development approach using declarative programming language:
PILOTS. The grammar of PILOTS has been updated to enable
easier syntax for threshold validation techniques. The failure
detection model is described as high level specifications that the
generated code has to adhere to. The complete FDI problem is
formally specified using Hoare logic and proven correct using an
automated proof assistant: Dafny. A case study of rotor failures
in a hexacopter has been used to illustrate the approach and
visualize the results.

Index Terms—fault detection, formal verification, multicopter,
declarative programming, Dafny

I. INTRODUCTION

A fault in any component of a safety-critical data-driven
system can be catastrophic to life and property. Therefore,
timely and accurate fault detection and identification (FDI)
is critical and can be a challenging problem. FDI applica-
tions are “correct” if they accurately estimate the state of a
system. There are several failure detection and identification
techniques available for data-driven systems [1], [2], but it is
difficult to formally verify that they are correct. Applications
use models for data that can be quite complicated and software
systems implementing these models add a layer of complexity.
To enable portability and usability, we advocate for high level
declarative programming approaches to design, develop, and
verify FDI software for data-driven systems. This approach is
user-friendly with domain experts enabling them to efficiently
implement new failure models in the application.

In this paper, we consider proving the correctness of a
streaming application written in our own highly declarative
programming language with respect to a data-driven model.
PILOTS is a declarative language that has been used for
sensor failure detection and state estimation for aircraft data

streams. The goal is to prove that a PILOTS program correctly
assesses the state of the system using the provided data-
driven model. We consider a subset of PILOTS programs
that analyze stream data from multiple channels and outputs
the mode of the system. We consider a PILOTS program
that implements a knowledge based algorithm to detect rotor
faults in a multicopter [3] and use Floyd-Hoare style logic
reasoning to verify the correctness of the code [4], [5].
System specifications generated using a PILOTStoDafny code
generator are used to formally prove the program correct
with respect to its data-driven model. We use Dafny which
automates this verification process using the Z3 SMT solver
[6]. The PILOTStoDafny code generator produces Dafny code
and specifications during compilation of the PILOTS code.
Finally, we present the results of the FDI software written
in PILOTS for different rotor failures and compare them with
the ground truth obtained from the same algorithm to conclude
about the correctness of the application considering factors of
frequency and availability of the input data streams.

There are two advantages of using PILOTS for this pro-
cess. First, the high-level specifications in this language are
relatively straightforward and can be easily implemented for
various data-driven domains. Second, if we can formally verify
the compiler’s correctness, we can increase the reliability of
the system regardless of its applications.

II. BACKGROUND

A. PILOTS

ProgrammlIng Language for spatiO-Temporal data Stream-
ing applications (PILOTS) is a high level declarative program-
ming language for the development of applications for ana-
lyzing spatio-temporal data streams [7]-[9]. PILOTS supports
interpolation of missing data, error detection and estimation
of correct data streams based on analytical redundancy [10].
Output data streams are produced using the mathematical
model specified by the application. Erroneous patterns in data
are detected using formalized error signatures [11] and modes
[12]. It has been demonstrated to successfully detect failures
from simulated real time flight data for multiple commercial
aviation accidents including the Air France AF447 accident in
June 2009 [13].



A PILOTS program has the following sections: 1) inputs:
specifying the input data streams and the method to interpolate
missing data: closest, euclidean, and interpolate; 2) outputs:
output streams generated by the application with a given
frequency; 3) errors: residual functions to compute a nu-
merical value from the input data streams over a window
of time; 4) signatures/modes: constrained functions to
capture patterns in the error residuals and estimate the state of
the system. The set of error signatures is determined using
known failure modes of the system and the corresponding
pattern of the error residuals. Fig. 1 shows a simple PILOTS
program Twice. It takes as input two input streams a(t) and
b(t), where b should be twice the value of a. Both a and b
are expected to increase by one for a and two for b every
second. Thus, the error is zero in the “Normal” mode. If there
is unavailability of the signal a, the error keeps on increasing
with a slope of 2. Similarly, if there is unavailability of the
signal b, the error keeps decreasing with a slope of 2. These
patterns can be captured using error signatures: e = 2¢t+k and
e = —2t + k, where k is a constant. We calculate d;(¢), the
distance between the measured error residual e(t) and each
error signature S; by:

t
(i) = min [ Je(t) ~ g(t). M)
g(t)E€S: Ji_o

where w is the window size. The smaller the distance J;(¢),
the closer the raw data is to the theoretical signature .S;.
Then, the mode likelihood vector is calculated as L(t) =
(Io(t),11(¢),...,1n(t)) where each [;(t) is:

if 6;(t) =0
otherwise.

1,
Li(t) = {min{éo(t),...,én(t)} 2

i (t) ’

Given a significance threshold 7 € (0,1) we check for one
likely candidate [; that is sufficiently more likely than its
successor [ by ensuring that I, < 7. Thus, we determine
j to be the correct mode by choosing the most likely error
signature S;. If [, > 7 , then regardless of the value of k,
“Unknown” error mode (-1) is produced.

program Twice;
inputs
a (t) using closest (t);
b (t) using closest (t);
outputs
e: (b - 2 % a) at every 1 sec;
end

Fig. 1: Program Twice in PILOTS.

B. Dafny

Dafny is an imperative, sequential language that can be used
to statically verify code based on provided specifications. It is
a satisfiability-modulo-theories (SMT) based program verifier
which requires minimum interaction of the user with the
solver. Dafny takes as input a program along with programmer

specified constraints and verifies whether the code satisfies the
specifications for all possible inputs. The specifications may
be written as preconditions and postconditions, loop invariants
and termination metrics. Preconditions verify the inputs to
the program and postconditions specify statements that should
hold true after the program snippet completes execution. Loop
invariants are conditions that should hold true before and
after every iteration of a loop. The verifier translates a given
program into the intermediate verification language Boogie 2
[14], [15]. The Boogie tool is then used to generate first-order
verification conditions that are passed to an SMT solver [16].

A method is the smallest piece of executable code in Dafny.
Methods have input parameters and return statements like
any other imperative programming language. Dafny is more
advanced because it has the power to add specifications to
these methods and ascertain whether these constraints are
satisfied for all possible inputs and execution paths. Keywords
requires, ensures, invariant and assert are the
standard ways to express preconditions, postconditions, loop
invariants and inline assertions respectively. Fig. 2 illustrates
a method written and verified in Dafny that will return
the maximum element in an array. The ensures clause
ascertains the program always returns the intended output.
The loop invariants and decreases clause is used to arrive
at the postcondition and prove termination of the program.
The requires clause specifies preconditions that restrict the

inputs to the program.
/ﬁgg;hod max (arr: array?<int>) returns (z: ‘\\\
requires arr!=null && arr.Length > 0

0 <= k < arr.Length ==> arr[k] <= z

int)

ensures forall k::

{

var i := 1;
z := arr[0];
while (i < arr.Length)

decreases arr.Length-i

invariant i <= arr.Length

invariant forall k:: 0 <= k < 1 ==> arr[k] <= z
{

if(arr[i]>2z)

z := arr[i];

/

Fig. 2: A verified method in Dafny to find the maximum
element in an array.

C. Hexacopter model and data generation

In this study, data was generated using a rigid body flight
simulation model of a regular hexacopter (Fig. 3) using a
summation of forces and moments to calculate aircraft ac-
celerations. This model allows for the simulation of abrupt
rotor failure by ignoring the failed rotor inflow states and
setting the output rotor forces and moments to zero. A PID-
based feedback controller is implemented on the nonlinear
model to stabilize the aircraft altitude and attitudes, as well
as track desired trajectories written in terms of the aircraft



velocities [17]. This control design has been demonstrated to
perform well even in the event of rotor 1, 2 or 6 failure, with
no adaptation in the control laws themselves. A continuous
Dryden wind turbulence model is implemented to simulate
realistic flight conditions [18].
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Fig. 3: Schematic diagram of a hexacopter.

This model is used as the main source of simulated data for
5 m/s forward speed under light, moderate, and severe levels
of turbulence. Figure 4 shows indicative attitude signals for
the cases of healthy flight and front rotor (rotor 1), left-side
rotor (rotor 2), and right-side rotor (rotor 6) failures. For the
simulation results presented, rotor failure occurs at ¢ = 10 s,
indicated by the vertical dashed line.

From Figure 4, it may be observed that front rotor (1) failure
results in a larger deviation in the pitch attitude than in the
case of side rotor (2/6) failure. In the case of front rotor failure,
the hexacopter pitches down without any substantial change in
roll angle, as the loss of rotor 1 thrust does not significantly
affect the aircraft roll equilibrium. However, in the case of side
rotor failure both the pitch and roll attitudes change and the
roll attitude compensation is observed to be underdamped. The
deviation of roll attitude in rotor 2 failure is reversed for rotor 6
failure, because of unbalanced roll moment in rightward and
leftward directions, respectively. The heading of the aircraft
is observed to deviate in different directions with the failure
of the front rotor compared to the side rotor. This is due to
the different rotor spin directions of front and side rotors,
and consequently the direction of the hub torque generated
by each rotor. It should be noted here that the signals show an
instantaneous transient response immediately after rotor failure
followed by a fault-compensated steady-state response.

In the knowledge-based fault detection and identification
algorithm, the above knowledge of configuration of the hex-
acopter at hand along with principles of force and moment
equilibrium has been applied to ascertain how the aircraft roll,
pitch, and yaw attitudes will behave under instantaneous loss
of thrust and consequent moment imbalance in an event of
rotor failure. Therefore, the decision-making follows how the
signals initially deviate from their 99% confidence intervals
under abrupt rotor 1, 2, and 6 failure, as shown in the enlarged
view in Fig. 5. The details of the accuracy and performance
of this method can be found in Ref. 3.

III. FAULT DETECTION AND IDENTIFICATION USING
PILOTS

A. Mode estimation

The motivation to use PILOTS to detect and identify rotor
failures in a multicopter is twofold: 1) PILOTS is a high level
declarative programming language, making it easier to learn
and adapt to, and 2) code and proof generation from PILOTS
programs would enable building verified FDI software for
safety critical systems like a multicopter.

From release v0.4 of PILOTS [8], [12], a mode estima-
tion method has been introduced which allows us to define
multiple error functions and use their relationships to detect
erroneous patterns in data streams. Conditions specified in
modes are evaluated one by one from the top, and as soon
as a condition is satisfied, its associated mode is chosen. If
none of the conditions are satisfied, “Unknown”(-1) mode
is chosen. Unlike the signature-based mode estimation, the
mode estimation using “modes” is purely based on boolean
expressions. To adjust the difference between the two mode
estimation methods, the threshold values have to be expanded
to incorporate the threshold 7.

Using PILOTS, the knowledge based fault detection algo-
rithm can be written in a very straightforward way. A PILOTS
program called Rotor_check_threshold takes the pitch,
roll and yaw attitudes as input streams of data and outputs the
same along with the estimated mode of the system every 0.1
seconds. These three attitudes are used as error functions that
capture patterns in the input streams. The upper and lower
bounds of healthy input streams have been calculated and
defined as constants using the 99% confidence intervals for
each signal. We use the mode estimation method as there
are multiple error functions to examine for fault detection.
The error modes define the different modes of the hexacopter
due to a fault in rotor 1, 2, or 6. The different modes of the
output data stream have been outlined in Table 1. The modes
include an “Unknown” mode where none of the defined modes
correspond to the error signal pattern. In case of multiple
matching modes, the first match is the output mode of the
system. To change the underlying fault detection model, the
error modes have to be calibrated accordingly.

TABLE I: Modes in Pilots state estimation code

[ State | Mode |
Healthy 0
Rotor 1 failure 1
Rotor 2 failure 2
Rotor 6 failure 3
Unknown -1

B. Threshold check

As studied across various failure detection models (hex-
acopter rotor failures, pitot tube sensor failures and GPS
failures [12]), errors in analytically redundant data streams
are often captured using thresholds on the input values. This
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motivated us to extend the PILOTS grammar with a shorthand
syntax for checking thresholds. Brackets can be used to limit
the thresholds for a particular error function during mode
estimation. [] and () can be used to denote inclusive and
exclusive thresholds respectively on error functions. For ex-
ample, the PILOTS syntax el in [A_LOW A_HIGH)
would translate to the condition el >= A_LOW and el <
A_HIGH. We illustrate a trivial example of a state estimation
program from two input data streams in Fig. 6.

@agram Threshold_check;
inputs

a, b(t) using closest (t);
constants
A_LOW = -1;
A_HIGH = 1;
outputs

a,b,mode at every 1 sec;
errors
el: b - a;
modes
mO0: el > A_LOW and el < A_HIGH "Normal";

ml: el <= A_LOW "Failure";

Fig. 6: Mode estimation using thresholds.

The modes section of the Threshold_check program
could be rewritten as follows:
A_HIGH)

mO : "Normal";
ml: "Failure";

This syntax will not only simplify the process of specifying
models with thresholds in error residuals from data streams, it
is also an important step to be able to extract postconditions to
be proven correct about the mode estimation code. Appendix A
lists the updated PILOTS grammar for version 0.7.

el in (A_LOW ..
el in ( .. A_LOW]

IV. PROVING THE CORRECTNESS OF PILOTS CODE

We aim to prove the correctness of the PILOTS generated
state estimation code with respect to the underlying model
used for the development of the logic. The code must exactly
replicate the fault detection model to be proven correct.
We have developed a PILOTStoDafny code generator which
produces Dafny code and specifications during compilation
of the PILOTS program. For our proof of correctness, we
assume the sliding window size w to be 1. So, the PILOTS
program determines the state of the system by looking at
the latest stream values only. The verification approach is
depicted in Fig. 7. The following sections explain the method
to formalize the FDI software in Dafny. We focus on proving
the correctness of the mode estimation method of PILOTS
generated code.

A. Formalizing the system

In a data streaming application, we have to ascertain that
our computing resources are enough to process the frequency
of the input data streams. State estimation will be correct only
if we consider every data point in the input data streams. In
case of limited resources, the application may skip data points

PILOTS
specifications

Fault detection
model

Dafny
specifications

Verified executable
code

Java
code

Fig. 7: FDI software verification approach.

potentially compromising correctness. In PILOTS, we specify
the frequency of state estimation and output streams in the
code. In our proof of correctness we have to establish a set
of frequencies 7' that the PILOTS code can process with the
available computing resources. The denotational semantics of a
PILOTS program can be represented as a set of three equations
as shown in (3). At discretized time ¢, ¢ represents a function
of input data streams, e is an error function that maps input
data streams to error streams and [ selects a mode m from
the error streams.

i(t) = &
o(F) = & 3)
1@ =m

The FDI model g is represented as a partial function where
an input stream value corresponds to mode m.

g(%) =m 4)

The correctness of the PILOTS code is formally specified
in Eq. 5. If Z is in the model, the output of the program f
must match the mode of g, else f returns -1(unknown).

VieT.i(t) =4 = (& € dom(g) A f(e(Z)) = g(Z))
V(& & dom(g) A f(e(T)) = —1) (5)
B. Defining the system in Dafny

Data types are created to generalize the input data streams
and the error functions in the system. This makes it easier
to use variables of these types to formalize and prove the
correctness of the program. We continue with the example
code from Fig. 6. The input streams and error functions in the
program are encoded in Dafny as follows:

real)]

Dafny has to prove that the estimated state of the system is
consistent across the model (g) and the PILOTS program (f).
To prove this we have a modeAnalyzer() method generated
from the PILOTS program. It is replicated from the Java code
generated by the PILOTS compiler. A snippet of the Java
code generated from (Fig. 6) has been depicted in Fig. 8. The
method is implemented in Dafny as illustrated in Fig. 9. The
modeAnalyzer() method takes as input the value of the error
function at a point of time and outputs the mode of the system

datatype Data = DatavVal (a: real, b:
datatype Error = ErrorVal (el: real)

C. State estimation



(function f). The postcondition of this method ascertains that
the method output is consistent with the model. This method
and postcondition has been generalized over a window of time
to prove the correctness of the complete program.

// Errors computation
data.put ("=1", data.get("b")-data.get("z2"));
LOGGER. fine ("Errors: " + "=1=" + data.get("=1"));

// Error detection

int mode = -1;
if ((data.get("=1")>RA LOW) && data.get("=1")<A_HIGH) {
mode =

// "Normal"
} else if (data.gest("=1"

mode = 1; // "Fai
}
LOGGER. fine ("Detected: mods=" + mode)
// Data transfer
Date now = getTime() ;
try I
sendData (0, data.get("a"), data.gst("k"), mode);
LOGGER.1nfo (" uts: " + now + " " + + data.get ("a") +
Y4+ "b=" 4 data.get("B") + " " + "mode=" + mode + " ") ;

} catch (Exception ex) {
ex.printStackTraces () ;

}

time += interval;
progressTime (interval) ;

Fig. 8: Java code generated from the threshold check program.

datatype Error = ErrorVal (el: real) //Error functions
//{Predicate to check if the mode of a particular input is consistent
predicate modeCorrect(e: Error, A LOW: real, A_HIGH: real , m: int) {

/*If condition*/
(e.el>A_LOW && e.el<A_HIGH ==> m == @)

/* Else if condition reached when earlier conditions are not satisfied*/
&& (!(e.el>A LOW && e.el<A HIGH) && e.el<=A_LOW ==> m == 1)

/* Default condition for Unknown mode*/
&& (!(e.el>A_LOW 8& e.el<h_HIGH) && !(e.el<=A_LOW) ==> m == -1 )
i

/*Method to calculate the mode from a given input value
Input: value of the error function and thresholds
gutput: Mode of the system at that point */
method ModeAnalyzer(e: Error, A_LOW: real, A_HIGH:
ensures modeCorrect{e, A_LOW, A_HIGH,mode)

{

real ) returns (mode: int)

mode = -1;
if ((e.el>A_LOW) && e.el<A HIGH) {
mode :=@; // "Normal"

else if (e.el<=A_LOW) {
mode := 1; // "Failure”

Fig. 9: Dafny mode analyzer method generated from the
threshold check program.

D. Specification

The constraints of the state estimation model can be for-
mally specified using a predicate in Dafny. A predicate is
a method that always returns a boolean value. A predicate
modeCorrect() specifies each constraint in the model that the
state estimation program should adhere to. This predicate
inputs a value of the error function and a mode to check

whether the mode is consistent with the constraints. The
specifications are extracted following the semantics of the
modes section of a PILOTS code. For every mode := Var :
Exps String; the Exps should imply the mode variable being
set to Var. If neither of the Fxps are satisfied, an “Unknown”
mode is generated as output. Therefore, the conjunction of
all the negated expressions should imply the mode -1. The
specification ¢ that we want to prove about the program states
that modeCorrect() holds true for all input values in the time
window start to end. The preconditions state that the end of the
time window should be greater than the start and the stream of
input data (dataStream) should not be null. Each value in the
output (modeStream) should be consistent with constraints
defined in modeCorrect(). The specification ¢ is stated by the
SystemCheck() predicate as follows:

:: start <= 1 < end ==>

forall 1
modeCorrect (dataStream([i], LOW, HIGH, modeStream[i])

E. Proof

The approach to prove the correctness of the program is
inductive. Dafny enables automated inductive theorem prov-
ing by iterations or recursion. The invariants defined in the
program should be maintained while on entry and after every
iteration of the loop. This ascertains that if a property holds
at time ¢, it holds true at time ¢ 4 1. The invariants not only
ascertain correctness of the modeAnalyzer() method but also
guarantees termination of the state estimation loop using the
decreases keyword.

The postcondition of the inductiveProof{) method states the
correctness property we aim to prove using the ensures
clause (Fig. 10). It takes as input the stream of input values,
the start and end of the window and the thresholds for mode
estimation. The goal of the proof is to ascertain the correct
mode is estimated for the sequence of input values in the
provided time window. The base case of the inductive proof
verifies whether the specifications hold true and the system is
in “normal” mode when no data is received from the system.
The inductive hypothesis states that the specifications hold true
at time t i.e. ¢ holds true from start to time ¢. The loop
invariant in the inductiveProof() method proves that ¢ holds
true from start to time ¢ + 1. We have a few assumptions for
the proofs as stated by the requires clause of the method:

e The start and end of the time window should be valid.
o The input data stream should have values until the end
of the time window.

In future work, we can weaken these assumptions using the
idea of closest [11] when PILOTS can even estimate the
mode of a system if all data points are not available in the
specified time window.

V. RESULTS AND DISCUSSION

Based on the data set described in Section II-C, we have
used PILOTS to detect failures in any one of the front rotors
of a hexacopter. The roll, pitch, and yaw signals for healthy
flight under severe turbulence follow a normal distribution [3].



/*Method to calculate the mode of every incoming value and
prove it consistent with existing specifications */

method inductiveProof(start: int, end: int, dataStream: array<Error>,
A_LOW: real, A_HIGH: real)
returns (modeStream: array<int»)
requires end »>= start && start >= @
requires dataStream.length > @ ==> dataStream.Length - 1 »= end
requires dataStream.length == 8 ==» dataStream.Length »>= end
ensures modeStream.length == dataStream.Llength
ensures SystemCheck(start, end, dataStream, modeStream, A_LOW, A_HIGH)
i
modeStream := new int[dataStream.length];
if(dataStream.Length == @) //When do data is available
{

assert SystemCheck(®, 8, dataStream, modeStream, A_LOW, A_HIGH);

var idx := start;

while(idx < end)

iant idx <= end //property is consistent over all values in the time window
ariant SystemCheck(start, idx, dataStream, modeStream,A_LOW, A_HIGH)
decreases end - idx

{

inv,

inv,

var m := ModeAnalyzer(dataStream[idx], A_LOW, A_HIGH);
modeStream[idx] := m;
idx := idx + 1;

Fig. 10: Proving the program correct using induction.

The statistical properties, namely y and o2, the expected value
(mean) and variance, respectively of the signals are extracted.
Next, the 99% confidence intervals; the upper confidence limit
(UCL) and lower confidence limit (LCL) for each signal,y][t]
are calculated in radians by Eq. (6):

Upper confidence limit = p + 2.5760 w=E{y[t]}
Lower confidence limit = p — 2.5760

(6)

where, E{-} denotes the statistical expectation.

Error modes have been defined in PILOTS to replicate
the above thresholds for healthy data. The threshold syntax
introduced in this paper has been used to write the program
for rotor failure detection in Fig. 11. The program outputs
the three attitudes along with the mode every 0.1 seconds.
The window size w has been set to 1. The frequency of the
output data stream is 10Hz. The PILOTS visualizations of the
state estimation have been shown in Fig. 12. PILOTS correctly
replicates the behavior of the knowledge based FDI model
described in Section II-C.

The correctness of the mode estimation model of the
Rotor_check_threshold program in PILOTS has been
modeled in Dafny using approach described in Section IV. The
input streams and error functions in the program are encoded
in Dafny as follows:

real, e2: real, e3: real) :)
real, e2: real, e3: real)
The modeAnalyzer() method replicates the conditional
logic embedded in the PILOTS mode estimation code. It
takes as input the set of error functions and produces an
output mode of the system. The modeCorrect() predicate
contains the set of specifications that the modeAnalyzer()

datatype Data = DataVval (el:
datatype Error = ErrorVal (el:

o® =E{(ylt] — n)*}

//;:;gram Rotor_check_threshold;
inputs
roll,pitch,yaw (t) using closest (t);
constants
R_LOW = -0.0153;
R_HIGH = 0.006;
P_LOW = -0.0884;
P_HIGH = -0.0703;
Y_LOW = -0.0040;
Y_HIGH = 0.0022;
outputs
roll,pitch,yaw,mode at every 0.1 sec;
errors
el: roll;
e2: pitch;
e3: yaw;
modes
mO: e2 in [P_LOW .. P_HIGH]
or (e2 in ( .. P_LOW) and e3 in [Y_LOW ..
or (e2 in ( .. P_LOW) and e3 in (Y_HIGH .. )
and el in [R_LOW .. R_HIGH]) "Normal";
ml: e2 in ( .. P_LOW)
and e3 in ( .. Y_LOW) "Rotor 1 failure";
m2: el in ( .. R_LOW) and e2 in ( .. P_LOW)
and e3 in ( Y_HIGH .. ) "Rotor 2 failure";
m3: el in (R_HIGH .. ) and e2 in ( .. P_LOW)

and e3 in (Y_HIGH .. ) "Rotor 6 failure";
end;

Fig. 11: PILOTS program for rotor failure detection using
thresholds.

~

Y_HIGH])

method should adhere to. It states the system invariants
that must hold true at every point of time during the mode
estimation time window. The specifications are extracted
following the semantics of the modes section of a PILOTS
program. In PILOTS, the conditions are evaluated from the
top (i.e. m0), and the first condition that is satisfied is the
output mode at that point. The final specification states the
conjunction of all the negated conditions, which implies that
if none of the conditions are satisfied, the output mode is
Unknown (i.e. -1). This set of specifications in modeCorrect()
is iteratively invoked in the inductiveProof() method which
further verifies that the conditions hold true during the
complete time window. The specifications are satisfied by
the PILOTS code only when the frequency of the input
data stream is in the set of frequencies that the computing
resources support and complete data is available for the time
frame. The Dafny modeCorrect() method generated from the
Rotor_check_threshold program is shown in Fig. 13.
Table II summarizes the verification results for various time
windows and data availability from the hexacopter.

TABLE II: Verification results for rotor FDI.

Start | End | Frequency | Data | Verification
(s) (s) (Hz) points

0 5 1 5 Verified

0 5 10 50 Verified

0 10 1 10 Verified

0 10 10 100 Verified
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Fig. 12: Rotor FDI output visualized using PILOTS.

VI. RELATED WORK

Previous work in formalizing streaming applications and
FDI software have introduced several languages and proof
systems for verification. Proving the correctness of streaming
applications has been explored in [19] and [20]. The authors
have presented a proof system that can verify computations
performed on outsourced streaming data. Bozzano et al. [21],
[22] have introduced a pattern based language built on the se-
mantics of Temporal Epistemic Logic [23] to formally specify
and verify alarms in FDI. Our work focuses on replicating
FDI models using high level declarative syntax which would
require minimum technical expertise to use. The approach
used in this paper to detect and identify rotor failures works
only with sharp transients in the input signals. There are other
sophisticated algorithms which can detect rotor failures from
steady signals too [3]. We focus on proving the correctness of
the language instead of the FDI model using established logic

systems and proof assistants. The power of automated proof
assistants like Dafny has been explored in work like [24] and
[25], where complex distributed systems have been modeled
and proven correct using Dafny predicates and lemmas.

VII. CONCLUSION AND FUTURE WORK

This paper is an initial step for proving the correctness of the
PILOTS compiler, which can be deployed in various domains
like aerospace, healthcare, etc. The verification procedure has
been carried out with assumptions and considerations of a
small kernel of the language. The correctness of the mode
estimation method in PILOTS is proven. Both Java and Dafny
code and specifications are generated by the code/proof gener-
ators at compile time. The PILOTS mode estimation semantics
has been modeled using Hoare logic and proven to be correct
using Dafny specifications. Furthermore, the PILOTS syntax
has been updated to ensure easier implementation of threshold
checks which are a popular requirement in FDI systems.



datatype Error = ErrorVal (el: real, e2: real, e3:real) //Error functions

ffPredicate to check if the mode of & particular input is consistent
predicate modeCorrect(e: Error, R_LOW: resl, R_HIGH: real, P_LOW: real,
P_HIGH: real, Y_LOW: real, ¥ _HIGH: real , m: int) {

J*If condition#®/
((e.e2>=P_LOM && e.e2¢=P_HIGH) ||
(e.e24P_LOW &% e.e3>=Y_LOW && e.e3<=Y_HIGH) ||
(e.e2<P_LOW & e.e3»Y_HIGH && e.el>=R_LOW &% e.el<=R_HIGH) ==> m == 8)

/* Else if condition reached when earlier conditions are not satisfied®/
&% (!({e.e2»=P_LOW && e.22¢=P_HIGH) ||
(e.e2<P_LOW 8& =.e3>=Y_LOW && e.e3<=Y_HIGH) ||
(e.e2<P_LOW &R e.e3»Y _HIGH &% e.el>=R_LOW &% e=.el<=R_HIGH))
&& e.e2<P_LOW &% e.e3<Y_LOW ==>m == 1)

/* Else if condition reached when earlier conditions are not satisfied*/
8% (!((e.e2>=P_LOW &% e.e2¢=P_HIGH) ||
(e.e2<P_LOW && e.23>=Y_LOW &% e.e3<=Y_HIGH) ||
(e.e2<P_LOW && e.e3>¥_HIGH &8 e.el>=R_LOW &% e.21<=R_HIGH})
&8 !{e.e2<P_LOW &% e.e3<Y_LOW) &2 =.e24P_LOW &% =.23»Y_HIGH
&8 e.el<R_LOW ==> m == 2)

/¥ Else if condition reached when earlier conditions are not satisfied®/
&% (!((e.e2»=P_LOW && e.e2<=P_HIGH) ||
(e.e2<P_LOM &% e.=3»=Y_LOW 88 e.e3<=Y_HIGH) ||
{e.e2<P_LOW & e=.e3>Y_HIGH && =.=1>=R_LOW &R e.el<=R_HIGH))
&% !(e.e2<P_LOW &% e.e3<Y_LOW)
&% 1(2.e24P_LOW && e.g3»¥_HIGH &% =.e1<R_LOW)
8% e.e2<P_LOW && e.e3>Y _HIGH &R e.el>R_HIGH ==3 m == 3)

/* Default condition for Unknown mode®/
&& (!({e.e2>=P_LOW && e.e2¢=P_HIGH) ||
(e.e2<P_LOW && e.e3»=Y_LOW &R& e.e3<=Y_HIGH) ||
(e.e2<P_LOM &R e.e3>Y_HIGH && e.el>=R_LOW && e.el<=R_HIGH))
&% !(2.22<P_LOW && e.e3<Y_LOW)
&% !(2.224P_LOW &% e.23>Y_HIGH && e.el<R_LOW)

88 !(e.2<P_LOW 88 .=35Y_HIGH 8& c.e1>R HIGH) ==> m == -1 )
h
Fig. 13: Dafny code generated from rotor state estimation program.
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APPENDIX A

PILOTS GRAMMAR DESIGN

The grammar of the PILOTS programming language v0.7
has been updated to support inclusive and exclusive threshold
checks as shown in Figure 14.

Kngmm

Constants
Constant
Inputs
Input
Outputs
Output

Errors
Error
Signatures
Signature
Estimate
Modes
Mode

Dim
Methods
Method

Time
Exps
Exp

IntervalExp
Func

Value
Number
Sign

Integer
Digits

Digit

Vars

Var
String

program Var;
constants Constants
inputs Inputs
outputs Outputs
[errors Errors]
[signatures Signatures]
[modes Modes]

end
[(Constant;)* Constant];
Var = Exp;

[(Input;)* Input];

Vars: Dim using Methods;

[(Output;)* Output];

Vars: Exps at every Time
[when (Var | Exp) [Integer times]];

[(Error;)* Error];

Vars: Exps;

[(Signature;)* Signature];

Var [Const]: Var = Exps String |Estimatel];

Estimate Var = Exp;

[(Mode;)* Mode];,

Var: Exps String [Estimate];

HOM NS S A N S AAY

Method | Method, Methods

(closest | euclidean | interpolate | model)
'C Exps’)

Number (msec | sec | min | hour)

Exp | Exp, Exps

Func (Exps) | Exp Func Exp | IntervalExp |
C Exp’) | Value

Value in ([’ | °C ) [Exp] .. [Exp] (°1 |°))

{+ - %/ >, <, ! =, ==, and, or, xor, sqrt, sin, cos, abs, ...

Number | Var
Sign Digits | Sign Digits’ .’ Digits

|
Sign Digits

Digit | Digits Digit
{0,1,2,...9}
Var | Var, Vars
{abc ..}

{ “a”, “b”, “c”, ... }

Fig. 14: PILOTS v0.7 grammar with threshold syntax incor-

porated.




