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1 Type II F-theory

1.1 Couplings and massless fields

In T-duality, (a component of) the spacetime metric is transformed into its inverse (up to
B-field dependence). This implies the usual R → 1/R transformation, as the metric of
the compactified dimensions can be expressed in terms of “angles” as ds2 = R2dθ2. More
properly, the gravitational constant (in Einstein frame, or α′ in string frame) can always
be absorbed into the metric, reappearing through its vacuum value. Thus R and α′ appear
in the combination R2/α′, so actually R2/α′ → α′/R2 (and R and α′ always appear in this
combination in AdS5×S5).

In S-duality (in Type IIB), the dilaton appears as part of a metric of scalars, which
transforms into its inverse in the same way. (Only the coset is different.) Now it’s the string
coupling g that appears as the vacuum value. Thus α′ and g, and their dualities, appear in
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a completely analogous way in the field theory action, but differently in the first-quantized
string action. Also, in compactifying 11D supergravity to 10D Type IIA, the dilaton, and
thus g, arises from a component of the metric associated with the compactification radius R.

In D<10 (after field-theory duality transformations), all the compactification scalars
merge into a larger coset space (U-duality). The purpose of F-theory is to exhibit this
(spontaneously broken) symmetry before compactification. The metric, scalars, and other
massless bosonic fields then appear as parts of a higher-dimensional gauge field [1, 2] and
their field theoretical formulation is the exceptional field theory [3–7]. As these symmetries
relate the various superstring theories, F-theory is meant to unify them perturbatively.

1.2 Sectioning

The limit R → ∞ (or 0) makes winding modes (or momenta) infinitely massive, for each
dimension of toroidal compactification. The Virasoro (S) section condition is the remnant
of the L0 = L̄0 constraint that enforces the decompactification limit in any combination of
R’s going to 0 or∞. This constraint appears already in T-theory, the manifestly T-duality
covariant formulation of string theory [8]. Solving the constraint chooses the vacuum,
producing either Type IIA or B superstring theory via spontaneous breakdown. There is
also an intermediate Virasoro condition, linear in both zero and nonzero modes, that acts
as a first-order form of the selfduality condition on the field strength of X.

The generalization [1, 2] appears in F-theory, as a vector in the “spatial” directions of
the worldvolume [9]. Thus string theories related by S-duality (different vacua for Type
IIB) are also chosen. F-theory also has a Gauss (U) section condition [9] that mutually
constrains spacetime and the worldvolume. It’s the zero-mode part of Gauss’s law for the
gauge field X.

2 Type I F-theory

2.1 Geometry

As for strings, we’ll classify branes as Types I and II, corresponding to the number of
supersymmetries:

(I) Like Type I strings, the states of Type I branes, both open and closed, are constrained
to be (graded) symmetric under σ1 reflection (“parity”). In particular, this is true
for open branes because of boundary conditions. These open branes describe both
heterotic and open Type I strings, while the closed branes describe closed Type I
strings.

(II) Type II branes are only closed, and have no parity projection. As described in
previous papers, these describe Type IIA and B strings (as well as M-theory) [9–17].

For simplicity, we consider closed branes to have the topology (for fixed τ) of a torus,
and open branes to have the topology of a torus of 1 less dimension × a line segment. (The
line segment σ1 is sometimes described as the simple orbifold S1/Z2.) Thus we discuss
branes with only 0 (closed) or 2 (open) boundaries. “Internal symmetry” degrees of freedom
live on the boundaries; in general these contribute to the worldvolume energy-momentum
tensor (generalized Virasoro operators).
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Our description of heterotic strings in terms of open branes will follow that of Horǎva
and Witten [18], with a few important differences:

(1) Our branes are fundamental, not solitons. This should allow perturbative S-matrix
calculations in the higher dimensions.

(2) Upon double dimensional reduction, the Lorentz symmetry of spacetime was found
tied to that of the worldvolume (as applied to Θ); for us the 2 are the same be-
fore compactification. This is related to the fact that STU symmetries are manifest
without compactification, by construction.

(3) Instead of orbifolding spacetime (S1/Z2), which in turn orbifolds the embedded world-
volume, we orbifold only the worldvolume. This has several advantages:

(a) The F-branes can end on space-filling branes, not just 9-branes. So ordinary
Type I superstrings can be obtained, not just Type IA (I′). Thus both E8×E8
and SO(32) are allowed. (But this does not make obvious why Type I E8× E8
is not allowed.)

(b) We derive Type I and heterotic strings by worldvolume compactification, not
(explicitly) spacetime (although the latter may be implied by constraints). How-
ever, since the worldvolume (σ) derivatives represent the same group as the
spacetime (X) derivatives, their covariantizations both have vielbeins that are
elements of the coset space containing the bosonic spacetime fields [9]. Thus the
effects of both worldvolume reduction and the parity symmetry that projects
Type II to Type I F-branes can be seen directly on the bosonic fields, without
the need to examine spacetime compactification.

(c) The worldvolume of the closed F-brane (“donut”) can’t be compactified along
its long(est) circle (without double compactification), unlike the open F-brane
(“cylinder”). So open F-branes can yield either Type I open or heterotic (closed),
while closed F-branes can give only Type I closed:

Type I open (σ1) heterotic (σ2) Type I closed (σ1) (not)
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Internal symmetry regions are in red. We have illustrated only 2 of the worldvolume
dimensions, σ1 and σ2 (and not τ nor the other σ’s).

For the open F-brane, σ1 is the coordinate for the line segment, and σ2 is one of the
toroidal coordinates. For the closed F-brane, σ1 is for the major circumference, and σ2 is
for the minor one, because closed branes can form by joining ends of open ones.

Heterotic and open Type I strings follow from open branes by 2 different choices of
section: if σ2 is killed by sectioning (along with the rest of the toroidal coordinates), we
get an open string, and each boundary is compressed to a point. On the other hand, if σ1
is eliminated (along with the extra toroidal coordinates), we get a closed string, and the 2
boundaries are compressed into the bulk of the string, together.

Gravity arising from open F-branes might appear unusual, but a similar situation
occurs in string theory, where the open-closed string 2-point function implies that closed
string fields (in particular, the metric) already are contained in the open string field (the
metric from classically massive spin-2 fields) [19].

To treat SO(32) vs. E8×E8 by sectioning, we can choose the boundaries of open F-
branes to live in 496 extra dimensions. The (boundary) background metric and 2-form
for this space can be chosen to give the current algebras for these 2 groups with appro-
priate level number, in a way that manifests these symmetries, but spontaneously breaks
SO(496) [20].

2.2 Parity

For (super)strings, Type II is reduced to Type I by constraining states (or background
fields, not just the action) to be invariant under worldsheet parity, σ → −σ. This is
sometimes called a type of orbifolding, but is more a type of projection, like GSO (which
is for the worldsheet symmetry of 2π rotation, which affects only fermions). In T-theory,
this is accompanied by switching the independent X’s for left and right modes, to preserve
their (anti)selfduality condition. The selfdual and anti-selfdual currents are ∂τXN η̂NM ±
∂σX

NηNM where η̂MN and ηMN are the double Minkowski metric and the O(D,D) invariant
metric respectively. The selfduality condition is that the anti-selfdual current is 0. It relates
the dual coordinate Xm and the usual coordinate Xm in the co/contravariant basis M =
(m, m). The selfduality condition is preserved under the worldsheet parity transformation
σ → −σ together with interchanging the left and right coordinates in the left/right basis.

In F-theory the target space coordinate X and the worldvolume coordinates σ are dif-
ferent representations of the exceptional symmetry groups, and currents are field strengths
∂σX. A naive parity transformation would violate the selfduality constraint on the X field
strengths. (For spacetime dimension D > 1, worldvolume dimension d is always even.) So
instead we need a rotation as an even number of reflections. For consistency with Type
I and heterotic strings, this should change the sign of σ1 but not τ nor σ2, so it’s most
symmetry-preserving to change signs for all of σ except τ and σ2. This rotation then
implies the same rotation on X.
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For example, for D = 3 (d = 6), where in the Lagrangian formalism we have σm and
Xmn (antisymmetric), P(arity) is represented on the indices m,n by the sign changes

P : (0, 2)→ + , (1, 3, 4, 5)→ − (2.1)

as a rotation in the Lagrangian symmetry L = SO(3,3). This breaks that symmetry to
SO(2,2).

2.3 Symmetries

This parity (as well as boundary conditions), since it distinguishes only σ2 (as well as τ),
effectively reduces symmetries of the Hamiltonian by 1 worldvolume dimension, ∆d = 1.
Generally σ, including τ , is a bispinor: σ(αβ), σα

β
, or σ[αβ] [13]:

H SO SL H’(SU)

Real 1 2 3 X(αβ) SO
Complex 0 4 Xαβ̇ SU

Pseudo-real 7 6 5 X [αβ] USp

σ(αβ) σαβ̄ σ[αβ]

Y (α′β′) Y α′
β̄′ Y [α′β′]

Since fermions are representation of the tangent space symmetry H⊂G, bosonic coordinates
are bispinors of H in the superalgebra. Numbers are spacetime dimensions of corresponding
string theories. The primed objects are for extended supersymmetry for that dimension,
with additional D′-dimensional spacetime coordinates Y . The (spacetime) spinor size in-
creases by a factor of 2 from one oval to the next. In the oval for 3 and 4 X’s are real
and complex representations for D=3 and 4 theories respectively. As the exceptional group
G-symmetry in the Hamiltonian formalism is enlarged to F-symmetry in the Lagrangian
formalism, its tangent space symmetry H is also enlarged to L-symmetry. Going from the
Lagrangian to the Hamiltonian formalism breaks L-symmetry (always a GL group) to H by
picking the matrix coefficient of τ in the matrix σ to be a group metric for G = SO, SL, or
Sp. (See also appendix A.) Doing the same for σ2 yields 2 of the same type of group metric,
reducing the H group G(2n) to HI = G(n)2 = G+×G−, where G(n) is the usual covering group
of SO(D−1,1), and ± will eventually have the usual string identifications of left and right.

For Type II theories F-theory, which has the most symmetry, is broken to either
M-theory (which has (D+1)-dimensional N = 1 supergravity as its low-energy limit) or T-
theory (with manifest T-duality) by solving either an S or U sectioning condition (reducing
both X and σ), or S-theory (the standard formulation of superstring theory) by solving
both.

FII
S ↙ ↘ U

M TII

U
↘ ↙

S
↘

SIIA SIIB

(2.2)
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Since only U sectioning forces reduction of σ, the brane pictures appearing above (cylinder
and donut) apply to both F-theory and M-theory, while the string pictures (worldsheet
only) apply to both T-theory and S-theory.

F-symmetry has the Dynkin diagram [14]:

m ....
← (D′−1)→m

Y

} m
X

....
← (D−3)→m m

mM λ m mT
H-σ

mH
σ

D+D′ = 10 is the maximal case, which has 12 nodes. The black node is dropped unless
D′ = 0. Remove node M or T for M or T-theory, both for S-theory. Remove H for the
Hamiltonian subgroup of any of these Lagrangian groups. Y,X, λ (parameters forX’s gauge
invariance), σ, and H-σ are the nodes for their representations. The subgroup L of the F/L
coset is a Wick rotation of the maximal compact subgroup of F. (It also corresponds to
the covering group of the Lorentz group SO(D−1,1), but with twice the argument, due to
doubled spinor indices on supersymmetry. Embedding the SO(D,D) of Type II T-theory
in ED+1 was also considered in [21], but there ED+1 was considered as a symmetry of the
superstring supergravity of D+1, not D, dimensions.)

The effect of going from the Lagrangian formalism to the Hamiltonian is to eliminate
τ , and thus reduce the Lagrangian symmetry F to the Hamiltonian symmetry G, the sym-
metry of the background fields, which removes the last node on the right. Projecting from
Type II to Type I F-branes then distinguishes σ2 (parity changes signs for all worldvolume
coordinates except τ and σ2), knocking off the next node on the right, which breaks the
symmetry down to GFI = SO(D,D). Since the heterotic string contracts all but τ and σ2, it
maintains that symmetry. But Type I strings contract σ2 instead of σ1, killing the next node
on the right, further breaking the symmetry to GI = GL(D). Note that these reductions
in σ (d) drop nodes from the right, whereas reduction in X (D) drops nodes from the left.

The resulting string of cosets, from consecutively eliminating τ, σ1, σ2 from the sym-
metry, is

F
L →

G
H →

GFI
HFI

= SO(D,D)
SO(D−1,1)2

→ GI
HI

= GL(D)
SO(D−1,1) (2.3)

(For each of these cosets A/B, B is a Wick rotation of the maximal compact subgroup of
the split group A.)

It might seem strange that GFI/HFI is also G/H for Type II T-theory (both A and
B), until one remembers that the complete bosonic sector of N = 1 stringy supergravity
is the same as the NS-NS sector of N = 2, as easily seen from the heterotic construction:
vector × vector, no symmetrization. (If D 6= 3,4,6,10, there would also be scalars × vector,
since supersymmetry requires vector multiplet × vector.) The coset GI/HI is then the
coset of the NS-NS sector of Type I T-theory, namely just gravity + physical scalar (as the
determinant of the metric).

In the string frame for T-theory, the “dilaton” is an unphysical, compensating scalar
from ghost × ghost. In this reduction, applying parity to G/H restricts it to not just
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GFI/HFI, but also the dilaton, while not eliminating spacetime coordinates. Then, applying
sectioning reduces the spacetime coordinates, but for Type I simply breaks that coset into
the metric (the last coset) + the 2-form (but doesn’t break the coset for heterotic).

G
H → GL(1) SO(D,D)

SO(D−1,1)2
= dilaton⊕ GL(D)

SO(D−1,1) ⊕ 2-form (2.4)

Although the fields and number of coordinates are the same for Type I and heterotic T-
theories, the symmetries are different because different coordinates have been eliminated
in the sectioning.

Cosets of bosonic fields:

(i) G/H: type II F-theory

(ii) SO(D,D)/SO(D−1,1)2: type I F-theory, heterotic supergravity, NS-NS Type II T-
theory

(iii) GL(D)/SO(D−1,1): NS-NS Type I T-theory

For example:

D = 3: SL(6)
SO(3,3) →

SL(5)
SO(3,2) →

SL(4)
SO(2,2) = SO(3,3)

SO(2,1)2
→ SL(3)

SO(2,1) (2.5)

D = 4: SO(6,6)
SO(6,C) →

SO(5,5)
SO(5,C) →

SO(4,4)
SO(4,C) = SO(4,4)

SL(2,C)2
= SO(4,4)

SO(3,1)2
→ SL(4)

SO(3,1)
(2.6)

Couplings can be studied through these reductions, as vacuum values of compactifica-
tion scalars. Since the same coset fields appear as metrics for both the worldvolume and
spacetime, these scalars measure distances in both.

3 M-theory

Although we will concentrate on T-theory because it incorporates the greater number of
S-theories, we briefly divert to M-theory to see how the original Horǎva-Witten treatment
fits in. M-theory is best described [16] by a worldvolume theory where XM is a vector gauge
field, so it carries the same index as σM . (We can also include a dual X, related by a duality
constraint, useful for describing a background 6-form field.) Note that our arguments for
M-theory and its relation to T-theory can be applied all the way to the critical dimension.
(Because of the reliance on exceptional groups, detailed discussions for F-theory need to
be specialized for each D, and in this paper we concentrate on D = 3 for simplicity.)

The bosonic fields are then the metric GMN and 3-form AMNP , where the indices are
for GL(D+1). (We ignore the 6-form, which can be relevant in higher D: see the counting ar-
guments in appendix B.) Parity projection is easy to apply, as fixing σ2 fixes the correspond-
ing index on the fields. (Background fields don’t carry the τ index.) SeparatingM = (2,m)
for the GL(D) index m, we’re left with fields with even numbers of GL(D) indices:

Gmn , G22 = ϕ , A2mn = Bmn (3.1)
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We can call this theory M′-theory. It has the same σ’s and X’s as M-theory, but parity
projection has reduced the number of fields, and consequently reduced the coset space
from GL(D+1)/SO(D,1) to GL(D)/SO(D−1,1). Thus, although still a (D+1)-dimensional
theory, it has the symmetries of D-dimensional N = 1 supergravity. This is analogous to
the situation described by Horǎva and Witten, although our worldvolume is larger, and
X-parity projection is a consequence of σ-parity projection.

However, according to our picture, M′-theory can also be obtained by first applying
parity projection, and then S sectioning:

FII
P ↙ ↘ S

FI M
↘ ↙

M′

(3.2)

We next reduce to S-theory by applying U sectioning, the single constraint ∂MPM = 0.
To obtain a D-dimensional theory, this requires

∂MPM = 0⇒ ∂M = ∂2 , PM = Pm (3.3)

Thus the worldvolume is reduced to the worldsheet, while spacetime us reduced to D
dimensions, while the above massless background fields are retained. According to our
picture for parity preserving (τ, σ2) while contracting all the rest, this is (the supergravity
sector of) the heterotic string.

Other routes to heterotic S-theory will be described below. (N = 1 supersymmetric
S-theories follow from different orderings of application of P,S,U .)

4 T-theory

4.1 Type II

Before deriving Type I gravity (NS-NS sector) by P projection from Type II in T-theory,
we first review Type II [8, 22, 23]. Working in the Hamiltonian formalism, we express the
curved-space currents in terms of the flat-space currents as

.A = EA
M .̊M , E̊A

M = 1√
2

δma −ηam
δmā ηām

 (4.1)

where the flat index A = (a, ā) is in a left/right basis, while the curved index M = (m,m)
is in a co/contra-variant basis. (E̊ is the matrix that converts between the 2 bases. The
flat currents can be taken as .̊M = (Pm, X ′m) in a basis where X is not doubled.) The
SO(D,D) metric in these 2 bases is

ηAB =

ηab 0
0 −ηāb̄

 , ηMN =

 0 δnm

δmn 0

 (4.2)
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Since the concept of left and right will not survive in F-theory, we’ll generally work instead
in a co/contra-variant basis also for flat indices, A = (a, a). Then the metric is the same
for both flat and curved indices, and the flat vielbein is simply the identity, but the local
SO(D−1,1)2 transformations are more complicated (not block diagonal).

The orthogonality condition on E is

ηABEB
NηNM = EM

A (4.3)

in terms of its inverse. In a gauge that breaks SO(D−1,1)2 to the diagonal SO(D−1,1), a
convenient form for the solution to orthogonality for the section ∂m = 0, where e and B
have the usual gauge transformations, is

EA
M = ÊA

NBN
M =

ean 0
0 en

a

δmn Bnm

0 δnm

 =

eam ea
nBnm

0 em
a

 (4.4)

or for ∂m = 0 (with the T-dual gauge transformations),

EA
M =

ean 0
0 en

a

 δmn 0
Bnm δnm

 =

 ea
m 0

−Bmnen
a em

a

 (4.5)

To treat more general sections, or describe both at the same time, we’ll sometimes write
this as

EA
M =

ean 0
0 en

a

 δmn Bnm

Bnm δnm

 =

 ea
m ea

nBnm

−Bmnen
a em

a

 , BmnBnp = 0 (4.6)

(maintaining orthogonality).
In the absence of fermions, one can also work directly in terms of the metric

MMN = η̂ABEA
MEB

N , η̂AB =

ηab 0
0 ηāb̄

 (4.7)

This produces the usual

MMN =

 Gmn GmpBpn

−BmpGpn Gmn −BmpGpqBqn

 (4.8)

or (as follows from T-duality ∂m ↔ ∂m)

MMN =

Gmn −BmpGpqB
qn −BmpGpn

GmpB
pn Gmn

 (4.9)

and in the general case

MMN =

Gmn −BmpGpqB
qn GmpBpn −BmpGpn

GmpB
pn −BmpGpn Gmn −BmpGpqBqn

 (4.10)
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The gauge transformations are

δEA
M = λN∂NEA

M − EAN (∂NλM − ∂MλN ) (4.11)

with indices raised and lowered with η. The non-transport term is an orthogonal transfor-
mation, and so preserves orthogonality.

We then identify the scalar density dilaton as transforming so
∫

Φ2 is invariant,

δΦ = λM∂MΦ + 1
2Φ∂MλM (4.12)

After sectioning, the density Φ relates to a scalar ϕ as

Φ2 = ϕ2√−G (4.13)

Besides the NS-NS sector, described by the coset SO(D,D)/SO(D−1,1)2, and the ghost-
ghost sector described by the dilaton, the bosons also include the R-R sector, described by
an SO(D,D) Weyl spinor [21, 24–29]. It has its own gauge transformation and field strength

δR = γM∂MΛ , F = γM∂MR (4.14)

where the SO(D,D) γ-matrices satisfy

{γM , γN} = 2ηMN (4.15)

(since (γM∂M )2 = � = 0 is the section constraint). Its coordinate transformation can
then be written gauge covariantly (a simple way to derive the noncovariant form) as

δR = 1
2(γMλM )F = (δ0 + δ1)R (4.16)

where

δ0R = λM∂MR+ 1
4γ

[MγN ](∂MλN )R+ 1
2(∂MλM )R , δ1R = −1

2γ
M∂M (γNλNR) (4.17)

with a usual tensor density transformation δ0 plus a gauge transformation piece δ1. Since
the R-R fields are weight 1

2 , their (quadratic) action is already weight 1 without coupling
to the dilaton Φ (also weight 1

2).
This spinor gauge field resembles the coordinates X of 4D F-theory [10]. On section-

ing, the resulting formalism for bispinors resembles that of the so-called “Dirac-Kähler”
formalism [30–33].

4.2 3D

For the case D = 3, we can use “spinor notation”, and replace A (and M) of SO(3,3) (A =
1-6) with [AB] of SL(4) (A = 1-4), to avoid introducing too many new kinds of indices. In
this notation γ-matrices, the flat-space metric, and the Levi-Civita tensor of SO(3,3) are
all expressed in terms of Kronecker δ’s and the ε-tensor of SL(4):

γ
[AB]
CD = δ

[A
C δ

B]
D , γ[AB]CD = εABCD (4.18a)

η[AB][CD] = εABCD , ε[AB][CD][EF ][GH] = ε[A[C[E[GεH]F ]D]B] (4.18b)
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Then for the coset of NS-NS fields it’s useful to work with the 4-representation E of
SL(4) instead of the 6-representation E:

EAB
MN = E[A

MEB]
N (4.19)

especially for later embedding in the SL(5) of F-theory.
The coordinate transformations are then

δEAM = 1
2λ

NP∂NPEAM − EAN
(
∂NPλ

MP − 1
4δ

M
N ∂PQλ

PQ
)

(4.20a)

δΦ = 1
2λ

MN∂MNΦ + 1
4Φ∂MNλ

MN (4.20b)

δRM = 1
2λ

NP∂NPRM + (∂MPλ
NP )RN (4.20c)

The non-transport term on E is an SL(4) transformation. (Note that for R we have
∂MPλ

NP = (∂MPλ
NP − 1

4δ
N
M∂PQλ

PQ) + 1
4δ
N
M∂PQλ

PQ.) We also have the R-R gauge
transformations

δRM = ∂MNΛN (4.21)

We can again derive the R coordinate transformations from the gauge covariant version,

δRM = 1
2λ

NPFMNP , FMNP = 1
2∂[MNRP ] (4.22)

or similar expressions with FM = 1
6ε
MNPQFNPQ.

It’s convenient to decompose indices as

V[AB] = (V1a, V[ab]) ≡ (Va, εabcV c)→ (Va, V a) (4.23)

and similarly for curved indices, where A = (1, a), a = (2, 3, 4). This gives the desired form
of the SO(3,3) metric

V 2 = 1
4ε

ABCDVABVCD → 2V aVa (4.24)

This allows us to straightforwardly identify components of E with those of E, and we find

EAM =


1 m

1 e1/2 e1/2 1
2ε
mnpBnp

a −e−1/2ea
m 1

2εmnpB
np e−1/2ea

m

 (4.25a)

=

e1/2 0
0 e−1/2ea

n

 1 1
2ε
mpqBpq

−1
2εnpqB

pq δmn

 (4.25b)

with a gauge condition again breaking SO(2,1)2 to SO(2,1).
Under this decomposition, the R-R gauge transformations branch into

δRm = ∂mΛ + εmnp∂
nΛp , δR = ∂mΛm (4.26)
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Depending on how we section to S-theory (which X’s survive, xm or xm), this identifies
these fields as either

∂m : Rm = 1-form , R = 3-form (IIA) (4.27a)
∂m : Rm = 2-form , R = 0-form (IIB) (4.27b)

This illustrates that both theories arise from different choices of section of the same theory
(and the fact that T-duality relates them).

To avoid redefining the NS-NS fields (and switching up and down indices), one can
also start with different chirality spinors, and section the same way:

RM ⇒ Rm = 1-form , R = 3-form (IIA) (4.28a)
RM ⇒ Rm = 2-form , R = 0-form (IIB) (4.28b)

(with corresponding changes in the gauge transformations from RM to RM ). But F-theory
doesn’t prefer this.

A third alternative is to introduce both RM and RM , and relate them by duality.
Since this is enforced via field equations, it requires introduction of the bosonic coset: in a
flat background, the condition would break SO(D,D) to SO(D−1,1)2 (just as selfduality of
vectors in 4D N = 8 supergravity requires the bosons to avoid breaking E7 to SU(8) and
GL(4) to SO(3,1)).

Although SO(2,1) spinors aren’t chiral, SO(3,3) are, so in this way there can be 2
sections of Type II T-theory to S-theory.

4.3 Type I

We now impose also parity projection on both G = SO(D,D) and H =
SO(D−1,1)L×SO(D−1,1)R, where the parity matrix P in both bases is

PAB =

 0 δb̄a

δbā 0

 , PMN =

δnm 0
0 −δmn

 (4.29)

(clearly switching L and R, and changing σ → −σ), and parity projection on E and an
element of the H gauge group Λ is

PABEBNPNM = EA
M , PACΛCDPDB = ΛAB (4.30)

(It’s actually easier to solve P projection before orthogonality.) The combination of these
2 conditions, besides identifying the L and R parts of H, also constrains

EA
M = 1

√2

eam −ema
ea
m ema

 (4.31)

in the mixed basis or

EA
M =

eam 0
0 em

a

 (4.32)
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in the co/contra-variant basis for both. So the coset is reduced to GL(D)/SO(D−1,1) of
ordinary gravity.

Then

ηMη = M−1 , PMP = M ⇒MMN =

Gmn 0
0 Gmn

 (4.33)

Parity projection on R in components (or the Ramond-Neveu-Schwarz formalism) is
not so transparent: on field strengths, one simply antisymmetrizes on left and right spinor
indices. (NS-NS fields are symmetrized in vector indices, R-R are antisymmetrized in
spinor indices, according to graded symmetrization.) On the other hand the physical,
transverse R-R degrees of freedom are given by antisymmetrizing spinor indices of the little
group. However, since F-theory unifies NS-NS and R-R fields into a single gauge field, the
procedure there is straightforward, as we’ll see below, and the decomposition of F Type I
to T Type I will illustrate the R-R projection. The reason for the difference is that branes,
unlike the string worldsheet, can carry R-R charges, so background fields must include
the gauge fields explicitly. (In [23] extra currents for R-R charges were introduced into
T-theory. These currents are automatically incorporated in F-theory, as part of the same
exceptional symmetry representation that includes the currents for the NS-NS “charges”:
all bosonic currents are “unified”.)

Note that in D = 3, the R-R field strength in Type I is given by antisymmetrizing
2-valued spinor indices of SO(2,1), and thus a scalar, which is the same as a 3-form, the
field strength of a 2-form. On the other hand, the physical R-R degrees of freedom are
given by antisymmetrizing 1-valued spinor indices of SO(1), which gives nothing, because
a 2-form has none.

5 3D F-theory

5.1 Type II

For F-theory we again look at the simple case of D = 3, which is actually simpler than the
general T-theory case.

The solution to the generalized orthogonality condition [9]

EAB
MN = E[A

MEB]
N (5.1)

is simply the statement that the (inverse) worldvolume vielbein E is just a different
SL(5)/SO(3,2) representation of (the bosonic part of) the spacetime vielbein E (∂M =
∂/∂σM ):

.AB = 1
2EAB

MN .̊MN , DA = EMA∂M (5.2)

The gauge transformation is

δEAM = 1
2λ

NP∂NPEAM − EAN
(
∂NPλ

MP − 1
5δ

M
N ∂PQλ

PQ
)

(5.3)

The non-transport term is SL(5).
The goal is to reduce Type II F-gravity to Type I and heterotic T-gravities. The

procedure we described was:
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(1) First parity project Type II F-theory with respect to all σ but σ2 to Type I F-theory.

(2) (U -)Section to preserve σ1 as the surviving σ for Type I T-theory and σ2 for heterotic.

However, the simplest way to find these theories is to instead

(a) First apply σ2-preserving sectioning to Type II F-gravity, producing the known Type
II T-gravity (NS-NS and R-R sectors).

(b) Then parity project by reflecting all but σ2 labels for heterotic or σ1 labels for Type
I. (This is a reversal of the labeling of σ1 and σ2 for the Type I case.)

FII
P ↙ ↘ U

FI TII
↘ ↙
TI, TH

(5.4)

In this subsection, we apply the first step, finding Type II T-gravity. For D = 3, this
means separating the indices as A → (2, a) (a = 1, 3, 4, 5), thus separating E into NS-NS,
R-R, and dilaton fields, as the SL(4)/SO(2,2) fields described above.

We then drop all X [MN ]’s with M or N = 2. Looking at the F-gravity coordinate
transformation, for the moment we can ignore the transport term λ·∂ and density term ∂ ·λ.
We then see that dropping ∂2m implies that fixing the Lorentz gauge E2

m = 0 is preserved
by the coordinate transformation, while breaking SO(3,2)→ SO(2,2). We next identify the
dilaton Φ as the only scalar (density, with the appropriate weight), Eam ∈ SL(4)/SO(2,2) in
the defining representation, and the R-R field Rm as a spinor, all transforming as expected
for Type II T-gravity: as above,

δEam = 1
2λ

np∂npEam − Ean
(
∂npλ

mp − 1
4δ

m
n ∂pqλ

pq
)

(5.5a)

δΦ = 1
2λ

mn∂mnΦ + 1
4Φ∂mnλmn (5.5b)

δRm = 1
2λ

np∂npRm + (∂mpλnp)Rn + ∂mnλ
n2 (5.5c)

The result is

EAM =
( 2 m

2 Φ4/5 0
a Φ−1/5EamRm Φ−1/5Eam

)
=

Φ4/5 0
0 Φ−1/5Ean

 1 0
Rn δ

m
n

 (5.6)

Then

EAB
MN = E[A

MEB]
N =

( 2m mn

2a Φ3/5Eam 0
ab Φ−2/5Eab

mnRn Φ−2/5Eab
mn

)
(5.7)

where Eabmn = E[a
mEb]n ∈ SO(3,3)/SO(2,1)2 in its defining representation. E is more con-

venient for algebra, but E relates more to general D. In particular, a similar decomposition
was found in [23], where currents coupling to R-R charges were added to 10D T-theory.

This Eabmn appears as the same type of coset in Type I F-theory, but X and σ are
bigger.
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5.2 Type I and heterotic

To be slightly more general (for later applications), we examine the coset GL(N)/SO(N)
(without regard to signature), and consider a parity transformation that changes an arbi-
trary number of signs n,

P =

I 0
0 −I

 (5.8)

Then

P

a b
c d

P =

a b
c d

⇒ b = c = 0 (5.9)

simply forces the matrix to be block diagonal. (This is also clear from the index structure.)
Thus

GL(N)
SO(N) →

GL(N−n)GL(n)
SO(N−n)SO(n) (5.10)

In the present case, this means

SL(5)
SO(3,2) →

SL(4)
SO(2,2)GL(1) (5.11)

Applying this restriction to the above Type II expressions,

EAM =
( 2 m

2 Φ4/5 0
a 0 Φ−1/5Eam

)
(5.12)

and

EAB
MN = E[A

MEB]
N =

( 2m mn

2a Φ3/5Eam 0
ab 0 Φ−2/5Eab

mn

)
(5.13)

Since the heterotic coset is the same as Type II T-theory (NS-NS sector), identifying
σ2 as the surviving σ produces a T-theory action identical to that for the NS-NS sector
of Type II [8], as expected, since NS-NS is the entire bosonic sector of heterotic string
supergravity (neglecting the Yang-Mills supermultiplets).

To compare Type I T-theory to heterotic, we perform the same decomposition as for
Type II T-theory, distinguishing the “1” label from the remaining. Combining the above
results for F II → T II and T II → ordinary fields, (now m = 3, 4, 5)

EAM =


2 1 m

2 Φ 0 0
1 e1/2(R1 + 1

2ε
mnpBmnRp) e1/2 e1/2 1

2ε
mnpBnp

a e−1/2ea
m(Rm − 1

2εmnpB
npR1) −e−1/2ea

m 1
2εmnpB

np e−1/2ea
m

 Φ−1/5

(5.14)
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with (R1, Rm) as either odd (1 and 3) forms for IIA (Bmn = 0) or even (0 and 2) for IIB
(Bmn = 0) upon reduction to S-theory:

R1 + 1
2ε

mnpBmnRp =

ε
mnp

(
1
6Cmnp + 1

2BmnAp
)

(IIA)
ϕ̃ (IIB)

(5.15a)

Rm −
1
2εmnpB

npR1 =

Am (IIA)
1
2εmnp(B̃

np −Bnpϕ̃) (IIB)
(5.15b)

We then drop all components of EAM with an odd number of A andM = 2 for heterotic
or 1 for Type I. Thus both N = 1 theories have eam and Φ, but heterotic has Bmn while Type
I has B̃mn. As we already saw in Type II T-theory, coordinate transformations required
that B (NS-NS) couples to the dilaton Φ, while B̃ (R-R) doesn’t. (But the dilaton doesn’t
appear as an independent field in F-theory or M-theory, as is the case in 11D supergravity.)

Parity projection is with respect to both indices and coordinates: this picks out IIB
rather than IIA, which we have distinguished in the 3D case with respect to coordinate
dependence.

The fact that Type II supergravity can be projected in 2 different ways to get either
Type I or heterotic supergravity is not new. What is new is that Type II F-theory can be
projected to get Type I F-theory, which has 2 different sections that describe either Type
I or heterotic string theory.

5.3 Stringy supergravities

Besides being simpler than their 10D analogs, in 3D (1) N = 2 is nonmaximal, so the
supermultiplet is reducible, and (2) auxiliary fields and superspace formulations are known.

The Type IIA theory is known from M-theory (4D N=1 supergravity with a 3-form
gauge auxiliary) and T-theory [34], F-theory [35], and our rederivation above: N = 2
supergravity coupled to a vector-tensor multiplet. The dimension-0 field content is the
graviton and differential forms,

ea
m , ϕ , Am , Bmn , Cmnp (5.16)

(The fermions are the usual gravitini and spin- 1
2 . The dimension-1 non-gauge auxiliary

fields are a vector and scalars.) This separates into fields for pure supergravity

ea
m , Cmnp (5.17)

and the matter multiplet
ϕ , Am , Bmn (5.18)

The reduction of N = 2 supergravity to N = 1 is unique (drop C), but the vector-tensor
multiplet breaks into an N = 1 vector multiplet

Am (5.19)

and an N = 1 tensor multiplet
ϕ , Bmn (5.20)

– 16 –



J
H
E
P
0
4
(
2
0
2
2
)
0
7
3

By the usual construction of heterotic supergravity as vector × vector multiplet without
symmetrization, its content is

ea
m , ϕ , Bmn (5.21)

using the tensor multiplet.
On the other hand (chirality) Type IIB, as described above, uses for the N = 2 matter

a variant of the scalar multiplet: the total dimension-0 field content

ea
m , ϕ , ϕ̃ , Bmn , B̃mn (5.22)

divides up into that for N = 1 supergravity

ea
m (5.23)

and for matter
ϕ , ϕ̃ , Bmn , B̃mn (5.24)

That latter branches into 2 N = 1 tensor multiplets

ϕ , Bmn ; ϕ̃ , B̃mn (5.25)

As we saw above, Type I then chooses 1 of these multiplets, using the same scalar (dilaton)
as heterotic, but a different 2-form.

In summary, we have from Type II theories to Type I theories in the D = 3 case:

Type II Type I
st wv coset+ fields P(arity) coset+ fields

XMN σM , τ EA
M σ2 → σ2 Ea

m,Φ
F M = 1-5 M = 1-5 SL(5)

SO(3,2) A,M = 1-5 σm → −σm
SL(4)

SO(2,2) a,m = 1, 3, 4, 5
10 5 + 1 14 m = 1, 3, 4, 5 +1 9 + 1
XM σM , τ eA

M , AMNP σ2 → σ2 ea
m, ϕ,Bmn

M M = 1-4 M = 1-4 GL(4)
SO(3,1) A,M = 1-4 σm → −σm

GL(3)
SO(2,1) a,m = 1, 3, 4

4 4 + 1 +4 10 + 4 m = 1, 3, 4 +1 + 3 6 + 1 + 3
XMN σ, τ EAB

MN ,Φ, RM ea
m, ϕ,Rm

T M = 1-4 O(3,3)
SO(2,1)2 A,M = 1-4 σ → −σ GL(3)

SO(2,1) a,m = 1, 2, 3
6 1 + 1 +1 + 4 9 + 1 + 4 +1 + 3 6 + 1 + 3

(5.26)

All the different theories can now be represented as
FII FI

TII TI/TH

M M'

SII(A/B)
SI/SH

𝓢
𝓟

𝓤
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For clarity, we haven’t split some theories, and therefore didn’t indicate that (1) M → SIIA
only, (2) M′ → SH only, and (3) only SIIB → SI/SH. We can also just list the theories by
which combinations of P,S,U have been applied:

— FII
P FI
S M
U TII
P,S M′

P,U TI/TH
S,U SII(A/B)
P,S,U SI/SH

(5.27)

6 Conclusions

There are a number of topics for further study:

(1) We have assumed a restricted topology. For σ1 and σ2, we considered only cylinders
(open branes) and donuts (closed branes), which are the only orientable surfaces with
vanishing Euler number. This implies some kind of constraint on curvature. We also
assumed tori with respect to the remaining worldvolume dimensions, but did not
make an explicit application.

(2) There are some results that will probably require quantization and consideration of
anomalies: e.g., opposite chirality of Θ and internal degrees of freedom, and choice of
Yang-Mills symmetry groups. (Previously we have quantized only indirectly by first
reducing to S-theory.)

(3) In particular, what precludes the existence of E8× E8 Type I superstrings, since the
corresponding open F-brane is apparently the origin of the corresponding heterotic
superstring?

(4) Alternatively, might the Yang-Mills symmetry groups follow as solutions of the quan-
tum corrected background field equations for the metric of the 496 scalars? Quan-
tum F-theory isn’t yet understood (except on sectioning to S-theory), but maybe
some semiclassical arguments would suffice. Alternatively, the usual determination
by anomalies would require only the massless sector of F-theory.

(5) What are symmetry relations or dualities between Type I and Type II branes? Can
symmetry breaking be attributed to super-Higgs? What’s the relation to the bound-
ary currents?

(6) What are symmetry relations or dualities between open and closed Type I branes?
In particular, how can supergravity come from not only closed branes (Type I super-
strings), but also open (heterotic superstrings)?
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In future papers we plan to address these questions, as well as give details on

(a) the worldvolume formulation,

(b) the F-gravity action,

(c) the D = 4 case, and

(d) seeing if the reduction of the symmetry groups from exceptional groups to SO(D,D)
allows a simple treatment of the general case.
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A Cosets

The cosets F/L for the Lagrangians and G/H for the Hamiltonians are [14]:

F
τ ↙ ↘ |0〉

G L
↘ ↙

H

D d F G L H
0 2 GL(2) GL(1) GL(1,C) I
1 3 GL(3) GL(2) GL(2) SO(1,1)
2 4 SL(4)SL(2) SL(3)SL(2) GL(2)2 GL(2)
3 6 SL(6) SL(5) GL(4) Sp(4)
4 12 SO(6,6) SO(5,5) GL(4,C) Sp(4,C)
5 56 E7(7) E6(6) U*(8) USp(4,4)
6 ? ? E7(7) U*(8)2 SU*(8)
7 ? ? E8(8) U*(16) SO*(16)

(A.1)

(Reduction from Lagrangian to Hamiltonian is indicated by τ , spontaneous symmetry
breaking by the vacuum |0〉.) The question marks are for infinite-dimensional extended Lie
algebras, as indicated by the Dynkin diagram in the main text.

B F → T and M

We present here a counting comparison of the fields in Type II F-theory, from G/H, and
T-theory, from SO(D,D)/SO(D−1,1)2 = D2 (NS-NS) + SO(D,D) Weyl spinor = 2D−1 (R-
R). The discrepancy is attributed to the dilaton (compensating) multiplet, which comes
from the ghost-ghost sector. We also include M-theory, as vielbein GL(D+1)/SO(D,1) +

– 19 –



J
H
E
P
0
4
(
2
0
2
2
)
0
7
3

3-form + 6-form in 1 extra dimension.
D F T M
0 1 − 0 = 1 0 + 0 = 0 1 + 0 = 1
1 4 − 1 = 3 1 + 1 = 2 3 + 0 = 3
2 11 − 4 = 7 4 + 2 = 6 6 + 1 = 7
3 24 − 10 = 14 9 + 4 = 13 10 + 4 = 14
4 45 − 20 = 25 16 + 8 = 24 15 + 10 = 25
5 78 − 36 = 42 25 + 16 = 41 21 + 20 + 1 = 42
6 133 − 63 = 70 36 + 32 = 68 28 + 35 + 7 = 70
7 248 − 120 = 128 49 + 64 = 113 36 + 56 + 28 = 120

(B.1)

Note that the M-theory counting agrees with F except for D = 7 (lacking an SO(7,1)
vector), and T lacks only the dilaton for D < 6 (D = 6 needs an extra scalar, D = 7 an
extra SO(7,7) vector).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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