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Locating pressure and temperature conditions relevant to concurrent diamond-anvil-cell (DAC) experi-
ments is imperative for the discovery of new high-pressure nitrogen-rich compounds. In this work we
provide a pressure-temperature phase diagram of the iron-nitrogen system for pressures up to 200 GPa and
temperatures up to 4000 K through a combination of Density Functional Theory computations and ther-

modynamic calculations. The work includes an assessment of the chemical potential of nitrogen and its
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change at high pressure and high temperature. We deliver stability fields of various Fe-N compounds in the
presence of excess nitrogen. Our results are in agreement with recent synthesis of FeN, and FeN4, and
predict a hitherto unknown FeNg attainable at 100 GPa and 1500 K.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A variety of new nitrogen-rich compounds of main group ele-
ments and transition metals have been synthesized over the last two
decades [1-12]. Advances in experimental techniques to attain high
pressure/high temperature (HPHT) conditions facilitate this pro-
gress, in good parts driven and supported by computational studies
[1,13-15]. New transition metal nitrogen (TM-N) compounds include
nitrides [3], pernitrides [16], mixed nitride-pernitrides, compounds
comprising complex polyatomic nitrogen anions, and compounds
with extended anionic nitrogen chains [7].

The iron-nitrogen system is particularly relevant to industrial
applications [17] as well as to planetary cores [18-22]. Binary Fe-N
compounds synthesized at ambient pressure include crystalline
structures of Fey4N, FesN, and Fe,N [23-25]. Recently, more ni-
trogen-rich compounds FesN,, FeN, FeN,, and FeN, have been syn-
thesized at high pressure and high temperature [7,26-30]. Much
computational work has been devoted to investigate these and to
identify further Fe-N polymorphs. This includes structures of FeyN,
FesN, FesNs, Fe;Ns, FesN, FeN, FeN,, FeNy, FeNg FeNg, and FeNjg
[31-36]. Computed data has been used to construct composi-
tion-formation enthalpy convex hulls of the Fe-N system for pres-
sures up to 300 GPa, and based on those several phase transitions of
nitrogen-rich Fe-N compounds have been proposed [32,33,37]. For
instance, the most favorable structure of FeN at ambient pressure is
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a ZnS-type structure (sp.gr. F4-3m (216)), which transfers to a NiAs-
type structure (sp.gr. P65/mmc (194)) at about 24 GPa. The NiAs-type
of FeN exhibits remarkable magnetic properties even at high pres-
sure [38]. At 79 GPa a MnP-type structure of FeN (sp.gr. Pnma (62))
then becomes preferred. A marcasite-type structure of FeN, (sp.gr.
Pnmm (194)) was proposed to become accessible above 22 GPa, and
a FeNy4 (sp.gr. P-1 (2)) with unprecedented structure above 30 GPa
[32,33,37]. Notably, both compounds FeN, and FeN, were subse-
quently synthesized in high pressure experiments [7,28,29]. Other
Fe-N polymorphs proposed to be attainable up to 300 GPa include
FesNg, FeNs, FeNg, and FeNg [32,33,37].

The target of our contribution is to explore thermodynamic sta-
bility of Fe-N compounds at experimental conditions and, thus, to
provide a useful guide for experimentalists. In a typical high pres-
sure synthesis experiment iron is placed into a diamond anvil cell,
which is then loaded with nitrogen [7,39]. Excess nitrogen in the cell
acts both as pressure transmitting medium as well as reactant. After
compression to a desired pressure, the iron is heated by irradiation
through a laser-heating system to overcome activation barriers and
enable reactions with nitrogen at high pressures. To achieve our
goal, we combine quantum-chemical and thermodynamic calcula-
tions to provide a pressure-temperature phase diagram of Fe-N
under excess nitrogen. The phase diagram predicts synthesis con-
ditions of thermodynamically stable Fe-N phases accessible through
DAC experiments using nitrogen as pressure medium.
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Fig. 1. The iron-nitrogen pressure-temperature phase diagram computed by combining of first principles (SCAN functional) and thermodynamic calculations. Experimental
conditions reported for the formation of FeN, [7,28] and of FeN4 [7,29] are indicated by crosses and circles, respectively.

2. Computational method

All calculations of total energy are performed within Density
Functional Theory (DFT) as implemented in Vienna Ab-initio
Simulation Package (VASP) [40-43]. We use pseudopotentials based
on the projector-augmented-wave (PAW) method [44,45]. We apply
strongly constrained and appropriately normed semilocal density
functional (SCAN) [46]. With the goal to predict phase boundaries at
temperatures well above 1000 K, we do not explicitly search for
magnetic order. Hence, calculations are performed without spin-
polarization. The Brillouin zone of each structure is sampled by k-
point meshes with grid sizes smaller than 0.03 A™'. All calculations
depend on well forces converged to better than 1 meV/A with a
plane wave cut-off energy of (500 eV) which yields energy and en-
thalpy differences between structures converged to better than
1 meV per atom.

We started our endeavor by computing Fe-N structures reported
previously [7,26,28,29,37,47|. We then used the Universal Structure
Predictor Evolutionary Xtallography (USPEX) [48] code to identify
known and to locate potential new polymorphs. For the structure
searches by USPEX we start with variable composition searches at
80 GPa to identify potential compositions with high nitrogen con-
tent. Ensembles of 50 structures are followed for 20 generations. For
each new generation, 40% of structures are taken by heredity, 20%
randomly, 20% through lattice mutations, and 20% by atom mutation.
This process is repeated with new seed structures 20 times. Pro-
mising compositions - identified by negative enthalpy of formation
(from elements and/or from neighboring compositions) at least at
some pressure - are followed in more detail with searches at con-
stant composition. This includes compositions with high nitrogen
content such as FeN,, FeNg and FeNg. We search crystal structures
with at least 20 atoms in their primitive unit cell and perform (at
least each 20 independent) searches at 40, 80, 120, and 160 GPa.
Ensembles of 15-25 structures are evolved for up to 45 generations
(50% heredity, 10% random, 20% lattice mutations, 20 at. mutations).
We augmented the structure data base by models obtained earlier
for different transition metal nitride compounds [49]. The most ni-
trogen-rich composition we studied was FeNqq. It turns out that all
structures encountered in this study have been reported before, with
exception of a new polymorph of FeNg.

Enthalpy-pressure data of every structure is acquired using
standard techniques described earlier [50]. In brief: energy-volume
data of each structure is converted to enthalpy-pressure data by

numerical differentiation. For all reaction involving solid state
structures the enthalpy of reaction AH is equated to reaction Gibbs
energies AG, because entropy changes that contribute to AG are
much smaller than changes of AH within a few GPa of pressure. For
reaction involving nitrogen, we augment reaction Gibbs energies AG
with chemical potential changes of nitrogen, Au(p,T), as outlined in
previous studies [51,52]. Experimental data of An(p,T) for nitrogen is
available for low pressures from the freezing point to 4000 K [53].
The data is extrapolated to high pressure and high temperature
using the “moderate extrapolation” for fugacity of nitrogen [51]. As
result we obtain quantitative data of chemical potential for every
phase system and can compare reaction Gibbs energies at high
pressure and high temperature conditions. Note that the approach
assumes the presence of an excess of nitrogen as reactant, hence it
applies to a standard experiment in a diamond-anvil-cell (DAC)
loaded with nitrogen. The approach has shown good agreement
between experiment and calculations for several systems to at least
80 GPa [52,54]. For instance, it provides a rational for the simulta-
neous appearance of TisN4 and TiN, within a temperature range
between 1800 and 2400 K at 74 GPa [52,55,56].

3. Results and discussion

The computed pressure-temperature (p,T) phase diagram for the
Iron-Nitrogen system is shown in Fig. 1. It is a result of combining
first-principles computations of crystal structures with thermo-
dynamic calculations addressing the chemical potential of nitrogen.
We emphasize that the phase diagram as shown applies to an ex-
periment carried out under the condition of excess nitrogen.

At low pressure the computed Fe-N phase diagrams displays
perovskite-type y'-Fe4N, which is commonly observed at ambient
conditions [23]. Increasing pressure yields Fe;Ns3, with a stability
field ranging up to 25 and 50 GPa at 3000 and 4000 K, respectively.
At such high temperatures magnetism is not expected to play a role,
and, consequently, we obtain the orthorhombic structure (sp.gr.
Amm?2 (38)) being preferred over e-Fe;N3 in non-magnetic calcula-
tions. The thermodynamical stability of Fe;Ns; then prevents ap-
pearance of orthorhombic ¢-Fe,N. This Fe,N phase was synthesized
at 10 GPa at 1800 K using diamond anvil cell and laser heating [30].
The next phase we find to become thermodynamically stable in the
presence of excess nitrogen, albeit with a very small stability range,
is FesN,-II (sp.gr. Fdd2 (43) [57]). This polymorph of FesN; has not
been observed in experiments. However, FesN,-I (sp.gr. Pnma (62))
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Fig. 2. Convex hulls for the Fe-N system at 0, 40, 80, 120,160 and 200 GPa. The diagram on the left refers to formation enthalpy (AH, in eV/atom). On the right the diagram refers to
formation Gibbs energy (AG, in eV/atom) at 2500 K. Phases stable against decomposition into any of its neighboring phases are indicated by filled symbol.

was synthesized at 50 GPa and 1990K [7]. We find that FesN,-I is a
high-pressure phase of FesN; and will follow FesN,-II as the most
favorable FesN, structure at 80 GPa. In our computed phase diagram
FesN,-I does not appear, since at high pressures it is surpassed by
phases with higher nitrogen content, FeN, FeN,, and FeN4. We note
that at temperatures above 3000 K and pressures between 30 and
70 GPa FeyN3 (sp.gr. Imm2 (44)) emerges [35]. The well-known FeN
(sp.gr. P63/mmc (194); NiAs-type) follows next. This structure has
emerged in various experiments at conditions ranging from 10 to
130 GPa and temperatures from 1300 to 2000K [7,26,27,39]. We
compute its stability range to be smaller, for instance between 10
and 20 GPa at 2000K. A large part of the phase diagram then is
occupied by FeN, (sp.gr. Pnmm (194)) with marcasite-type structure.
At 2000 K we compute it to be the thermodynamically most favor-
able Fe-N compound between 20 and 60 GPa. In experiments this
phase was attained at 58.5 GPa and 2100K [7], but also at 72.5 GPa.
Both these experimental conditions are located within the computed
stability field for FeN,. At 2000 K and above 60 GPa the only other
structure appearing is FeN4 (sp.gr. P-1 (2)). This phase has been
synthesized at more extreme conditions in experiments, 135 GPa and
2000K [7,29], and 180 GPa and 2700 K [ 7]. We have indicated data of
reported experimental conditions for the syntheses of FeN; and FeN,
in Fig. 1. At temperatures below 2000 K and high pressures we find
several Fe-N compounds with high nitrogen content displaying in-
finite nitrogen chains. A small stability range is indicated for
monoclinic FeNg (sp.gr. C 2/m (12)), a structure predicted earlier
[37,58]. At higher pressures FeNg (sp.gr. (P-1 (2) [59])) emerges. This
new structure bears similar features - an infinite N-chain and Fe-
Ng-octahedrons - as the previously suggested modification of FeNg
[37]. However, the coordination environment of Fe is more regular,
causing this structure to be lower in enthalpy for all pressures we
computed. Finally, we include FeNyq (sp.gr. Immm (71) [60]), a
structure that was first predicted for HfNg-N; and then synthesized
for ReNg-N1g and WN3g-N, [49,61 ]

Previous computational studies in the Fe-N system delivered
thermochemical data that was conveniently displayed using the
concept of a convex hull [32,33,37]. Note that a typical convex hull in
high-pressure science data is based on composition-formation en-
thalpy data obtained at zero K. Consequently, whenever such dia-
grams are used to infer “thermodynamic stability” of compounds,
the impact of temperature or excess nitrogen is not included in
considerations. Using the approach outlined above it is straight
forward to attain convex hulls based on Gibbs energy, explicitly in-
cluding temperature and presence of nitrogen. In Fig. 2 we compare

both types of convex hulls, one based on enthalpy and the other
based on Gibbs energy at 2500 K. Evidently, the most significant
difference between the two diagrams is that several nitrogen-rich
Fe-N phases - in particular FeNg, FeNg, and FeN;y — are not ther-
modynamically stable at high pressure at 2500 K. In general, tem-
perature shifts the appearance of a phase on the convex hull
(indicating thermodynamic stability) towards higher pressure. This
can be seen for FeN4, which appears at 40 GPa on the enthalpy-based
convex hull, while it requires more than 80 GPa to appear in the
corresponding diagram based on Gibbs energy at 2500 K. A convex
hull based on Gibbs energy, therefore, has more predictive power in
identifying thermodynamically stable nitrogen-rich phases at the
given conditions in the presence of excess nitrogen.

Phase diagrams as that shown in Fig. 1 display phases with
minimum Gibbs energy at a given p,T-condition. Unfortunately, they
do not reveal competitive phases, nor do they provide error bars or
uncertainties in phase boundaries. Such information, however, can
be very helpful to rationalize experimental results. For instance, si-
multaneous appearance of TisN4 and TiN, in the same DAC experi-
ment can be related to small differences in Gibbs energy between
the two phases at 74GPa and 2000K [52,55,56]. Therefore, we
provide relative Gibbs energy versus temperature data (AG-T) and
relative Gibbs energy versus pressure data (AG-p) for Iron-Nitrogen
phases. Effectively, these are “slices” cut through the manifold of
G(p,T) data of all structures at constant p or at constant T, respec-
tively. AG-T data at constant p may be particularly helpful for ex-
perimentalists, since in many experiments pressure is first set to a
desired level, and only thereafter is Laser-heating applied to increase
temperature.

In Fig. 3 (right) we present AG-T of Fe-N compounds at 58.5 GPa.
Each line represents the Gibbs energy relative to FeN, for a system
comprised of a structure with given composition plus appropriate

amounts of nitrogen. The sequence of structures computed at
) 1200K 1340K 2000K 3120K
585GPa then is FeNg — FeNg — FeN; — FeN, — FeN

3710K 3935K . e
— Fe4yN; ~> Fe;Ns, with the temperature of transition indicated

above the arrow. Hence, computed data suggested that FeN, structure
will be favorable between 2000 and 3120 K. The maximum driving
force AG to attain the structure is at 2380K, when it is favored by
about 0.6 eV/[FeN, over its closest competitor FeN. Likewise, Fig. 3 (left)
shows AG-p of Fe-N compounds at 2380 K. We find the sequence of.
¥ — FeaN 25" FesNg "*27 FesNp-1l P2 FeN 75" FeN, P57 FeN, The
thermodynamic stability of FeN, at 2380 K ranges from 26 to 85 GPa,
with maximum AG of about 0.6 eV/FeN, relative to its competitor FeN,4
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Fig. 3. (Left side of legend) Relative Gibbs energy versus pressure, AG-p, of Fe-N phases in excess nitrogen at 2380 K. (Right side of legend) Relative Gibbs energy versus
temperature, AG-T, of Fe-N phases in excess nitrogen at 58.5 GPa. Symbols in the respective diagrams refer to structures listed in the boxed legend. Note that in each diagram

energy refers to an overall composition FeN,.

found at 58 GPa. We note that such data can be used to identify op-
timum p,T-conditions to synthesize a compound. And indeed, FeN,
was synthesized using laser heated diamond anvil cell at pressure of
58.5 GPa and temperature between 2100 + 200K [7] - auspiciously
close to the computed optimum conditions. A similar analysis (not
shown here) yields a maximum driving force at 2340 K and 135 GPa to
synthesize FeN, —- for which experimental conditions of 135 GPa and
temperatures above 2000 K have been reported [7].

Favorable reaction kinetics will be required to synthesize FeNg
with its structure displaying infinite chains of nitrogen. Fig. 1 in-
dicates that the structure will become favorable only below 2000 K
and that pressures exceeding 100 GPa are needed. It will be a chal-
lenge to attain this structure.

4. Summary and conclusion

We provide a comprehensive computation of the pressure-tem-
perature phase diagram of the iron-nitrogen system for pressures up
to 200 GPa and temperatures up to 4000 K. The work relies on a
combination of Density Functional Theory computations with ther-
modynamic calculations that includes an assessment of the chemical
potential of nitrogen at high pressure and high temperature. We
identify stability fields of Fe-N structures in the presence of excess
nitrogen under conditions of typical DAC experiments. We made
“slices” of the phase diagram at constant pressure or at constant
temperature to determine maximum driving force in order to vali-
date our approach with experimental data. Based on a comparison of
experimental and computational data, we estimate an uncertainty of
our method of+ 300K and+ 5GPa. This assessment assumes,
however, that experimental conditions are indeed corresponding to
uniform presence of excess nitrogen and that observed structures
are free of defects. When such conditions are not established, this
may result in phases not identified here as “thermodynamically
stable” - further enriching the landscape of feasible compounds.
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