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Abstract—In-network applications, such as congestion con-
trol, load-balancing, and policy enforcement, require compli-
cated arithmetic operations to track networking parameters.
Unfortunately, programmable switches that implement protocol
independent switch architecture (PISA) support only a limited
set of arithmetic operations, such as addition and subtraction, to
guarantee high packet throughput. Existing work addresses this
problem by implementing unsupported operations (e.g., multipli-
cation) using TCAM match-action tables; they use wildcards to
match over a range of operand values. However, because TCAM
is a scarce resource, operators must make a difficult trade-off
between accuracy and TCAM occupancy. This problem leads to
large and unpredictable errors, and also limits the applicability
of in-network computing to many applications.

In this paper, we propose ADA, a practical, lightweight
approach to reduce TCAM entries without sacrificing accuracy
by exploiting the value distribution of operands. ADA tracks
the operands’ distribution via a simple binning mechanism to
determine the most accessed interval in the domain space of
operands and allocates more (or less) entries based on the
observed distribution. Our proposed mechanism, (1) saves TCAM
space for other applications by aggregating entries that are
unused or less popular, and (2) reduces average error by assigning
more TCAM entries to intervals with a higher probability of
occurrence (and sub-divides these intervals further, if needed).
We implement ADA on P4 on a 100 Gbps Barefoot Tofino switch
and demonstrate its efficacy by deploying it in existing state-
of-the-art in-network applications; ADA imposes a negligible
overhead of less than 2% in the switch data plane and about 5%
in the control plane. We further evaluate ADA using our C++ and
ns-3 simulators over two existing arithmetic-heavy applications
(i.e., Nimble and RCP) to demonstrate that ADA can achieve
performance close to an ideal implementation with unlimited
TCAM space.

Index Terms—Programmable switches, TCAM, p4lang

I. INTRODUCTION

Recent advances in programmable networks enable op-

erators to offload computation from end-hosts to switches.

While protocol independent switch architectures (PISA) en-

able matching on any arbitrary packet field and perform an

associated action, P4 programming language and associated

libraries enable programmers to express a wide range of

computations at line rate in the switch data plane [1, 2].

Today’s PISA Switches use reconfigurable match-action tables

that use simple arithmetic logic units (ALU) to support a

limited set of operations, such as addition, subtraction, and bit

shifts. In addition, RMT switches provide registers that can be

used for stateful operations (e.g., counters). Taken together,

these features can be used to offload some computations to

network switches and design efficient in-network applications.

Despite the flexibility and programmability that PISA pro-

vides, designing high throughput RMT switches is challeng-

ing. Supporting computations at high line rates implies that

all per-packet operations must finish in a small number of

clock cycles. This limitation makes it prohibitively difficult

to design and implement complicated operations in hardware.

For instance, multiplication and division require tens of clock

cycles. Therefore, today’s programmable switches (e.g., Tofino

[3]) do not natively support multiplication and division. Unfor-

tunately, the lack of native support for these operations limits

many important in-network applications such as RCP [4] and

XCP [5]. Table I shows a list of existing work from different

areas that require complicated operations in their design.

Existing proposals use lookup tables to implement opera-

tions that are not natively supported by the switch hardware.

Fortunately, ternary content-addressable memory (TCAM) can

be used for implementing lookup tables at line rate [12, 13].

One advantage of using TCAMs is the ability to encode

a range of operand values with a single entry using wild-

cards. This approach is used in a recent paper to implement

three sample in-network applications [12]. Another paper,

InREC [13], uses this approach to compute a larger set

of arithmetic operations. In addition to multiplication and

division, InREC supports single-operand operations with real

numbers such as radical and logarithm. Both these papers

exploit wildcards to map a range a operand values to one

entry and populate TCAM tables with predefined ranges of

operands along with the associated result of the operation.

During lookups, if there are multiple matching entries, the

longest prefix match (LPM) is used to resolve conflicts and

provide the ultimate answer.

Prior work populates TCAM by using wildcards to rep-

resent a set of ranges for each operand. However, they are

agnostic of the distribution of operand values and use equal-

sized ranges. As a result, they suffer from the following

three shortcomings: First, populating TCAMs with equal-

sized ranges is not optimal when the operands span a long

range. For operations that require two or more operands, such

representation also leads to a combinatorial blowup in the

number of TCAM entries. Further, most network parameters
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TABLE I: List of approaches with the in switch arithmetic requirements

Category Work Arithmetic Error
propagation TargetMultiplication

/Division
Floating

point

Congestion Control

RCP [4] 7 0 Yes Converge to the correct rate
XCP [5] 0 4 Yes Converge to the correct rate
QCN [6] 1 0 Yes Quantized congestion notification

s-PERC [7] 1 0 No Calculate Max-Min fair rates
Load Balancing Conga [8] 1 0 Yes Congestion aware load balancing

Measurement Precision [9] 1 0 No Heavy hitter detection

Fairness
Nimble [10] 1 0 Yes Tracking buffer size
Ether [11] 1 0 No Providing both fairness and LSTF

cover only a limited range over the domain of operands.

For example, a 32-bit counter counting the queue occupancy

would never exceed the maximum queue size (e.g., 256KB), so

populating the TCAM to cover the entire domain of operand

values is often wasteful. Because TCAM is an expensive and

scarce resource that is needed for core network functions

such as forwarding and switching, equal-sized ranges either

waste TCAM space or provide low accuracy. Second, even

though wildcard matches can reduce the number of TCAM

entries, they cause a large error, especially for larger numbers.

Using LPM, larger numbers usually have a shorter matching

prefix, which leads to low accuracy. Such large errors may

adversely affect the performance of applications, such as

rate limiters, which usually deal with large numbers (e.g,

40 000Mbps). Finally, in most instances, network parameters

are not uniformly distributed over the operand domain. For

example, queue size in a DCTCP congestion control scheme

is expected to vary between zero and ECN threshold. Our

experiments confirm that many parameters have a narrow op-
erating range and exhibit highly-skewed distributions. This key

insight motivated us to design a system that populates TCAMs

using the knowledge of the operand range and distribution, and

dynamically adapts over time.

We present ADA to address the problem of optimally

populating TCAM tables for implementing operations that

are not natively supported by today’s programmable switches.

The key idea behind ADA is to learn the operating range
and distribution of operand values in their domain, and use

this knowledge to populate the tables to achieve an optimal

trade-off between accuracy and table size. Because learning

the distribution happens over a relatively long duration, it is

done in the slower and flexible control plane. However, the

learned distribution is used to populate the TCAM tables in

the data plane to be used for performing operations at line

speed. ADA includes a lightweight monitoring system that

learns the distribution of the operand values in the control

plane and updates TCAM entries according to the distribution.

Our evaluations, including a real implementation, demonstrate

that ADA dramatically reduces the average error and error

propagation for recursive/iterative functions, and can save

substantial TCAM space without loss of performance. We

make the following contributions:

• An adaptive binning algorithm to learn the distribution

(i.e., PDF) of variables. The algorithm enables us to

intelligently populate TCAM and save space for other

applications.

• A lightweight P4-friendly implementation of the mon-

itoring algorithm to adaptively detect the PDF of the

operands via variable binning without any sampling or

packet resubmit.

• A TCAM entry selection algorithm to generate an optimal

lookup table that is cognizant of the distribution of

operand values (i.e., more entries for intervals with higher

probability of occurrence) to minimize overall average

error.

• Real implementation of ADA on P4 in our testbed and

simulations to evaluate the accuracy and overhead of

our system in two real network applications as well

as a comparison to an ideal implementation that uses

unlimited TCAM space.

In summary, ADA enables the feasibility of in-network appli-

cations with complicated operations in today’s programmable

switches using a small TCAM footprint while also minimizing

error.

The rest of the paper is organized as follows: Section II

provides experimental evidence and motivates the need for

adaptive TCAM population. Section III presents our proposal

and the design details. Section V shows our experimental

results and key findings. Section VI discusses related work.

Section VII concludes our paper with closing remarks.

II. MOTIVATION

PISA architecture has three components: (i) parser, (ii)

match unit, (iii) action unit. When a packet arrives at the

switch port, it is first processed by a programmable parser.

The parser extracts desirable fields from the packet header

and forwards it to an array of pipeline stages. Each stage

contains a matching unit to perform either an exact match

or a longest prefix match on a subset of header fields. Match

units in RMT are designed to match on arbitrary header fields

(i.e., table widths and depths can vary subject only to physical

capacity limits) and the header format is fully customizable.

If the header matches a condition, action units perform the

specified operation as expressed in the P4 language. Allowed

actions include modifying any field of the packet header and

forwarding the packet to the traffic manager or to directly send

it to the deparser/outgoing ports. Action units are also powered

by Arithmetic Logic Units (ALU) to do some operations such

as addition, subtraction, shift bits, and hash functions.
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A. Switch Limitations

RMT switches guarantee high throughput (e.g., 12.8 Tbps

on Tofino 2 and 25.6 Tbps on Tofino 3) by keeping the pipeline

stages simple and highly parallelized. This simplification in-

troduces three main challenges for in-network applications:

(i) limited set of operations: RMT ALUs support only a

small set of basic arithmetic (i.e., addition, subtraction) and

logical (i.e., bit shifts) operations. Other operations such as

multiplication and divisions are not supported. (ii) limited

support for branches: Because branches are inherently complex

to pipeline, PISA switches support only a limited number of

branches. Loops are not supported since they may need several

accesses to the memory (i.e., require several clock cycles). (iii)

no sharing of memory between stages: To operate the memory

in each stage at high speed, PISA switches keep the memory

in each stage isolated and stages cannot access memory of

other stages.

Network applications typically monitor and track network

state (e.g., queue occupancy) and generate new signals based

on algorithms that often involve complicated operations. Table

I lists important applications that address various aspects of

networking and shows that these applications require oper-

ations (e.g., multiplication) that are not supported by today’s

switches. Because of the aforementioned limitations of branch-

ing and memory accesses, we cannot emulate these operations

using existing operations (i.e., emulating multiplication as a

series of additions).

Programmable switches support a limited number of TCAM

tables to lookup values at line rate. TCAMs can be used as

lookup tables to emulate arithmetic operations as proposed

in previous papers [12, 13]. Authors in [12] provide a list of

building blocks to address RMT issues and implement existing

applications in programmable switches by populating TCAM

tables with logarithmic values and a reverse logarithm TCAM

population to lookup the result (e.g., for multiplication and

division). Similarly, InREC [13] benefits from using TCAMs

as lookup tables and provides limited floating point support

to emulate more complicated operations such as radical and

logarithm.

However, existing TCAM lookup mechanisms have three

main shortcomings: larger error for larger numbers, error

propagation, and large table size.

Large error for larger values: Existing TCAM population

mechanisms use a wildcard match in the form of 0p1(0|1)s×r,

where s is the number of significant bits to match over, and

p+ s+ r represents the number of bits in the operand value.

Each entry represents a group of values, and the group size

increases with r (i.e., more least significant bits are ignored

using wildcards). In this case, one TCAM entry represents

a group (range) of operand values. Consequently, for large

values of r, the average error is large as they approximate a

large set of values using a single number. For instance, when

calculating 4-bit multiplication with one significant bit i.e.,

(s = 1) and when the median value is used to represent the

entry (similar to the method used in [10]), the worst-case error

to lookup the result of X2 is 8% for X = 4 and 35% for

X = 8.

Error propagation: A small error may cause big problems

in applications that perform iterative operations and error

quickly adds up. Unfortunately, iterative behavior is quite

common in network applications as they often perform stateful

operations. For example, exponential averaging is commonly

used in congestion control or to average out noise in es-

timations. While large errors are a problem, they can be

catastrophic in applications that rely on some notion of conver-

gence to a steady state behavior—the accumulated error may

become large enough to affect convergence and compromise

the stability of the system. For example, errors in congestion

estimation may lead to a congestion control algorithm not

converging to the desired optimal operating point and would

result in under/over-utilization and/or fairness problems.

Large table sizes: Despite using wildcard matches and

limiting the variables’ bounds, existing TCAM population

mechanisms still require large TCAM capacity. When an

application calculates the result of an operation, if one or

both of the operands dynamically change, the TCAM must

have at least one entry to return the result for every com-

bination of operand values. Unfortunately, many switches

support only tens–hundreds of entries as TCAMs are a scarce

resource needed for core network functions such as forwarding

and packet classification. Thus, existing TCAM population

schemes are forced to use fewer but wildcard entries at the

cost of accuracy.

B. Opportunity studies

Ideally, all possible combination of the operand values is

necessary for accurately emulating any arithmetic operation;

however, enumerating all combinations of operand values

will require prohibitively large TCAMs and is not feasible.

Therefore, we make two key observations that enable us to

drastically reduce the number of TCAM entries.

First, we observe that many important network parameters

are not uniformly distributed and their distribution is highly

skewed in the common case (i.e., more opportunity to reduce

space). Queue size is an important network parameter that

is used in many applications (e.g., many congestion control

algorithms). To illustrate this phenomenon, we observe queue

sizes in a realistic scenario. We set up a simple ns3 [14]

data center simulation with 128-node 3-tier fat-tree topology.

Severs generate random all-to-all traffic consisting of short

flows (1-16 KB) and long flows (64 MB). We study the

behavior of both TCP Cubic and DCTCP. Figure 1a shows

the queue size at one of the ports of an edge switch (i.e., we

observed similar behavior at other ports/switches). This graph

clearly shows that queue sizes exhibit a skewed distribution:

queue size is less than 200KB for 80% and 95% of the time, in

TCP Cubic and DCTCP, respectively. Therefore, if we were to

use queue size in any computation, existing TCAM population

schemes would needlessly waste space and/or achieve poor

accuracy.
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Fig. 1: Variable behaviour in different situations. (a) and (b) Cumulative distribution function (CDF) of two network parameters.

(c) Change in sending rate in a rate limier

Packet inter-arrival time is another important network pa-

rameter that is used in a number of network applications (e.g.,

rate limiters, token bucket, congestion control). Therefore, we

performed measurements to study this parameter. We mea-

sured packet inter-arrival times in a simple dumbbell topology

with 100Gbps links with rate limiters (the actual limit rate

does not matter to these experiments). We changes the rate

three times during the evaluation and each time we set it to

half of the previous value. Figure 1b shows the CDF of inter-

arrival times. Despite the change in rate limiter parameters,

packet inter-arrivals are largely constrained to a narrow range

of 120 ns–360 ns most of the time. This is not surprising

because several past studies have also observed the exponential

nature of packet inter-arrival times.

Second, in addition to how the values are distributed, many

network parameters are range bound and their working range

is typically much smaller than the domain of the variable (e.g.,

TTL values in IP packets). Thus, if we can estimate their work-

ing range with reasonable confidence, then we can populate the

TCAM accordingly to minimize space as well as to improve

accuracy. To illustrate this, we ran the same experiment with

Nimble again but this time we track only the rate limit values.

Figure 1c shows the result of this experiment. We ran the

traffic for one second with the rate limit set to the line rate

(i.e., 94Gbps), and after one second we cut the rate in half.

As shown in this figure, for the time interval 0 s–1 s, the rate

is always 94Gbps. This means that the TCAM always looks

up the operand value of 94Gbps for estimating the amount of

enqueued bytes (i.e., bytes enqueued = rate limit× δT ).

After one second, we change the rate to half (47Gbps) and

the TCAM looks up only 47Gbps. As you can see, instead

of populating the TCAM with all possible operand values, if

we can estimate the working range (e.g., in the control plane)

and populate accordingly, we can save TCAM space and also

improve accuracy.

We build upon these key observations to design ADA. which

we describe in the following section.

III. DESIGN

ADA is an adaptive, P4 friendly, feedback-based system

for efficiently populating TCAM entries to minimize average

error. Figure 2 shows our overall architecture.

Fig. 2: The architecture of ADA for both data and control

plane.

ADA has components in both control and data plane. We

split our design into control and data plane components to

optimize for dual goals of speed and optimality. The data plane

component is a lightweight monitoring system for recording
the frequency of occurrence for a range of operand values. To

record this information, we use a small TCAM to match on

intervals of operand values (using wildcard entries) and we

increment a counter upon a match; we have one counter per

interval to record hits and use registers to store these counter

values. The control plane component reads the monitored

statistics (i.e., register values) to infer the operating range

and distribution of operands, and it uses this information

to populate TCAM entries (to be used during lookups). For

instance, intervals with more hits get more TCAM entries (i.e.,

finer granularity). The control plane component also includes

an algorithm to fine tune the granularity of monitoring. That

is, if a certain range has a high probability of occurrence,

we can divide the range into two sub-ranges to monitor at a

finer granularity and vice versa. We could not implement these

sophisticated algorithms in data plane because of the lack of

adequate support for branching and limited programmability

in data plane [9]. Thus, by monitoring operand values in data

plane, ADA is able to respond faster to changing dynamics; by

using sophisticated algorithms to process the monitored data

and improve the quality of monitored data, ADA is able to

achieve high efficiency.

A. ADA in data plane

An efficient TCAM population requires knowing the dis-

tribution (i.e., PDF) of operands in real time. The PDF
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provides two important pieces of information: the range and

the distribution of the variables. ADA uses a monitoring system

to record the histogram of operand values (i.e., find a discrete

PDF of variables). The operand value is divided into smaller

intervals (bins) and ADA assigns one register to a bin to count

the number of hits when the value falls within the bounds of

the interval.

Programmable switches provide limited in-stage branching,

which constrains the implementation [9]. For instance, for

a variable with 32 bits, PDF can be obtained by dividing

the entire interval into 100k bins and assigning the TCAM

space according to the frequency of hits in each bin. This

logic, however, is not implementable in a P4 program due to

the limitations on branching. To address this problem, we use

wildcard matching in TCAMs. Each wildcard entry represents

a smaller interval (bin) and there is a corresponding register

associated with this bin. When a value matches an entry, the

corresponding register is incremented. Figure 3 shows the

general overview of this design in which v1, v2, ..., vn are

target variables, and r1, r2, .., rn are tracking registers. ei are

TCAM entries for matching the values vi. Each TCAM entry

represents a bin and each bin has a separate register assigned.

If a value matches an entry in TCAM (e.g., ei), ADA increases

the corresponding register (ri) by one to indicate that another

hit is observed in this bin. Note that, by using wildcards and

longest prefix match, we can track hits in a sub-interval within

an interval and so on (i.e., deeper than just one level).

Fig. 3: Binning mechanism in data plane ADA

1) Binning abstraction: ADA has an adaptive monitoring

system in the data plane to capture the distribution of operand

values. To efficiently capture the distribution, ADA uses a trie
data structure, implemented using TCAMs, to record hits to

various sub-intervals (bins). Figure 4 shows two examples for

an operand with four bins. In this figure, each leaf (shown as

nodes with shadow) represents a bin. A binning trie is always

a binary tree and starts with the root node (init). Each node

has a reference to the left and the right child and a value that

shows the number of hits. All hit values are initialized to zero.

The path from the root to the leaf represents the TCAM entry.

For example, in Figure 4a, for 3-bit operands, the bins are

00× (0–1), 01× (2–3), 10× (4–5), and 11× (6–7). Similarly, in

Figure 4b, the bins are 00× (0–1), 010 (2), 011 (3), and 1×× (4–

7). Note how Figure 4b has non-uniform intervals (bins). ADA
defines a register for each leaf node in the binning abstraction

model as it is shown in Figure 3. When the value matches one

of the leaves, TCAM returns the register id (column shown as

r) and increases the corresponding value.

2) Binning formation: Initially, ADA generates a trie with

the same wildcard length (i.e., all intervals of the same size).

(a) Binning abstraction in ADA (b) Extended binary abstraction

Fig. 4: Starting point and extended binary abstraction in ADA.

Algorithm 1: Initialization binning tree

1 Definitions:
2 b : Number of significant bits;

3 bit(i) : Convert i to the the binary number;

4 Input:
5 M : Number of available entries;

6 s : Number of bits in operands;

7 Output:
8 Γ : Value set of leaves (ordered set)

9 T : Monitoring trie (binary tree)

10 Initialization:
11 Γ = T = φ;

12 Function binning_table_init():
13 b = log(M);
14 V = {∀ i | i ∈ [0, 2b − 1]}
15 for ∀i ∈ V do
16 i

s−b←−−×; // Left shift with wildcard (×)
17 if i /∈ Γ then
18 Γ.add(i); // populate TCAM entries

19 n = Node(bit(i)); // create a new node

(word) from bits of the number i

20 n.value = 1; // initial value to 1

21 T.add(n); // add a new word to to T

22 end
23 end
24 end

The number of wildcards depends on the number of available

entries and is determined by the network operator based on

TCAM capacity. If the total available entries for monitoring

TCAM is M , the initial value for the significant bits is

b = log(M). For example, if there are only four entries,

the TCAM entries would be 00X, 01X, 10X, and 11X for

3 bit operands (i.e., 2 significant bits). Algorithm 1 shows the

initialization of binning TCAM table. The only input to the

algorithm is available TCAM entries, M , and the length of the

operand (in bits), s. s is also the maximum possible depth of

the trie. The algorithm has a set of leaves (Γ) and the trie (T ).

This algorithm finds the set of leaves and builds the trie based

on that. Figure 4a shows an example trie that this algorithm

generates for 3-bit operands (s = 3) and one wildcard match

(b = s− 1 = 2). The corresponding bin for each leaf (shown

in gray) is shown in the figure and they are all at the same

level.
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3) Adaptive binning update: The initial trie divides the

operand space into equal-sized intervals and it measures the

number of hits in each bin; however, if a small sub-interval

generates most of the hits, zooming in on that small sub-

interval will help in capturing the distribution precisely. For

instance, in Figure 4a, the majority of hits are in bin 01× but

the monitoring system has no insight into the distribution of

this bin. To remedy this problem, we propose an algorithm

(Algorithm 2) to selectively grow the tree based on hits. To

keep the number of required entries fixed, ADA eliminates the

bin (trie node) with the smallest hit and breaks the bin with the

maximum number of hits into two sub bins. To avoid frequent

changes in the trie structure, we use a threshold (thbalance)

to identify when ADA needs to modify the trie (see line 16).

Figure 4b is the result of this transition from Figure 4a. In this

figure, node 01× is divided into two smaller bins 010 and 011
while 10× and 11× were merged into one bin as 1××. Thus,

our algorithm modifies the original trie to better capture the

distribution of operand values without wasting TCAM space.

B. ADA in control plane

1) TCAM population: By proportionally allocating TCAM

entries to intervals (bins) based on their frequency, ADA mini-

mizes the average error. We include a control plane algorithm

for performing this allocation. The algorithm performs a top-

down traversal of the trie and allocates entries to the left and

right sub-tree based on hits.

Algorithm 3 shows the TCAM population procedure. The

controller first reads the number of hits in each bin from

the data plane and calculates the aggregated hits for each

node in the trie (i.e., the sum of hits of all nodes below this

node). Then, ADA assigns the available entries to each node in

proportion to the aggregated hits of the subtree rooted at that

node. At the end of the procedure, we know the number of

entries for each bin (leaf). For example, based on Figure 4b,

the bin representing 1×× will get 3/(5 + 7 + 7 + 3) = 14%
of entries.

Finally, we use a recursive function TCAMpopulation to

generate the final TCAM population. In each interval, we

assign the TCAMs based on the simple mechanism shown in

[10]. This function is simply replaceable with the logarithmic

approach proposed in [12]. Note that each bin is independently

used in these approaches to populate the TCAM based on the

assigned number of entries. If there is no frequency data for

any node in the binning tree, the algorithm results in an equal

share of the entries for the entire sub-tree.

2) Trie expansion: ADA uses two main TCAM tables: Mon-

itoring TCAM and calculation TCAM. Monitoring TCAM

is used to model the trie for each variable, whereas the

calculation TCAM is the main lookup TCAM that the P4

program uses to fetch the result of the operation. Both of

these tables use the same TCAM hardware from the switch

which is limited in the number of entries. If the distribution

of the hits for a given variable is uniform, it is better to

assign fewer entries to the monitoring TCAM, whereas if the

Algorithm 2: Adaptive binning tree modification in

TCAM population

1 ] Definitions:
2 int max(i) : Maximum value for wildcard i;
3 int min(i) : Minimum value for wildcard i;
4 Node getMin(i) : Item with minimum value in i;
5 Node leaves(T) : Fetch the leaves of the Tree T ;

6 Input:
7 T : Monitoring tree

8 adjustthreshold : Expanding trie threshold

9 hitthreshold : Dividing monitoring node threshold

10 Output:
11 T Updated optimized binning table

12 Function receivedQuery():
/* Increase the number of monitoring TCAM */

13 if change in depth ≥ thexpansion then
14 devideHighHitNode(T );

15 end
/* Balance the tree before generate the new

TCAM population */

16 if getMax(T )−getMin(T )
getMax(T ) ≥ thbalance then

17 removeLowHitNode(T );

18 devideHighHitNode(T );

19 end
/* Generate TCAM entries */

20 return inorderTraverse(T );
21 end
22 Function removeLowHitNode(T):
23 Γ = leaves(T );
24 list P ; // Create parent list

25 for i = 0; Γ.size() < i; i++ do
26 if Γ[i].parent == Γ[i+ 1].parent then
27 T [i].parent.hits =

T [i].parent.hits+ T [i+ 1].parent.hits
P.add(T [i].parent)

28 end
29 end
30 p = getMin(P );
31 p.left = null;
32 p.right = null;
33 end
34 Function devideHighHitNode(T):
35 Γ = leaves(T );
36 n = max∀i∈Γ(i)
37 m = max(n)−min(n); // Find distance

between max and min in a wildcard

38 m = m
2 + 1; // Find the most significant ×

39 n.left = Node(m ∨ x); // Unwrap left node

40 m = m
⊕

∼0;

41 n.right = Node(m
⊕

x); // Unwrap right node

42 end

distribution is skewed, then it is better to assign more entries

to the monitoring TCAM.
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To address this problem, ADA uses the trie depth as an

indicator to detect the type of the variable. If the depth is

increasing at each iteration, the value distribution is skewed

as Algorithm 2 deepens the tree. In this case, the monitoring

TCAM must increase. We use thexpansion to identify when

ADA needs to expand the monitoring TCAM by adding new

entries (see line 13 in Algorithm 2). On the other hand,

if the trie depth is not increasing, this indicates that the

monitoring TCAM size is suitable for tracking the variable

or the distribution follows a uniform PDF. In this case, we do

not add any new entry but ADA might still adjust the table due

to the change in the variable behavior. However, ADA does not

decrease the size of the tree.

IV. METHODOLOGY

To perform a comprehensive evaluation, we implement

ADA in three different platforms: First, we develop our C++

simulator to evaluate the proposed algorithms (Algorithms 1

and 2) without any interfering networking parameters. In this

experiment, we generate numbers based on random variables

with different distributions and run our binning algorithms

in ADA to show they converge to the PDF of the random

variables. In addition, we test the adaptation mechanism in

algorithm 2 by choosing a very small significant bit for the

initial trie. Finally, we study error propagation and the effect

of error propagation on two simple applications.

Second, we implement ADA in P4 [15] on a commercial

PISA switch in our local cluster. We ran ADA as a part of

the P4 program on a Barefoot Tofino [16] Wedge 100BF-32X

Ethernet switch with a line rate of 100 Gbps. The cluster

has three servers forming a star topology. Each server has

an 8-core/16-thread Intel Xeon 1.80 GHz CPU and 64 GB
of memory. These servers run Ubuntu 18.04, and they use

100 Gbps Mellanox ConnectX-5 [17] NIC to connect to one

port of the switch. We code the data plane part of ADA as a

P4 program and we implement the control plane part using a

gRPC-based client to dynamically populate TCAM tables on

the switch.

Finally, we implement ADA in ns3 simulator [14], to mea-

sure the performance of ADA on a large-scale topology. We

implement ADA in ns3 switching module and set up a leaf-

spine topology with 400 servers and 20 ToR switches. In

our experiments, all connections (host-to-switch and switch-

to-switch) are connected using 100 Gbps links with a link

delay of 1 μs. We ran three experiments with TCP (baseline),

RCP [4], and Nimble [10] with precise (ideal, without TCAM

lookups) calculation and with ADA (using our TCAM pop-

ulation and lookup) to demonstrate that ADA performs close

to the ideal approach. In experiments with Nimble, we use

DCTCP senders.

In our experiments, we used switches with a buffer capacity

of 400 KB per port. We also set our expansion threshold

in algorithm 2 as thexpansion = 2—the trie expands if the

depth of the three increases by more than two. We also set the

balance threshold as thbalance = 20%. This means that ADA

Algorithm 3: Operation TCAM population

1 Definitions:
2 T = binning tree;

3 b.left = left child of b;
4 b.right = right child of b;
5 b.val = entry that b represent in trie; // e.g., 01×
6 M = number of available entries;

7 Initialization:
8 ∀b ∈ B,w(b) = 0.5;

9 Output: Optimized table L
10 Function main():
11 updateFreq(T.root); // update all parents’

frequencies

12 for ∀ b ∈ T do
13 w(b.right) = f(b.right.value)

f(b.value) ;

14 w(b.left) = f(b.left.value)
f(b.value) ;

15 end
16 TCAMpopulation(B.root.left,M);
17 TCAMpopulation(B.root.right,M);
18 return
19 Function updateFreq(b):
20 if b is a leaf then
21 return b.value;

22 end
23 b.value =

updateFreq(b.left) + updateFreq(b.right)
24 return b.value;

25 end
26 Function populateTable(b,M):
27 wright =

f(b.right.value)
f(b.value) ;

28 wleft =
f(b.left.value)

f(b.value) ;

29 populateTable(b.left,M × wleft)
30 populateTable(b.right,M × wright)
31 if b is a leaf then
32 b = min(b | 2b( s−b

2 ) = M)
33 V = {i|i ∈ [2b, 2b+1 − 1]]}
34 T = {i|i ∈ [0, 2b − 1]}
35 while ∀i ∈ V do
36 for j=1;s ≤ j;j++ do
37 i

j←− x; // Left shift with don’t

care (x) as input

38 T.add(i)
39 end
40 end
41 end
42 end

balances the trie if the ratio of the minimum and the maximum

hits is more than 20%.

V. EVALUATION

In this section, we first evaluate ADA with regard to the

algorithm accuracy and convergence using our simulator to
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Fig. 5: Convergence of ADA to different distributions after monitoring system reaches to a steady state.
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Fig. 6: Iterations in algorithm 2 for b = 1.

show that ADA adapts with any operand distribution (i.e.,

PDF). Second, we provide the result of our testbed with

a barefoot switch [16] to demonstrate the performance and

scalability of both our control and data plane mechanisms.

Finally, we evaluate ADA over a large scale datacenter with a

leaf-spine topology.

A. Network independent C++ simulator

We developed a C++ simulator to determine the accuracy of

our proposed algorithm without any networking parameters.

Our simulator generates different PDFs and uses binning

algorithm proposed in algorithms 1 and 2 to converge to

the original distribution. We use dotted lines to show the

distribution and the boxes to show bins.

1) Accuracy and integrity: To show that ADA can model

a wide range of distributions, we set up our simulation to

generate various distributions. Figure 5 shows the results of

Algorithms 1 and 2 for creating the bins after reaching to a

steady sate (until the condition at line 13 in Algorithm 2 is

not satisfied). We use a bin size of 2000 and we use a 32 bits

integer value with the domain of [0, 650000]. Figure 5a shows

a Uniform distribution with normalized value of 0.03. This

figure shows that the bins can estimate the uniform distribution

accurately. Uniform distribution is common in parameters with

the same probability of hits across the variable. Figure 5b

shows the result of an exponential distribution with λ = 10
with the same bin size and variable range. This experiment can

model the variable with the heavy hits on the lower numbers

and fewer hits when the value is higher. An example of a

variable that can form an exponential distribution is queue

size. Figure 5c shows a Fisher F distribution with parameters

d1 = 100 and d2 = 20. This distribution is used to model

values with a heavy-tail hit.

To evaluate ADA with more complicated scenarios, we

model two other combined distributions. Figure 5d shows the

sum of two independent Gaussian distributions (G1 + G2),

with parameters G1(16000, 10000) and G2(48000, 10000)
with same variance σ = 10000 but different mean μ1 =
16000, μ2 = 48000 on a range of [0, 650000]. The result of

G1+G2 has two picks and ADA can accurately distribute the

bins to model the targeted distribution. Similarly, in Figure 5e,

we use a sum of an exponential with λ = 10 and a Gaussian

distribution (σ = 10000, μ1 = 16000). The results shows that

the algorithm 2 can model combined and random distribution.

2) Adaptive increment: As we mentioned in section III-B2,

trie starts with a default value for b and ADA increases

the number of entries by adding more nodes to the trie if

the distribution is skewed. To test this procedure, we use a

Gaussian distribution with a median of 4000 and a variance

of 32500 as a random generator and we used 2000 as bin

size. Figure 6 shows this transition from b = 1 to the next five

iterations. Initially, there are two bins in Figure 6a, since we

start with b = 1. In next iteration in Figure 6b, bigger bins

divides into two bins. Iterations continue to the fifth iteration

where there are a total of 6 bins.

As we expect, bins can represent the original distribution

of the variable while the initial trie (Figure 6a) is not able

to capture the character of the Gaussian distribution correctly.

Bins are completely matched after the fourth iteration which

shows that our algorithm in 2 can successfully increase the

TCAM space, assigned to the monitoring so that the bins

match the PDF of the variable. Note that here iteration is

considered a change in trie and not the iteration of the

algorithm, 3, and we did not limit the expansion of the trie to

find the convergence point.

3) Error analysis: ADA decreases the error propagation and

the average error. In this section, we first study an experiment

to show the effect of the significant bit (b) on average

error. Second, we compare the average error of ADA to the

existing state-of-the-art algorithms for the TCAM population.

All charts in this section are drawn on a logarithmic scale.

Increasing the number of significant bits in populating
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TCAMs in algorithm 3 increases the function accuracy; how-

ever, a large significant bit may need a large TCAM size.

To see the effect of error, we use a Gaussian distribution

with a median of 4000 and variance of 32500 and Uniform

distribution in the range of [0, 650000] for our two variables,

and we performed a sum and a multiplication of over two

variables. For instance, U(x) + G(y) represents a sum of

two variables with x with Gaussian and y with Uniform

distribution. Figure 7a shows the result of the average error

with different values with significant bits. In all cases, when

the significant bit increases, the error reduces significantly.

When both variables are Gaussian the error is the maximum

regardless of the number of significant bits.

Similarly, Figure 7b, shows the required table size for

varying numbers of the significant bits (s). When s increases,

the size of the table prohibitively increases, and the table size

increases exponentially by the number of significant bits.

4) Error Propagation: Most in-network algorithms are

iterative and the results of computation are fed back until

some form of convergence is met. In such cases, even small

errors can quickly accumulate, leading to unacceptably large

errors. To understand the effect of error propagation, we run

an experiment comparing two functions f(x) = 2x and

f(x) = x2. In the experiment, we assign the computed

value (e.g., 2x) back to x and iterate 10 times. The effect

is a recursive computation (i.e., f(f(f(...(x))))). Similar to the

previous experiment, we use the same Gaussian distribution

with a median of 10 and a variance of 100 for variable x.

Figure 7c shows the result of our experiment. This figure

shows that the nature of the function plays a critical role in

error propagation; higher order functions tend to suffer more.

As expected, x2 is prone to more error propagation compared

to 2x. At the end of 10 iterations, x2 shows 10813% and

70482% errors for the f(x) without ADA and f(x) with ADA
respectively, while these errors for 2x is only 7% and 21%.

This shows that the error propagation depends on the function

itself more than the population mechanism.

B. Testbed Experiments

In this section, we demonstrate the feasibility of the im-

plementation of ADA in hardware. We also show that ADA is

crucial for in-network applications especially when the number

of TCAM entries is limited. Finally, we show the overhead of

ADA in the programmable data plane and control plane in

terms of the number of stages and number of reads and writes

that the control plane.

1) Experiment with limited entries: We start by evaluating

an in-network rate limiter, Nimble [10], that limits the sending

rate of traffic classes. Nimble requires multiplication of rate to

the packet inter-arrival time. Once the rate is determined, the

control plane populates the TCAM table based on the rate. If

the rate changes at any time, the entire TCAM must be updated

from the control plane again. This prevents approaches like

Nimble from changing the rate from the data plane (e.g., to

design a work-conserving decentralized rate limiter).

To demonstrate this problem, we set up an experiment with

a single flow between two machines. In this experiment, we

use iperf3 to generate traffic from a client to a server at a

full line rate, and we enabled DCTCP on both client and

server. These experiments use 16 parallel iperf3 connections to

fully utilize the link. We also set the rate limiter to 24 Gbps.

After 3 ms we change the Nimble setting to limit the flow

to 12 Gbps. We use a total of 128 entries for approximate

multiplication and 12 entries for the monitoring. We ran the

experiment with Nimble without a TCAM update from the

control plane (In the proposal, the controller updates TCAMs

when it changes the rate), and Nimble with ADA (i.e., includes

TCAM update). In Nimble with ADA, we implement only

monitoring for the rate variable. Figure 8 shows the result

of this experiment. When the rate changes, Nimble generates

the result of the multiplication with an extremely large error,

which causes Nimble to drop packets incorrectly. On the other

hand, Nimble with ADA detects the new value in rate after

a few iterations and updates the TCAM from the control

plane. This experiment shows that applications with dynamic
arithmetic requirements can perform well using ADA without

incurring high TCAM overhead.

2) Scalability Analysis: In this section we analyze the

overhead of ADA on programmable switches and control plane.

Control plane delay ADA uses feedback from the data

plane to adaptively converge to the correct configuration of

the monitoring TCAM and optimal population in calculation

TCAM. However, this process is not instantaneous and re-

quires some time to converge. In addition, reading a trie and
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updating the calculated TCAM entries from the control plane

adds some delay to the the application that runs over ADA. If

the behavior of the application changes rapidly, ADA needs

to change the TCAM population quickly to provide good

performance.

We measured the delay of our control plane program in

generating the optimal TCAM entries upon a new change in

the network state. We ran Nimble at line rate (95Gbps) first

and then after 3 seconds we cut the rate to half. We varied the

number of TCAM entries from 16 to 128 (an increase of 16

entries in each experiment). Figure 9 shows the delay that ADA
takes to converge to the optimal TCAM population for varying

number of TCAM entries. The delay for 128 entries is about

3.15 ms which is sufficient for many in-network applications.

Switch overhead To study the overhead of the ADA on

the switch and the control plane, we analyze our monitoring

system for the TCAM population. We populate the table using

the result of the operations. The first column in Table II

presents an overview of the resources that ADA needs in terms

of the number of RMT stages. ADA(ΔT ) means we only use

ADA for ΔT , ADA(R) means we only use ADA for variable

R and ADA(ΔT,R) means ADA is used for both variables.

This table shows that ADA needs fewer stages when only one

variable needs to be monitored.

We also measured the average read and write requests that

our control plane program sends to the switch. We set up

Nimble to work at line rate (95 Gpbt) and we reduced the

sending rate to half. We start with 8 entries for monitoring

the values (trie). Table II shows the number of reads and

writes during this evaluation. The average number of reads is

higher than 8 for both ADA(R) and ADA(ΔT ) and higher

than 16 for ADA(ΔT,R) because adaptively increasing the

monitoring entries increases the number of the register that

ADA needs to read. The number of reads for ADA(R) is

more compared to ADA(ΔT ) because ΔT is less skewed

and the hits are more spread across the value range. The

average number of writes for ADA(ΔT,R) is the most since

both variables need periodic updates. Similar to reads, we

see the number of writes is always more for ADA(R) than

ADA(ΔT ) because R is more skewed.

C. Large scale simulation

To show that ADA works as expected in reducing the error

at scale, we implement the complete version of ADA for both

TABLE II: Resource usage of ADA and control plain overhead.

Variables No. of stages No. of reads No. of writes
ADA(R) 2 12.32 73.31
ADA(ΔT ) 2 9.27 32.63
ADA(ΔT,R) 3 24.54 98.43

RCP and Nimble in ns3 simulator and evaluate it for a large

network. We used a leaf-spine topology with 10 spine and 20

leaf switches and 400 servers. All links are 100 Gbps and RTT

of the longest path with 4 hops is 80 μs. We used two types of

flows: long flows which are 1024 KB and short flows which

vary from 16 − 64 KB. The workload consists of a mix of

80% of short flows and 20% of long flows, and an incast traffic

with the average fan-in degree of 32. The generated traffic

is based on a typical heavy-tailed flow distribution and we

vary the network load from 20% to 80%. Figure 10 shows the

flow completion time (FCT) of all short flows in the network

for TCP (baseline), and Nimble, and RCP, with and without

ADA (uses exact/ideal computation). We clearly observe that

short flow FCTs achieve similar delay using ADA in both RCP

and Nimble as they would in an idealized system that always

produces 100% accurate results. This experiment shows that

ADA’s performance is close to ideal while requiring a small

number of TCAM entries.

VI. RELATED WORKS

Sharma et al. provide building blocks to address the lack

of complicated arithmetic in ALU [12]. The authors pro-

vide a formulation to populate the TCAM entries using the

total number of bits in variables and desired accuracy. This

approach, however, does not consider any variable limit or

variable distribution to populate the table. Similar to the

formula in [12], Nimble [10] provides an algorithm to calculate

the TCAM population. This algorithm also does not consider

the variables’ range and distribution.

PRECISION [9] is a heavy hitter detection algorithm that

uses probabilistic re-circulation to detect elephant flows on

programmable switches. This approach requires calculation of

Mean Square Error (MSE), and the authors used the same

technique from [12] to populate the TCAM table for their

calculation. Similar to [12] this approach also does not exploit

variable range or distribution to populate the table.

InREC enables programmable switches to support in-

network real-value operations [13]. The main motivation

of InREC is to offload CPU-demanding operations to pro-
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grammable switches and to reducing the end-host load. InREC

provides a tree abstraction for arbitrary formulation to reduce

repetitive calculations. Authors also considered the variables’

bounds, but they do not consider variable distribution. This

approach requires large TCAMs, which is costly.

Our proposal, ADA, is complimentary of existing works

in this problem space. ADA learns the operands’ range and

distribution, and populates the TCAM accordingly. Existing

TCAM population schemes such as logarithmic population and

naive population can be used in conjunction with our system.

In all of our experiments for Algorithm 3, we used a naive

population scheme similar to [12].

VII. CONCLUSION

Today’s programmable switches have the potential to im-

prove existing applications and enable new applications by

providing customized packet processing in the network. How-

ever, realizing their potential requires us to sidestep some of

the architectural bottlenecks in these switches. The lack of sup-

port for common arithmetic operations, such as multiplication

and division, is a major limitation for several important in-

network applications. While using TCAMs for lookup tables

to realize these operations is a good first step, TCAMs are

also a scarce resource.

In this paper, we introduced ADA that exploits the operands’

range and distribution to drastically reduce the number of

TCAM entries while minimizing error. Further, ADA dynam-

ically adapts to changes in the operands’ range and distri-

bution. Lastly, by exploiting the strengths of both control

and data plane, ADA is able to scale well without incurring

high overheads. As programmable switches become more

mainstream, approaches such as ADA will be needed to expand

the applicability of programmable switches to a wider set of

applications.
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