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The thermal, acoustic and dielectric properties of glasses below 1 K are dictated by the interaction
of two level systems (TLS) with strain and electric fields. In a previous paper, we proposed a
Modified TLS model to quantitatively account for the universally small phonon scattering in glasses
at low temperatures. A key ingredient of this model was a wide distribution of couplings between
TLS and phonons, contrary to the standard model which assumes a single averaged value is sufficient.
In this paper, we expand on this view and include couplings to strain as well as electric fields. We
then compare our theoretical results to measurements obtained using superconducting qubits. We
find that the predictions of the Modified TLS model are more consistent with experiment than those
of the standard model. For the distribution of couplings between TLS and the strain field, there
is better agreement with experiment if we include a random distribution of local strains. Such a
distribution of local strains is consistent with those found from molecular dynamics simulations.

I. INTRODUCTION

Glasses at low temperature exhibit a number of anoma-
lous features compared to crystals. Chief among them
are the specific heat which is linear in temperature T
and the thermal conductivity which is quadratic in T.
These anomalies have been successfully described by the
model of tunneling two level systems (TLS) [1–4]. This
model posits the existence of localized regions, an atom
or group of atoms for example, that can tunnel between
two nearly equivalent states. These tunneling entities,
being embedded in the glass matrix and often carrying
an electric dipole moment, interact with electric and elas-
tic fields. However, the standard model, i.e., the model
as it was originally proposed, does not quantitatively ex-
plain the universal values of phonon scattering below 1 K
as reflected in the thermal conductivity (scaled with nat-
ural units) [5], internal friction (in the relaxation regime)
[6], the change in the sound velocity, and the resonant ul-
trasonic attenuation [7]. Recently, Carruzzo and Yu pro-
posed a Modified TLS model to quantitatively explain
the universally small value of the phonon scattering [8].
Their explanation was based on aspects of the standard
TLS model that were either ignored or not fully appre-
ciated. First, the coupling between phonons and TLSs
implies that the TLS can interact with each other [9].
Second, this coupling produces an exponential renormal-
ization of the tunneling matrix element due to phonon
overlap between the two wells (a kind of polaron effect)
[10]. Third, phonons actually couple to the difference
between elastic dipole moments in the two wells. If the

elastic dipole moment in each well has a random orien-
tation, the difference will vary randomly from TLS to
TLS, leading to a broad distribution of coupling as op-
posed to the standard model that assumes a single value
of the coupling. One way to differentiate betweeen the
standard and the Modified model would be to measure
the distribution of couplings between TLS and the strain
field. However, until recently, the values of these cou-
plings for individual TLS have been out of experimental
reach. This lack of direct access to these tunneling enti-
ties - the very question of exactly what is tunneling is still
unclear in most cases - makes it difficult to constrain the
model. At least for some of the aspects of these TLS, the
situation is changing with the advent of superconducting
qubit and resonator spectroscopy [11, 12]. These tech-
niques allow experimental observation of the interaction
between an individual TLS and a superconducting quan-
tum circuit, and thus extract TLS-specific information
[13]. The purpose of this paper is to differentiate between
the standard and Modified TLS models using qubit and
resonator spectroscopy measurements of the distribution
of TLS-field (strain or electric) coupling strengths. In
particular, we will answer the question of whether the
distribution of these couplings are they peaked around
some characteristic value, as assumed in the standard
TLS model, or spread out over a broad range.

Let us briefly review the TLS model. A TLS is an atom
or group of atoms that can sit more or less equally well
in two configurations and tunnel between them. This
is described by a double well potential with a barrier
separating the two wells. Keeping only the lowest energy
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state in each well simplifies the Hamiltonian representing
a given TLS to the form:

HTLS =
1

2
(∆σz + ∆oσx) (1)

where ∆ is the asymmetry energy and ∆o is the tun-
neling matrix element. The values of these parameters
are assumed to vary from TLS to TLS according to the
probability distribution:

P (∆,∆o) =
P

∆o
(2)

with 0 < ∆ < ∆max and ∆o
min < ∆o < ∆o

max. P is the
constant density of states of tunneling entities.

TLS primarily interact with electric and elastic fields.
Quite generally, the coupling between a TLS and an elec-

tric field ~E is given by:

Da ≡
δHTLS

δEa
(3)

where Ea is the component of the electric field along axis
a = x, y, z. This defines the electric dipole moment Da.
Likewise, the coupling to an elastic strain εab is given by:

Dab ≡
δHTLS

δεab
(4)

where Dab is the elastic dipole moment, a symmetric ten-
sor. The Hamiltonian describing the interaction of a TLS
with these fields can therefore be written:

Hint = ~D · ~Eσz +Dabεabσz (5)

In the above expression, terms proportional to σx are as-
sumed to be much smaller and therefore neglected. It will
be useful for the rest of this discussion to separate explic-
itly the norm of the dipole moments from their vectorial
or tensorial nature and write the interaction Hamiltonian
in the form:

Hint = dD̂ · ~Eσz + γD̂abεabσz (6)

where d is the norm of ~D, D̂ is the unit vector along
~D, γ = ||D||F and D̂ab = Dab/γ where || · ||F is the
Frobenius norm. One can imagine that the orientation
of the electric dipole D̂ varies randomly from TLS to
TLS. Given that the eigenvalues of a symmetric matrix
like D defines an ellipsoid, its ”orientation” may also be
considered to vary randomly from TLS to TLS even if its
eigenvalues do not change. In the standard TLS model, d
and γ are considered constants. As mentioned above, the
Modified TLS model predicts a wide range of values for
these parameters [8] (see also ref. [14]). Can the newly
developed qubit spectroscopy methods help decide which
view is more appropriate? This is the main topic of this
work.

The rest of this paper is organized as follows. First the
derivation of Eq. (6) will be done more carefully, mirror-
ing closely the discussion in Ref. [8]. It will become

apparent that the assumption of a single value for the
strength of the electric dipole moment or for that of the
elastic dipole moment is unlikely to be correct. Rather,
in this Modified TLS model a distribution of values is
to be expected. The following section concentrates on
calculating likely distributions for these couplings on the
basis of that model. The dielectric and elastic cases are
treated separately due to their different tensorial natures.
This is then followed by a comparison of the theoretical
results (including the standard TLS model) to a series of
experiments ([15], [12]) that probe the coupling of indi-
vidual TLS to static electric and strain fields.

II. TLS - FIELDS INTERACTION REVISITED

In the introduction, the dipole moments - electric or
elastic - were defined formally. Practically, one has to
consider the operator for the electric or elastic dipole
moment as expressed in the double well basis of the TLS
model. With D denoting either moment, the projection
of this operator on the right and left basis states |ψR,L〉
of the two well potential is:

D =

[
DLL DLR

DRL DRR

]
=

1

2
(DLL +DRR)I +

1

2
(DLL −DRR)σz +DLRσx

(7)

where DAB ≡ 〈ψA|D|ψB〉. I is the identity matrix and
thus this term can be dropped. DLR = DRL depends on
the overlap between the right and left wells and hence
is taken to be negligible. As a result, only the σz term
remains. The key is that the σz term is half the difference
of the dipole moment D in the right and left wells:

D =
1

2
(DLL −DRR)σz (8)

The standard TLS model makes the assumption that
this difference is constant and the same for all TLS. Given
the substantial local variations in amorphous materials,
this does not seem like a reasonable assumption. The op-
posite viewpoint is taken in this work, namely that the
dipole moments in the right and left well are uncorre-
lated, at least in some aspects. This will be made more
specific in the subsequent discussion of the dielectric and
elastic cases. The important point is that the net dipole
describing the coupling to the field is a difference of two
uncorrelated dipoles and therefore will have to be char-
acterized by a distribution instead of a single value.

A. Dielectric case

The dielectric case is simpler and instructive. An elec-
tric dipole moment is characterized by its orientation and
magnitude. The difference of two such dipoles is itself
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specified by an orientation and magnitude. The task is
therefore to calculate the distributions of the magnitude
and orientation of (half) the difference between the elec-
tric dipoles in each well. Without loss of generality, the
right well dipole can be chosen to be along the z axis:
~dR = doẑ. The left well dipole is then ~dL = d̃on̂ where n̂
is a unit vector pointing in an arbitrary direction. While
do and d̃o could vary between 0 and some maximal value,
choosing do = d̃o = constant simplifies the algebra. To
leading order, allowing do and d̃o to be distributed uni-
formly between 0 and some maximal value, does not ma-
terially change the result. The quantity of interest is then
d2 = |ẑ−n̂|2d2

o/4 where do is a fixed quantity of the order
of a Debye. Assuming that n̂ is uniformly distributed on
the unit sphere with angles θ and φ, d2 has the following
probability distribution:

P (d2) =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin(θ)δ(d2 − d2
o(1− cos(θ))/2)

=
1

d2
o

0 < d2 < d2
o

(9)

or equivalently

P (d) =
2d

d2
o

, 0 < d < do (10)

While the distribution is ”peaked” at the largest value
of the dipole moment, keeping only a single value for
d, such as do or the average value of d, is not a good
approximation. How one can experimentally determine
the distribution of coupling strengths will be taken up
in Section III, while the next section is devoted to the
elastic case.

B. Elastic case

The elastic case immediately presents a problem. Un-
like the single invariant in the vector case, the (symmet-
ric) elastic dipole tensor D has three invariants: Tr(D),
Tr(D2) and Det(D). There is, therefore, a question as
to how these invariants enter the picture. When calcu-
lating quantities such as ultrasonic absorption or TLS
relaxation times, it is typically sufficient to use first or-
der perturbation theory. The quantities depending on D
then always enter the equations as:

〈(Tr[Dεα])2〉 (11)

where εα stands for the elastic tensor εαij = 1
2 (êαi k̂j +

êαj k̂i) i, j = x, y, z, êα is a polarization vector for the

α = l, t polarization and k̂ is a phonon unit wavevector.

The angular brackets denote the average over dipole ori-
entations or equivalently, average over phonons directions

k̂ when considering a single TLS. Eq. (11) is the square
of the TLS-phonon coupling usually denoted by γ2

α in
the TLS literature. In the case of longitudinal phonons,
Eq. (11)) gives:

γ2
l = 〈(Tr[Dεl])2〉 =

1

15
(2Tr(D2) + (Tr(D))2) (12)

while the result for the transverse case is:

γ2
t = 〈(Tr[Dεt])2〉 =

1

30
(3Tr(D2)− (Tr(D))2) (13)

A few conclusions can be drawn from these very gen-
eral relations. The first is that, even when TLS-phonon
interactions are handled at the lowest order in pertur-
bation theory as described above, it is not possible to
simply summarize the elastic dipole strength by a sin-
gle number. The second is that the longitudinal cou-
pling is always larger than the transverse one. The
third is that an isotropic dipole tensor only couples to
longitudinal phonons. Note also that a volume con-
serving tensor (i.e. with Tr(D) = 0) implies a ratio

γl/γt = 2/
√

3 ∼ 1.15 which is significantly smaller than

what is observed experimentally (∼
√

3, see [7]). Thus
far nothing has been said about the form of D. The
most general form of such a symmetric tensor can be ex-
pressed as Dij = a+ bn̂in̂j + cm̂im̂j where n̂ and m̂ are
arbitrary unit vectors and a, b, c are real numbers. Inter-
estingly, the simplest such dipole, a = 0, c = 0, results
in γl/γt =

√
3 which is very close to the ratio observed

experimentally [7]. To see this, notice that with a single
unit vector n̂, the dipole tensor has one diagonal element
equal to b and zero for all other matrix elements. In that
case, Tr(D2) = (Tr(D))2 from which the result follows.

As in the dielectric case, the relevant quantity is the
difference in dipole moment between the two wells of
the TLS. Using the same assumption, namely that the
dipoles are identical yet “oriented” differently but uni-
formly with respect to each other, the quantity of in-
terest is: ∆D = 1

2 (Do − RTDoR) where R denotes
a rotation (uniform rotation around a unit vector uni-
formly distributed over the unit sphere). Do is the typ-
ical dipole moment in one well, taken to be the same
for all TLSs. The most general case with three distinct
eigenvalues for Do is not amenable to an analytic solu-
tion for ∆D. The case where there is only one non-zero
eigenvalue, λ, has an analytic solution (this corresponds
to building the dipole moment out of a single unit vec-
tor). Another solvable case is when the dipole moment
has only two distinct values λ1 and λ2. The first case is
presented below. The rotation matrix R is given by:



4cos(ψ) cos(φ) cos(θ)− sin(ψ) sin(φ) − sin(ψ) cos(φ)− cos(ψ) sin(φ) cos(θ) cos(ψ) sin(θ)
sin(ψ) cos(φ) cos(θ) + cos(ψ) sin(φ) cos(ψ) cos(φ)− sin(ψ) sin(φ) cos(θ) sin(ψ) sin(θ)

− cos(φ) sin(θ) sin(φ) sin(θ) cos(θ)

 (14)

where the Euler angles ψ and φ range from 0 to 2π and
θ ranges from 0 to π. (Convention: R is obtained by a ψ
rotation around the current z axis followed by a θ rotation
around the current y axis, followed by a φ rotation around
the current z axis.)

A straightforward if tedious calculation gives for ∆D
in its diagonal basis:

∆D = λ sin(θ)

−1 0 0
0 1 0
0 0 0

 (15)

where 0 ≤ θ ≤ π. (The second case with two eigenval-
ues λ1 and λ2 gives the same result with λ replaced by
λ1 − λ2.) The trace of ∆D is zero and therefore, from
Eqs. (12) and (13),

γl =
2λ√
15

sin(θ) ≡ γmax,l sin(θ) (16)

and

γt =
λ√
5

sin(θ) ≡ γmax,t sin(θ) (17)

where γmax,l = 2λ/
√

15 and γmax,t = λ/
√

5. Using the
fact that P (γp) = P (−γp), the probability of obtaining a
given |γp| (p = l, t) is then:

P (γp) =

∫ π/2

0

dθ sin(θ)δ(γp − γmax,p sin(θ))

=
γp

γ2
max,p

√
1− γ2

p/γ
2
max,p

, 0 < γp < γmax,p
(18)

As argued in [8], this can reasonably well be approxi-
mated by P (γp) ∼ γp/γ

2
max,p. The problem here is that

by construction, the trace of the dipole moment differ-
ence is zero which means that the ratio γl/γt is smaller
than experiments suggest [7]. This can be remedied at
the expense of additional assumptions as to the way the
dipoles in each well differ. Given the lack of a detailed
microscopic model, there is little point in doing so. The
main element to emphasize is that a distribution of cou-
pling constants γl,t should be expected.

It is worth noting that Parshin et al. [14] also obtained
a distribution of TLS-phonon couplings in their approach
to TLS formation based on the instability of quasi-elastic
vibrations.

III. EXPERIMENTAL MEASUREMENTS OF
THE TLS-FIELD COUPLINGS

TLS with electric dipole moments are a major source
of decoherence in superconducting qubits because a TLS

in resonance with the qubit can split the qubit energy
levels [16]. While this is a major headache in the field
of quantum computing [11], this coupling allows us to
observe individual TLS and their coupling to AC electric
fields. In addition, the dependence of the TLS energy
splitting on static electric fields and strain fields can also
be extracted [15, 17].

Consider an amorphous material in close proximity to
a qubit at a temperature T much less than the qubit ex-
citation energy ~ωq (the experimental setup is described
in [17]). In general, this material will contain many TLS
with electric dipole moments. The qubit is prepared in
its excited or |1〉 state. If there is a TLS with an energy
splitting E = ~ωq where ωq is the qubit’s frequency, en-
ergy will be exchanged between the qubit and the TLS.
If the relaxation time T1,TLS of the TLS is short enough
(T1,TLS � T1,qubit) which is usually the case, the loss of
the qubit’s excitation can be detected. This is done by
measuring the probability P that the qubit is in its ex-
cited state after a time t. If T1,TLS is sufficiently short,
P (t) will decay exponentially. For intermediate values of
T1,TLS , oscillation may be observed in the exponential
decay, reflecting energy moving back and forth between
the qubit and the TLS. From the decay of P (t) the relax-
ation time T1,qubit can be extracted. If T1,quibit is signifi-
cantly reduced and the qubit is in resonance with a TLS,
its energy can thus be measured. With a tunable qubit,
the frequency ωq can be changed continuously between
a minimum and maximum value. During a frequency
sweep, different TLS will come into resonance with the
qubit. Now consider what happens upon the application
of a static field F with coupling p to the TLS. (F can be
either an electric field or a strain field.) As a function of
the static external field, the TLS energy will be:

ε =
√

∆2
o + (∆ + 2pF )2 (19)

where ∆ is the asymmetry energy and ∆o is the tunneling
energy of the TLS. Thus if a frequency scan ωq,min <
ωq < ωq,max is performed for each value of the external
field, the point of maximal qubit energy loss, when ~ωq
equals the TLS energy splitting, will show up as a curve
tracing Eq. (19) on a 3D density plot of T1,qubit with F on
the horizontal axis and ωq on the vertical axis. A good
example is shown in Fig. 1 (but see also Fig. 2 (c) and
(d) of ref. [17]). A fit of such a trace to Eq. (19) allows
the extraction of ∆o and p, at least if ∆o/~ lies between
the minimum and maximum frequency of the qubit.

An alternative to using qubits as the detector is to use
an LC circuit, as described in ref. [15]. The principle
is similar but instead of measuring the state of a qubit,
the loss in the LC resonator at its natural frequency ωLC
is measured. When a TLS is at resonance with the LC
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FIG. 1. Energy relaxation time T1 (gray scale) of a superconducting transmon qubit as a function of the qubit resonance
frequency and the applied mechanical strain. Dark hyperbolic traces indicate the resonances of TLS defects which absorb
energy from the qubit.

circuit, the loss in the latter will be large. A 3D plot of
the LC circuit loss with F on the horizontal axis and ωLC
on the vertical axis will again show traces where the loss
is large following Eq. (19). An example is shown on Fig.
2 of ref. [15].

It is important to note that regardless of whether the
static field F is elastic or electric, the coupling of the
TLS to the qubit or resonator is via photons with fre-
quency ωq. If d|| denotes the component of the electric
dipole moment parallel to the direction of the AC elec-
tric field of the qubit, then the TLS coupling strength
is d||EAC∆o/ε. Thus, TLS with very small values of
d||∆

o/ε will essentially be invisible. In the standard TLS
model, ε, ∆o, the electric dipole moment and the elastic
dipole moment are all uncorrelated quantities. Therefore
the TLS-qubit coupling has no impact on the distribution
of couplings that are observed, just an overall reduction
of the total number of TLS that can be observed. The
Modified TLS model differs in this respect since ∆o and
the magnitude of the elastic dipole moment are correlated
in that model. In fact, the two quantities are related by

∆o = ∆o
maxe

−(γ/γo)2 (20)

where γ is the magnitude of the elastic dipole moment av-
eraged over longitudinal and transverse polarizations and
γo is a constant depending on material parameters. γo
is ∼ 0.25 eV in the case of SiO2. This relation between
∆o and γ stems from the phonon-TLS coupling which
produces an exponential renormalization of the tunnel-
ing matrix element due to phonon overlap between the
two wells of the TLS (a kind of polaron effect) [8]. Note
that the distribution of elastic couplings given by Eq. (18)

ensures the distribution Eq. (2) is satisfied up to logarith-
mic corrections. As a result, TLS with large elastic dipole
moments will have a small tunneling parameter ∆o and
thus a reduced coupling to the qubit. This has the ef-
fect of selectively suppressing high elastic dipole TLS in
the observed distribution of elastic dipoles (see section
III B). There is no corresponding effect for electric dipole
measurements as electric and elastic dipole moments are
assumed to be uncorrelated.

A. Dielectric case

Typical experimental setups are described in [15, 17].
A static electric field is applied to the amorphous mate-
rial in a parallel plate capacitor configuration. A TLS is
characterized by its asymmetry energy ∆, its tunneling
energy ∆o and, in the dielectric case considered here, an
electric dipole moment d. The TLS coupling to phonons
via the TLS elastic dipole moment is also present and
primarily responsible for the TLS relaxation time. As
long as TLS relax sufficiently fast on the timescale of
the measurement frequencies (GHz range), this coupling
is not explicitly needed for the present calculation. The
TLS energy splitting ε as a function of the applied static
electric field E is given by:

ε =
√

∆2
o + (∆ + 2dzE)2 (21)

where dz = d cos(θ) is the projection of the dipole mo-
ment along the E field taken to be along the z axis. E
ranges from −Em to Em with Em ∼ 100 kV/m. The
TLS model assumes that the probability of finding a TLS
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with values ∆ and ∆o is given by P (∆,∆o) = P/∆o with
−∆max < ∆ < ∆max and ∆min

o < ∆o < ∆max
o ; P en-

sures that the distribution is properly normalized to 1.
With the additional assumption that the electric dipole

moment is independent of ∆ and ∆o, the probability den-
sity PO(dz) of observing a TLS with dipole moment dz
satisfies approximatively:

PO(dz) ∼ P (dz)

∫ ~ωq,max

~ωq,min

dε

∫ 2dzEm

−2dzEm

dy

∫ ∆max

−∆max

d∆

∫ ∆max
o

∆min
o

d∆o

∆o
δ
(
ε−

√
∆2
o + (∆ + y)2

)
(22)

where P (dz) is the true probability that a given TLS
has electric dipole moment dz and y = 2dzE. Provided
that ∆max � 2|dzE| and ∆max > ~ωq, ∆ can simply be
shifted by y. Then the integral over y simply yields a
factor 4dzEm. The integral over ∆o and the shifted ∆
gives a factor independent of ε, up to logarithmic accu-
racy. The last remaining integral, over ε, is thus a factor
proportional to (~ωq,max−~ωq,min). The observed distri-
bution of dz is therefore related to the actual distribution
by:

PO(dz) = A P (dz)dz (23)

where A is a normalization constant. Another way to
understand Eq. (23) is to consider the rectangle defined
by the range of values ~ωq,min : ~ωq,max along the y axis
and −dzE : dzE for a given dz along the x axis of the
rectangle. Since the number of TLS per unit energy is
(nearly) constant, the density of TLS in that rectangle
is also constant. Therefore the number of TLS observed
will be proportional to the area of the rectangle times
the probability of having a given dz, which immediately
yields Eq. (23). The prediction for the distribution of
P (dz) in any model must then be adjusted using Eq. (23)
when comparing the result with experiments.

Fig. 2 shows the distribution PO(dz) obtained from
Fig. 3 of ref. [15]. There are a total of 60 measurements.
The data appears distinctly different below and above
dz ∼ 4 Debye. The authors of that paper have concluded
that two types of TLS with distinct dipole moments ex-
ist. The same assumption is made here. Given the very
small number of data points with dz > 4, the two regimes
can be qualitatively discussed separately. It is instruc-
tive to first consider the prediction of the standard TLS
model which posits that |d| = do with a uniform orien-
tation distribution on the unit sphere. This implies a
flat distribution P (dz) = 1/(2do), −do < dz < do. Be-
cause of the symmetry z → −z, the experimental data is
”folded” to the positive values, so the distribution needed
is P (|dz|) = 1/do. The corresponding distribution for the
observed values PO(dz) is obtained by using Eq. (23).
The result for the regime dz < 4 is shown on Fig. 2 by
the straight line with square markers, using do = 4. The
precise value of do is not important at this qualitative
level. Even though the total number of data points is
quite small, this set of data clearly does not support the
standard TLS model.

FIG. 2. Raw distribution of dz obtained from Fig. 3 of ref.
[15] (Exp.). The squares are the prediction of the standard
TLS model with do = 4 (Std. TLS). The stars markers are
the prediction of the Modified TLS model, also with do = 4
(Mod. TLS).

The distribution of dipole norms based on the differ-
ence between the moment in each well, P (d), (Modified
TLS model) was given by Eq. (10). The projection along
the z direction is

P (dz) =
1

2

∫ π

0

dθ sin(θ)
2

d2
o

∫ do

0

δ(dz − d cos(θ))P (d)dd

(24)
which, again folding negative values onto the positive
ones, gives:

P (dz) =
2

d2
o

(do − dz), 0 < dz < do (25)

Again the corresponding observed distribution is ob-
tained from this result using Eq. (23). The result for
the region dz < 4 is shown on Fig. 2 by the star mark-
ers, using do = 4 as before. At this qualitative level, the
general form matches the data better than the standard
TLS model.

What can explain the values observed in the range
dz > 4? It seems unlikely that a localized moment
would be of such a large magnitude. However a group of
TLS acting coherently could possibly have a significantly
larger effective moment. Consider, for instance, a pair
of TLS in relatively close proximity, with equal energy
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splittings. These two TLS will interact with each other
statically via the strain field and via resonant phonon
exchange, since the energy splittings are the same. The
Hamiltonian of such a system is approximately given by:

H =
ε

2
(σz1 + σz2)− Jσz1σz2 +Kσx1σ

x
2 (26)

where ε =
√

∆2
o + (∆ + 2dzE)2 is the energy splitting

of TLS ”1” and ”2”, J > 0 and K are TLS-TLS cou-
pling constants such that J � |K|. The z component of
the electric dipole moment of each TLS, dz, is further-
more assumed to be the same (or else the static elec-
tric field E would eliminate the resonant σx1σ

x
2 term).

The two lowest energy eigenstates are found to be a
mixture of the |11〉 and | − 1 − 1〉 states with energies

−J ±
√
K2 + ε2. The other two eigenstates are higher in

energy, J±K, and mix the |1−1〉 and |−11〉 states. The
energy difference between the two lowest eigenstates is
then

√
4K2 + 4∆2

o + (2∆ + 4dzE)2. The measured value
of the dipole moment would then be 2dz. Its maximal

value is 2do = 8 Debye when ~d|| ~E. For these pairs of
TLS, the predicted distribution of their dipole moment
is identical to the single TLS case (as shown on Fig. 2)
with the replacement do → 2do, albeit with a much lower
overall probability of occurrence. There are not enough
data points in the range 4 < dz < 8 to draw any con-
clusion as to the actual distribution of dipole strengths
for these pairs. Nevertheless this simple calculation pro-
vides a possible explanation for the large dipole values
observed while being consistent with a distribution of
dipole strengths.

B. Elastic case

This section mirrors section III A but for the case of a
static elastic field. As noted earlier, the present case is
more involved. The standard TLS model and the Mod-
ified TLS model will be used to predict the distribution
of the projection of the TLS-phonon coupling along the
direction of the externally applied strain field and then
compared to the measurements.

The reader is referred to the work of Grabovskij et al.
for a detailed description of the experimental setup [12].
In a nutshell, the measuring qubit is deposited on a sili-
con (or sapphire) substrate. This substrate is held fixed
at the right and left edges. A piezo controlled rod below
the center and perpendicular to it can impart a force to
the substrate, bending it slightly. The resulting shear
stress is proportional to the vertical displacement of the
rod and thus to the voltage Vp applied to the piezo. This
stress will alter the asymmetry energy of TLS near the
qubit according to Eq. (19). The term 2γF in that equa-
tion now takes the form γzαVp where γz is the magni-
tude of the projection of the elastic dipole moment along
the direction of the applied field and αVp is the strain
field. Grabovskij et al. estimate the coefficient α to be
α = 10−6 per volt as an order of magnitude. Grabovskij

et al. do not directly measure γz, but rather γzα in
GHz/V and that is the quantity that will be calculated
to allow for a direct comparison with experiment.

The first step is to compute the distribution of γz. The
dipole moment coupling to shear strains, in the basis
where the dipole moment is diagonal, can be taken to
be of the form:

∆D = γt

−1 0 0
0 1 0
0 0 0

 (27)

where the distribution for γt is given by Eq. (18) for
the Modified TLS model. For the standard model, it is
simply a constant. Since the dipole moment is oriented
randomly with respect to the strain field, its expression
will be given by Eq. (27) but rotated by an arbitrary ro-
tation R. This rotated dipole is given by R∆DR−1 where
R is the matrix representing the arbitrary rotation. This
matrix is given by Eq. (14). The next step is to compute
γz ≡ γtε̃ij(R∆DRt)ij where ε̃ij is the unit strain tensor
as before. The non-zero element of the unit strain tensor
corresponding to the geometry of the experiment is the
zz component. In matrix form it is:0 0 0

0 0 0
0 0 1

 (28)

The evaluation of ε̃ij(R∆DRt)ij gives cos(2ψ) sin2(θ) so
that γz is related to the Euler angles ψ, θ, φ of the
random rotations by:

γz = γt cos(2ψ) sin2(θ) (29)

This is the elastic equivalent of the dz = d cos(θ) ex-
pression in the electric dipole case. Had the direction of
the strain field been chosen to be along the x axis, the
projection would have been:

ε̃ij(R∆DRt)ij = cos(θ) sin(2ψ) sin(2ψ)

+ cos(2φ) cos2(ψ)− cos2(ψ) cos(2φ) cos2(θ)
(30)

Regardless of which expression is used, however, the re-
sults obtained below are the same, as they should be.

It is difficult to obtain an analytic form for the proba-
bility P (γz). Instead, TLS with asymmetry ∆, tunneling
∆o and γz as given by Eq. (2) and Eq. (29) were gener-
ated numerically for the TLS model. For the Modified
TLS case, ∆ was sampled from a flat distribution, while
γl,t and γz were generated using Eq. (18) and Eq. (29).
∆o was obtained from γl,t using Eq. (20). In addition, an
electric dipole moment projected along the direction of
the qubit AC field, d||, was generated from a flat distri-
bution (up to 4 Debye) to compute the effective coupling
to the qubit given by d||∆

o/ε. This effective coupling
must have a minimal strength for the TLS to be visible.
This minimal value was set to 0.01 Debye. Since ε can
vary between ~ωq,min and ~ωq,max along a spectroscopic
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trace, ε is set to ~ωq,max in the expression for the TLS-
qubit coupling strength, d||∆

o/ε. Thus only TLS that
are visible at the top of the spectroscopic window (for
the appropriate applied strain field) are retained. The
maximal value of γz for SiO2, γz,max, is estimated to be
2.5 eV [8]. γz,maxα was chosen to be 0.5 GHz/Volt which
corresponds to a factor α = 8 · 10−7.

In each case, it was determined whether the resulting
TLS would cross into the spectroscopic window of the
qubit. Crossing is defined as a TLS trace that covers
at least 10% of the spectroscopic window along the fre-
quency and/or voltage axis. This is done to account for
the experimental need to see enough of the trace to ob-
tain the fit necessary to extract γzα. The calculations
are very insensitive to this definition. The results are
shown in Fig. 3: the top left plot shows the prediction
of the standard TLS model, the top right plot is the pre-
diction of the Modified TLS model, and the lower plot
corresponds to the measurements.

FIG. 3. Prediction for γzα as measured in ref. [12]. Top left
plot: TLS model prediction. Top right plot: Modified TLS
model. Bottom plot: Experimental data.

While the predictions of the standard and Modified
TLS model are quite distinct, neither come close to re-
producing the measurements. A surprising feature of the
experimental data is that the distribution is peaked at
small values and decreases fairly quickly. The sharp de-
crease of the number TLS observed with large values of
γzα in the Modified TLS model is due to the correlation
between ∆o and γz. This decrease is, however, too sharp.

Then what can explain the peak at low γzα and the
tails in the distribution? A possible explanation involves
the static fields. The assumption has hitherto been that
they are uniform within the region where TLSs can be
measured. This may not be the case, particularly in the
elastic situation. What we may have is a gradient of
the field, as exists inside a bent plate for instance (see
Appendix B for an analysis of this situation) or regions
where the field strengths may vary spatially. At long
lengthscales, strain field have definite values as captured
by elasticity theory. However, in the case of amorphous

materials, the strain may vary substantially at the short
distances characteristic of the assumed size of TLSs [18].
To see the impact that such random variations may have
on the observed distribution of γzα, γzα was multiplied
by Gaussian noise with mean 1 and standard deviation
0.5. The standard deviation was chosen to reproduce
roughly the size of the peak in the distribution at low
couplings. The result is shown on Fig. 6.

While there is no doubt that strain varies locally for
a given applied external stress, is the scale of the fluctu-
ation assumed here realistic? To answer this question,
numerical simulations on amorphous Al2O3 were per-
formed. The system size is 8.3 nm × 7.4 nm × 3.3 nm
(xyz) and consists of 19,440 atoms. The distribution of
strain inside the material was measured at T = 0K as
a function of domain size ranging between 4Å and 50Å.
The details of these simulations are given in Appendix
A. A given overall dilatation was applied along the x
axis, εextxx = 2 · 10−3, of the numerical sample. This
value is large compared to the strains actually applied
to the qubits (∼ 10−6) but are still within the elastic
regime. An example of the distribution of internal strains
is shown in Fig. 4. The distribution for shear strains,
εextxy = 2 ·10−3, shows a very similar behavior, albeit with
a larger variance. As the size of the domain increases,
the distribution becomes increasingly peaked around a
mean value equal to the externally applied strain. Fig. 5
shows the reduction in variance as a function of domain
size.

FIG. 4. Computed distribution of internal strains for an ex-
ternal strain εextxx = 2 · 10−3. Domain size is 4Å.

The variance for a domain size comparable to the size
of a TLS, i.e., ∼ 20Å, is about 10−6 which, when normal-
ized by the externally applied strain so as to be applicable
to the experimental strains, corresponds to a standard
deviation of 0.5 as was used earlier. Note that the distri-
bution of internal strains has larger tails than a normal
distribution. This may very well explain the long tail in
the experimental distribution of coupling (see Fig. 6).
The conclusion of this analysis is that the strain varia-
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FIG. 5. Evolution of the internal strain variance as a function
of domain size (in Å). The external strain is εextxx = 2 · 10−3.

tions observed in simulations of amorphous alumina are
compatible with the variations required to account for
the observed distribution of couplings γzα in qubits.

It is of course possible that the distribution of TLS in
the thin amorphous layers where they can be observed
is simply far from the bulk values which were assumed
to hold. For instance, consider TLS with large asymme-
try energies that lie well above the observation window
and can only be pulled into that window if they have a
large TLS-phonon coupling. If the distribution of ∆ de-
creases with increasing asymmetry energies, the number
of TLS that are observed with large TLS-phonon cou-
plings would decrease accordingly. The TLS may also
reside in greater numbers at the interfaces between the
amorphous layers and its surroundings (vacuum, con-
ducting plates, etc. . . ). These TLS may have distribu-
tions that are quite different from their bulk counter-
parts. The interface also creates a preferential direction
that may substantially affect the orientation of the dipole
moments.

IV. CONCLUSION

This work addresses the question as to whether the
strength of electric dipole moments and elastic dipole
moments associated with two level systems in glasses are
distributed over a wide range of values as in the Modified
TLS model or are narrowly centered around a given value
as in the standard TLS model. The dielectric and elas-
tic data favor the first possibility. The situation in the
elastic case requires that local random strain fluctuations
be included and the distribution of these random strains
are consistent with those found from molecular dynamics
simulations. However, we note the fairly good agreement
between experiments and the Modified TLS model is not
so much due to the distribution of couplings as it is to the
correlation between the tunneling matrix element and the

FIG. 6. Prediction for the distribution of γzαm using the
TLS model and the Modified TLS model, including intrinsic
Gaussian strain fluctuations. Top left plot: TLS model. Top
right plot: Modified TLS model. Bottom plot: experimental
data.

elastic coupling strength. While that correlation implies
a wide range of couplings, the distribution itself is not the
key element leading to the results. This is in part due to
the fact that even with a single value for the magnitude
of the field-TLS coupling assumed by the standard TLS
model, a range of values for the projection along the ap-
plied field is nevertheless present due to the random ori-
entation of the dipoles. The good agreement between the
Modified TLS model and the experimental observations
suggests a significant correlation between the tunneling
matrix element ∆o and the elastic TLS phonon coupling.
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Appendix A: Simulations on amorphous Al2O3

The molecular dynamics simulations in this study were
conducted with the LAMMPS package [19] using em-
pirical potentials developed for aluminosilicate melts by
Matsui [20]. The amorphous alumina structures pro-
duced by the potentials were found to be in good agree-
ment with experimental observations. The system used
for the strain calculations was a bulk Al2O3 structure
with periodic boundary conditions containing 19,440
atoms in total. To prepare the amorphous structure,
the system was first melted at 5000 K for 100 ps and
then quenched to 100 K using a cooling rate of 1 K/ps,
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in the isothermal-isobaric ensemble (NPT). Based on
the enthalpy-temperature cooling curve, the glass tran-
sition occurred around 1300 K. The melt-quench proce-
dure resulted in an amorphous system with the size of
8.3 nm × 7.4 nm × 3.3 nm at 100 K. Subsequently, the
system was relaxed to 0 K for the strain calculations.
The relaxed structure was subjected to uniaxial strains
of -0.004, -0.002, 0, 0.002, 0.004. At each strain, the
structure is relaxed in the canonical ensemble (NVT) be-
fore the strains are analyzed. The resulting strain-stress
curve for the whole system was linear, suggesting that
the system stayed within the elastic region.

To investigate the local strain distribution, the system
was relaxed under a given external strain and divided into
small cuboid boxes. The local strain in each box was then
calculated by averaging the vectorial transformation from
every atom in the box to a reference atom. By changing
the cuboid box size, local strain distributions at different
length scales were obtained. Note that the geometric
average of the three sizes of the cuboid box needed to be
greater than 0.4 nm to ensure that at least two atoms are
in each box.

Appendix B: Effect of uniform strain gradients

A linear gradient of the strain field in the regions where
the TLS are located will also affect the observed distri-
bution of γzα. To assess the impact of such a gradient, a
simulation with a linear strain gradient was performed.
The variation in αVp was taken to be linear, decreasing

from the maximal value to 0.25 of that maximal value for
a given piezo voltage. The maximal value is determined
by the coefficient α = 8 · 10−7 as before. The results are
shown in Fig. 7.

FIG. 7. Prediction for the distribution of γzαm using the TLS
model and the Modified TLS model, including an intrinsic
strain gradient. Top left plot: TLS model. Top right plot:
Modified TLS model. Bottom plot: experimental data.

While the effect of the linear strain gradient improves
the results somewhat, the effect is marginal. The exper-
imental observation that surface TLS and junction TLS
show essentially the same distribution while one would
expect the junction TLS to experience a much more uni-
form strain, lends support to the idea that strain gradi-
ents do not play an important role.

[1] P. W. Anderson, B. I. Halperin, and C. M. Varma,
Anomalous low-temperature thermal properties of
glasses and spin glasses, Philosophical Magazine 25, 1
(1972).

[2] W. A. Phillips, Tunneling states in amorphous solids,
Journal of Low Temperature Physics 7, 351 (1972).

[3] W. A. Phillips, Two-level states in glasses, Reports on
Progress in Physics 50, 1657 (1987).

[4] S. Hunklinger and A. Raychaudhuri, Chapter 3: Ther-
mal and elastic anomalies in glasses at low temperatures
(Elsevier, 1986) pp. 265 – 344.

[5] J. J. Freeman and A. C. Anderson, Thermal conductivity
of amorphous solids, Physical Review B 34, 5684 (1986).

[6] K. Topp and D. G. Cahill, Elastic properties of sev-
eral amorphous solids and disordered crystals below 100
k, Zeitschrift für Physik B Condensed Matter 101, 235
(1996).

[7] J. F. Berret and M. Meißner, How universal are the low
temperature acoustic properties of glasses?, Zeitschrift
für Physik B Condensed Matter 70, 65 (1988).

[8] H. M. Carruzzo and C. C. Yu, Why phonon scattering in
glasses is universally small at low temperatures, Physical
Review Letters 124, 075902 (2020).

[9] J. Joffrin and A. Levelut, Virtual phonon exchange in

glasses, Journal de Physique 36, 811 (1975).
[10] K. Kassner and R. Silbey, Interactions of two-level sys-

tems in glasses, Journal of Physics: Condensed Matter
1, 4599 (1989).

[11] C. Müller, J. H. Cole, and J. Lisenfeld, Towards under-
standing two-level-systems in amorphous solids: Insights
from quantum circuits, Reports on Progress in Physics
82, 124501 (2019).

[12] G. J. Grabovskij, T. Peichl, J. Lisenfeld, G. Weiss, and
A. V. Ustinov, Strain tuning of individual atomic tunnel-
ing systems detected by a superconducting qubit, Science
338, 232 (2012).

[13] J. Lisenfeld, A. Bilmes, S. Matityahu, S. Zanker,
M. Marthaler, M. Schechter, G. Schön, A. Shnirman,
G. Weiss, and A. V. Ustinov, Decoherence spectroscopy
with individual two-level tunneling defects, Scientific Re-
ports 6, 23786 (2016).

[14] D. A. Parshin, H. R. Schober, and V. L. Gurevich, Vibra-
tional instability, two-level systems, and the boson peak
in glasses, Physical Review B 76, 064206 (2007).

[15] B. Sarabi, A. N. Ramanayaka, A. L. Burin, F. C. Well-
stood, and K. D. Osborn, Projected dipole moments
of individual two-level defects extracted using circuit
quantum electrodynamics, Physical Review Letters 116,

https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1007/bf00660072
https://doi.org/10.1088/0034-4885/50/12/003
https://doi.org/10.1088/0034-4885/50/12/003
https://doi.org/10.1103/physrevb.34.5684
https://doi.org/10.1007/s002570050205
https://doi.org/10.1007/s002570050205
https://doi.org/10.1007/bf01320540
https://doi.org/10.1007/bf01320540
https://doi.org/10.1103/physrevlett.124.075902
https://doi.org/10.1103/physrevlett.124.075902
https://doi.org/10.1051/jphys:01975003609081100
https://doi.org/10.1088/0953-8984/1/28/009
https://doi.org/10.1088/0953-8984/1/28/009
https://doi.org/10.1088/1361-6633/ab3a7e
https://doi.org/10.1088/1361-6633/ab3a7e
https://doi.org/10.1126/science.1226487
https://doi.org/10.1126/science.1226487
https://doi.org/10.1038/srep23786
https://doi.org/10.1038/srep23786
https://doi.org/10.1103/physrevb.76.064206
https://doi.org/10.1103/physrevlett.116.167002


11

167002 (2016).
[16] J. M. Martinis, K. B. Cooper, R. McDermott, M. Stef-

fen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P.
Pappas, R. W. Simmonds, and C. C. Yu, Decoherence
in josephson qubits from dielectric loss, Physical Review
Letters 95, 210503 (2005).

[17] J. Lisenfeld, A. Bilmes, A. Megrant, R. Barends, J. Kelly,
P. Klimov, G. Weiss, J. M. Martinis, and A. V. Ustinov,
Electric field spectroscopy of material defects in trans-
mon qubits, npj Quantum Information 5, 105 (2019).

[18] A. J. G. Lunt, P. Chater, and A. M. Korsunsky, On the
origins of strain inhomogeneity in amorphous materials,
Scientific Reports 8, 1574 (2018).

[19] S. Plimpton, Fast parallel algorithms for short-range
molecular dynamics, Journal of Computational Physics
117, 1 (1995).

[20] M. Matsui, A transferable interatomic potential model
for crystals and melts in the system cao-mgo-al2o3-sio2,
Mineralogical Magazine 58A, 571 (1994).

https://doi.org/10.1103/physrevlett.116.167002
https://doi.org/10.1103/physrevlett.95.210503
https://doi.org/10.1103/physrevlett.95.210503
https://doi.org/10.1038/s41534-019-0224-1
https://doi.org/10.1038/s41598-018-19900-2
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1180/minmag.1994.58a.2.34

	Distribution of Couplings of Two Level Systems to Strain and Electric Fields in Glasses at Low Temperatures
	Abstract
	Introduction
	TLS - fields interaction revisited
	Dielectric case
	Elastic case

	Experimental measurements of the TLS-field couplings
	Dielectric case 
	Elastic case

	Conclusion
	Acknowledgments
	Simulations on amorphous Al2O3
	Effect of uniform strain gradients
	References


