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ABSTRACT

A central goal of algorithmic fairness is to build systems with fair-

ness properties that compose gracefully. A major effort and step

towards this goal in data science has been the development of fair

representations which guarantee demographic parity under sequen-

tial composition by imposing a demographic secrecy constraint. In

this work, we elucidate limitations of demographically secret fair

representations and propose a fresh approach to potentially over-

come them by incorporating information about parties’ incentives

into fairness interventions. Specifically, we show that in a styl-

ized model, it is possible to relax demographic secrecy to obtain

incentive-compatible representations, where rational parties obtain

exponentially greater utilities vis-à-vis any demographically secret

representation and satisfy demographic parity. These substantial

gains are recovered not from the well-known cost of fairness, but

rather from a cost of demographic secrecy which we formalize and

quantify for the first time. We further show that the sequential com-

position property of demographically secret representations is not

robust to aggregation. Our results open several new directions for

research in fair composition, fair machine learning and algorithmic

fairness.
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1 INTRODUCTION

It is now well known that there are multiple grounds for moral haz-

ards in the practice of data science (e.g., at data collection, during

data cleaning, model specification, at training time, or in subsequent

optimizations)[6]. Even for the most elementary goal of łfair data-

driven algorithmsž (statistical parity, see definition below) there

are myriad solutions proposed at various stages of data processing.

But all those have two assumptions in common: A single entity

or administrative domain is in charge of enforcing fairness at all

stages, while other participating parties either are fixed or untrusted

adversaries. All of those scenarios imply that fair pipelines comes

at a substantial operating cost1. The issue is further compounded

and complicated upon panning out from an individual pipeline, to

consider the patterns of sharing, reuse, and consumption of the

same published data between separate entities. That is especially

pronounced in online targeted advertising, one of the most wide-

spread application of data-driven decisions where it is common

for advertisers to aggregate large amounts of data from multiple

sources. Consider settings corresponding to one piece of this com-

plex ecosystem: data brokers selling data to advertisers. To ensure

fairness in practice, either the data brokers need to sanitize data

against an arbitrary advertisers’ potential demographic bias, with

dire consequences on profit. Or alternatively, in an unregulated

market, the advertisers face a dilemma, either incur greater costs

to be fair, or sacrifice fairness to increase profit[12]. Little progress

has been made in addressing the problem years after evidence that

skewed online ads reduce exposure to high earning job for female,

limit housing options for some ethnic groups, and is a barrier to

career re-entry for older workers[1, 7ś9, 14, 19].

We suggest a fresh new start on achieving fairness in data

pipeline, one that departs from the assumptions that the problem

is addressed by a single actor through heavy-handed regulation

(e.g., the ad-platform, the advertiser, the credit scoring agency, the

firm hiring, the firm developing the AI). We formulate for the first

time the incentivizing fairness problem, inspired but not limited to

online advertising as a motivating example. Our single most im-

portant assumption is that the entity in charge of the data pipeline

faces profit-seeking adversaries: That is a participating entity (e.g.,

the advertisers of a ad campaign) whose only goal is to maximize

profit irrespective of its fairness consequences. This assumption,

while common elsewhere (e.g. Game Theory, Economics, Mech-

anism Design), substantively differs from those made in fairness

and fair-representation literature [21]. Our choice rules out, for

1The rare exceptions to that rule can be traced to lack of calibration in the training data
and model specification. We ignore those cases where fairness essentially counteracts
overtraining.
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instance, to work with firms that are actively leveraging data to

run an unfair ad campaign at any cost (aiming at complete discrim-

ination), or share data with malicious parties. This also requires

to make some assumption or have information (however minimal)

about how the firm makes profit from the ads. Since our aim is

in motivating further exploration of that alternative approach to

fairness, the main question we address is łWhat is the cost of in-

centivizing fairness in a data pipeline?ž łHow does it compare to

the traditional adversary models?ž łCan fairness be made incentive

compatible under some simple data manipulation in the pipeline,

keeping the design relatively robust to dependencies?ž

Our model (see Section 3 for notations and formal definitions)

in a nutshell focuses on one local step (a fork operation) in data

pipelines, which already reveals the crucial role of incentives in

achieving fariness. This simple fork pipeline includes a data publish-

ing platform (e.g., a data broker) and multiple data consumer firms

(e.g., advertisers interested to target particular individuals who use

the platform). Data consumers firms may be a very large number,

they are all profit seeking while the publishing platform, which

possesses a large database of inviduals it services, has a mandate to

achieve statistical parity in outcome. That implies that the publish-

ing platform would only release data if every data-consuming firm

would in the end select a subset that contains the same fraction of

consumers from a given subgroup than in the whole population. If

this model represents hiring ads on Facebook, this objective could

be a way to ensure that an advertiser constructs a demographically-

balanced custom audience, thereby proportionately targeting fe-

male, middle aged or non-white individuals. Profit made by data

consumer firms grows in proportion of the accuracy of the classi-

fication tasks they perform, just like it would if each ads costs a

nominal amount to show but potentially generate a (higher) amount

when it reaches a relevant individual. Note that we do not specify

how data about individuals are distributed and relate to the various

classification tasks, the subset a data consumer firm choses can

be rather complex. Features like łcustom audiencež, available on

Facebook’s ad-platform and others, allow today’s online advertisers

to make such a selection. Most importantly, the subset and utility

derived depend not only on the raw data but on the representation

of the data that the platform decides to publish.

This model, however simple, already highlights multiple ways

to achieve fairness in that specific interaction. First, it is a perfectly

sensible solution to publish data to all consumer firms in a sanitized

version that keeps demographic features hidden, even from data

inference, so they remain secret and discrimination is made impos-

sible. This is in fact the approach advocated in [21] and it forms

a natural benchmark, a lower bound on profits. One merit often

used to justify this approach is that sharing and reusing this data

among consumer firms, and even new ones, creates no additional

concern. On the opposite side of the spectrum, one could assume

that every consuming firm would first communicate the revenue

predicted from each individual in the database, and then it would

delegate to the publishing platform the selection, where the latter

computes among all fair subsets, the one that attains the maximum

profit. While this delegation is unpractical, it provides an upper

bound of attainable profit. Crucially our model leaves room for a

third option: providing data to consuming firms so that fairness is

incentive compatible. This holds if choosing a subset based on the

published information never results in an unfair subset maximizing

profit. Note here that the same data is published for all consum-

ing firms in that fork operation to reuse, possibly in coordination

among themselves (what we call lateral data reuse). Further data

reuse, however, could create unfairness since a new consuming

firm, with a very different objective, could possibly select an unfair

subset if it accesses this data. Data consuming firms would then

face a choice between being de facto fair, or losing revenue. But

would that actually lead to different data being published, and more

profit?

The main merit of that model, and the result of this paper, is to

reveal for the first time that incentive compatible fairness can be a

low-cost effective approach:

• We first analyze the cost of using sanitized version of the

data, formally defined as those achieving demographic se-

crecy. Multiple solutions in the literature based on calibration

of scores or clustering into representative bins have been

proposed and evaluated to that effect. It provides individuals

in the data with a special protection (i.e., their demographic

information cannot be inferred by consuming firms) and

automatically translate into some forms of downstream fair-

ness. But we show that evaluating the cost of demographic

secrecy, which is specifically distinct from the cost of fairness,

reveals a simple but important truth: demographic secrecy

may be cost effective for a single data consuming firm, but

much more costly when multiple consuming firms are using

the same published data. (Section 4)

• Given that the costs of fairness and demographic secrecy are

only the same in a simple case (a single consuming firm), how

large can the gap be in a simple model of individuals’ data?

And more importantly, can some representations of the data

make fairness incentive compatible and recover some of this

additional cost? We show the high potential of leveraging

incentive compatibility for fairness in the following set of

results: While the cost of fairness is linear in the number of

firms the added cost of demographic secrecy is exponential,

and with high probability fairness can be achieved using

incentives with no extra cost. Moreover, while this result

obviously is a reflection of the data model we assume, it

is found for the simplest (independent classification tasks),

which makes it likely that this theoretical gaps translate into

practical gain. (Section 5).

• The results presented above are encouraging, especially be-

cause fairness is often considered prohibitive while we clarify

that, in simple cases, only demographic secrecy is. It would

be premature, even misleading, to conclude that fairness can

always be achieved using incentives at no extra cost. Relying

on incentives to accomplish fairness with data reuse also cre-

ates new concerns. We clarify the potential and limitations

as we review the potential for such results to generalize and

how they motivate new directions in data pipelines. (Sec-

tion 6)

Before presenting the contribution in the order above, we quickly

review related work on fair representations and the associated costs

they introduce.
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2 RELATEDWORK

Our work is situated in the literature on fair representations initi-

ated by Zemel et al. in [21], where the authors consider a setting in

which a trusted platform releases data to a single third party. Later

work extended the setting to multiple third parties [16], and this

is the setting in which we develop our model. A defining feature

of fair representations to date has been that demographic informa-

tion is obfuscated, ideally in an information theoretic manner. In

contrast to such demographically-secret fair representations, the

notion of incentive-compatible fair representations that we propose

generalizes the notion of a fair representation.

The majority of work on fair representations has focused pri-

marily on the problem of finding a transformation of the original

dataset that results in a demographically-secret fair representation

while preserving as much non-demographic information as possible.

Zemel et al. propose an approach based on a discriminative clus-

tering model[21]. Feldman et al. propose an approach that learns a

transport map from each group’s distribution to the aggregate em-

pirical distribution of the data[11]. Johndrow and Lum generalize

this to a statistical model-based approach capable of handling dis-

crete features and an arbitrary choice of target distribution[13]. A

number of papers have considered approaches based on adversarial

learning with variations in the choice of generator, adversary, and

their respective optimization objectives[3, 10, 15, 16]. Such diversity

in the details of the form of the raw data, the choice of learning

algorithm, the specification of the transformations, and the form of

the representation present challenges to theoretical studies of fair

representations. We overcome these challenges by focusing on the

computational links that transformations create between initially

distinguishable individuals by mapping them to the same value.

The fair machine-learning community has identified a need to

theoretically study the properties of fair representations[4], al-

though there has been a limited amount of work to date. McNamara,

Ong, and Williamson assume that one can measure the distance be-

tween the raw datum and the transformed datum, and show how to

prove that a fair representation will be demographically secret and

how to bound the loss in utility of the resulting representation[17].

In contrast, our model makes no assumptions about the form of, or

relationship between the input and output of a fair representation.

A key contribution of this work is to formalize and quantify

for the first time the cost of demographic secrecy. This is very

closely related to the extensively-studied cost of fairness[5, 18].

Crucially, the cost of demographic secrecy is distinct, and, as we

will show in a simple model, sometimes much larger. In particular,

the cost of fairness derives from differences in the group-specific

statistics, whereas the cost of demographic secrecy derives from

computational links between individuals necessarily created to

obfuscate demographic information.

3 UTILITY OF FAIR REPRESENTATIONS

The Publisher, Individuals, and Groups. A publisher has a dataset,

perhaps of city hotline phone calls or medical histories. Each datum

contains information associated with some individual. Naturally the

form, content, and semantics of the data can vary considerably: an

individual’s Facebook likes, high school transcripts, or ultrasound

images from her most recent prenatal visit. We abstract away these

details by focusing on the individuals whom we model as elements

v of a finite set V . We assume that the individuals in V are distin-

guishable, that is, associated with a unique datum. Additionally,

each individual exclusively belongs to some group д in a finite set

of groups G given by a group-membership function γ : V 7→ G.

We will often focus on all the members of a group. For each

group д ∈ G, we denote by Vд the set of all individuals that belong

to д in V , that is, Vд = {v ∈ V : γ (v) = д)}. We mostly consider the

important special case where there are exactly two groups of equal

size: |G | = 2 and for д,д′ ∈ G, |Vд | = |Vд′ |. We shall say that such

V is a binary-balanced set.

Transformations and Representations. The publisher receives an

initial dataset in some form, but is not required to publish the raw

data. In particular, the publisher may choose to apply a transforma-

tion. The details of the transformation can vary considerably as to

its purpose, effects, computational complexity, and so on. Perhaps

to protect privacy, the values of some data fields are collapsed to

achieve k-anonymity; or for compression the top-k components are

obtained using Principal Component Analysis; or for transparency,

the raw dataset is released. We abstract away these details by fo-

cusing primarily on the resultant representation. While each datum

in the initial dataset is associated with a unique individual, each da-

tum in the representation is associated with one or more individuals.

Therefore, we model a representation Z as a partition of V . Each

part z ∈ Z represents the individuals whose computational fates

the transformation links together by mapping them to the same

datum. We denote the set of all possible partitions of a set V by

Π(V ). A transformation is thus a function of the form r : V 7→ Z .

Example 3.1. The identity representation I is the partition of |V |
singleton sets which models the case in which the publisher pub-

lishes the raw data. I has the transformation rI (v) = {v}.

Data Consumers and Automated Decision Systems. Data con-

sumers use the published data to construct automated decision sys-

tems. We assume that consumers do so independently. The auto-

mated decision systems may take many forms: a risk assessment

model that outputs an integral-valued score representing a category

of recidivism risk; a clustering algorithm for customer segmenta-

tion that assigns to each datum in the dataset a cluster identifier.

Moreover, the published data may be used as an input directly and

indirectly to multiple algorithms: the published data may be directly

fed into a representation-learning algorithm, and recommendations

may subsequently be made using the learned representation.

We dispense with most of the differences by focusing on their

effects. On input a datum from the published data, an automated de-

cision system assigns an outcome. We assume that the individuals

mapped to the same datum by the transformation are indistinguish-

able and therefore must be assigned the same outcome. We capture

this as follows: data consumer i constructs automated decision

system Di : Z 7→ Oi which maps parts of Z to outcomes in a

consumer-specific set of outcomes Oi .

Example 3.2. (Binary Classifier) One of the most common au-

tomated decision systems are binary classifiers. Data consumer

i constructing a binary classifier has consumer-specific outcome

set Oi = {0, 1}, and an automated decision system of the form

Di : Z 7→ {0, 1}.
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Data-Consumer Utility. Each data consumer chooses an auto-

mated decision system based on a consumer-specific utility which

captures the relation between the assigned outcomes of the auto-

mated decision system and the benefit the consumer receives from

those assignments. Given a representation Z , data consumer i is

constrained to construct an automated decision system Di from

DZ
i = {D : Z 7→ Oi }, the set of all automated decision systems

whose domain is Z and range is Oi . Therefore, we can model each

data consumer’s utility as a function of the form ui : DZ
i 7→ R+.

Example 3.3. (Unit-Additive Binary-Classification Utility) A data

consumer i that constructs a binary classifier Di often derives

its benefit from the accuracy of the classifier. There is a class-

membership function fi : V 7→ {0, 1}, and i wishes the classifi-

cation Di (v) to match the label fi (v) on as many individuals v ∈ V

as possible. If each correct classification contributes a constant unit

amount of benefit, we may write

ui (Di ) =
∑
v ∈V

1 [Di (r (v)) = fi (v)] (1)

Fairness. The publisher is concerned with the fairness of the

decisions made by the data consumer’s automated decision systems;

to operationalize this concern requires formalizing fairness. Many

sensible definitions have been put forward in the literature[4], and

it is not a priori clear how to select the most appropriate one. In this

work, we focus on the notion of demographic parity[4], as one of the

most prominent in the literature; while this does limit somewhat the

applicability of our results, as we shall see, no definition of fairness

obviates the fundamental source of the cost of demographic secrecy

(i.e. computational links that are unnecessary for achieving fairness).

We will use the term fairness as a synonym for demographic parity

which requires that for any fixed set of outcomes, the distribution

of outcomes across groups be the same.

Definition 3.4. (Demographic Parity) Let Di be the automated

decision system constructed by data consumer i which assigns

outcomeso ∈ Oi , and r be a transformation.Di satisfies demographic

parity if for every outcome o ∈ Oi , and groups д,д′ ∈ G we have

Pr [Di (r (u)) = o |γ (u) = д] = Pr
[
Di (r (v)) = o |γ (v) = д′

]
, (2)

where the randomness in both probabilities is taken over uniform

choice of individual in their respective groups and the randomness

of the automated decision systems.

Social Welfare. The publisher is also concerned with the social

welfare, the sum of all the consumer-specific utilities. Since the pub-

lisher’s choice of representation determines the possible automated

decision systems the consumers may construct, we model the social

welfare as a function of a representation:

u(Z ) =
n∑
i=1

max
D∈DZ

i

ui (D) (3)

We now have all the ingredients to formally define our problem.

Definition 3.5. (Fair Representation Problem) LetV be a finite set

of individuals with associated set of groups G and group member-

ship function γ . Let there be n data consumers with a collection of

utilities U = {ui : i ∈ [n]}. The (V ,U )-Fair Representation Problem

is to output a representation Z such that

u(Z ) = max
Z ′∈Π(V )

u(Z ′), (4)

and the automated decision system Di satisfies demographic parity

for every consumer i . We refer to a pair (V ,U ) as an instance of the

fair representation problem.

Note that the fairness constraint is crucial; the problem is oth-

erwise trivial, publish the identity representation. Moreover, even

with the constraint, it is clear that the search space is intractably

large for a brute force solution. Thus, one can view demographic

secrecy as a design decision that both prunes the representation

search space and creates the fairness guarantee against a malicious

data consumer.

Definition 3.6. (Demographic Secrecy) Let (V ,U ) be an instance

of the fair representation problem. A representation Z is demo-

graphically secret if for every z ∈ Z and д ∈ G it holds that

|zд |
|z | =

|Vд |
|V | . (5)

We denote the set of all demographically-secret representations by

Ξ(V ).
Our definition of the fair representation problem anticipates

greater flexibility in the choice of representation.

Definition 3.7. (Incentive Compatibility) Let (V ,U ) be an instance
of the fair representation problem. We say that a representation

Z is incentive compatible if, for every consumer i , the following

implication holds:

If Di ∈ argmax
D∈DZ

i

ui (D), then Di satisfies demographic parity. (6)

Note that the set of incentive-compatible representations trivially

subsumes the set of demographically-secret representations.

4 THE COST OF DEMOGRAPHIC SECRECY

The same property which makes demographic secrecy attractive as

a solution concept also makes it a very strong property: every single

part z (i.e. every datum output by the transformation) must have the

same demographics, and this must match the overall demographics.

In view of the fact that naturally occurring data tend to be highly

correlated with the demographics with which algorithmic fairness

is concerned, it is natural to ask: Is there a cost to demographic

secrecy? First, consider what is achievable.

Definition 4.1. (Demographically-Secret SocialWelfare) Let (V ,U )
be an instance of the fair representation problem. The demographically-

secret social welfare, denoted δ (V ,U ) is defined to be

δ (V ,U ) = max
Z ∈Ξ(V )

u(Z ). (7)

We will often simply write δ .

We note, that the definition is a scalar value; to realize this value

the publisher faces an additional computational problem of finding

some representation Z such that u(Z ) = δ . In such case we say that

the representation Z achieves δ .

The cost of demographic secrecy should be quantified with re-

spect to what each consumer could ideally achieve on their own

while being fair.
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Definition 4.2. (Fair Social Welfare) Let (V ,U ) be an instance of

the fair representation problem, and n = |U |. The fair social welfare,
denoted β(V ,U ) is defined to be

β(V ,U ) =
n∑
i=1

βi , (8)

where

βi = max
Di ∈D I

i

ui (Di ), (9)

subject to Di satisfies demographic parity for every i . We will often

simply write β .

Definition 4.3. (Cost of Fairness) Let (V ,U ) be an instance of the

fair representation problem. The cost of fairness is defined to be

CoF(V ,U ) = u(I ) − β(V ,U ). (10)

Definition 4.4. (Costs of Demographic Secrecy) Let (V ,U ) be an
instance of the fair representation problem. The cost of demographic

secrecy is defined to be

CDS(V ,U ) = β − δ . (11)

The relative cost of demographic secrecy is defined to be

rCDS(V ,U ) = CDS(V ,U )
β

=

β − δ

β
, (12)

We will often write CDS and rCDS where the problem instance

(V ,U ) is clear from the context.

Note that CDS(V ,U ) ≥ 0. The cost of demographic secrecy is

the minimum loss in the social welfare that is a consequence of

requiring the representation to be demographically secret. A key

feature of our model is that the cost of demographic secrecy is prior

to and independent of any cost to the social welfare that results

from the information lost in transforming the data into the fair

representation. The cost of demographic secrecy places an upper

bound on what is achievable by any automated decision system

constructed by any method. To the best of our knowledge, the

literature on fair representations focuses solely on addressing this

latter issue, and so it crucially distinguishes our work.

4.1 One Data Consuming Firm

Many algorithms for learning fair representations have been devel-

oped; to preserve as much relevant information as possible in the

fair representation, these algorithms often incorporate an objective

term which penalizes loss of predictiveness of a target variable.

In privileging one target variable in this way, we can view these

algorithms as focusing on the special case of one data consumer.

In evaluation, it is common to compare an automated decision

system constructed using the fair representation against one trained

on the raw data using an inprocessing fairness intervention. Typi-

cally, the evaluation compares the differences in utility and overall

fairness achieved. It is consistently reported that fair represen-

tations perform competitively, despite the ostensible severity of

demographic secrecy. Our first result shows that this can be antici-

pated theoretically. Informally, this is so because the publisher can,

in theory, virtually construct an automated decision system for the

consumer that achieves β .

Theorem 4.5. Let (V ,U ) be an instance of the fair representation

problem such that there is only one data consumer, |U | = 1. Then,

there exists a demographically-secret representation Z that achieves

β ; in other words, β = δ .

Proof. Let D∗ : V 7→ O be an automated decision system in

DI that achieves β and satisfies demographic parity. Define the

representation Z to be the partition of V of |O | parts where each
part zo ∈ Z , o ∈ O , consists in all individuals assigned outcome o

by D∗, that is, zo = {v ∈ V : D∗(v) = o). Observe that Z satisfies

demographic secrecy since D∗ satisfies demographic parity. More-

over, given Z , the data consumer can construct D : Z 7→ O defined

by D(zo ) = o, and so u(D) = u(D∗) = β . □

Example 4.6. (College Admissions) As a concrete example, sup-

pose a university is deciding which prospective students to admit

from a pool of applicants drawn from two groups, and that the col-

lege uses an automated decision system to decide which students to

admit. There are data on the students in the form of a score which

distills the college’s evaluation of the student’s ability to thrive and

contribute and represents a student’s contribution to the college’s

utility. Yet, for whatever reason, the distributions of student scores

differ between the groups. Here we can consider the college as

both the publisher and single data consumer, having access to both

the raw scores and constructing an automated decision system.

When the college admits a ρ-fraction of applicants, it achieves the

maximum utility possible while being fair by admitting the top

ρ-fraction of applicants from each group. Let s(v) denote the score
of individual v , and F0 and F1 be the score distribution functions

for members of group 0 and 1, respectively. Then, the following

transformation results in a demographically-secret representation

that achieves the maximum fair utility for the college, r : V 7→ [0, 1]
defined by r (v) = Fγ (v)(s(v)).

Observe that Theorem 4.5 is independent of the data consumer’s

utility since the critical factor is the assignment of outcomes to

individuals. As we investigate the case of multiple data consumers

and in the remainder of this paper, we will assume that all the

data consumers have unit-additive binary-classification utilities.

Although this is a strong and limiting assumption, we feel that

it is sensible given the ubiquity of binary classification in data

science. Moreover, as with definitions of fairness, no choice of

utility obviates the fundamental source of demographic secrecy.

4.2 Multiple Data Consuming Firms

Theorem 4.5 has the happy consequence that when there is one

data consumer, the publisher does not have to worry about any

theoretical gap between β and δ . Unhappily, this does not hold gen-

erally. Once multiple data consumers uses the same representation,

demographic secrecy may come at a cost that is in addition to the

cost of fairness.

Theorem 4.7. There exist instances of the fair representation prob-

lem (V ,U ), |U | = 2 such that CDS(V ,U ) > 0.

Proof. Consider the following problem instance:V = {w,x ,y, z},
and G = {0, 1}. We have V0 = {w,x}, and V1 = {y, z}. There are
two data consumers with utilities U = {u1,u2}. Both u1 and u2
are unit-additive binary-classification utilities corresponding to
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class-membership functions f1 and f2, respectively, specified in

Table 1. Observe that there are two possible demographically-secret

representations. Either {{w,y}, {x , z}} or {{w, z}, {y,x}}. In both

cases, both pairs disagree on exactly one of the class-membership

functions, so any automated decision system constructible from a

demographically-secret representation of V must make a mistake

on exactly two individuals. Hence δ = 6. On the other hand, given

the identity representation, the data consumers could perfectly

classify all the individuals and be fair. Thus, β = 8, and

CDS(V ,U ) > 0. (13)

□

Table 1: Two class-membership functions f1 and f2 and the

group-membership function γ over a set of 4 individuals.

f1(·) f2(·) γ (·)
w 1 1 0

x 0 0 0

y 1 0 1

z 0 1 1

The relative cost of demographic secrecy in the example given

in Theorem 4.7 is 1/4. Observe two features of the proof. Every

pair of individuals disagree on at least one of the class-membership

functions and each class-membership function is fair, assigning

in each group the same number of individuals to each class. By a

careful construction of a binary error-correcting code, it is possible

to construct class-membership functions that scale these properties

to binary-balanced sets V of any size.

Theorem 4.8. Let V be a binary-balanced set of individuals, then

there exists a U such that

rCDS(V ,U ) ≥ 1

8

And for many binary-balanced V the relative cost of demo-

graphic secrecy can be even more severe.

Corollary 4.9. LetV be a binary-balanced set of individuals such

that |V | = 2k , k ∈ N, then there exists a U such that

rCDS(V ,U ) ≥ 1

4
. (14)

Our leading discussion captures the key insights of the proofs

which we defer to the Supplementary Materials.

5 GAINS OF INCENTIVIZING FAIRNESS

In the examples presented so far, the functions were fair, so that

if the data consumers were rational, then the publisher could re-

lease the raw data and the consumers would be fair incidentally

in maximizing their utility; the identity representation is a trivial

incentive-compatible representation. But the field of fair machine

learning is motivated by observed unfairness in real-world data. In

this section, we therefore study the following questions: łDo there

exist non-trivial incentive-compatible representations?ž, łHow com-

monly do they exist?ž, and łHow sizable can their gains be?ž.

We give an answer to these questions by analyzing a simple

model for randomly generating fair representation problem in-

stances where every data consumer has a unit-additive binary-

classification utility. A straightforward way to do so is to randomly

sample an underlying class-membership function for each data con-

sumer. The simplest random process is arguably one which picks

each class-membership function by assigning each individual to the

positive class with some probabilityp. Thus, each class-membership

function corresponds to one of the data consumers. In what follows,

we will mostly elide the difference between the class-membership

functions and unit-additive binary-classification utilities and refer

to them interchangeably via their natural isomorphism.

Definition 5.1. (Random Functions Model) The Random Functions

Model (RFM) on input a set of individuals V and parameters n ∈ N
and p ∈ [0, 1]. RFM outputs a collection of n class-membership

functions { fi : V 7→ {0, 1}} = RFMp (V ), sampling function fi
by setting fi (v) = 1 with probability p and 0 otherwise, for each

individual v ∈ V . We will often suppress p.

Unlike the examples we have presented, RFM can output class-

membership functions which do not satisfy demographic parity.

Thus, in analyzing RFM, we are in the more realistic and interesting

regime of datasets where a rational data consumer will not be fair

given the raw data. We will first present and discuss our main

results. In fact, when n grows logarithmically in |V | and with a mild

condition on p, we can establish just how unfair a rational data

consumer will be in expectation.

Theorem 5.2. Let V be a binary-balanced set, p such that 2
|V | ≤

p ≤ 1 − 2
|V | , andU = RFMp (V ), then

E [CoF(V ,U )] = Θ

(
n
√
|V |

)
. (15)

For comparison, we can establish the following lower bound on

the expected cost of demographic secrecy.

Theorem 5.3. Let V be a binary-balanced set, p such that 2
|V | ≤

p ≤ 1 − 2
|V | , andU = RFMp (V ), then

E [CDS(V ,U )] = Ω

(
2n/2

√
|V |

)
. (16)

We see that both the expected costs of fairness and demographic

secrecy grow polynomially in |V |. However, as the expected cost

of fairness grows linearly in n, the expected cost of demographic

secrecy grows at least exponentially! Amazingly, we can also show

that with high probability, an incentive-compatible representation

will exist that can recover not just some, but all of the cost of

demographic secrecy.

Theorem 5.4. Let V be a binary-balanced set, |V | ≥ 220, n =
1
4 log |V |, p such that 2

|V | ≤ p ≤ 1 − 2
|V | , and U = RFMp (V ,U ),

Then with probability at least 7/10, it will be possible to construct an
incentive-compatible representation that achieves β .

A crucial issue in our main results is the choice of n.2 We argue

that n = O(log |V |) is a sensible and interesting choice. Consider

our motivating example of targeted online advertising, constant n

2Of course, in practice, a publisher may not have the power to set n. We do so here
purely for the purposes of theoretical analysis to obtain qualitative results.
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would correspond to a constant number of advertisers, regardless

of the number of people in the advertising audience, which does

not seem to us realistic.

So n should grow in |V |, in which case we must ask of what

order? We take polynomial growth as the upper limit as it would

seem that any one individual may economically sustain at most

a constant number of advertisers, so that n = O(|V |). While we

do not present the analysis here, one can show that, for n that is

polynomial (in particular, including sublinear) in |V |, the situation
with the relative cost of demographic secrecy is asymptotically

equivalent to that of the constructed examples in Theorem 4.8 (i.e.

asymptotically constant).

We therefore focus on logarithmic growth, where the dynamics

are more subtle. Moreover, logarithmic growth arguably captures

the slowest reasonable order of growth in practice, increasing the

scope of the implications of our results. We now turn to proving

the main results. In our analyses, we assume that V is a binary-

balanced set for ease of presentation. They can be extended to

binary-unbalanced sets to obtain qualitatively the same results.

The following lemma will prove extremely helpful. We present

the proof in the Supplementary Material.

Lemma 5.5. Let X0 and X1 be independent, identically distributed

binomial random variables with parameters n and p such that 1/n ≤
p ≤ 1 − (1/n), then

E [|X0 − X1 |] = Θ

(√
Var [X0]

)
. (17)

For balanced-binary sets the cost of fairness of a single function

is simply how unfair it is in the following sense.

Definition 5.6. (Function Disparity) Let V be a binary-balanced

set, and f : V 7→ {0, 1} be a binary-valued function over V . The

disparity of f is defined to be

ϵ(f ) =
∑
u ∈V0

f (u) −
∑
v ∈V1

f (v). (18)

Since the disparity of any function is clearly the difference of

two binomial random variables, and the functions output by RFM

are independent and identically distributed, applying Lemma 5.5

establishes Theorem 5.2.

We now turn to proving Theorem 5.3. The cost of demographic

secrecy depends ultimately on the functions output by RFM. Analyz-

ing a fixed output of RFM with respect to the cost of demographic

secrecy seems hard; we need a proxy. Observe that the parts of a

demographically secret representation create computational links

between collections of individuals. For a given part, every function

on which a pair of individuals in the part disagree enforces at least

one mistake that any binary classifier must make in classifying that

part. We can formalize this quantity as follows

Definition 5.7. (Cost of a Representation) Let V be a set of in-

dividuals, Z be a representation of V , and U be a collection of n

unit-additive binary classification utilities. The cost of the represen-

tation Z is defined to be

c(Z ) =
∑
z∈Z

∑
u,v ∈z

∑
i ∈[n]

1 [fi (u) , fi (v)] . (19)

Now we would like to bound, probabilistically, the cost of any

demographically-secret representation Z from below. Each individ-

ual u is collectively assigned a binary string, or code, ℓ = k(u) by
the functions output by RFM. For each code ℓ, the functions will

assign some numberm0, ℓ of individuals in group 0, and some num-

berm1, ℓ of individuals in group 1 code ℓ. Denote the difference by

ϵ(ℓ) =m0, ℓ −m1, ℓ and call this the code difference. Observe that in

a binary-balanced set, for each code ℓ, any demographically-secret

representation must pair at least |ϵ(ℓ)| individuals with code ℓ out-

of-code. These individuals will contribute at least 1 to the cost of the

representation. Finally, summing over all absolute code differences

counts each individual twice, so the cost of any demographically-

secret representation is at least one half the sum of absolute code

differences. We have proved the following theorem.

Theorem 5.8. LetV be a binary-balanced set, andU be a collection

of n unit-additive binary-classification utilities. We have that for any

demographically-secret representation Z of V ,

c(Z ) ≥ 1

2

∑
ℓ∈L

|ϵ(ℓ)|, (20)

where L = {0, 1}n .

Fortunately, we can productively analyze the sum of absolute

code differences.

Lemma 5.9. LetV be a binary-balanced set, p such that 2
|V | ≤ p ≤

1− 2
|V | ,U = RFMp (V ) be a collection of n functions, and L = {0, 1}n ,

then the expected sum of absolute code differences is

E

[∑
ℓ∈L

|ϵ(ℓ)|
]
= Θ

(
2n/2

√
|V |

)
, (21)

Proof. For each д ∈ G, and ℓ ∈ L, define the random vector

Xд ∈ R |L | ,
Xд, ℓ B

∑
u ∈Vд

1 [ℓ = k(u)] , (22)

and

Y B X0 − X1, (23)

so that

∥Y ∥1 =
∑
ℓ∈L

|ϵ(ℓ)| . (24)

Write

E [∥Y ∥1] = E
[∑
ℓ∈L

|Yℓ |
]
= 2nE

[��X0, ℓ − X1, ℓ

��] . (25)

Note thatX0, ℓ is a binomial random variable with parameters |V |/2
and 2−n , and apply Lemma 5.5 to obtain,

E [∥Y ∥1] = 2nΘ
©­«
√

|V |
2

1

2n

(
1 − 1

2n

)ª®¬
= Θ

(
2n/2

√
|V |

)
. (26)

□

Theorem 5.3 follows as a consequence. Finally, we turn to proving

Theorem 5.4. It is due to two properties of RFM: First, although

most of the random functions output by RFM are unfair, most of

the time they will not be too unfair.
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Lemma 5.10. Let V be a binary-balanced set, and { fi } be a col-

lection of n functions output by RFM, then with probability at least

9/10, the absolute disparity of any function |ϵ(fi )| will be at most√
|V | ln(40n).

Proof. For every д ∈ G,u ∈ Vд , and i ∈ [n] define random

variables

Xд,i,u B fi (u), (27)

and

Xд,i B
∑
u ∈Vд

Xд,i,u . (28)

Then

ϵ(fi ) = X0,i − X1,i . (29)

Apply Hoeffding’s Inequality to every Xд,i to obtain

Pr
[��Xд,i − E [Xд,i ] �� ≥ √

|V | ln(40n)/4
]
≤ 1

20n
. (30)

Define indicator random variables

Yд,i B

{
1

��Xд,i − E [Xд,i ] �� ≥ √
|V | ln(40n)/4

0 otherwise.
(31)

and

Y B
∑
д∈G

∑
i ∈[n]

Yд,i . (32)

By Markov’s Inequality we have

Pr [Y ≥ 1] ≤ 1

10
(33)

and therefore

Pr [Y < 1] ≥ 9

10
, (34)

which is the event that the absolute deviation of any Xд,i about its

mean is at most
√
|V | ln(40n)/4. Since the random variablesXд,i are

all independent and identically distributed the absolute disparity

of any function is at most

|ϵ(fi )| ≤ 2
√
|V | ln(40n)/4 =

√
|V | ln(40n). (35)

□

Second, although RFM will often output collections of functions

that induce large code differences, in both groups, many individuals

will be assigned every code.

Lemma 5.11. Let V be a binary-balanced set, |V |4 ≥ 12, and { fi }
be a collection of n = 1

4 log |V | functions output by RFM. Then with

probability at least 8/10, for every code ℓ ∈ {0, 1}n , at least
|V |3/4
10

(36)

individuals of each group will have the code.

Proof. Let X ∈ R2×2n where Xi, j gives the number of indi-

viduals in group i assigned code j. The row Xi is a draw from a

multinomial distribution with parameters |V |/2 and probability vec-
tor p, pi = 2−n for every i . Applying the Bretagnolle-Huber-Carol

Inequality (see Supplementary Materials), we have

Pr


2n∑
j=1

����X0, j −
|V |

2 · 2−n

���� ≥ 2

√
|V |
2
λ


≤ 22

n

exp(−2λ2). (37)

We desire

22
n

exp(−2λ2) ≤ 1

10
(38)

Solving for a lower bound on lambda we obtain

λ ≥ 5 · 2n
8 log e

. (39)

when |V |4 ≥ 12. Choosing λ at the lower bound, we have that with

probability at least 9/10, the number of individuals with a given

code will differ from its expectation by more than√
2|V |λ, (40)

In which case, we can bound the number of individuals with each

code from below by,

|V |
2 · 2n − 2

√
|V |
2
λ =⇒ (41)

|V |3/4
2

− 5|V |3/4
8 log e

>
|V |3/4
10

(42)

The same analysis applies to X1. Consequently, we can bound the

probability that this lower bound applies to both groups from below

by 8/10. □

By relaxing the demographic secrecy constraint, an incentive-

compatible representation can exploit these properties of RFM to

create necessary links that reduce unfairness and avoid creating

unnecessary links that impose further costs to the social welfare.

An incentive-compatible representation can close the disparity

|ϵ(fi )| of the function fi by pairing individuals from the different

groups according to ϵ(fi ). If ϵ(fi ) is positive, then more members of

group 0 are labeled 1 thanmembers of group 1. By pairing a member

of group 0 labeled 1 with a member of group 1 labeled 0, the dispar-

ity of fi is diminished by 1. Constructing ϵ(fi ) such pairs ensures

that a rational consumer would construct an automated decision

system that satisfies demographic parity. If ϵ(fi ) is negative, then
the situation is reversed, and an incentive-compatible representa-

tion would have to pair members of group 0 labeled 0 with members

of group 1 labeled 1. We call such a pair a disparity-diminishing

pair.

If, for every function fi , it is possible to make |ϵ(fi )| disparity-
diminishing pairs of individuals, then doing soÐand no moreÐ

yields an incentive-compatible representation that achieves β .When

there are many individuals in both groups assigned to every code,

then exactly the necessary number of disparity-diminishing pairs

can be made. This is the core of the proof of Theorem 5.4, which

we now present.

Proof. With probability at least 9/10, the maximum absolute

disparity of any function will be at most
√
|V | ln(40n). And with

probability at least 8/10, each group will have at least

|V |3/4
10

(43)

individuals with each code. It is straigtforward to check that the

inequality is satisfied for |V | = 220. Therefore, these events will

occur together with probability at least 7/10. When they do, for

each function fi , we can make |ϵ(fi )| disparity-diminishing pairs

using individuals with code x from one group and individuals from

the other group with code x ′, where xi , x ′i in the necessary way,
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and x j = x ′j for all j , i to construct an incentive-compatible

representation which achieves β . □

6 DISCUSSION

Our paper proposes a different way to implement fairness in data

pipelines. While it is encouraging that our approach radically im-

proves on accuracy costs, it does not come for free. This is why we

feel it is important to address, beyond the results aforementioned,

the limitations and ramifications of realizing fairness through in-

centives.

6.1 Do accuracy gains generalize?

Demographic secrecy adds a large (exponential) and not-strictly-

necessary cost to achieving fairness. Indeed, that cost can entirely

be removed by proper incentives. But could that be an artefact of

our simplifying assumptions? We offer elements to help inform

that important discussion.

• All points to our results generalizing to independent classi-

fication tasks with various sensitivity (e.g., one consuming

firms looking for a target containing 5% of the nodes, while

another targets 80% of them), and to achieve statistical parity

a finite number of groups. Therefore, we suspect incentives

can keep fairness low cost even with intersectionality (e.g.,

handling gender and age at the same time).

• The assumption that classification tasks of various data

consuming firms are independent seems hardly justified.

In practice multiple firms are conducting similar or even

identical predictions (regarding credit, or interest in specific

purchases) that would correlate. At least, the high gain of

incentive trivially generalizes to a scenario where all firms

are among n types if prediction by different types are suf-

ficiently different to be considered independent, and the

number of types n grows with data size beyond log(|V |). The
case with correlated types, and prediction correlating with

groupmembership is more challenging to incentives, making

its exploration all the more important in future work.

• Finally, one could dispute our choice of statistical parity as a

meaningful accomplishment of fairness, and argue that our

results disappear if another fairness goal is used.We have not

fully analyzed that aspect, partly because statistical parity

is so commonly used, and a consensus is slow to emerge on

what to include as practical conditions for fairness. It seems

that several other group based definition (based on false pos-

itive, equality of opportunity, calibration) would reproduce

the same essential tradeoff, while others (individual fairness)

can be harder to model from an incentive viewpoint.

We would like to cautiously advise the reader against concluding

from our results that incentive compatible fairness generally comes

at no cost. That result remains surprising, especially when other

techniques appear prohibitive. However, we are hopeful that more

results can be found (positive or negative) to better appreciate its

real potential.

6.2 What are impediment and limitations?

Even in a case where our result applies and gains are expected,

would achieving fairness through incentive be practical and robust?

• We offered (so far) existential results: concentrate on the

potential of incentives to bring fairness at low cost, but not

on how that could be implemented. However, our proof high-

lights the combinatorial flexibility offered by incentives (esp.

in comparison with demographic secrecy). That alone sug-

gests to us that it should be possible to regain part of this

large gap with suitable data representation. We also feel that

answering that question requires to carefully understand

how data consuming firms would communicate with the

platform. So it moves away from the stylized model we have,

and become more application specific. As an example, for on-

line advertising, one can study which decentralized bidding

process make fairness incentive compatible, and optimize for

accuracy. It could be different if our model is used to study

data purchase from public institution.

• Fairness is provided here by anticipation of incentives and it

leaves the system vulnerable to some deviation. For instance,

the data consuming firm could in theory first misrepresents

its interest/utility/bids as a way to gain information; once the

data are disclosed the firm may follow a different strategy,

possibly an unfair one, for a greater profit. Requesting firms

to commit to a strategy in advance seems too heavy handed

as other solutions exist: For instance, since fairness of out-

come is not hard to measure, a firm deviating significantly

from it would eventually be noticed. Auditing the firm for a

mismatch in anticipated and observed behaviors can deter

such misbehavior at lost cost.

Finally, we wish to clarify once again the unavoidable limitation

baked in the design: since incentive compatible data release are not

strictly bound by demographic secrecy, a data consuming firm can

learn demographic or sensitive attributes from it. That firm can

share it with a 3rd party which would later reuse it for nefarious

purpose. We work under the assumption that this threat is not

a concern: For instance, the firms accessing the data would not

be able to make inference and share with other party without a

considerable risk. That risk can be increased using combinations of

data watermarking, internal audits, and regulation. Note that we

are not aware of any cost-effective solution to the aforementioned

threat: it does require either to restrict data access to a single data

firm, to limit data access (with cryptographic primitives) to prevent

any data reuse, or to use a demographically-secret representation.

All those incur a high operating or accuracy cost. We expect that

the cost is so high that many data pipelines would use alternative

models like ours.

6.3 Data Reuse and Composition

Our results show that demographically-secret representations may

be costly for lateral data reuse in which a single dataset is reused

across multiple indendent prediction tasks or shared with multiple

third parties. Our results also show that the sequential composition

property of demographically-secret representations is not robust to

aggregation; demographic information may leak when individually

demographically-secret representations are combined3.

3To see this, consider the example given in Theorem 4.7, given both possible
demographically-secret representations one can not only recover an individual’s group,
but in fact their very identity.
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We have made direct progress in addressing the former limita-

tion by demonstrating that incentive-compatible representations

may recoup some of the cost of demographic secrecy in lateral

data reuse; yet it would seem that incentive-compatible representa-

tions are otherwise a step backwards for fair composition in that

they achieve the utility gains precisely by exposing demographic

information. However, note that demographic parity of sequential

composition implies the problematic computational links via de-

mographic secrecy since it must hold in the special case of a single

automated decision system; therefore, sequential composition is

inimical to aggregation.

To provide tools for data scientists to combine multiple datasets

and reason about their fairness properties under composition, re-

quires a different approach. Although, strictly speaking, we have

not directly studied composition in this work, our results do pro-

vide some hope that such an approach may exist and even suggest

a possibility. The combinatorial flexibility of fair representations

suggest that incentive-compatible representations may be applica-

ble across a wide range of settings diverse in the details of their

utilities, definitions of fairness, and patterns of data reuse. Further,

this flexibility might be amplified by approaching composition with

the goal of controlling unfairness leakage as opposed to completely

preventing it. Can, for example, a principled approach be devel-

oped that makes reasonable assumptions on the structure of firms’

utilities and behavior as in [9], that allows preserving utility and

controlling unfairness?

7 CONCLUSION

Few people today dispute the importance to remove bias and dis-

criminations emerging in applications of machine learning, espe-

cially in technical research venues, and regulatory bodies. But the

practice of machine learning, involvingmultiple stages of pipelining

and data reuse between interactive parties that cannot be trans-

parently trusted, is rarely introduced in the analysis. The limited

tools available today ś mostly, relying on demographic secrecy

and its downstream invariance ś contribute to the perception that

providing fairness end-to-end guarantees come at a prohibitive cost.

Practitioners often resort to piecewise fairness, essentially testing

each pipelining step locally on a best effort voluntary basis to iden-

tify bias amplification and address it (in the best case), or hide it (in

the worst case).

Our results clarified that a part of the currently perceived large

cost of fairness in fact serves a narrower purpose: offering a protec-

tion against specific malicious data sharing and reuse, that are all

strictly speaking outside the pipeline. Fairness can sometimes be

achieved at a much lower cost when those egregious reuses can be

prevented in other ways. We invite relevant research communities

to contemplate alternatives where pipelines leverage incentives as

a vector to align utility with fairness.
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SUPPLEMENTARY MATERIAL

Proof of Constant Costs Theorem

The key observation is that demographic secrecy forces a consumer

i to misclassify at least one individual whenever a pair of individuals

u,v are linked in the representation and their labels differ, fi (u) ,
fi (v). If the number of these forced mistakes exceeds the cost of

fairness, the number necessary to achieve demographic parity, then

those further mistakes are an additional cost. However, although

limited by demographic secrecy, the publisher clearly has a lot of

power in whom to link in the representation, and this makes it

difficult to prove a statement over the set of all demographically-

secret representations. But at least in the case of a binary-balanced

setV , the task is made significantly more tractable by observing that

we can restrict our attention to a subset of demographically-secret.

Definition 7.1. (Pairing Representations) Let V be a finite set

of individuals and Z be a representation of V . We say that Z is a

pairing representation if for every z ∈ Z we have

|z | = 2. (44)

In a binary-balanced set V , exactly half the individuals in any

part z of a demographically-secret representation Z must belong

to one group, and the rest to the other. Thus, splitting every z into

|z |/2 parts with one member of each group is a demographically-

secret pairing representation Z ′. So any automated decision system

that can be constructed using Z can be perfectly simulated using Z ′.
Therefore, we need only focus on the set of demographically-secret

pairing representations.

If we can guarantee that every pair of individuals disagree on at

least some number of class-membership functions, then that would

provide a bound on CDS from below. Given n class-membership

functions, there is a natural mappingb : V 7→ {0, 1}n from individu-

als to binary strings defined in terms of the class-membership func-

tions as b(v)i = fi (v). Note that the number of class-membership

functions on which individuals u,v disagree is the Hamming dis-

tance between their respective binary strings dH (u,v). Alterna-
tively, if we have a collection of |V | binary strings of dimension n

with some lower bound k on their Hamming distances, then we can

construct n class-membership functions over V with the property

that every pair of individuals disagrees on at least k labels.

If we can construct an arbitrarily large collection of binary strings

with a large lower bound on their pairwise minimum Hamming

distance, we can ensure that any pairing representation will force

the consumers to misclassify many individuals across all the class-

membership functions. Coding Theory guarantees that such collec-

tions of binary strings exists, and gives algorithms for producing

them. However, in application to the setting of fairness considered

in this paper, we are faced with a novel challenge for the construc-

tion of binary codes: we must also show that the cost of fairness

induced by the assignment of strings to individuals is not large.

Definition 7.2. (Fair Codes) Let K ⊆ {0, 1}n be a set of m bi-

nary strings. We say that K is a (n,k,m)-fair code if the following
properties holds: For every p,q ∈ K , p , q we have

dH (p,q) ≥ k . (45)

And there exists a partition P of K into two equal sized sets S and

T such that for every i , ∑
s ∈S

si =
∑
t ∈T

ti . (46)

We call P a fair partition of K .

Observe, that given a binary-balanced set V of size m and an

(n,k,m)-fair code K , using a fair partition of K , one can construct

class-membership functions over V which satisfy demographic

parity, and for which there is therefore no cost of fairness. Given

an (2n,n,m)-fair code K , we can construct a (4n, 2n, 2m)-fair code
K ′ proceeding in the following manner. For each k ∈ K , construct

j ∈ {0, 1}4n by:

j2i j2i+1 =

{
00 ki = 0

11 otherwise

Let J be the set of all strings so derived. For each k ∈ K , construct

q ∈ {0, 1}4n as follows:

q2iq2i+1 =

{
01 ki = 0

10 otherwise

Let Q be the set of all strings derived. Define K ′
= J ∪ Q . By

construction, J ∩Q = ∅ so

|K ′ | = |J | + |Q | = 2|K |.

Observe that every p,q ∈ K ′, p , q are at a distance at least 2n

apart. Moreover, the set S ′ ⊆ K ′ of strings constructed from S and

the set T ′ ⊆ K ′ of strings constructed from T form a fair partition

of K ′. So K ′ is a (4n, 2n, 2m)-fair code. Using this construction, if

we start from the set K = {00, 01, 10, 11} with fair partition {S,T },
S = {00, 11} and T = {01, 10} we can obtain a (2k−1, 2k−2, 2k )-fair
code K . We also note that this construction will result in strings

that are at exactly a distance 2k−2. We have proved the following

lemma:

Lemma 7.3. ((2k−1, 2k−2, 2k )-Fair Codes) For every k ≥ 1, there

exists a (2k−1, 2k−2, 2k )-fair code K , and there exist p,q ∈ K , such

that dH (p,q) = 2k−2.

We now prove of Theorem 4.8.

Proof. Let k = ⌊log |V |⌋ and S ⊆ V be a binary-balanced subset

ofV of size 2k . LetK be a (2k−1, 2k−2, 2k )-fair code. UseK to assign

strings to individuals in S so that the resulting class-membership

functions are fair over S . We still need to assign labels to all the

individuals in V \ S . Clearly, if we assign them all the same labels

on every function, that is fi (u) = fi (v) for every i ∈ [2k−1] and
u,v ∈ V \ S , then all n class-membership functions fi will satisfy

demographic parity over all of V . We must find a suitable class-

membership. Let x ,y ∈ K such that dH (x ,y) = 2k−2. Consider the
string z ∈ {0, 1}2k−1 obtained from x by flipping the first 2k−3 bits
in x on which x and y differ. Observe that for allw ∈ K we have,

dH (w,x) ≤ dH (w, z) + dH (z,x) (47)

and it follows that

2k−3 ≤ dH (w, z).
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Assign the string z to every individual in V \ S . Since the resulting
class-membership functions all satisfy demographic parity,

β = 2k−1 |V |
Let Z be any demographically-secret pairing-representation of V .

Define the sets A = {{u,v} ∈ Z : u,v ∈ S}, B = {{u,v} ∈ Z : u ∈
S,v ∈ V \ S}, and C = Z \ (A ∪ B). Clearly,

δ ≤ |V |2k−1 −
∑

{u,v }∈Z
dH (u,v).

Bound the summation by,∑
{u,v }∈Z

dH (u,v) =
∑

{u,v }∈A
dH (u,v)

+

∑
{u,v }∈B

dH (u,v)

+

∑
{u,v }∈C

dH (u,v)

≥ |A|2k−2 + |B |2k−3 (48)

Additionally observe that

2|A| + |B | = |S |.
Solving for |B | and substituting we obtain∑
{u,v }∈Z

dH (u,v) ≥ |A|2k−2+(|S |−2|A|)2k−3 ≥ |S |2k−3 ≥ |V |2k−4,

since |S | ≥ V /2. Therefore,

δ ≤ 7

8
2k−1 |V |

We conclude,

CDS(V ,U ) ≥ 1

8
□

If |V | is a power of 2, then the (2k−1, 2k−2, 2k )-fair code provides
a string for every individual, so |B | = 0. This proves Corollary 4.9.

Proof of Lemma 5.5

Proof. We first show that

E [|X0 − X1 |] = Ω

(√
Var [X0]

)
. (49)

Let ξ be the event that X0 > E [X0] and E [X1] ≥ X1. Conditioning

on ξ we have

E [|X0 − X1 | |ξ ] = E [|X0 − E [X0] + E [X1] − X1 | |ξ ] (50)

= E [X0 − E [X0] |ξ ] + E [E [X1] − X1 |ξ ] . (51)

Observe that

E [X0 − E [X0] |ξ ] = E [X0 − E [X0] |X0 > E [X0]] , (52)

and

E [E [X1] − X1 |ξ ] = E [E [X1] − X1 |E [X1] ≥ X1] . (53)

Since X0 and X1 are independent and identically distributed we

have

E [E [X1] − X1 |E [X1] ≥ X1] = E [E [X0] − X0 |E [X0] ≥ X0] . (54)
Therefore

E [|X0 − X1 |] ≥ E [|X0 − X1 | |ξ ] ≥ cE [|X0 − E [X0]|] , (55)

for some constant c which depends on n and p. By assumption, we

have that 1/n ≤ p ≤ 1 − (1/n); applying the Berend-Kontorovich

Inequality (see Supplementary Materials) we obtain

E [|X0 − E [X0]|] ≥
√

Var [X0]
2

. (56)

And therefore

E [|X0 − E [X0]|] = Ω

(√
Var [X0]

)
. (57)

We now show that

E [|X0 − X1 |] = O
(√

Var [X0]
)
, (58)

which follows readily since

E [|X0 − X1 |] ≤
√
Var [X0 − X1] =

√
2Var [X0]. (59)

This completes the proof. □

Probabilistic Inequalities

Theorem 7.4. (Bretagnolle-Huber-Carol Inequality[20]) Let X be

a k-dimensional multinomial random vector with parameters n and

p ∈ Rk , then

Pr

[
k∑
i=1

|Xi − npi | ≥ 2
√
nλ

]
≤ 2k exp(−2λ2), (60)

λ > 0.

Theorem 7.5. (Berend-Kontorovich Inequality[2]) Let X be a bi-

nomial random variable with parameters n and p such that 1/n ≤
p ≤ 1 − (1/n), then√

Var [X ]
2

≤ E [|X − E [X ]|] ≤
√
Var [X ]. (61)
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