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ABSTRACT

A central goal of algorithmic fairness is to build systems with fair-
ness properties that compose gracefully. A major effort and step
towards this goal in data science has been the development of fair
representations which guarantee demographic parity under sequen-
tial composition by imposing a demographic secrecy constraint. In
this work, we elucidate limitations of demographically secret fair
representations and propose a fresh approach to potentially over-
come them by incorporating information about parties’ incentives
into fairness interventions. Specifically, we show that in a styl-
ized model, it is possible to relax demographic secrecy to obtain
incentive-compatible representations, where rational parties obtain
exponentially greater utilities vis-a-vis any demographically secret
representation and satisfy demographic parity. These substantial
gains are recovered not from the well-known cost of fairness, but
rather from a cost of demographic secrecy which we formalize and
quantify for the first time. We further show that the sequential com-
position property of demographically secret representations is not
robust to aggregation. Our results open several new directions for
research in fair composition, fair machine learning and algorithmic
fairness.
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1 INTRODUCTION

It is now well known that there are multiple grounds for moral haz-
ards in the practice of data science (e.g., at data collection, during
data cleaning, model specification, at training time, or in subsequent
optimizations)[6]. Even for the most elementary goal of “fair data-
driven algorithms” (statistical parity, see definition below) there
are myriad solutions proposed at various stages of data processing.
But all those have two assumptions in common: A single entity
or administrative domain is in charge of enforcing fairness at all
stages, while other participating parties either are fixed or untrusted
adversaries. All of those scenarios imply that fair pipelines comes
at a substantial operating cost'. The issue is further compounded
and complicated upon panning out from an individual pipeline, to
consider the patterns of sharing, reuse, and consumption of the
same published data between separate entities. That is especially
pronounced in online targeted advertising, one of the most wide-
spread application of data-driven decisions where it is common
for advertisers to aggregate large amounts of data from multiple
sources. Consider settings corresponding to one piece of this com-
plex ecosystem: data brokers selling data to advertisers. To ensure
fairness in practice, either the data brokers need to sanitize data
against an arbitrary advertisers’ potential demographic bias, with
dire consequences on profit. Or alternatively, in an unregulated
market, the advertisers face a dilemma, either incur greater costs
to be fair, or sacrifice fairness to increase profit[12]. Little progress
has been made in addressing the problem years after evidence that
skewed online ads reduce exposure to high earning job for female,
limit housing options for some ethnic groups, and is a barrier to
career re-entry for older workers[1, 7-9, 14, 19].

We suggest a fresh new start on achieving fairness in data
pipeline, one that departs from the assumptions that the problem
is addressed by a single actor through heavy-handed regulation
(e.g., the ad-platform, the advertiser, the credit scoring agency, the
firm hiring, the firm developing the AI). We formulate for the first
time the incentivizing fairness problem, inspired but not limited to
online advertising as a motivating example. Our single most im-
portant assumption is that the entity in charge of the data pipeline
faces profit-seeking adversaries: That is a participating entity (e.g.,
the advertisers of a ad campaign) whose only goal is to maximize
profit irrespective of its fairness consequences. This assumption,
while common elsewhere (e.g. Game Theory, Economics, Mech-
anism Design), substantively differs from those made in fairness
and fair-representation literature [21]. Our choice rules out, for

! The rare exceptions to that rule can be traced to lack of calibration in the training data
and model specification. We ignore those cases where fairness essentially counteracts
overtraining.



Session 2: Fairness, Privacy, Interpretability

instance, to work with firms that are actively leveraging data to
run an unfair ad campaign at any cost (aiming at complete discrim-
ination), or share data with malicious parties. This also requires
to make some assumption or have information (however minimal)
about how the firm makes profit from the ads. Since our aim is
in motivating further exploration of that alternative approach to
fairness, the main question we address is “What is the cost of in-
centivizing fairness in a data pipeline?” “How does it compare to
the traditional adversary models?” “Can fairness be made incentive
compatible under some simple data manipulation in the pipeline,
keeping the design relatively robust to dependencies?”

Our model (see Section 3 for notations and formal definitions)
in a nutshell focuses on one local step (a fork operation) in data
pipelines, which already reveals the crucial role of incentives in
achieving fariness. This simple fork pipeline includes a data publish-
ing platform (e.g., a data broker) and multiple data consumer firms
(e.g., advertisers interested to target particular individuals who use
the platform). Data consumers firms may be a very large number,
they are all profit seeking while the publishing platform, which
possesses a large database of inviduals it services, has a mandate to
achieve statistical parity in outcome. That implies that the publish-
ing platform would only release data if every data-consuming firm
would in the end select a subset that contains the same fraction of
consumers from a given subgroup than in the whole population. If
this model represents hiring ads on Facebook, this objective could
be a way to ensure that an advertiser constructs a demographically-
balanced custom audience, thereby proportionately targeting fe-
male, middle aged or non-white individuals. Profit made by data
consumer firms grows in proportion of the accuracy of the classi-
fication tasks they perform, just like it would if each ads costs a
nominal amount to show but potentially generate a (higher) amount
when it reaches a relevant individual. Note that we do not specify
how data about individuals are distributed and relate to the various
classification tasks, the subset a data consumer firm choses can
be rather complex. Features like “custom audience”, available on
Facebook’s ad-platform and others, allow today’s online advertisers
to make such a selection. Most importantly, the subset and utility
derived depend not only on the raw data but on the representation
of the data that the platform decides to publish.

This model, however simple, already highlights multiple ways
to achieve fairness in that specific interaction. First, it is a perfectly
sensible solution to publish data to all consumer firms in a sanitized
version that keeps demographic features hidden, even from data
inference, so they remain secret and discrimination is made impos-
sible. This is in fact the approach advocated in [21] and it forms
a natural benchmark, a lower bound on profits. One merit often
used to justify this approach is that sharing and reusing this data
among consumer firms, and even new ones, creates no additional
concern. On the opposite side of the spectrum, one could assume
that every consuming firm would first communicate the revenue
predicted from each individual in the database, and then it would
delegate to the publishing platform the selection, where the latter
computes among all fair subsets, the one that attains the maximum
profit. While this delegation is unpractical, it provides an upper
bound of attainable profit. Crucially our model leaves room for a
third option: providing data to consuming firms so that fairness is
incentive compatible. This holds if choosing a subset based on the
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published information never results in an unfair subset maximizing
profit. Note here that the same data is published for all consum-
ing firms in that fork operation to reuse, possibly in coordination
among themselves (what we call lateral data reuse). Further data
reuse, however, could create unfairness since a new consuming
firm, with a very different objective, could possibly select an unfair
subset if it accesses this data. Data consuming firms would then
face a choice between being de facto fair, or losing revenue. But
would that actually lead to different data being published, and more
profit?

The main merit of that model, and the result of this paper, is to
reveal for the first time that incentive compatible fairness can be a
low-cost effective approach:

e We first analyze the cost of using sanitized version of the
data, formally defined as those achieving demographic se-
crecy. Multiple solutions in the literature based on calibration
of scores or clustering into representative bins have been
proposed and evaluated to that effect. It provides individuals
in the data with a special protection (i.e., their demographic
information cannot be inferred by consuming firms) and
automatically translate into some forms of downstream fair-
ness. But we show that evaluating the cost of demographic
secrecy, which is specifically distinct from the cost of fairness,
reveals a simple but important truth: demographic secrecy
may be cost effective for a single data consuming firm, but
much more costly when multiple consuming firms are using
the same published data. (Section 4)

o Given that the costs of fairness and demographic secrecy are
only the same in a simple case (a single consuming firm), how
large can the gap be in a simple model of individuals’ data?
And more importantly, can some representations of the data
make fairness incentive compatible and recover some of this
additional cost? We show the high potential of leveraging
incentive compatibility for fairness in the following set of
results: While the cost of fairness is linear in the number of
firms the added cost of demographic secrecy is exponential,
and with high probability fairness can be achieved using
incentives with no extra cost. Moreover, while this result
obviously is a reflection of the data model we assume, it
is found for the simplest (independent classification tasks),
which makes it likely that this theoretical gaps translate into
practical gain. (Section 5).

o The results presented above are encouraging, especially be-
cause fairness is often considered prohibitive while we clarify
that, in simple cases, only demographic secrecy is. It would
be premature, even misleading, to conclude that fairness can
always be achieved using incentives at no extra cost. Relying
on incentives to accomplish fairness with data reuse also cre-
ates new concerns. We clarify the potential and limitations
as we review the potential for such results to generalize and
how they motivate new directions in data pipelines. (Sec-
tion 6)

Before presenting the contribution in the order above, we quickly
review related work on fair representations and the associated costs
they introduce.
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2 RELATED WORK

Our work is situated in the literature on fair representations initi-
ated by Zemel et al. in [21], where the authors consider a setting in
which a trusted platform releases data to a single third party. Later
work extended the setting to multiple third parties [16], and this
is the setting in which we develop our model. A defining feature
of fair representations to date has been that demographic informa-
tion is obfuscated, ideally in an information theoretic manner. In
contrast to such demographically-secret fair representations, the
notion of incentive-compatible fair representations that we propose
generalizes the notion of a fair representation.

The majority of work on fair representations has focused pri-
marily on the problem of finding a transformation of the original
dataset that results in a demographically-secret fair representation
while preserving as much non-demographic information as possible.
Zemel et al. propose an approach based on a discriminative clus-
tering model[21]. Feldman et al. propose an approach that learns a
transport map from each group’s distribution to the aggregate em-
pirical distribution of the data[11]. Johndrow and Lum generalize
this to a statistical model-based approach capable of handling dis-
crete features and an arbitrary choice of target distribution[13]. A
number of papers have considered approaches based on adversarial
learning with variations in the choice of generator, adversary, and
their respective optimization objectives(3, 10, 15, 16]. Such diversity
in the details of the form of the raw data, the choice of learning
algorithm, the specification of the transformations, and the form of
the representation present challenges to theoretical studies of fair
representations. We overcome these challenges by focusing on the
computational links that transformations create between initially
distinguishable individuals by mapping them to the same value.

The fair machine-learning community has identified a need to
theoretically study the properties of fair representations[4], al-
though there has been a limited amount of work to date. McNamara,
Ong, and Williamson assume that one can measure the distance be-
tween the raw datum and the transformed datum, and show how to
prove that a fair representation will be demographically secret and
how to bound the loss in utility of the resulting representation[17].
In contrast, our model makes no assumptions about the form of, or
relationship between the input and output of a fair representation.

A key contribution of this work is to formalize and quantify
for the first time the cost of demographic secrecy. This is very
closely related to the extensively-studied cost of fairness[5, 18].
Crucially, the cost of demographic secrecy is distinct, and, as we
will show in a simple model, sometimes much larger. In particular,
the cost of fairness derives from differences in the group-specific
statistics, whereas the cost of demographic secrecy derives from
computational links between individuals necessarily created to
obfuscate demographic information.

3 UTILITY OF FAIR REPRESENTATIONS

The Publisher, Individuals, and Groups. A publisher has a dataset,
perhaps of city hotline phone calls or medical histories. Each datum
contains information associated with some individual. Naturally the
form, content, and semantics of the data can vary considerably: an
individual’s Facebook likes, high school transcripts, or ultrasound
images from her most recent prenatal visit. We abstract away these
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details by focusing on the individuals whom we model as elements
v of a finite set V. We assume that the individuals in V are distin-
guishable, that is, associated with a unique datum. Additionally,
each individual exclusively belongs to some group ¢ in a finite set
of groups G given by a group-membership function y : V - G.

We will often focus on all the members of a group. For each
group g € G, we denote by Vj the set of all individuals that belong
to ginV, thatis, V; = {v € V : y(v) = g)}. We mostly consider the
important special case where there are exactly two groups of equal
size: |G| = 2 and for g, ¢’ € G, |Vy| = |V |. We shall say that such
V is a binary-balanced set.

Transformations and Representations. The publisher receives an
initial dataset in some form, but is not required to publish the raw
data. In particular, the publisher may choose to apply a transforma-
tion. The details of the transformation can vary considerably as to
its purpose, effects, computational complexity, and so on. Perhaps
to protect privacy, the values of some data fields are collapsed to
achieve k-anonymity; or for compression the top-k components are
obtained using Principal Component Analysis; or for transparency,
the raw dataset is released. We abstract away these details by fo-
cusing primarily on the resultant representation. While each datum
in the initial dataset is associated with a unique individual, each da-
tum in the representation is associated with one or more individuals.
Therefore, we model a representation Z as a partition of V. Each
part z € Z represents the individuals whose computational fates
the transformation links together by mapping them to the same
datum. We denote the set of all possible partitions of a set V by
II(V). A transformation is thus a function of the formr : V - Z.

Example 3.1. The identity representation I is the partition of |V|
singleton sets which models the case in which the publisher pub-
lishes the raw data. I has the transformation rj(v) = {v}.

Data Consumers and Automated Decision Systems. Data con-
sumers use the published data to construct automated decision sys-
tems. We assume that consumers do so independently. The auto-
mated decision systems may take many forms: a risk assessment
model that outputs an integral-valued score representing a category
of recidivism risk; a clustering algorithm for customer segmenta-
tion that assigns to each datum in the dataset a cluster identifier.
Moreover, the published data may be used as an input directly and
indirectly to multiple algorithms: the published data may be directly
fed into a representation-learning algorithm, and recommendations
may subsequently be made using the learned representation.

We dispense with most of the differences by focusing on their
effects. On input a datum from the published data, an automated de-
cision system assigns an outcome. We assume that the individuals
mapped to the same datum by the transformation are indistinguish-
able and therefore must be assigned the same outcome. We capture
this as follows: data consumer i constructs automated decision
system D; : Z + O; which maps parts of Z to outcomes in a
consumer-specific set of outcomes O;.

Example 3.2. (Binary Classifier) One of the most common au-
tomated decision systems are binary classifiers. Data consumer
i constructing a binary classifier has consumer-specific outcome
set O; = {0,1}, and an automated decision system of the form
D;:Zw— {0,1}.
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Data-Consumer Utility. Each data consumer chooses an auto-
mated decision system based on a consumer-specific utility which
captures the relation between the assigned outcomes of the auto-
mated decision system and the benefit the consumer receives from
those assignments. Given a representation Z, data consumer i is
constrained to construct an automated decision system D; from
Z)iZ = {D : Z — O;}, the set of all automated decision systems
whose domain is Z and range is O;. Therefore, we can model each
data consumer’s utility as a function of the form u; : DiZ — R,.

Example 3.3. (Unit-Additive Binary-Classification Utility) A data
consumer i that constructs a binary classifier D; often derives
its benefit from the accuracy of the classifier. There is a class-
membership function f; : V +— {0, 1}, and i wishes the classifi-
cation D;(v) to match the label f;(v) on as many individuals v € V
as possible. If each correct classification contributes a constant unit
amount of benefit, we may write

w(D) = Y 1[Di(r(v)) = fi(v)]

veV

1

Fairness. The publisher is concerned with the fairness of the
decisions made by the data consumer’s automated decision systems;
to operationalize this concern requires formalizing fairness. Many
sensible definitions have been put forward in the literature[4], and
it is not a priori clear how to select the most appropriate one. In this
work, we focus on the notion of demographic parity[4], as one of the
most prominent in the literature; while this does limit somewhat the
applicability of our results, as we shall see, no definition of fairness
obviates the fundamental source of the cost of demographic secrecy
(i.e. computational links that are unnecessary for achieving fairness).
We will use the term fairness as a synonym for demographic parity
which requires that for any fixed set of outcomes, the distribution
of outcomes across groups be the same.

Definition 3.4. (Demographic Parity) Let D; be the automated
decision system constructed by data consumer i which assigns
outcomes o € O;,and r be a transformation. D; satisfies demographic
parity if for every outcome o € O;, and groups ¢,9’ € G we have

Pr[D;(r(u)) = oly(u) = g] = Pr [Di(r(v)) = oly(v) = ¢'],  (2)

where the randomness in both probabilities is taken over uniform
choice of individual in their respective groups and the randomness
of the automated decision systems.

Social Welfare. The publisher is also concerned with the social
welfare, the sum of all the consumer-specific utilities. Since the pub-
lisher’s choice of representation determines the possible automated
decision systems the consumers may construct, we model the social
welfare as a function of a representation:

u(z)= ), max ui(D) 3
i=1 PDEY;

We now have all the ingredients to formally define our problem.

Definition 3.5. (Fair Representation Problem) Let V be a finite set
of individuals with associated set of groups G and group member-
ship function y. Let there be n data consumers with a collection of
utilities U = {u; : i € [n]}. The (V, U)-Fair Representation Problem
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is to output a representation Z such that

w(Z) = max u(Z’),

4
Z'ell(V) @)

and the automated decision system D; satisfies demographic parity

for every consumer i. We refer to a pair (V, U) as an instance of the

fair representation problem.

Note that the fairness constraint is crucial; the problem is oth-
erwise trivial, publish the identity representation. Moreover, even
with the constraint, it is clear that the search space is intractably
large for a brute force solution. Thus, one can view demographic
secrecy as a design decision that both prunes the representation
search space and creates the fairness guarantee against a malicious
data consumer.

Definition 3.6. (Demographic Secrecy) Let (V, U) be an instance
of the fair representation problem. A representation Z is demo-
graphically secret if for every z € Z and g € G it holds that

|Zg| |Vg|

S s
lzl VI

We denote the set of all demographically-secret representations by

2(V).

Our definition of the fair representation problem anticipates
greater flexibility in the choice of representation.

Definition 3.7. (Incentive Compatibility) Let (V, U) be an instance
of the fair representation problem. We say that a representation
Z is incentive compatible if, for every consumer i, the following
implication holds:

If D; € argmax u;(D), then D; satisfies demographic parity. (6)
DeDZ

Note that the set of incentive-compatible representations trivially

subsumes the set of demographically-secret representations.

4 THE COST OF DEMOGRAPHIC SECRECY

The same property which makes demographic secrecy attractive as
a solution concept also makes it a very strong property: every single
part z (i.e. every datum output by the transformation) must have the
same demographics, and this must match the overall demographics.
In view of the fact that naturally occurring data tend to be highly
correlated with the demographics with which algorithmic fairness
is concerned, it is natural to ask: Is there a cost to demographic
secrecy? First, consider what is achievable.

Definition 4.1. (Demographically-Secret Social Welfare) Let (V, U)
be an instance of the fair representation problem. The demographically-
secret social welfare, denoted §(V, U) is defined to be

6(V,U)= max u(Z).
VA \4

e=(

(7)

We will often simply write 8.

We note, that the definition is a scalar value; to realize this value
the publisher faces an additional computational problem of finding
some representation Z such that u(Z) = §. In such case we say that
the representation Z achieves §.

The cost of demographic secrecy should be quantified with re-
spect to what each consumer could ideally achieve on their own
while being fair.
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Definition 4.2. (Fair Social Welfare) Let (V, U) be an instance of
the fair representation problem, and n = |U|. The fair social welfare,
denoted S(V,U) is defined to be

BV.U) =) Bis (®)
i=1
where
pi = max u;(D;), (O]

D; EDi
subject to D; satisfies demographic parity for every i. We will often
simply write f.

Definition 4.3. (Cost of Fairness) Let (V, U) be an instance of the
fair representation problem. The cost of fairness is defined to be

(10)

Definition 4.4. (Costs of Demographic Secrecy) Let (V,U) be an
instance of the fair representation problem. The cost of demographic
secrecy is defined to be

CoR(V,U) = u(I) - B(V,U).

CDS(V,U) =p-6. (11)
The relative cost of demographic secrecy is defined to be
CDS(V,U -6
rCDS(V,U) = oswv.u) _f-9 (12)

B B
We will often write CDS and rCDS where the problem instance
(V,U) is clear from the context.

Note that CDS(V,U) > 0. The cost of demographic secrecy is
the minimum loss in the social welfare that is a consequence of
requiring the representation to be demographically secret. A key
feature of our model is that the cost of demographic secrecy is prior
to and independent of any cost to the social welfare that results
from the information lost in transforming the data into the fair
representation. The cost of demographic secrecy places an upper
bound on what is achievable by any automated decision system
constructed by any method. To the best of our knowledge, the
literature on fair representations focuses solely on addressing this
latter issue, and so it crucially distinguishes our work.

4.1 One Data Consuming Firm

Many algorithms for learning fair representations have been devel-
oped; to preserve as much relevant information as possible in the
fair representation, these algorithms often incorporate an objective
term which penalizes loss of predictiveness of a target variable.
In privileging one target variable in this way, we can view these
algorithms as focusing on the special case of one data consumer.

In evaluation, it is common to compare an automated decision
system constructed using the fair representation against one trained
on the raw data using an inprocessing fairness intervention. Typi-
cally, the evaluation compares the differences in utility and overall
fairness achieved. It is consistently reported that fair represen-
tations perform competitively, despite the ostensible severity of
demographic secrecy. Our first result shows that this can be antici-
pated theoretically. Informally, this is so because the publisher can,
in theory, virtually construct an automated decision system for the
consumer that achieves f.

75

FODS 20, October 19-20, 2020, Virtual Event, USA

THEOREM 4.5. Let (V,U) be an instance of the fair representation
problem such that there is only one data consumer, |U| = 1. Then,
there exists a demographically-secret representation Z that achieves
B; in other words, § = 6.

Proor. Let D* : V > O be an automated decision system in
D! that achieves f and satisfies demographic parity. Define the
representation Z to be the partition of V of |O| parts where each
part zo € Z, 0 € O, consists in all individuals assigned outcome o
by D*, that is, z, = {v € V : D*(v) = 0). Observe that Z satisfies
demographic secrecy since D* satisfies demographic parity. More-
over, given Z, the data consumer can construct D : Z +— O defined

by D(z,) = o, and so u(D) = u(D*) = . O

Example 4.6. (College Admissions) As a concrete example, sup-
pose a university is deciding which prospective students to admit
from a pool of applicants drawn from two groups, and that the col-
lege uses an automated decision system to decide which students to
admit. There are data on the students in the form of a score which
distills the college’s evaluation of the student’s ability to thrive and
contribute and represents a student’s contribution to the college’s
utility. Yet, for whatever reason, the distributions of student scores
differ between the groups. Here we can consider the college as
both the publisher and single data consumer, having access to both
the raw scores and constructing an automated decision system.
When the college admits a p-fraction of applicants, it achieves the
maximum utility possible while being fair by admitting the top
p-fraction of applicants from each group. Let s(v) denote the score
of individual v, and Fy and F; be the score distribution functions
for members of group 0 and 1, respectively. Then, the following
transformation results in a demographically-secret representation
that achieves the maximum fair utility for the college, r : V + [0,1]
defined by r(v) = Fy(5,)(s(v)).

Observe that Theorem 4.5 is independent of the data consumer’s
utility since the critical factor is the assignment of outcomes to
individuals. As we investigate the case of multiple data consumers
and in the remainder of this paper, we will assume that all the
data consumers have unit-additive binary-classification utilities.
Although this is a strong and limiting assumption, we feel that
it is sensible given the ubiquity of binary classification in data
science. Moreover, as with definitions of fairness, no choice of
utility obviates the fundamental source of demographic secrecy.

4.2 Multiple Data Consuming Firms

Theorem 4.5 has the happy consequence that when there is one
data consumer, the publisher does not have to worry about any
theoretical gap between f and 6. Unhappily, this does not hold gen-
erally. Once multiple data consumers uses the same representation,
demographic secrecy may come at a cost that is in addition to the
cost of fairness.

THEOREM 4.7. There exist instances of the fair representation prob-
lem (V,U), |U| = 2 such that CDS(V,U) > 0.

Proor. Consider the following problem instance: V = {w, x, y, z},
and G = {0,1}. We have Vp = {w,x}, and V; = {y, z}. There are
two data consumers with utilities U = {uy,uz}. Both u; and up
are unit-additive binary-classification utilities corresponding to
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class-membership functions fj and f3, respectively, specified in
Table 1. Observe that there are two possible demographically-secret
representations. Either {{w, y}, {x, z}} or {{w, z}, {y, x}}. In both
cases, both pairs disagree on exactly one of the class-membership
functions, so any automated decision system constructible from a
demographically-secret representation of V must make a mistake
on exactly two individuals. Hence § = 6. On the other hand, given
the identity representation, the data consumers could perfectly

classify all the individuals and be fair. Thus, § = 8, and
CDS(V,U) > 0. (13)

]

Table 1: Two class-membership functions f; and f> and the
group-membership function y over a set of 4 individuals.

AHO) | LO | ()
w 1 1 0
x 0 0 0
y 1 0 1
z 0 1 1

The relative cost of demographic secrecy in the example given
in Theorem 4.7 is 1/4. Observe two features of the proof. Every
pair of individuals disagree on at least one of the class-membership
functions and each class-membership function is fair, assigning
in each group the same number of individuals to each class. By a
careful construction of a binary error-correcting code, it is possible
to construct class-membership functions that scale these properties
to binary-balanced sets V of any size.

THEOREM 4.8. LetV be a binary-balanced set of individuals, then
there exists a U such that

1
rCDS(V.U) = ¢

And for many binary-balanced V the relative cost of demo-
graphic secrecy can be even more severe.

COROLLARY 4.9. LetV be a binary-balanced set of individuals such
that |V| = 25, k € N, then there exists a U such that

1
rCDS(V.U) 2 . (14)
Our leading discussion captures the key insights of the proofs
which we defer to the Supplementary Materials.

5 GAINS OF INCENTIVIZING FAIRNESS

In the examples presented so far, the functions were fair, so that
if the data consumers were rational, then the publisher could re-
lease the raw data and the consumers would be fair incidentally
in maximizing their utility; the identity representation is a trivial
incentive-compatible representation. But the field of fair machine
learning is motivated by observed unfairness in real-world data. In
this section, we therefore study the following questions: “Do there
exist non-trivial incentive-compatible representations?”, “How com-
monly do they exist?”, and “How sizable can their gains be?”.
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We give an answer to these questions by analyzing a simple
model for randomly generating fair representation problem in-
stances where every data consumer has a unit-additive binary-
classification utility. A straightforward way to do so is to randomly
sample an underlying class-membership function for each data con-
sumer. The simplest random process is arguably one which picks
each class-membership function by assigning each individual to the
positive class with some probability p. Thus, each class-membership
function corresponds to one of the data consumers. In what follows,
we will mostly elide the difference between the class-membership
functions and unit-additive binary-classification utilities and refer
to them interchangeably via their natural isomorphism.

Definition 5.1. (Random Functions Model) The Random Functions
Model (RFM) on input a set of individuals V and parameters n € N
and p € [0,1]. RFM outputs a collection of n class-membership
functions {f; : V = {0,1}} = RFM,(V), sampling function f;
by setting fi(v) = 1 with probability p and 0 otherwise, for each
individual v € V. We will often suppress p.

Unlike the examples we have presented, RFM can output class-
membership functions which do not satisfy demographic parity.
Thus, in analyzing RFM, we are in the more realistic and interesting
regime of datasets where a rational data consumer will not be fair
given the raw data. We will first present and discuss our main
results. In fact, when n grows logarithmically in |V| and with a mild
condition on p, we can establish just how unfair a rational data
consumer will be in expectation.

THEOREM 5.2. LetV be a binary-balanced set, p such that ﬁ <
177- and U = RFMp(V), then
E[CoRV,U)] = © (n\/IVI) . (15)

For comparison, we can establish the following lower bound on
the expected cost of demographic secrecy.

p<1-

THEOREM 5.3. Let V be a binary-balanced set, p such that ﬁ <
and U = RFMy(V), then

E[CDS(V,U)] = O (z"/zm) . (16)

We see that both the expected costs of fairness and demographic
secrecy grow polynomially in |V|. However, as the expected cost
of fairness grows linearly in n, the expected cost of demographic
secrecy grows at least exponentially! Amazingly, we can also show
that with high probability, an incentive-compatible representation
will exist that can recover not just some, but all of the cost of
demographic secrecy.

2
<1- 4
p=s1 4K

THEOREM 5.4. Let V be a binary-balanced set, |V| > 2?0, n =
%10g|V|,p such that ﬁ <p<1- ﬁ and U = RFM,(V,U),
Then with probability at least 7/10, it will be possible to construct an

incentive-compatible representation that achieves f3.

A crucial issue in our main results is the choice of n.? We argue
that n = O(log |V]) is a sensible and interesting choice. Consider
our motivating example of targeted online advertising, constant n

20f course, in practice, a publisher may not have the power to set n. We do so here
purely for the purposes of theoretical analysis to obtain qualitative results.
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would correspond to a constant number of advertisers, regardless
of the number of people in the advertising audience, which does
not seem to us realistic.

So n should grow in |V|, in which case we must ask of what
order? We take polynomial growth as the upper limit as it would
seem that any one individual may economically sustain at most
a constant number of advertisers, so that n = O(|V|). While we
do not present the analysis here, one can show that, for n that is
polynomial (in particular, including sublinear) in |V|, the situation
with the relative cost of demographic secrecy is asymptotically
equivalent to that of the constructed examples in Theorem 4.8 (i.e.
asymptotically constant).

We therefore focus on logarithmic growth, where the dynamics
are more subtle. Moreover, logarithmic growth arguably captures
the slowest reasonable order of growth in practice, increasing the
scope of the implications of our results. We now turn to proving
the main results. In our analyses, we assume that V is a binary-
balanced set for ease of presentation. They can be extended to
binary-unbalanced sets to obtain qualitatively the same results.

The following lemma will prove extremely helpful. We present
the proof in the Supplementary Material.

LEMMA 5.5. Let Xo and X1 be independent, identically distributed
binomial random variables with parameters n and p such that 1/n <

p <1-(1/n), then

E[|Xo - X1|]] = © (\/Var[Xo]) .

For balanced-binary sets the cost of fairness of a single function
is simply how unfair it is in the following sense.

(17)

Definition 5.6. (Function Disparity) Let V be a binary-balanced
set,and f : V i {0, 1} be a binary-valued function over V. The
disparity of f is defined to be

€)= ) fw- ), f@).

uev veV;

(18)

Since the disparity of any function is clearly the difference of
two binomial random variables, and the functions output by RFM
are independent and identically distributed, applying Lemma 5.5
establishes Theorem 5.2.

We now turn to proving Theorem 5.3. The cost of demographic
secrecy depends ultimately on the functions output by RFM. Analyz-
ing a fixed output of RFM with respect to the cost of demographic
secrecy seems hard; we need a proxy. Observe that the parts of a
demographically secret representation create computational links
between collections of individuals. For a given part, every function
on which a pair of individuals in the part disagree enforces at least
one mistake that any binary classifier must make in classifying that
part. We can formalize this quantity as follows

Definition 5.7. (Cost of a Representation) Let V be a set of in-
dividuals, Z be a representation of V, and U be a collection of n
unit-additive binary classification utilities. The cost of the represen-
tation Z is defined to be

@)=, > D 1Ufiw# fio)],

z2€Z U,V€Z j¢e[n)]

(19)
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Now we would like to bound, probabilistically, the cost of any
demographically-secret representation Z from below. Each individ-
ual u is collectively assigned a binary string, or code, ¢ = k(u) by
the functions output by RFM. For each code ¢, the functions will
assign some number m ¢ of individuals in group 0, and some num-
ber m; ¢ of individuals in group 1 code £. Denote the difference by
€() = mg,¢ —my, ¢ and call this the code difference. Observe that in
a binary-balanced set, for each code ¢, any demographically-secret
representation must pair at least |e(£)| individuals with code ¢ out-
of-code. These individuals will contribute at least 1 to the cost of the
representation. Finally, summing over all absolute code differences
counts each individual twice, so the cost of any demographically-
secret representation is at least one half the sum of absolute code
differences. We have proved the following theorem.

THEOREM 5.8. LetV be a binary-balanced set, and U be a collection
of n unit-additive binary-classification utilities. We have that for any
demographically-secret representation Z of V,

ARG

el

(20)

where L = {0, 1}".

Fortunately, we can productively analyze the sum of absolute
code differences.

LEMMA 5.9. LetV be a binary-balanced set, p such that ﬁ
1- % U= RFMP(V) be a collection of n functions, and L = {0,1}",

then the expected sum of absolute code differences is

> leol| =@ (2"/2VIVi).

tel

<p<

E (21)

Proor. For each g € G, and ¢ € L, define the random vector
Xy e RIF,

Xyt = Z 1[¢ = k(u)], (22)
uEVg
and
Y =X - Xy, (23)
so that
1Yl = > 1) (24)
el
Write
E[IYIL] =B | 1Yl| = 2"B [[Xo.r - Xpcl] . (25)
el

Note that X; ¢ is a binomial random variable with parameters |V /2
and 27", and apply Lemma 5.5 to obtain,

[

]

V| 1

B[lIYIh] =2"0 (/= 5

Theorem 5.3 follows as a consequence. Finally, we turn to proving
Theorem 5.4. It is due to two properties of RFM: First, although
most of the random functions output by RFM are unfair, most of
the time they will not be too unfair.
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LEMMA 5.10. Let V be a binary-balanced set, and { f;} be a col-
lection of n functions output by RFM, then with probability at least
9/10, the absolute disparity of any function |e(f;)| will be at most

|V] In(40n).

Proor. For every g € G,u € Vg, and i € [n] define random
variables

Xg,i,u = fi(u), (27)
and
Xg,i = Z Xg,i,u~ (28)
uev,
Then
e(fi) = Xo,i — X1,i- (29)
Apply Hoeffding’s Inequality to every Xy ; to obtain
1
Pr [|Xg,,- - E[Xg,i]| = \/|V|ln(40n)/4] ST (30)
n
Define indicator random variables
1 [Xgi—-E|[Xgill = +/|V|In(40n)/4
v, { Woi = E[Xei]| > VIVIlnon/s )
0 otherwise.
and
Y = Z Z Ygi. (32)
geGig[n]
By Markov’s Inequality we have
1
PrlY >21] < — 33
Y21 < o (53)
and therefore 0
Pr[Y <1] > o (34)

which is the event that the absolute deviation of any X, ; about its

mean is at most +/|V| In(40n)/4. Since the random variables Xy, ; are
all independent and identically distributed the absolute disparity
of any function is at most

le(f)] < 2v|V|1n(40n)/4 = +/|V|1n(40n).

(35)

O

Second, although RFM will often output collections of functions
that induce large code differences, in both groups, many individuals
will be assigned every code.

LEMMA 5.11. LetV be a binary-balanced set, |V|* > 12, and {f;}
be a collection of n = % log |V| functions output by RFM. Then with
probability at least 8/10, for every code £ € {0,1}", at least

|V|3/4
10
individuals of each group will have the code.

(36)

ProOF. Let X € R?*%" where Xj,j gives the number of indi-
viduals in group i assigned code j. The row X; is a draw from a
multinomial distribution with parameters |V'|/2 and probability vec-
tor p, p; = 27" for every i. Applying the Bretagnolle-Huber-Carol
Inequality (see Supplementary Materials), we have

on

e[S

Jj=1

4
2.27n

4

Xo,j — 7/1 <2?" exp(—2A2).

>2 (37)
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We desire .
22" exp(=24%) < m (38)
Solving for a lower bound on lambda we obtain
5.2"
A> = (39)
8loge

when |V|* > 12. Choosing A at the lower bound, we have that with
probability at least 9/10, the number of individuals with a given
code will differ from its expectation by more than

V2IVIA,

In which case, we can bound the number of individuals with each
\4

code from below by,
- Z‘IM/I =
2-2n 2

|V|3/4 ~ 5|V|3/4 N |V|3/4
2 8loge 10

The same analysis applies to X;. Consequently, we can bound the
probability that this lower bound applies to both groups from below
by 8/10. O

(40)

(41)

(42)

By relaxing the demographic secrecy constraint, an incentive-
compatible representation can exploit these properties of RFM to
create necessary links that reduce unfairness and avoid creating
unnecessary links that impose further costs to the social welfare.

An incentive-compatible representation can close the disparity
|e(fi)] of the function f; by pairing individuals from the different
groups according to e(f;). If e(f;) is positive, then more members of
group 0 are labeled 1 than members of group 1. By pairing a member
of group 0 labeled 1 with a member of group 1 labeled 0, the dispar-
ity of f; is diminished by 1. Constructing e(f;) such pairs ensures
that a rational consumer would construct an automated decision
system that satisfies demographic parity. If e(f;) is negative, then
the situation is reversed, and an incentive-compatible representa-
tion would have to pair members of group 0 labeled 0 with members
of group 1 labeled 1. We call such a pair a disparity-diminishing
pair.

If, for every function f;, it is possible to make |e(f;)| disparity-
diminishing pairs of individuals, then doing so—and no more—
yields an incentive-compatible representation that achieves . When
there are many individuals in both groups assigned to every code,
then exactly the necessary number of disparity-diminishing pairs
can be made. This is the core of the proof of Theorem 5.4, which
we now present.

Proor. With probability at least 9/10, the maximum absolute
disparity of any function will be at most /|V|In(40n). And with
probability at least 8/10, each group will have at least

|V|3/4
10
individuals with each code. It is straigtforward to check that the
inequality is satisfied for |V| = 22°. Therefore, these events will
occur together with probability at least 7/10. When they do, for
each function f;, we can make |e(f;)| disparity-diminishing pairs
using individuals with code x from one group and individuals from
the other group with code x”, where x; # x] in the necessary way,

(43)
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and x; = xJ'. for all j # i to construct an incentive-compatible

representation which achieves f. O

6 DISCUSSION

Our paper proposes a different way to implement fairness in data
pipelines. While it is encouraging that our approach radically im-
proves on accuracy costs, it does not come for free. This is why we
feel it is important to address, beyond the results aforementioned,
the limitations and ramifications of realizing fairness through in-
centives.

6.1 Do accuracy gains generalize?

Demographic secrecy adds a large (exponential) and not-strictly-
necessary cost to achieving fairness. Indeed, that cost can entirely
be removed by proper incentives. But could that be an artefact of
our simplifying assumptions? We offer elements to help inform
that important discussion.

e All points to our results generalizing to independent classi-
fication tasks with various sensitivity (e.g., one consuming
firms looking for a target containing 5% of the nodes, while
another targets 80% of them), and to achieve statistical parity
a finite number of groups. Therefore, we suspect incentives
can keep fairness low cost even with intersectionality (e.g.,
handling gender and age at the same time).

e The assumption that classification tasks of various data
consuming firms are independent seems hardly justified.
In practice multiple firms are conducting similar or even
identical predictions (regarding credit, or interest in specific
purchases) that would correlate. At least, the high gain of
incentive trivially generalizes to a scenario where all firms
are among n types if prediction by different types are suf-
ficiently different to be considered independent, and the
number of types n grows with data size beyond log(|V|). The
case with correlated types, and prediction correlating with
group membership is more challenging to incentives, making
its exploration all the more important in future work.

e Finally, one could dispute our choice of statistical parity as a
meaningful accomplishment of fairness, and argue that our
results disappear if another fairness goal is used. We have not
fully analyzed that aspect, partly because statistical parity
is so commonly used, and a consensus is slow to emerge on
what to include as practical conditions for fairness. It seems
that several other group based definition (based on false pos-
itive, equality of opportunity, calibration) would reproduce
the same essential tradeoff, while others (individual fairness)
can be harder to model from an incentive viewpoint.

We would like to cautiously advise the reader against concluding
from our results that incentive compatible fairness generally comes
at no cost. That result remains surprising, especially when other
techniques appear prohibitive. However, we are hopeful that more
results can be found (positive or negative) to better appreciate its
real potential.

6.2 What are impediment and limitations?

Even in a case where our result applies and gains are expected,
would achieving fairness through incentive be practical and robust?
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e We offered (so far) existential results: concentrate on the
potential of incentives to bring fairness at low cost, but not
on how that could be implemented. However, our proof high-
lights the combinatorial flexibility offered by incentives (esp.
in comparison with demographic secrecy). That alone sug-
gests to us that it should be possible to regain part of this
large gap with suitable data representation. We also feel that
answering that question requires to carefully understand
how data consuming firms would communicate with the
platform. So it moves away from the stylized model we have,
and become more application specific. As an example, for on-
line advertising, one can study which decentralized bidding
process make fairness incentive compatible, and optimize for
accuracy. It could be different if our model is used to study
data purchase from public institution.

e Fairness is provided here by anticipation of incentives and it
leaves the system vulnerable to some deviation. For instance,
the data consuming firm could in theory first misrepresents
its interest/utility/bids as a way to gain information; once the
data are disclosed the firm may follow a different strategy,
possibly an unfair one, for a greater profit. Requesting firms
to commit to a strategy in advance seems too heavy handed
as other solutions exist: For instance, since fairness of out-
come is not hard to measure, a firm deviating significantly
from it would eventually be noticed. Auditing the firm for a
mismatch in anticipated and observed behaviors can deter
such misbehavior at lost cost.

Finally, we wish to clarify once again the unavoidable limitation
baked in the design: since incentive compatible data release are not
strictly bound by demographic secrecy, a data consuming firm can
learn demographic or sensitive attributes from it. That firm can
share it with a 3rd party which would later reuse it for nefarious
purpose. We work under the assumption that this threat is not
a concern: For instance, the firms accessing the data would not
be able to make inference and share with other party without a
considerable risk. That risk can be increased using combinations of
data watermarking, internal audits, and regulation. Note that we
are not aware of any cost-effective solution to the aforementioned
threat: it does require either to restrict data access to a single data
firm, to limit data access (with cryptographic primitives) to prevent
any data reuse, or to use a demographically-secret representation.
All those incur a high operating or accuracy cost. We expect that
the cost is so high that many data pipelines would use alternative
models like ours.

6.3 Data Reuse and Composition

Our results show that demographically-secret representations may
be costly for lateral data reuse in which a single dataset is reused
across multiple indendent prediction tasks or shared with multiple
third parties. Our results also show that the sequential composition
property of demographically-secret representations is not robust to
aggregation; demographic information may leak when individually
demographically-secret representations are combined”.

3To see this, consider the example given in Theorem 4.7, given both possible
demographically-secret representations one can not only recover an individual’s group,
but in fact their very identity.
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We have made direct progress in addressing the former limita-
tion by demonstrating that incentive-compatible representations
may recoup some of the cost of demographic secrecy in lateral
data reuse; yet it would seem that incentive-compatible representa-
tions are otherwise a step backwards for fair composition in that
they achieve the utility gains precisely by exposing demographic
information. However, note that demographic parity of sequential
composition implies the problematic computational links via de-
mographic secrecy since it must hold in the special case of a single
automated decision system; therefore, sequential composition is
inimical to aggregation.

To provide tools for data scientists to combine multiple datasets
and reason about their fairness properties under composition, re-
quires a different approach. Although, strictly speaking, we have
not directly studied composition in this work, our results do pro-
vide some hope that such an approach may exist and even suggest
a possibility. The combinatorial flexibility of fair representations
suggest that incentive-compatible representations may be applica-
ble across a wide range of settings diverse in the details of their
utilities, definitions of fairness, and patterns of data reuse. Further,
this flexibility might be amplified by approaching composition with
the goal of controlling unfairness leakage as opposed to completely
preventing it. Can, for example, a principled approach be devel-
oped that makes reasonable assumptions on the structure of firms’
utilities and behavior as in [9], that allows preserving utility and
controlling unfairness?

7 CONCLUSION

Few people today dispute the importance to remove bias and dis-
criminations emerging in applications of machine learning, espe-
cially in technical research venues, and regulatory bodies. But the
practice of machine learning, involving multiple stages of pipelining
and data reuse between interactive parties that cannot be trans-
parently trusted, is rarely introduced in the analysis. The limited
tools available today — mostly, relying on demographic secrecy
and its downstream invariance — contribute to the perception that
providing fairness end-to-end guarantees come at a prohibitive cost.
Practitioners often resort to piecewise fairness, essentially testing
each pipelining step locally on a best effort voluntary basis to iden-
tify bias amplification and address it (in the best case), or hide it (in
the worst case).

Our results clarified that a part of the currently perceived large
cost of fairness in fact serves a narrower purpose: offering a protec-
tion against specific malicious data sharing and reuse, that are all
strictly speaking outside the pipeline. Fairness can sometimes be
achieved at a much lower cost when those egregious reuses can be
prevented in other ways. We invite relevant research communities
to contemplate alternatives where pipelines leverage incentives as
a vector to align utility with fairness.
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SUPPLEMENTARY MATERIAL

Proof of Constant Costs Theorem

The key observation is that demographic secrecy forces a consumer
i to misclassify at least one individual whenever a pair of individuals
u, v are linked in the representation and their labels differ, f;(u) #
fi(v). If the number of these forced mistakes exceeds the cost of
fairness, the number necessary to achieve demographic parity, then
those further mistakes are an additional cost. However, although
limited by demographic secrecy, the publisher clearly has a lot of
power in whom to link in the representation, and this makes it
difficult to prove a statement over the set of all demographically-
secret representations. But at least in the case of a binary-balanced
set V, the task is made significantly more tractable by observing that
we can restrict our attention to a subset of demographically-secret.

Definition 7.1. (Pairing Representations) Let V be a finite set
of individuals and Z be a representation of V. We say that Z is a
pairing representation if for every z € Z we have

|z| = 2. (44)

In a binary-balanced set V, exactly half the individuals in any
part z of a demographically-secret representation Z must belong
to one group, and the rest to the other. Thus, splitting every z into
|z|/2 parts with one member of each group is a demographically-
secret pairing representation Z’. So any automated decision system
that can be constructed using Z can be perfectly simulated using Z’.
Therefore, we need only focus on the set of demographically-secret
pairing representations.

If we can guarantee that every pair of individuals disagree on at
least some number of class-membership functions, then that would
provide a bound on CDS from below. Given n class-membership
functions, there is a natural mapping b : V + {0, 1}" from individu-
als to binary strings defined in terms of the class-membership func-
tions as b(v); = fi(v). Note that the number of class-membership
functions on which individuals u, v disagree is the Hamming dis-
tance between their respective binary strings dg(u,v). Alterna-
tively, if we have a collection of |V| binary strings of dimension n
with some lower bound k on their Hamming distances, then we can
construct n class-membership functions over V with the property
that every pair of individuals disagrees on at least k labels.

If we can construct an arbitrarily large collection of binary strings
with a large lower bound on their pairwise minimum Hamming
distance, we can ensure that any pairing representation will force
the consumers to misclassify many individuals across all the class-
membership functions. Coding Theory guarantees that such collec-
tions of binary strings exists, and gives algorithms for producing
them. However, in application to the setting of fairness considered
in this paper, we are faced with a novel challenge for the construc-
tion of binary codes: we must also show that the cost of fairness
induced by the assignment of strings to individuals is not large.

Definition 7.2. (Fair Codes) Let K € {0,1}" be a set of m bi-
nary strings. We say that K is a (n, k, m)-fair code if the following
properties holds: For every p,q € K, p # g we have

dy(p.q) = k. (45)
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And there exists a partition P of K into two equal sized sets S and

T such that for every i,
S-S
S€S teT

We call P a fair partition of K.

(46)

Observe, that given a binary-balanced set V of size m and an
(n, k, m)-fair code K, using a fair partition of K, one can construct
class-membership functions over V which satisfy demographic
parity, and for which there is therefore no cost of fairness. Given
an (2n, n, m)-fair code K, we can construct a (4n, 2n, 2m)-fair code
K’ proceeding in the following manner. For each k € K, construct

j € {0,1}4" by:
o 00 ki=0
J2iJ2i+1 =

11 otherwise

Let J be the set of all strings so derived. For each k € K, construct
g € {0,1}*" as follows:

_jo1 ki=0
22141 = 10 otherwise

Let Q be the set of all strings derived. Define K’ = J U Q. By
construction, JN Q = 0 so

K| = 1J] +1QI = 2IK].

Observe that every p,q € K’, p # q are at a distance at least 2n
apart. Moreover, the set S’ C K’ of strings constructed from S and
the set T” C K’ of strings constructed from T form a fair partition
of K’. So K’ is a (4n, 2n, 2m)-fair code. Using this construction, if
we start from the set K = {00, 01, 10, 11} with fair partition {S, T},
S =1{00,11} and T = {01, 10} we can obtain a (2K~1, 2k=2 2K)fair
code K. We also note that this construction will result in strings
that are at exactly a distance 2K~2. We have proved the following
lemma:

Lemma 7.3. ((2K71,2k=2 2k)_Fair Codes) For everyk > 1, there
exists a (Zk_l, ok-2, 2k)—fair code K, and there exist p,q € K, such
that dp(p, q) = 282

We now prove of Theorem 4.8.

Proor. Let k = |log|V|] and S C V be a binary-balanced subset
of V of size 2%, Let K be a (2F~1, 2672 25)_fair code. Use K to assign
strings to individuals in S so that the resulting class-membership
functions are fair over S. We still need to assign labels to all the
individuals in V' \ S. Clearly, if we assign them all the same labels
on every function, that is fj(u) = fi(v) for every i € [2k-1] and
u,v € V'\ S, then all n class-membership functions f; will satisfy
demographic parity over all of V. We must find a suitable class-
membership. Let x, y € K such that dg(x,y) = 2572, Consider the
string z € {0, l}zk_1 obtained from x by flipping the first 2k=3 bits

in x on which x and y differ. Observe that for all w € K we have,
dg(w,x) < dg(w,z) + dg(z,x) (47)

and it follows that
2k < dyg(w, z).
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Assign the string z to every individual in V' \ S. Since the resulting
class-membership functions all satisfy demographic parity,

B =281

Let Z be any demographically-secret pairing-representation of V.
Define the sets A = {{u,v} € Z:u,v € S},B={{u,v} € Z:u e
S,veV\S},and C = Z \ (AU B). Clearly,

§ < |Viek-1 - Z di(u, v).
{u,v}ezZ
Bound the summation by,

Z dy(u,v) = Z dy(u,v)

{u,v}ezZ {u,v}eA

+ Z dy(u,v)

{u,v}€B

+ > du(wo)

{u,v}eC
> |A[2572 4 |B|2k3 (48)
Additionally observe that
2|A] + |B| = |S].
Solving for |B| and substituting we obtain
Z dy(u,v) > |AI2F 2 +(|S]=2|A])25 3 > |S]2F73 > |2k 4,
{u,v}ez
since |S| > V' /2. Therefore,
§< gz’ﬂm

We conclude,
CDS(V,U) >

| =

O

If |V] is a power of 2, then the (2k=1, 2k=2 2Kk fair code provides
a string for every individual, so |B| = 0. This proves Corollary 4.9.

Proof of Lemma 5.5
Proor. We first show that

B[1X - Xul] = @ (VVar[%]) (49)
Let & be the event that Xo > E [Xo] and E [X;] > X;. Conditioning
on ¢ we have
E[1Xo - X1l 1£] = E[1Xo — E[Xo] + E[X1] — X1| |£] (50)
=E[Xo - E[Xo] 1]+ E[E[X1] - X11£].  (51)
Observe that

FODS 20, October 19-20, 2020, Virtual Event, USA

E[Xo -E[X0][{] = E[Xo - E[Xo][Xo > E[Xo]],  (52)
and
E[EX ] -Xf] =E[E[X:] - X1[E[Xi] = X1]. (53)
Since Xy and X; are independent and identically distributed we
have
E[E[X1] - X1|E[X1] = X1] = E[E [Xo] - Xo[E[Xo] = Xo]. (54)
Therefore
E[IXo = X1]] 2 E[IXo = X1]|£] = cE[[Xo - E[Xo]l],  (55)

for some constant ¢ which depends on n and p. By assumption, we
have that 1/n < p < 1 - (1/n); applying the Berend-Kontorovich
Inequality (see Supplementary Materials) we obtain

21X - BT =y . 0
And therefore
E[1Xo ~ E[Xoll] = @ (VVar[Xo]) (57)

We now show that
B[1X0 - Xl = 0 (War [X]) (58)
which follows readily since
E[1Xo - X1|] < VVar[Xo - X1] = V2Var[Xo].  (59)
This completes the proof. O

Probabilistic Inequalities

THEOREM 7.4. (Bretagnolle-Huber-Carol Inequality[20]) Let X be
a k-dimensional multinomial random vector with parameters n and
p € RX, then

Pr

k
Z |X; — np;| > 2%1] < 2k exp(—222), (60)

i=1
A>0.

THEOREM 7.5. (Berend-Kontorovich Inequality[2]) Let X be a bi-
nomial random variable with parameters n and p such that 1/n <
p <1-(1/n), then

Var[X]
2

<E[IX -E[X][] < VVar[X]. (61)
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