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Extreme warming at the end-Permian induced profound changes in marine biogeochemical11

cycling and animal habitability, leading to the largest extinction in Earth’s history. How-12

ever, a causal mechanism for the extinction that explains the various proxy evidence has yet13

to be determined. By combining recent modeling developments with global and local re-14

dox observations, we show, in an Earth system model, that a temperature-driven increase15

in microbial respiration can reconcile reconstructions of the spatial distribution of euxinia16

and seafloor anoxia spanning the Permian/Triassic transition. We illustrate how enhanced17

metabolic rates would have strengthened upper ocean nutrient (phosphate) recycling, and18

thus shoaled and intensified the oxygen minimum zones, eventually causing euxinic waters to19

expand onto continental shelves and poison benthic habitats. Enhanced microbial activity in20
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the ocean interior also lowers subsurface dissolved inorganic carbon isotopic values with the21

implication that carbon release as inferred from observed isotope changes is likely overesti-22

mated. Our findings present a novel view of the sensitive interconnections between temper-23

ature, microbial metabolism, ocean redox state and carbon cycling during the end-Permian24

mass extinction with potential far-ranging implications for the interpretation of carbon cycle25

perturbations during Earth history.26

Climate warming driven by volcanic greenhouse gas release is widely regarded as the under-27

lying driver for the largest metazoan extinction event in Earth’s history at the end of the Permian28

Period when ∼80% of marine species were eliminated1–4. Proxy evidence, spanning the Per-29

mian/Triassic transition (P/Tr, 251.9 Ma5), reveals a 7-10◦C increase in sea surface temperature30

occurring in as little as ∼39 kyr6–8 (Fig. 1a+d), the development of (photic-zone) euxinia (wa-31

ters containing sulphide9), an expansion in the extent of seafloor anoxia10, 11, and a decrease in the32

carbon isotopic signature recorded in carbonates12 (δ13C, Fig. 1e). Although the extinction event33

itself has been intensely studied and is relatively well characterized, the mechanisms behind the34

development of widespread de-oxygenation and biodiversity loss are still not fully understood 13.35

Proposed explanations linking these observations with the extinction all require reduced oxy-36

genation of the ocean, but fundamentally diverge in the cause of this change. In particular, previous37

3D Earth system model (ESM) studies have required either a sustained collapse of global ocean cir-38

culation in conjunction with a much weaker biological pump14, or a well ventilated end-Permian39

ocean with a much stronger biological pump driven by enhanced nutrient (generally phosphate)40
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availability15, 16. Other modelling work17 has demonstrated that increasing the ocean phosphate41

inventory can account for widespread subsurface euxinia, but this not only requires an excessive42

increase in phosphate availability but also causes near-global anoxia in the deep sea18, which is43

in conflict with paleoredox estimates from uranium isotope records11, 19 (Fig. 1b+c). Further ex-44

planations have focused on reducing oxygen availability throughout the ocean as a whole, either45

through the oxidation of methane released from hydrates15 or of a massive reservoir of dissolved46

organic matter20, or via warming driven by the CO2 release associated with volcanism21, 22. As car-47

bon release mechanisms, these processes can also account for an observed pronounced decline in48

ocean carbon δ13C12. Finally, some studies 23–25 hint that a change in the gradient in δ13C between49

surface and subsurface might have occurred. If correct, this might be explained by ecologically-50

driven changes in organic matter sinking rates or reactivity 25–27 that drive a vertical repartitioning51

of organic carbon respiration (and hence δ13C) in the ocean, although the nature and impact of such52

changes remain to be quantified. Here, by recognizing the universally important role of temperature53

in controlling microbial respiration28, we provide a simple mechanistic and data-constrained expla-54

nation for how expanded oxygen-minimum zones26, 27 and (episodic) shoaling of sulfidic waters29
55

could have occurred and hence acted as an important kill mechanism during the mass extinction.56

Oxygen availability in the water column generally decreases from well-mixed surface waters57

(few tens of meters), to the oxygen minimum zone (OMZ, typically at a depth of a few hundreds58

of meters). Along with ocean circulation, this gradient is controlled by the remineralization of59

particulate organic matter (POM) which consumes oxygen and releases inorganic nutrients (and60

carbon), that can be returned by mixing, upwelling and diffusion back to the surface to fuel new61
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primary productivity30. Critical here is the sinking rate and reactivity of POM, as it controls where62

in the water column and how quickly this remineralization occurs, and thus, the depth and inten-63

sity of OMZs18, 31. We posit that a further factor, and the key to understanding how the marine64

environment changed across the P/Tr, is ocean temperature28, 32.65

A mechanistic representation of the biological pump66

To demonstrate the importance of a warming ocean in driving subsurface euxinia and potentially67

widespread extinction across shallow marine environments, we simulate spatial redox distributions68

for a range of P/Tr conditions using the cGENIE ESM33, 34. We modify the widely used “static”69

representation of the biological pump (i.e. an invariant POM remineralization depth profile35) to70

explicitly account for the impact of ocean warming at the end-Permian on remineralization (SI). In71

addition, we decrease the sinking rate of POM in the model by ∼22% – scaled to the smaller mean72

animal biovolume at the end-Permian (36, SI) – to reflect the shallower remineralization profile73

inferred prior to the rise of pelagic calcifiers in the early Mesozoic31. Finally, we account for74

progressive changes in the susceptibility of POM to microbial remineralization as it reacts with75

sulphide (H2S) in the water column (SI), in a process known as “sulfurization”37. Because the76

time-scale of warming leading up to the P/Tr boundary is slow relative to the adjustment time-77

scale of large-scale ocean circulation (i.e. warming likely occurred over ∼39 kyr or more, starting78

in the C. meishanensis biostratigraphic zone5, 8), a series of (10 kyr) steady-state simulations can79

be used to approximate the biogeochemical response to a sequence of warming stages. In these,80

we prescribe a range of atmospheric pCO2 values (1 – 30 × pre-industrial pCO2, i.e. 280–840081

ppmv), chosen to span the increase in tropical Tethys ocean temperatures reconstructed from proxy82
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records (from about 22 to 35◦C, Fig. 1a+d, SI). Simultaneously, we explore the importance of83

varying the ocean phosphate inventory (1 – 2.5× modern) to represent the potential net impact84

of increased weathering and sediment regeneration rates as the climate warmed and ocean anoxia85

increased, respectively38–40. We thereby create a gridded model parameter ensemble of varying86

climate vs. ocean nutrient state. To simplify the analysis of the impacts of temperature-dependent87

remineralization, we do not address in this study the question of which nutrient actually limited88

primary production during the P/Tr. Rather, we vary the dissolved phosphate inventory simply89

as a means of generating different states of global export and anoxia that can be tested against90

observations. Atmospheric oxygen is fixed at modern levels but our main findings are independent91

of this assumption (SI).92

Constraining model results with global and local redox proxies93

Uranium isotopes can provide powerful constraints on ocean models via the reconstructed extent94

of seafloor anoxia (fanox) . To quantitatively compare the ESM results with a compilation of car-95

bonate δ238U data over the P/Tr transition (SI), we use a forward box model that encapsulates the96

uncertainties in the U isotope budget (adapted from Lau et al.11). According to our U-model re-97

sults, the δ238U data can be best explained by an abrupt increase in fanox that either coincided with98

the EH, or preceded it by much less than the onset of the warming event (Fig. 1 b+c). An increase99

of fanox from a modern value of 0.6% to at least 30% (i.e. a factor of more than 50) represents100

our preferred minimum scenario as smaller perturbations fail to simulate the rate of change and101

magnitude of the shift in the δ238U data (Extended Data Fig. 4).102
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We also ground-truth the ESM results with a new compilation of local redox proxies (Ex-103

tended Data Fig. 1 and Extended Data Table 2). The dataset consists of geochemical, lithologic,104

sedimentologic, and biomarker evidence for water-column euxinia and bottom water anoxia and105

distinguishes three phases of the P/Tr transition (Late Permian background, Pre-Extinction Horizon106

and Main Extinction, Extended Data Table 2; see SI for definitions). The Late Permian data only107

indicate photic-zone euxinia occurring at the Meishan section with no clear evidence for seafloor108

anoxia (Fig. 3a+g, Extended Data Table 2). Immediately before the EH, water-column euxinia109

expanded to sections in British Columbia (BC), Shangsi, and potentially to the equatorial Pan-110

thalassic (Japan), while unequivocal evidence for bottom water anoxia remains limited and only111

exists for BC (Fig. 3b+h). In contrast, during the Main Extinction, anoxia spread across much112

of the shallow seafloor, and multiple lines of evidence suggest widespread euxinia impinged on113

shallow marine habitats (Fig. 3c+i).114

Impact of temperature-driven respiration on the marine redox-landscape115

Our model experiments show that for a “static” (fixed remineralization profile) biological pump,116

global POM cycling (i.e. POM export production, rain and burial rates within the sediment) is117

almost entirely controlled by nutrient (here, PO4) availability, with a minor increase at higher118

temperatures attributable to temperature-dependent productivity (Fig. 2a–c). Global mean photic-119

zone [H2S] shows little temperature sensitivity and remains below 4µmol kg−1 (Fig. 2d) and the120

depth of maximum [H2S] is generally below 400m (Extended Data Fig. 8). At the same time, the121

extent of seafloor anoxia increases to values above 30% even at moderately high warming and/or122

phosphate increases (Fig. 2e). The relative lack of sensitivity of shallow euxinia vs. deep anoxia123
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cannot easily be reconciled with observations for photic-zone euxinia (Extended Data Fig. 8) and124

expanded seafloor anoxia (Fig. 1b+c), respectively.125

In contrast, the assumption of a temperature-dependent biological pump results in progres-126

sively more phosphate being released shallower in the water column with warming. Shifting the127

depth of regenerated phosphate closer to the ocean surface means that diffusive transport together128

with ocean mixing and upwelling processes (which we find are largely independent of warming at129

steady state, SI) drive an increased re-supply flux of phosphate back to the photic zone, enhancing130

export production (Fig. 2f, and Extended Data Fig. 5a–d). Although POM export production131

increases by up to a factor of three with warming compared to the static model, the POM rain to132

the sediments does not change significantly (Fig. 2g), due to a greater proportion of remineral-133

ization and recycling taking place higher up in the water column. This positive nutrient recycling134

feedback is further intensified by the assumed slower-than-modern sinking rate in the Paleozoic31
135

(Extended Data Fig. 5c), as it increases the residence time of POM in the upper ocean, leading to136

more complete remineralization and phosphate recycling. Mean photic-zone [H2S] is substantially137

higher (reaching values > 60µmol kg−1) and highly sensitive to temperature variations (Fig. 2i).138

Notably, higher temperatures cause an increase in upper ocean [H2S] and a concomitant shoaling139

of the chemocline – even without the need to invoke any change in phosphate inventory (Extended140

Data Fig. 9). In addition, increased ocean euxinia leads to higher sulfurization rates causing POM141

burial rates to increase (Fig. 2h) and the extent of seafloor anoxia to decrease (compare Fig. 2j+e),142

a negative feedback that may be important in the transition back to a more oxygenated ocean41.143
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At least at the relatively coarse grid resolution (10◦ in longitude, variable 3− 19◦ in latitude)144

employed in cGENIE, our model predictions for the spatial distribution of euxinia and seafloor145

anoxia appear in general agreement with the available evidence for local redox-conditions (Fig. 3,146

see SI for more details) and our U-model results (Fig. 1b+c). In our “Late Permian background”147

scenario (i.e. lower temperatures and modern ocean [PO4]), only a few very local environments148

developed [H2S] around 20–30µmol/kg and are limited to depths below 284m (Fig. 3a+d), similar149

to profiles in the modern Cariaco Basin42. Instances of upper ocean euxinia were very limited150

in spatial extent and only occurred in the Eastern Equatorial Panthalassic and the Eastern Tethys151

(South China). The simulated extent of bottom water anoxia, 0.7% of the seafloor, is comparable152

to the modern value of 0.6% (43, Fig. 3g). Consistent with proxy reconstructions, climate warming153

together with a moderate release of phosphate (i.e. the “Pre-Extinction Horizon” phase), resulted in154

increasing [H2S], with sulphidic waters impinging onto continental shelves and slopes, especially155

in warm equatorial waters (Fig. 3b+e). While most of the global seafloor remains oxic (fanox =156

1.7%), approximately 20% of the seafloor shallower than 1000m exhibits [O2] <60µmol/kg (Fig.157

3h, Extended Data Table 4), a typical threshold for hypoxic conditions and considered critical for158

the survival of many modern marine animals30. A second increase in temperature, together with159

another slight relaxation of phosphate-limitation (i.e. a ∼7◦C warming of SSTs and a doubling of160

ocean [PO4] compared to modern) is sufficient to simulate the “Main Extinction”. This scenario161

satisfies not only local evidence for an expansion of upper ocean euxinia (Fig. 3c) but also predicts162

more widespread seafloor anoxia that has spread to the abyssal plain (Fig. 3i), in broad agreement163

with inferences from δ238U data (Fig. 1b+c). The habitable area in the upper ocean is further164
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restricted as now ∼30% of the seafloor above 1000m exhibits hypoxic conditions (Extended Data165

Table 4).166

Implications for ocean redox and carbon cycle dynamics167

Given the relatively prolonged interval of warming in the lead up to the P/Tr boundary (∼39 kyr8),168

our analysis favors a conceptual model in which higher metabolic rates drive a pronounced verti-169

cal partitioning in ocean redox. This biologically driven partitioning occurs within an ocean that170

remains not only well ventilated at depth (Extended Data Fig. 10) but is characterized by a slightly171

greater overturning strength at warmer states (Figure 3j-l). Although this behavior is consistent172

with previous steady-state modelling results15, 44, we note that our model utilizes a fixed wind field173

as a boundary condition and hence does not account for (more regional) ocean circulation impacts174

of changing atmospheric dynamics with warming. Furthermore, while we find that the temperature175

impact on metabolic rates is sufficient to provide an effective kill mechanism for the upper ocean176

ecosystem, pelagic ecosystem changes associated with the extinction itself, which we do not ac-177

count for in our modeling, could also have played a role in driving a further vertical re-partitioning178

of oxygen consumption, such as through further changes in organic matter sinking rates or its reac-179

tivity 25–27. Finally, we recognize that we do not account for limitation of productivity by nutrients180

other than phosphate. However, previous dual nutrient (N+P) modeling work has found that de-181

spite increasing rates of denitrification in a more anoxic ocean, export production still responds182

approximately linearly to changes in phosphate inventory, with production increasingly supported183

by ammonium assimilation and nitrogen fixation in place of nitrate assimilation 45. The role of184

iron in the P/Tr ocean is much more uncertain, and could provide either a positive feedback on185
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productivity through increased solubilization (as Fe2+) and bioavailability, or a negative feedback186

when combined with sulphide in the water column and removed as pyrite (Fe2S), and remains a187

general unknown in ocean circulation model studies of deep time.188

Irrespective of the simplified nutrient dynamics, our new temperature and biological pump189

centric model is in contrast with strong physical partitioning such as simulated by Penn et al.14
190

using the Community Earth System Model (CESM), where instantaneous warming drives persis-191

tent (multi kyr) stratification of the ocean. These two conceptual (and numerical) models also192

fundamentally differ in the consequent predictions of biological export – more vigorous overturn-193

ing circulation, in conjunction with temperature-driven phosphate recycling substantially enhances194

export here, whereas stratification severely restricts upwelling and hence export in CESM – with195

important implications for the stressors associated with the marine extinction. Given that the initial196

ocean circulation response of the cGENIE ESM to instantaneous warming is very similar to that of197

CESM immediately after the perturbation (Extended Data Fig. 12), it is the assumed time-scales198

of warming that fundamentally distinguish between these states, highlighting the importance of199

refined age models and temperature reconstructions for the P/Tr.200

Our inference of a metabolically driven (rather than transient circulation-driven) redox par-201

titioning allows for persistently high temperatures during the Early Triassic6 to prolong the oc-202

currence of extensive seafloor anoxia11. Low levels of atmospheric O2
46 together with episodic203

volcanism in the Early Triassic47 and consequent oscillations between sulfidic and oxic conditions204

potentially played a role in the protracted biogeochemical and biological recovery prior to the205
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Middle Triassic. There may also be implications for changes in particle sinking speed that are206

potentially associated with the advent of pelagic biomineralization in the early Mesozoic Marine207

Revolution31, 48, with our results indicating that a given warming perturbation will drive a larger208

absolute increase in POM export during the Paleozoic when sinking rates are slower.209

Finally, our numerical model analysis sheds new light on the δ13C decline itself, and specif-210

ically the cause for substantive variability in what is nominally a globally imprinted signal. Dif-211

ferences in onset timing, temporal evolution, and maximum isotopic change of the end-Permian212

δ13C negative shift have been observed among stratigraphic sections12 (e.g. the amplitude varies213

between 4 and 7h), complicating estimates of the size and source of the carbon cycle perturbation.214

We simulate a maximum decrease in the Tethys Ocean subsurface δ13C during the P/Tr of 3.9h215

– approximately 60% of the observed δ13C decrease in Armenia and Iran, with a smaller shift216

occurring in colder waters (Fig. 1e). This decline is driven only by temperature-induced changes217

to the biological pump in the model without invoking changes in the ocean+atmosphere carbon218

inventory (see SI). The implication is that end-Permian carbon release, as inferred from observed219

δ13C changes (e.g. Erwin13), is likely overestimated, with the total release being smaller and/or220

the isotopic composition of the source is less negative, than previously assumed. This implies that221

carbon from volcanism rather than a reduced source (e.g. organic matter) was more dominant. In222

sum, these results not only reassess the relationship between temperature and the ocean redox state223

but also carbon cycle perturbations recorded by δ13C.224
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Figure 1: Temporal relationship of changes in isotope records and U mass balance modeling

for the P/Tr extinction. (a) Temperature reconstructions from the δ18O of biogenic apatite from

South China (black circles)6. (b) Carbonate δ238U data (colored symbols)11, 19, 49–51. U isotope for-

ward model results are shown, with gray lines representing individual iterations from the Monte

Carlo routine with variable isotopic fractionation into anoxic sediments, riverine δ238U, and car-

bonate diagenetic offset. The black line represents the moving average of all model runs (SI). (c)

Varying perturbations in seafloor anoxic fraction (fanox) that drive the U-model in panel b (indi-

vidual iterations, grey lines; average, black line). (d + e) Conodont apatite δ18O and δ13C8, 52 (SI).

Grey shading in (e) represents the range of cGENIE δ13C values simulated for the Tethys Ocean

for the experiments shown in Fig. 3.
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Figure 2: Global sensitivity of particulate organic matter (POM) cycling and ocean redox to

temperature and phosphate changes for the static and dynamic representation of the biological

pump: POM flux values (in PgC yr−1) of export production (a+f), POM rain to the seafloor (b+g)

and POM burial in the sediments (c+h). Mean photic-zone [H2S] (in µmol kg−1, d+i) and bottom

water anoxia (e+j) as fraction of seafloor area with [O2] ≤ 5µmol kg−1 (in %). The red diamonds

indicate results for the experiments presented in Fig. 3.
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Figure 3: Ocean redox conditions during the P/Tr transition using the dynamic cGENIE

model: (a-c): Simulated maximum [H2S] between 81 and 928m. (d-f): Depth where the maximum

in [H2S] is observed. (g-i): Simulated extent of seafloor anoxia (values indicate fanox). Model

results for [H2S] and [O2] are superimposed by proxy observations: Evidence for euxinia/anoxia

is represented by circles; evidence against by crosses; ambiguous evidence or dynamic redox-

conditions by triangles (see Extended Data Table 2). (j-l): Meriodional overturing circulation

(MOC, in Sv).
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