

1 **An Optrode Array for Spatiotemporally Precise Large-Scale Optogenetic**
2 **Stimulation of Deep Cortical Layers in Non-human Primates**

3
4 Andrew M. Clark¹, Alexander Ingold¹, Christopher F. Reiche², Donald Cundy III¹,
5 Justin L. Balsor¹, Frederick Federer¹, Niall McAlinden³, Yunzhou Cheng³, John D.
6 Rolston⁴, Loren Rieth^{5,6}, Martin D. Dawson³, Keith Mathieson³, Steve Blair^{2*}, and
7 Alessandra Angelucci^{1*}

8
9
10
11 ¹ Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah,
12 Salt Lake City, UT

13 ² Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT

14 ³ SUPA, Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, UK

15 ⁴ Department of Neurosurgery, University of Utah, Salt Lake City, UT

16 ⁵ Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV

17 ⁶ Feinstein Institute for Medical Research, Manhasset, NY

18
19
20
21 *Corresponding authors.

22
23 Corresponding authors' address:

24 A. Angelucci:

25 65 Mario Capecchi Drive
26 Salt Lake City, UT 84132, USA
27 Tel: (801) 5857489
28 Email: alessandra.angelucci@hsc.utah.edu

30 S. Blair:

31 50 S. Central Campus Dr., Rm. 2110
32 Salt Lake City, UT 84112, USA
33 Tel: (801) 5856157
34 Email: blair@ece.utah.edu

35

ABSTRACT

36

37 Optogenetics has transformed studies of neural circuit function, but remains challenging to apply
38 in non-human primates (NHPs). A major challenge is delivering intense and spatially precise
39 patterned photostimulation across large volumes in deep tissue. Here, we have developed and
40 tested the Utah Optrode Array (UOA) to meet this critical need. The UOA is a 10×10 glass
41 waveguide array bonded to an electrically-addressable μ LED array. *In vivo* electrophysiology
42 and immediate early gene (c-fos) immunohistochemistry demonstrate that the UOA allows for
43 large-scale spatiotemporally precise neuromodulation of deep tissue in macaque primary visual
44 cortex. Specifically, the UOA permits either focal (confined to single layers or columns), or
45 large-scale (across multiple layers or columns) photostimulation of deep cortical layers, simply
46 by varying the number of simultaneously activated μ LEDs and/or the light irradiance. These
47 results establish the UOA as a powerful tool for studying targeted neural populations within
48 single or across multiple deep layers in complex NHP circuits.

49

50

51

52

53

54

55

56

57

58

59 **Keywords**

60 Optogenetics, macaque, neocortex, feedback, AAV, cFos, current source density, multi-channel
61 electrophysiology

62 A central goal in neuroscience is to understand how neural circuits generate the computations
63 underlying perception and behavior. Optogenetics has transformed the study of neural circuit
64 function by allowing for the selective modulation of neural activity on a physiologically relevant
65 timescale¹. While very successful in mice, its application to non-genetically tractable model
66 species, such as the non-human primate (NHP), has lagged behind². Extending optogenetics to
67 NHP studies is crucial, as, due to their similarity to humans, NHPs represent the most important
68 model for understanding neural circuit function and dysfunction³⁻⁶, and provide an essential
69 technology testbed towards human use⁷ and the potential application of optogenetics as
70 therapeutic interventions in humans^{8,9}. The continuing refinement of viral methods for
71 selectively delivering opsins to particular neural circuit elements, either defined projections^{10,11}
72 or particular cell types¹²⁻¹⁴, is rapidly opening up new opportunities to study neural circuits in
73 NHPs^{2,15}. Despite these advances, one of the most significant remaining obstacles in the
74 application of optogenetics to NHPs is the lack of devices for reliably delivering light to deep
75 neural tissue across relatively large brain volumes with both: (i) sufficient intensity to reach
76 optogenetic activation threshold, and (ii) sufficient spatial resolution to selectively modulate
77 relevant circuit elements. For example, it is presently challenging to optogenetically perturb the
78 activity of neuronal populations in the deep layers of the cerebral cortex across large cortical
79 volumes.

80 There are several features of cortical networks that both make development of such a
81 device critical and provide design requirements for the device. First, a subset of cortico-cortical
82 feedback connections, which are critical for the contextual modulation of sensory processing^{10,16},
83 as well as cognitive phenomena such as selective attention¹⁷ and working memory¹⁸, arises from
84 deep cortical layers¹⁹. Selective optogenetic modulation of these projections would greatly
85 inform work examining the role of cortico-cortical feedback in neural computation. Second,
86 cortico-thalamic projections, which are part of thalamo-cortico-thalamic loops (ubiquitous
87 features of mammalian neural networks), arise exclusively from deep layers²⁰. Dissecting these
88 circuits will require selective perturbation of deep layer cortical neurons with high
89 spatiotemporal precision. Finally, in NHP sensory cortex, specific stimulus features are mapped
90 in an orderly, columnar, fashion. That is, nearby neurons prefer similar stimulus features, and
91 this pattern of selectivity extends throughout the cortical depth²¹. While methods for selective
92 illumination of the cortical surface at the spatial scale of these columns have recently been

93 developed in smaller animals^{22,23}, they unfortunately only allow for stimulation of the superficial
94 layers in the NHP.

95 State-of-the-art optogenetic experiments in NHPs have mainly followed two light
96 delivery approaches: through-surface illumination and penetrating probes. Surface
97 photostimulation utilizes either a laser- or LED-coupled optical fiber positioned above the
98 cortical surface¹⁰, or chronically-implantable surface LED arrays²⁴. These approaches enable
99 photoactivation of a large area, but only to a depth of <1mm, due to light attenuation and
100 scattering in tissue, as well as to unintended superficial layer neuron activation and even damage
101 caused by the heat generated by the light intensity required to reach deeper layers^{10,25}. In
102 contrast, penetrating optical fibers, integrated with single^{26,27} or multiple²⁸ recording probes,
103 allow photoactivation at depths >1mm, but only of a small tissue volume (a few hundred microns
104 in diameter), and due to their size and shape, can cause significant superficial layer damage.

105 To overcome the limitations of these light delivery methods, we have developed the Utah
106 Optrode Array (UOA), a 10x10 array of glass needle shanks tiling a 4x4 mm² area and bonded to
107 an electrically-addressable μ LED array independently delivering light through each shank^{29,30}.
108 Device bench testing and *in vivo* testing in macaque primary visual cortex (V1) demonstrate that
109 the UOA allows for spatiotemporally patterned photostimulation of deep cortical layers with sub-
110 millimeter resolution (at the scale of single layers and columns) over a large expanse of cortical
111 tissue. This spatial selectivity can be scaled up to multiple layers and columns simply by varying
112 the number of simultaneously activated μ LEDs and/or the light irradiance. These results
113 establish the UOA as a powerful tool for studying local and large-scale populations of deep layer
114 neurons in NHP cortex.

115

RESULTS

116 The UOA: Geometry and Optical Properties

117

Figure 1 about here

118 The spatiotemporally multiplexed UOA was developed based on the geometry of the widely
119 utilized Utah Electrode Array (UEA)³¹. The UOA is a 10x10 array of penetrating optical light
120 guides made in glass, with customizable length (up to 2.5mm) and shank width (80-120 μ m
121 diameter) on a 400 μ m pitch tiling a 4x4mm area. For deep layer light delivery, a custom blue
122 (~450nm) μ LED array grown on sapphire is directly integrated with the device, with each
123 electrically addressable 80 μ m μ LED delivering light through a single needle shank (**Fig. 1A-E**).
124 A second 9x9 array of “interstitial” μ LEDs can be interleaved on the same device and matrix-
125 addressed for independent surface stimulation (as shown in **Fig. 1B**, but the interstitial μ LED
126 array was not used in this study). To limit the spatial spread of light coupled into the optrode, the
127 first generation UOA used a metal pinhole array²⁹. Bench testing of this first generation device
128 demonstrated the capacity for delivering irradiances in excess of activation threshold across a
129 range of commonly employed depolarizing³² and hyperpolarizing³³ opsins. Estimates from bench
130 testing suggested a 50% decrease in irradiance within tissue within approximately 200 μ m of a
131 needle tip and a beam cross section of approximately 150-200 μ m (full-width at half-maximum -
132 FWHM)²⁹. These initial results suggested that direct optogenetic activation through the UOA is
133 on a spatial scale commensurate with the functional architecture of primate cortex.

134 Building upon these initial results, we have developed the second generation UOA
135 reported here, which incorporates an optically opaque (silicon) interposer layer with optical
136 “vias” on the array backplane to eliminate uncontrolled surface illumination and inter-needle
137 crosstalk, and facilitate alignment during bonding to the μ LED-array (**Fig. 1A, C**; see Online
138 Methods for manufacturing details). This second-generation device (**Fig. 1A-E**) was bench tested
139 (**Fig. 1F**) and its *in vivo* optical performance was estimated via ray tracing (**Fig. 1G**). From
140 optical measurements, the output power (in mW) emitted through the tip of each needle in the
141 10x10 array at different drive voltages is shown in **Fig. 1F** and in **Extended Data Fig. 1**, where
142 we also show the estimated output irradiance (mW/mm²) for each needle tip (assuming a
143 pyramidal tip and uniform light output). At 3V, estimated irradiance levels are below the 1
144 mW/mm² threshold for the excitatory opsin Channelrhodopsin-2 (ChR2); average output optical

145 power across all needles \pm SD = 0.0057 ± 0.004 mW, corresponding to an average estimated
146 irradiance of 0.21 ± 0.14 mW/mm² (**Extended Data Table 1**). There is variation across the array,
147 due primarily to variations in the resistance (and therefore slope efficiency) of each μ LED. At
148 3.5V, about 30% of the stimulation sites reach or exceed this threshold (average optical power \pm
149 SD = 0.022 ± 0.013 mW; average irradiance: 0.82 ± 0.49 mW/mm²), while at 5V, more than
150 90% of the sites emit above threshold (average optical power \pm SD = 0.1 ± 0.056 mW; average
151 irradiance: 3.79 ± 2.08 mW/mm²). In principle, software modifications in the matrix driver
152 interface could be made to better equalize stimulation levels across the array.

153 We used optical ray tracing to estimate the performance of the device *in vivo* based upon
154 calibration curves obtained from bench testing (see Online Methods for details). In particular, we
155 were interested in estimating the direct neural stimulation volume (based upon the local
156 irradiance in tissue) as a function of drive voltage and pattern of lit needles in order to interpret
157 the *in vivo* results. These results are shown in **Figure 1G**, where the left column panels show the
158 stimulation volume along the first UOA column as produced by the needle (column 1, row 8)
159 nearest one of the electrode penetrations (penetration 2, or P2) in the *in vivo* experiments, and the
160 right column panels show the activation volume when the entire UOA column 1 is lit. Each row
161 of figures is for a different drive voltage. At low drive voltage (~3V, equal to 38% of the
162 maximum input voltage used), highly localized stimulation in tissue near the needle tips is
163 produced (note also that the irradiance across the tip surface is non-uniform – concentrated near
164 the apex – explaining why above-threshold irradiance levels can be achieved at 3V as
165 demonstrated in the *in vivo* experiments). At higher voltages (~5V/64% max intensity and
166 above), the stimulation volume overlaps that of adjacent needles, while also extending deeper
167 into tissue. When driving an entire column, at 3V, stimulation localized near each tip is mostly
168 retained, whereas a nearly continuous stimulation volume is obtained at 3.2V due to overlapping
169 fields. At 5V (64% of max intensity) and 7.8V (100% max intensity), the depth of this
170 continuous volume increases, both above and below the tips.

171

172 ***In Vivo* Testing: Electrophysiology**

173

Figure 2 about here

174 We used *in vivo* linear electrode array (LEA) recordings to assess the utility of UOAs for precise
175 modulation of neural activity in deep cortical layers of monkey cortex expressing the excitatory
176 opsin *Channelrhodopsin-2* (ChR2). ChR2 was expressed in area V1 of a macaque monkey by
177 injecting a mixture of Cre-expressing and Cre-dependent adeno-associated virus (AAV9)
178 carrying the genes for ChR2 and the red reporter protein tdTomato (tdT). We have previously
179 shown that this viral mixture results in almost exclusive anterograde neuronal infection at the
180 injected site¹⁰. Following a survival period to allow for viral expression, we recorded neural
181 spiking activity using a 24-contact LEA inserted nearby a UOA (fully integrated with a μ LED
182 array, as described above and in **Fig. 1A-E**) that was implanted into a region of dense ChR2
183 expression in V1 (**Fig. 2A-C; Extended Data Figs. 2-3A**). We performed 3 LEA penetrations
184 (P1-P3), but for only 2 of them (P2, P3) photostimulation via the UOA modulated neural
185 activity, likely because P1 was located farthest from the region of tdT/ChR2 expression, as
186 revealed by postmortem histology (**Extended Data Fig. 3A**). Below we report data from P2 and
187 P3.

188

189 *Comparison of Surface and UOA Photostimulation*

190 **Figure 2D** shows neural responses recorded in P2 to simultaneous stimulation of μ LEDs at all
191 UOA sites at an irradiance level (average \pm SD across the whole UOA = 7.4 ± 3.19 mW/mm²,
192 induced by an input intensity of 7.8V; see **Extended Data Table 1**) almost an order of
193 magnitude greater than ChR2 activation threshold³². To examine the spatiotemporal distribution
194 of responses to UOA stimulation across V1 layers, we first performed a current source density
195 (CSD) analysis of the local field potential (LFP) recorded across the LEA around the time of a
196 UOA pulse. The CSD, computed as the second spatial derivative of the LFP, reveals the location
197 of current sinks (negative voltage deflections reflecting neuronal depolarization) and sources
198 (positive voltage deflections reflecting return currents) throughout the cortical depth. Current
199 sinks in response to UOA stimulation were confined to L4C and below (**Fig. 2D**, Left),
200 suggesting that direct optogenetic activation was confined to a region below the UOA needle
201 tips. Analysis of the multiunit (MU) spiking activity across contacts demonstrated strong phasic
202 responses to UOA stimulation that extended from L4C to the white matter boundary (**Fig. 2D**,
203 Right). **Figure 2E**, shows the CSD and MU signals under the same photostimulation and
204 recording conditions as in **Figure 2D**, but at lower light irradiance (0.82 ± 0.49 mW/mm² -

205 3.5V). At this lower intensity, CSD signals and MU activity were mostly localized to L4C and
206 the lower part of the deep layers, with L4C activation preceding in time that of deeper layers.
207 These laminar patterns of neural activity suggest that the UOA needle tips closest to P2
208 terminated in L4C and that at low photostimulation intensities light spread nearby the UOA tips.
209 Additional analysis demonstrating that response onset latency and light activation threshold were
210 lowest for the P2 contacts located in L4C, together with postmortem histological assessment,
211 further confirmed that the UOA needle tips closest to P2 were indeed located in L4C (**Extended**
212 **Data Fig. 3A, B Right**). Comparison of the above laminar patterns of response with that elicited
213 by direct surface stimulation in a different animal at a lower suprathreshold irradiance
214 (2.2mW/mm^2) revealed a sharp dissociation. Specifically, surface stimulation of ChR2 evoked
215 responses starting in superficial layers and terminating in L4C (**Fig. 2F**).
216

217 *UOA Stimulation Parameters Can Be Tuned to Achieve Laminar Specificity*

218 To systematically assess the impact of UOA stimulation on neural spiking responses we varied:
219 (i) the spatial pattern of UOA stimulation, from single μLED sites, to entire columns, to the
220 entire device, and (ii) stimulation intensity across different spatial patterns. In all conditions, we
221 used phasic stimulation (5Hz, 100 msec pulses for 1 sec with 1-10 sec inter-trial intervals, with
222 the longer intervals used at the higher stimulation intensities) with a slow on/off ramping to
223 eliminate the potential of any electrical artifacts induced by capacitive coupling at the
224 array/tissue interface³⁴. As an example, **Figure 2G-J** shows responses from P2. An analysis of
225 firing rate increase across layers induced by systematically stimulating a single μLED along
226 column 1, indicated that the UOA needles in column 1 closest to P2 were those in rows 8 and 9
227 (C1-R8, C1-R9), and that the tips of these needles terminated into L4C (**Extended Data Fig. 3B**
228 **Left**). The laminar distributions of MU activity in P2 varied considerably in strength across
229 conditions, but were reliably confined to deeper layers. By varying the spatial pattern of
230 stimulation and/or the stimulation intensity, MU activation could be confined to single layers or
231 spread across multiple layers. For example, activation of the whole μLED array (**Fig. 2G**) at low
232 light intensity (>2.8 and up to 5V), evoked a peak of MU activation localized to L4C, the layer
233 of needle tip terminations nearest P2, and this peak increased in magnitude with increasing
234 stimulation intensity. At and near the peak of this intensity range, a second smaller peak of MU
235 activation was also present in L6 but not in L5. However, when the whole UOA was activated at

236 the highest intensity used (7.8V), the MU spiking peak in L4C decreased in magnitude, while
237 activation of L5 and L6 increased. In macaque V1, L4C projects to both L5 and L6³⁵, but its net
238 effect is to suppress the former³⁶ and activate the latter³⁷, consistent with the interpretation that at
239 lower light intensities lack of L5 responses and increases in L6 responses may have resulted
240 from synaptic spread from L4C neurons directly activated by UOA stimulation. In contrast, at
241 the higher photostimulation intensity (black curve in **Fig. 2G**) light scattering through a larger
242 volume may have directly contributed to firing rate increase in deeper layers 5 and 6, while the
243 reduced MU peak in L4C could have resulted from activation of higher threshold inhibitory
244 networks. In a later section of the Results, we provide evidence supporting this interpretation.
245 Intensities \geq 5V evoked similar laminar patterns and magnitude of neural activity irrespective of
246 whether a single μ LED or an entire column nearest the LEA or the whole UOA were illuminated
247 (**Fig. 2G, H, J**). However, at lower photostimulation intensities, for a given intensity, firing rate
248 increased with the number of μ LEDs activated (e.g. compare blue curves in **Fig. 2G, H, J**), and
249 higher intensities (>3.2 V) were required to modulate neural activity via a single active μ LED
250 (**Fig. 2J**). Moving the μ LED activation column from 1 to 5 resulted in a 10 times reduction in the
251 amplitude of MU activity (**Fig. 2I**). No increase in firing rate could be evoked by stimulation of
252 an entire column beyond column 5 or a single μ LED in column 1 beyond row 4 (distances from
253 the LEA of about 2.6-2.7 mm – estimated on the postmortem histology) even at the highest drive
254 voltage used, i.e. 7.8V (corresponding to an average irradiance of 6-11 mW/mm², see **Extended**
255 **Data Table 1**).

256

257 *Tangential Extent of Responses Induced by Photostimulation Via the UOA*

258

Figure 3 about here

259

260 Having determined that C1-R8 and C1-R9 were the UOA needles in column 1 closest to P2, and
261 that these needles' tips terminated in L4C, we then performed a similar analysis to determine the
262 location of P3 relative to the UOA. The results of this analysis, reported in **Extended Data Fig.**
263 **3C**, suggested that C1-R7 was the UOA needle in column 1 closest to P3 and that this needle tip
264 terminated in the superficial layers.

265

266 We then asked whether MU responses across LEA contacts were tuned for the spatial site
of UOA stimulation, how such tuning varies with intensity, and whether UOA stimulation can be

267 tuned to selectively activate volumes on the scale of functional columns in NHP cortex.
268 Moreover, different spatial tuning across LEA contacts would provide us with information about
269 the angle of LEA insertion into cortex relative to the UOA. We performed this analysis
270 separately for each penetration.

271 To estimate the MU response to stimulation at UOA sites between columns 1-5 and rows
272 3-10, we fit a multiple linear regression model to the MU spiking recorded at each LEA contact,
273 with row, column, and intensity (volts) as independent variables (see Online Methods). We
274 included in this analysis only contacts on which there was a significant difference in MU firing
275 rates during the stimulation and control periods for at least one of the row or column conditions
276 (ANOVA, $p < 0.01$). On average, including a quadratic term explained more of the variance in
277 the MU response (mean $R^2 \pm SD$: 0.58 ± 0.14 vs. 0.31 ± 0.11 for a linear model; Kolmogorov-
278 Smirnov, $p < 10^{-7}$). **Figure 3A, E** shows plots of MU responses, evoked by a mid-level
279 photostimulation intensity (3.5V), estimated from the fitted data for the contact in P2 and P3 that
280 showed the greatest relative response modulation. We normalized each contact's fitted responses
281 to the peak and averaged across contacts to get a sense of whether MU responses preferred
282 stimulation at different UOA sites on different LEA penetrations (**Fig. 3B, F**). Consistent with
283 postmortem histological assessment (**Extended Data Fig. 3A**) and the analysis in **Extended**
284 **Data Figure 3B-C**, the peaks for P2 contacts tended to cluster mostly near columns 1-2 and
285 rows 8-9, while those for P3 contacts clustered mostly near columns 1-3 and rows 4-7, and the
286 spatial pattern of peak activity suggested that for both penetrations, particularly P3, the LEA was
287 inserted at a slightly oblique angle. Statistical analysis revealed that peak locations differed
288 significantly across the two penetrations (ANOVA, $p < 0.01$).

289 The data in **Figures 2H-I, 3A, B, E, F** suggested that the magnitude of evoked MU
290 responses decreased with increasing distance between photostimulation and recording sites. To
291 quantify this observation and better characterize the extent of photostimulation-evoked responses
292 across the tangential domain of the cortical tissue, as well as how this extent is affected by
293 photostimulation intensity, we examined response amplitude as a function of distance on the
294 UOA (in a straight line extending along either the row or column axis) from the LED site that
295 evoked the peak response. Plots of relative response (percent of the peak fitted response) as a
296 function of distance in either the column or the row direction, sorted by input intensity, are
297 shown in **Figure 3C-H** separately for each penetration. As is evident from the steeper decrease

298 in responses along the column versus the row axis, as well as the difference in relative response
299 across stimulus intensities, there was a significant main effect of UOA axis and input intensity on
300 this relative response measure (ANOVA, both $p < 10^{-21}$) as well as a significant difference across
301 penetration (ANOVA, $p < 10^{-14}$). Finally, there was a significant interaction between intensity
302 and UOA axis as well as UOA axis and penetration (ANOVA, both $p < 0.01$). These results
303 indicate that the response decrease from peak is greater in the column versus the row direction,
304 that intensity has a different effect on this drop-off when looking at the row and column
305 directions, and that this differed across penetrations. In the column direction, at the lowest
306 stimulation intensity (2.8V), evoked responses dropped to 16% of the peak at a distance of about
307 1.6mm from the location evoking peak response, but at the higher intensities (5-7.8V) responses
308 only dropped to about 50% of the peak at the same distance (**Fig. 3C,G**). In contrast, in the row
309 direction, at the lowest stimulation intensity (2.8V), evoked responses only dropped to about
310 80% of the peak at a distance of about 2.8mm from the peak location, and to about 90% at ≥ 5 V
311 intensity (5-7.8V) (**Fig. 3D,H**). The difference in response drop-off with distance in the column
312 vs. row directions is likely explained by the greater differences in irradiance, for a given input
313 intensity, along the column as compared to the row axis (see **Extended Data Fig. 1**).

314 In summary, the spatial spread of MU activation along the tangential domain of cortex
315 varied according to UOA stimulation site and intensity. Importantly, the extent of this spread was
316 more limited at lower intensities, suggesting that increasing intensity increased the volume over
317 which cells were optogenetically activated, consistent with the model simulations in **Fig. 1G**.

318

319 *UOA Activation Parameters Can Be Tuned to Activate Distinct Cortical Networks*

320 Given the spatial separation between the LEA and the UOA (estimated to be about 1-1.1mm for
321 P2 and 700-800 μ m for P3 on the histological sections; **Extended Data Fig. 3**), the reported
322 sharp falloff in light intensity over short distances in tissue^{38,39}, and our bench estimates of light
323 spread from the UOA tips ($\leq 600\mu$ m laterally and radially from the needle tip at intensities ≤ 5 V,
324 and 0.9-1.0mm at 7.8V intensity; **Fig. 1G** and²⁹), we reasoned that the UOA-driven MU activity
325 we observed, at least at ≤ 5 V photostimulation intensities across all contacts and at any intensity
326 in the deeper layer contacts, was not caused by direct activation of ChR2-expressing cells nearby
327 the LEA recording site, but rather by indirect activation of ChR2-expressing cells in the vicinity
328 of the UOA needle tips. Given the greater spread of light at the highest intensity used, direct

329 activation of neurons recorded at LEA contacts closest to the UOA tips was, however, possible.
330 Thus, to estimate the tangential spread of direct as well as indirect activation to the LEA
331 recording sites, we measured the onset latency of UOA-driven MU responses across layers.

332 **Figure 4 about here**

333

334 Example latency data from P2 are shown in **Figure 4A**. Here, the UOA stimulus was a
335 single μ LED (C1-R8) nearest the recording location with an input voltage of 5V. Pulse-aligned
336 MU rasters on each contact are shown next to a schematic of the recording LEA. The fastest
337 response occurred in mid layers with an onset latency of about 15 msec, suggesting the recorded
338 neurons in these layers were activated indirectly via ChR2-expressing cells in mid-layers nearby
339 the C1-R8 needle tip. Moreover, deep layer response onset (mean \pm s.e.m: 30 ± 7 msec) lagged
340 that in mid-layers, as would be expected if optogenetic activation first propagated through L4C
341 before being synaptically relayed to deeper layers, via L4C-to-L5/6 connections. Averaged
342 PSTHs for the peri-pulse period on one example L4C and one L6 contacts are shown in **Figure**
343 **4B**. There was a significant pulse-by-pulse difference in onset latency across contacts (ANOVA,
344 $p < 10^{-30}$), as well as a significant pairwise difference across these two LEA recording sites
345 (Tukey HSD test, $p < 10^{-6}$; **Fig. 4B**, Right).

346 To better visualize onset latency of evoked responses throughout V1, **Figure 4C** shows
347 average peri-pulse PSTHs across all LEA contacts as a function of normalized cortical depth for
348 an example whole μ LED array (top panels), single column (middle panels), and single μ LED
349 (bottom panels) experiment at different photostimulation intensities and different spatial
350 separations between UOA stimulation and LEA sites. The primary effects of increasing total
351 stimulus area at the lower intensities were to increase the number of responsive contacts and the
352 amplitude of driven responses, as well as to shorten onset latencies (e.g. compare panels in the
353 left column of **Fig. 4C**). At higher intensities (e.g. 5V, middle column), there was little change in
354 these parameters across these large differences in total stimulated area. The main effect of
355 decreasing the stimulus intensity for a fixed area (**Fig. 4C** compare middle to left columns), or
356 increasing the separation between the stimulated UOA site/s and the LEA for a fixed stimulus
357 intensity (**Fig. 4C** compare middle to right panels in the center and bottom rows) was an
358 increased delay in onset latencies across all contacts. For example, mean onset latency at 5V and
359 3.2V across all contacts was 17 ± 1.7 msec and 25.4 ± 2 msec for the whole array condition, 19.8

360 ± 1.4 msec and 37.5 ± 1.9 msec for the C1 condition, and 21.4 ± 2.3 msec and 74.1 ± 1.6 msec
361 for the single μ LED (C1-R8) condition. Mean onset latency at 5V for the C3 and C1-R6
362 conditions was 47.6 ± 4.3 msec and 59.4 ± 4.1 msec, respectively. Calculating onset latency on a
363 pulse-by-pulse basis and looking at the effects on latency of cortical depth, stimulation pattern,
364 and stimulation intensity, we observed significant main effects of pattern and intensity,
365 significant two-way interactions between depth and pattern, depth and intensity, pattern and
366 intensity, and a significant three-way interaction between all three factors (ANOVA, all $p < 10^{-4}$).
367 Limiting our analysis to each pattern, we observed a significant main effect of intensity and
368 distance from the LEA on onset latency for the single column conditions in **Fig. 4C** (ANOVA,
369 all $p < 10^{-4}$), and a significant main effect of distance for the single μ LED conditions (ANOVA,
370 $p = 0.03$). Furthermore, in many conditions, pairwise comparisons across contacts revealed a
371 delayed response onset in deep layers (and in superficial layers in some conditions) relative to
372 mid-layers; this time lag varied with intensity and distance of the stimulation site from the LEA,
373 increasing at lower intensities and greater distances. These differences in onset latency between
374 the fastest mid-layer response and those in L6 were statistically significant for most conditions
375 shown in **Fig. 4C** at 5V, and for some at 3.2V (Tukey Kramer, all $p < 0.01$; see **Extended Data**
376 **Fig. 4** for specific comparisons). There was also a significant difference in onset latency between
377 mid- and superficial layers in some conditions, namely C1 at 5V and the whole array at 5V and
378 3.2V (Tukey Kramer, all $p < 0.01$; **Extended Data Fig. 4**). Notably, however, when the whole
379 μ LED array was stimulated at the highest intensity used (7.8V), there was no difference in onset
380 latencies between the deep and middle layers, suggesting the former were directly activated by
381 light spreading through deeper tissue in this condition (**Fig. 4C** top right, and **Extended Data**
382 **Fig. 4**). The fastest onset latency in this condition was 11 msec, possibly a long enough delay to
383 suggest that light did not directly activate the L4C neurons recorded at the LEA site; however, a
384 shorter latency, indicative of direct light activation of L4C contacts in this condition, is also
385 possible given the slow on ramping of the photostimulating current used in our experiments, and
386 the possibility that a lower threshold criterion would yield shorter latencies.

387
388
389

Figure 5 about here

390 To quantify these effects across the population (n= 33 significantly responsive contacts,
391 across 2 LEA penetrations), we first calculated the distance between each LEA contact and the
392 contact with the shortest onset latency, and plotted this distance versus onset latency, separately
393 for each unique combination of UOA stimulation site(s) and intensity. Similar to the P2 data
394 shown in **Fig. 4C**, the population data showed 2 main effects. (1) Onset latency decreased
395 significantly across all contacts with increasing stimulation intensity (ANOVA, main effect of
396 intensity, all $p < 0.01$; **Fig. 5A, 5B Left, 5C Left**) and proximity to the recording LEA site
397 (ANOVA, main effect of row or column on UOA, all $p < 10^{-4}$; **Fig. 5B Right, 5C Right**). (2)
398 Onset latency increased significantly with contact distance on the LEA from the fastest contact
399 (**Fig. 5A-C**, main effect of distance on the LEA, ANOVA all $p < 0.01$), except for the whole
400 array condition for which, post-hoc comparisons revealed that at the highest intensity there was
401 no significant difference in latency across contacts (as also shown in **Extended Data Fig. 4**).
402 This suggests that at lower irradiance the increase in firing rate caused by direct light started near
403 the site of UOA tip termination (in L4C in P2, but in L3 in P3) and then spread to more distant
404 sites indirectly via interlaminar networks; in contrast, at higher irradiances, lack of difference in
405 onset latency across contacts suggests that light spreads through a larger tissue volume.

406 Across the three categories of UOA stimulation (whole array, column, and single μ LED),
407 only for the whole array and single μ LED conditions did we observe a significant interaction
408 between the effects of distance along the LEA and UOA photostimulation intensity on onset
409 latency (**Fig. 5A and C Left**; both $p < 0.05$, ANOVA). Specifically, in these conditions,
410 lowering photostimulation intensity decreased the slope of the curves, indicating that the
411 difference in onset latency with distance on the LEA increased at lower intensity. Additionally,
412 for the single μ LED condition, we also observed a significant decrease in the slope of the curves
413 when photostimulating at increasing UOA-LEA separation, but only when we moved the single
414 μ LED stimulus to sites that were far enough from the LEA to necessitate stimulation at the very
415 highest powers to elicit any response (dashed lines in **Fig. 5C Right**, μ LED in rows 4-7;
416 ANOVA, LEA distance x UOA row x intensity interaction, $< 10^{-3}$). For the single column
417 condition, there was no significant interaction between contact distance and either
418 photostimulation intensity or UOA-LEA separation (**Fig. 5B**; ANOVA, all $p > 0.09$).

419 In summary, by varying photostimulation intensity and/or number of stimulated sites, the
420 UOA allows activation of single or multiple layers, while by varying the spatial separation

421 between the site of UOA stimulation and that of the recording, the UOA allows investigations of
422 local vs long-range intra and interlaminar circuits.

423

424 ***In Vivo* Testing: c-Fos Expression**

425

426 **Figure 6 about here**

427

428 As an additional approach to validate the performance of the UOA for large scale
429 photostimulation of deep cortical tissue, we measured changes in c-fos expression, an immediate
430 early gene whose expression rapidly increases when neurons are stressed or activated^{40,41}. The
431 product of this gene, c-fos protein, can be identified using immunohistochemistry (IHC) and
432 used as an indirect measure of the spatial pattern of neural activation in post-mortem brains. We
433 analyzed patterns of c-fos expression using IHC (see Online Methods) in two control and two
434 experimental hemispheres from 3 animals. In one of the experimental cases (MK414-RH), a
435 “passive” UOA (a device similar to the one used for the electrophysiological experiments but
436 without an integrated μLED array) was implanted in area V1 of the right hemisphere in a region
437 of high ChR2 expression (**Fig. 6A-B**), 10 weeks after injecting a mixture of Cre-expressing and
438 Cre-dependent AAV9 vectors carrying the genes for ChR2 and tdT. Photostimulation of deep
439 cortical layers via the passive UOA was performed by illuminating a subset of UOA needles
440 using a fiber-coupled blue laser and a collimating lens, while shielding from light the non-
441 stimulated cortex and UOA needles (see Online Methods). About 75 minutes after completion of
442 the photostimulation protocol, the animal was euthanized, and the brain processed for histology
443 and c-fos IHC. Results from this case are shown in **Figure 6A-D**. Histological analysis revealed
444 that the UOA was inserted at an angle (due to the brain curvature), so that its needle tips ended at
445 the bottom of the superficial layers, dorsally, and in progressively deeper layers ventrally, with
446 most of the needle tips ending in L4C and only the most ventral ones reaching into L6 (**Fig. 6A-**
447 **B**). There was extensive c-fos expression encompassing all cortical layers, and extending far
448 beyond the site of UOA insertion and photostimulation. Specifically, c-fos positive (c-fos+) cells
449 were found throughout V1 (**Fig. 6A, C**), as well as in extrastriate cortical areas known to receive
450 inputs from V1, including V2 (**Fig. 6A, C**), the third-tier cortex and area MT (not shown).
451 Qualitatively, c-fos expression appeared densest at the site of UOA photostimulation in the

452 superficial and mid-layers, and decreased with distance from this site (**Fig. 6C, D**). This
453 extensive pattern of c-fos+ cells suggested c-fos expression was induced by both direct neural
454 activation by light as well as indirect activation via synaptic activity. To test this hypothesis, as
455 well as to determine the extent of neural activation directly induced by UOA-photostimulation,
456 we repeated the same experiment in a different animal (MK422-RH) in which the AMPA
457 receptor antagonist NBQX was applied to ChR2-expressing cortex prior to passive-UOA
458 insertion and photostimulation, in order to block most glutamatergic synaptic transmission. The
459 UOA was only partially inserted in this case, so that most of its needle tips only reached the
460 bottom of the superficial layers (**Fig. 6E-F**). As expected, C-fos expression in this case was
461 much less extensive than in case MK414-RH, being largely confined to the superficial layers at
462 the site of UOA photostimulation (**Fig. 6G-H**).

463 To control for potential c-fos activation induced by UOA insertion independent of
464 photostimulation and/or ChR2 activation of neural tissue, in case MK414, we inserted a passive
465 UOA in the supplementary motor area (SMA) of the hemisphere contralateral to the
466 experimental one; the control hemisphere (LH) was not injected with virus, thus did not express
467 opsins. The animal was euthanized 4 hrs following UOA insertion without receiving any
468 photostimulation. Histological analysis revealed that the UOA was fully inserted in this case, its
469 tips reaching into the upper part of the deep layers (L5). C-fos expression encompassed all
470 layers, but was largely confined to the site of insertion (**Fig. 6I-J**). To control for potential c-fos
471 activation induced by light, independent of ChR2-induced neural activation and/or UOA
472 insertion, in a different animal (MK421-RH) we performed surface photostimulation of SMA
473 cortex not expressing ChR2, using a fiber-coupled laser and a collimating lens; no UOA was
474 inserted in this case. We found a few c-fos+ cells immediately underneath the illuminated area
475 largely within L1 (**Fig. 6K-L**). To quantify these results, for each experimental and control case
476 we counted c-fos+ cells in 3 regions of interest (ROIs) encompassing all cortical layers, one
477 centered in the region of UOA insertion and/or light stimulation, the other two located 4 and 8
478 mm, respectively, from the first one (*white boxes* numbered 1-3 in **Fig. 6A-L**; see Online
479 Methods for details). **Figure 6M** plots the average number of c-fos+ cells across samples, as a
480 function of distance from the UOA insertion site, while **Figure 6N** shows the laminar
481 distributions of c-fos+ neurons at each distance. Confirming our qualitative observations, we
482 found significant local and long-range c-fos expression only in case MK414-RH, which received

483 photostimulation of ChR2-expressing cortex via the UOA. Application of the glutamate blocker
484 prior to photostimulation prevented long-range c-fos expression, and reduced its expression by 5
485 fold in the area of UOA stimulation, where it was largely confined to the directly
486 photostimulated layers near the UOA tips. UOA insertion-only led to as much local c-fos
487 expression as the glutamate block case, but to greater interlaminar, as well as intra- and inter-
488 areal long-range spread, suggesting that neurons activated by the insertion trauma, in turn
489 indirectly activated downstream networks. Finally, surface photostimulation of cortex not-
490 expressing ChR2, without UAO insertion, caused virtually no c-fos expression, except for a few
491 cells in L1 and upper L2. Statistical analysis (one way ANOVA with pairwise comparisons and
492 Bonferroni correction for multiple comparisons) revealed a significant difference in the number
493 of c-fos+ cells at each distance between the experimental case (MK414-RH) and the glutamate
494 block case (MK422-RH; $p<0.001$, at all distances) as well as between MK414-RH and each of
495 the control cases (MK414-LH: $p<0.001$, at all distances; MK 421-RH: $p<0.001$, at all distances).
496 There was no significant difference between the glutamate-block and UOA-insertion-only
497 (MK414-LH) cases at any distance ($p=1$ at 0mm, $p=0.23$ at 4 mm, and $p=0.44$ at 8mm distance),
498 but both cases differed significantly from the light-only case (MK421-RH) at 0mm distance
499 ($p<0.05$ for all comparisons). Finally, the number of c-fos+ cells decreased significantly with
500 distance for cases MK414-RH ($p<0.001$), MK422-RH ($p=0.001$), and MK414-LH ($p=0.003$), but
501 not for case MK421-RH ($p=0.079$).

502

503

DISCUSSION

504

505 We have developed and tested *in vivo* in the NHP cortex a novel device, the UOA, a
506 10x10 array of penetrating light waveguides with integrated μ LEDs, which has the potential to
507 open novel avenues for furthering optogenetic research in larger brain species, particularly
508 NHPs. Current optogenetic approaches in NHPs allow for light delivery either over a large area
509 but at limited depth^{10,24}, or to deeper tissue but over a small area^{26-28,39}. Multi-site optical
510 stimulation probes for larger volume stimulation have also been developed and combined with
511 singe⁴² or multisite^{43,44} electrical recordings, but these multi-fiber-based approaches are typically
512 cumbersome to assemble and don't easily scale to precisely target multiple small tissue volumes.
513 The UOA combines the advantages of all these approaches. Namely, it allows for both focal and

514 larger-scale neuronal activation of single or multiple deep layers simply by varying the number
515 of simultaneously activated μ LEDs and/or the light irradiance. Moreover, although here we only
516 used the needle-aligned μ LED array for deeper layer activation, the integrated interleaved
517 interstitial μ LED array allows for selective photostimulation of superficial layers either
518 independently or in conjunction with deep layers.

519 This novel device has the potential to significantly impact neuroscience allowing
520 dissection of neural circuit function in animal species capable of complex behavior. By design,
521 the UOA is intended to achieve spatial resolution in cortical application in NHPs, and eventually
522 humans, and is, thus, ideal for addressing neuroscience questions that require large-scale
523 manipulations of deep and/or superficial cortical layers. Even with its current limitation of
524 lacking recording capability, we have demonstrated that the UOA used as a stimulation-only
525 device in conjunction with LEA recordings can be used to study inter-laminar interactions. By
526 varying light intensity, the UOA allowed us to localize photostimulation to single or multiple
527 cortical layers, and by varying the depth of insertion (or the customizable shank length) it is
528 possible to target distinct layers. Differences in onset latency of light-evoked responses across
529 the cortical depth could be used to distinguish distinct network activity patterns following
530 different patterns of UOA stimulation. For example, at low light irradiance, direct neuronal
531 activation was initially localized to the layers nearest optrode tip termination before spreading
532 trans-synaptically to other layers. Increasing light irradiance directly contributed to firing rate
533 increases in deep layers below the UOA tips while firing rates in L4C increased less compared to
534 firing rates evoked at lower intensities (suggesting local activation of higher threshold inhibitory
535 networks).

536 We also demonstrated that by varying the distance between the stimulation site/s on the
537 UOA and the recording electrode, the UOA can be used to study local versus long-distance intra-
538 areal interactions, while when coupled to recordings in a different cortical area (using LEAs or
539 UEAs) the UOA allows investigations of the functions of inter-areal feedforward and feedback
540 circuits. Moreover, used in conjunction with c-fos IHC, we were able to identify multisynaptic
541 interactions within and beyond the photostimulated area. Photostimulation via the UOA
542 increased c-fos expression over distances much $> 8\text{mm}$ (well beyond the stimulated cortical
543 area), but spiking activity could not be evoked beyond $\sim 3\text{ mm}$ from the stimulated site,
544 indicating that c-fos expression can be used to reveal subthreshold activity induced by network

545 interactions. This is consistent with previous demonstrations of c-fos expression several synapses
546 away from the electrically stimulated site, indicating c-fos can be used for functional mapping of
547 neuronal circuits⁴⁰.

548 Importantly, despite its limited shank length (up to 2.5 mm), the UOA can still be
549 employed to study cortico-subcortical interactions, e.g. through modulation of axon terminals of
550 deep nuclei within cortex, and recordings of postsynaptic cortical neurons in the same cortical
551 area and/or layer.

552 Future developments of this device will involve: (i) addition of red μ LEDs for dual color
553 optogenetic neuromodulation through each needle shank and interstitial site, (ii) addition of
554 electrical recording capabilities and (iii) optimization for chronic use in NHPs and humans.

555 In conclusion, the UOA will enable studies addressing long-standing fundamental
556 questions in neuroscience, e.g., regarding the role of cortico-cortical feedback and cortical layers
557 in the model system closest to humans. As many human neurological and psychiatric disorders
558 have been linked to abnormalities in cortical circuit^{4,5}, this technology can improve our
559 understanding of the circuit-level basis of human brain disorders, and will pave the way for a
560 new generation of precise neurological and psychiatric therapeutic interventions via cell type-
561 specific optical neural control prosthetics.

562

563

564

ONLINE METHODS

565

566 **Device Fabrication, Characterization, and Benchmarking**

567 Fabrication and testing of the first generation UOA devices was previously reported^{29,45}. The
568 second-generation devices used in this study included an optical interposer layer that limits
569 emission from the μ LED array to the shank sites for illumination of deep cortical tissue.

570 **Fabrication.** A 2 mm-thick, 100mm diameter Schott Borofloat 33 glass wafer used to
571 construct the optrode needles was anodically bonded to a freshly cleaned 0.1mm thick, 100 mm
572 diameter intrinsic Si wafer serving as an optical interposer. The Si and Borofloat wafers were
573 coarsely aligned and bonding performed using an EVG 520 anodic bonder. The optical vias were
574 patterned in the Si interposer by deep reactive ion etching (DRIE) using a Bosch process. A 10-
575 μ m-thick AZ9260 soft mask was photolithographically patterned to define the array of 80 \times 80

576 μm^2 optical vias for shank and interstitial illumination for the DRIE process. The bonded wafer
577 was then sub-diced into *modules* of 9 to 16 UOAs using a DISCO 3220 dicing saw.

578 UOA modules were mounted to a carrier wafer using WaferGripTM (Dynatek
579 International, Santa Rosa, CA). The glass shanks were cut with the DISCO 3220 using the
580 previously reported process^{29,45}. Briefly, beveled blades were first used to generate pyramidal
581 tips on the surface, followed by standard profile blades to form the shanks. The shanks on a
582 module were then etched to a nominal 110 μm thickness using a mixture of hydrofluoric (49%)
583 and hydrochloric (37%) acid in a 9:1 ratio. The die was then demounted and cleaned, and the
584 shanks were smoothened to decrease light scattering using a 725 °C heat treatment for 2 hours in
585 a vacuum furnace. UOA modules were then singulated into individual 4×4 mm² UOAs using the
586 DISCO 3220.

587 Arrays of μ LEDs on thinned (150 μm) sapphire substrates, from the Institute of Photonics
588 at University of Strathclyde, were integrated with the UOA using closed-loop optical alignment
589 to the optical vias on individual UOAs at Fraunhofer IZM (Berlin, Germany)²⁹, and bonded
590 using index-matched epoxy. At the University of Utah, passive matrix μ LED pads were wire
591 bonded to an ICS-96 connector (Blackrock Microsystems, Salt Lake City, UT) using insulated
592 gold alloy wire. The wire bundle and back-side of the UOA were then potted in NuSil MED-
593 4211 silicone, respectively, followed by overcoating with a 6 μm -layer of Parylene C.

594 **Bench Testing.** To characterize the electrical and optical performance of the finalized
595 devices, the latter were attached to a custom switch board for matrix addressing the individual
596 optrode shanks. The switch board consisted of a matrix arrangement of parallel connected
597 mechanical switches and electrical relays, 10 sets for the anodes and 10 sets for the cathodes.
598 This enabled both manual and automated activation of individual optrode shanks or optrode
599 patterns. For the automated activation and testing, the relays were connected to Arduino boards
600 which received commands from the lab computer. To prevent voltage spikes originating from the
601 switching of the channels from damaging the μ LEDs, the anode paths also contained a small
602 filter circuit consisting of capacitors and Zehner diodes (break-down voltage: 8.2V). For the
603 automated testing, the UOAs were inserted into the opening of an integrating sphere that was, in
604 turn, connected to a photodetector and power meter (Newport 2832-C Dual-Channel Power
605 Meter). The calibration factor of the integrating sphere was determined using a fiber coupled
606 LED prior to the experiment. Then the UOAs were connected to the switch board, and the latter

607 was connected to a source measure unit (Keithley 236 Source Measure Unit) for the
608 measurement. The automated characterization was conducted as follows: the switch board's
609 Arduino boards received the command to switch to an individual optrode shank using the relays.
610 Then the source measure unit applied a voltage pulse measurement pattern (pulse length 100
611 msec, pause between pulses 1900 msec to prevent heat buildup) sweeping the voltage from 0 to
612 7.2V (or until the compliance current of 100mA was reached) with each pulse increasing by
613 100mV. For each pulse, the resulting current and the output optical power were recorded; the
614 optical power was then corrected using the integrating sphere calibration factor. This was
615 repeated for each individual optrode shank of the device for a full characterization.

616 To ensure the stability of the device for an acute *in vivo* experiment, additional voltage
617 transient measurements were made before and after a 48-hour soak test in phosphate-buffered
618 saline (PBS) at 37 °C. Further, an electrode was immersed in solution to verify encapsulation
619 integrity, as evidenced by lack of shorting to solution.

620 For the *in vivo* experiments, the switch board was upgraded two-fold: first, transistors
621 were added to the cathode channels to allow for turning the device on and off based on an
622 external TTL trigger. However, we found that turning on the optrodes using the trigger signal
623 directly induced too strong a capacitively-coupled voltage signal in the recording. Therefore, as a
624 second upgrade, an additional Arduino board with digital-analog-converter was added that
625 received the external trigger and introduced rise and fall times to the square wave. This reduced
626 the capacitively-coupled interference to a level below measurable when both the LEA and the
627 UOA were in close proximity in 1xPBS solution prior to the *in vivo* experiment. During the
628 experiment, the voltage for the UOA was supplied by a lab power supply via the switch board,
629 and the switches were operated manually to define the required patterns.

630 **Modeling.** To understand light spread in tissue, the optical output of the device was
631 modeled using ray-tracing software (Optics Studio 12, in non-sequential mode). This model has
632 been described previously²⁹. Brain tissue was modeled using a Henyey-Greenstein scattering
633 model, with a scattering coefficient of 10 mm⁻¹, absorption coefficient of 0.07 mm⁻¹, and
634 anisotropy of 0.88⁴⁶. Each needle was modelled individually using its measured optical output at
635 the given voltage level. To generate the cross-section images from a simultaneously illuminated
636 column (**Fig. 1G**), the light output from the 10 needles in that column were summed.

637

638 **Animals**

639 A total of 3 adult female Cynomolgus monkeys (*Macaca fascicularis*) were used in this study.
640 The left hemisphere of one animal (case MK421-LH) was used for the *in vivo*
641 electrophysiological testing of the active UOA (integrated with the μ LED array). The right
642 hemisphere from the same animal (MK422-RH), and 3 hemispheres from 2 additional animals
643 (MK414RH and LH, and MK422-RH) were used for c-fos testing of the passive UOA (without
644 an integrated μ LED array). All procedures conformed to the National Institutes of Health Guide
645 for the Care and Use of Laboratory Animals and were approved by the University of Utah
646 Institutional Animal Care and Use Committee.

647

648 **Survival Surgical Procedures and Viral Injections**

649 Animals were pre-anesthetized with ketamine (10 \square mg/kg, i.m.), intubated, placed in a
650 stereotaxic apparatus, and artificially ventilated. Anesthesia was maintained with isofluorane (1–
651 2.5% in 100% oxygen). Heart rate, end tidal CO₂, oxygen saturation, electrocardiogram, and
652 body temperature were monitored continuously. I.V. fluids were delivered at a rate of 5/cc/kg/hr.
653 The scalp was incised and a craniotomy and durotomy were performed over area V1 (n=2
654 animals, MK421-LH and MK414-RH), or rostral to the precentral gyrus, roughly above the
655 supplementary motor area (SMA; n=1, MK422-RH). We injected a 1:1 viral mixture of
656 AAV9.CamKII.4.Cre.SV40 and AAV9.CAG.Flex.ChR2.tdTomato (Addgene Catalog #:
657 105558, and 18917, respectively). We have previously found that this method nearly eliminates
658 retrograde expression of transgenes¹⁰. The viral mixture was slowly (~15nl/min) pressure-
659 injected (250-350nl repeated at 2 or 3 cortical depths between 0.5 and 1.5 mm from the cortical
660 surface) using a picospritzer (World Precision Instruments, FL, USA) and glass micropipettes
661 (35-45 μ m tip diameter). After each injection, the pipette was left in place for 5-10 min before
662 retracting, to avoid backflow of solution. A total of 5-6 such injections, each 500-750nl in total
663 volume, and spaced 1.5-2mm apart, were made in two animals (MK421-LH, MK414-RH) while
664 the third animal (MK422-RH) received 2 x 1,050nl injections. These injections resulted in a
665 region of high viral expression roughly 4-6 mm in diameter (as an example see **Extended Data**
666 **Fig. 3A Right**). Following viral injections, a sterile silicone artificial dura was placed on the
667 cortex, the native dura was sutured and glued onto the artificial dura, covered with Gelfoam to
668 fill the craniotomy, and the latter was sealed with sterile parafilm and dental acrylic. Anesthesia

669 was discontinued and the animal returned to its home cage. After a survival period of 5-10
670 weeks, to allow for robust ChR2 expression, the animals were prepared for a terminal UOA
671 photostimulation procedure.

672

673 **Terminal Surgical Procedures and UOA Insertion**

674 Monkeys were pre-anesthetized and prepared for experiments as described above. Anesthesia
675 and paralysis were maintained by continuous infusion of sufentanil citrate (5–10 μ g/kg/h) and
676 vecuronium bromide (0.3 μ g/kg/h), respectively. Vital signs were continuously monitored for
677 the duration of the experiment, as described above. Following suture removal and scalp incision,
678 the craniotomy and durotomy were enlarged to allow space for device implantation, and ChR2
679 expression was verified *in vivo* using a custom fluorescent surgical microscope (Carl Zeiss,
680 GmbH; **Fig. 2B**). UOAs were positioned over cortical regions of high tdT/ChR2 expression (e.g.
681 **Figs. 2B,6B,F**), and then inserted using a high speed pneumatic hammer typically used for
682 insertion of Utah Electrode Arrays³⁴ (Blackrock MicroSystems, Salt Lake City, UT). Parameters
683 used for insertion were 20 psi for 30 msec, using a 1 mm-long inserter, in order to achieve partial
684 insertion of the UOA, so as to minimize insertion trauma on the cortex. In two animals used for
685 c-fos experiments after partial insertion with the pneumatic inserter, the UOA was gently pushed
686 down to achieve deeper insertion.

687

688 **Photostimulation**

689 We implanted two types of UOA devices: (i) a 10x10 UOA with fully integrated μ LED arrays
690 (also referred to as “active” device; n=1 device in 1 animal, MK421-LH; see **Fig. 2A-C**), and
691 (ii): 10x10 UOAs with an optical interposer integrated into the sapphire backplane, but with no
692 μ LED array for light delivery (referred to as “passive” devices; n=3 devices in 3 hemispheres
693 from 2 animals, MK414-RH, MK414-LH, MK422-RH). The active device was used for
694 electrophysiological testing experiments, while the passive devices were used for the c-fos
695 experiments.

696 **Active Device (Electrophysiology).** Photostimulation with the active UOA occurred via
697 the integrated μ LED array. Photostimulation parameters were 5Hz, 100 msec-pulse duration for
698 1 sec, followed by 1-10sec inter-trial interval (longer intervals were used at the higher

699 photostimulation intensities). We varied the spatial pattern (single μ LED along column 1, whole
700 single columns, and all μ LEDs across the entire UOA) and intensity (from 2.8 to 7.8V input
701 intensity) of photostimulation as described in the Results section.

702 **Passive Devices (*c-Fos*).** Selective photostimulation via passive devices was obtained by
703 illuminating a subset of UOA needles with an appropriately positioned fiber-coupled 473nm
704 laser (400 μ m multimode optic fiber, ThorLabs Newton, NJ; laser: Laserwave, Beijing, China)
705 held in place with a stereotaxic tower. We used a collimating lens (ThorLabs, Newton, NJ) to
706 restrict spot size to \sim 1.5mm in diameter. To shield stray light, we covered any exposed tissue
707 around the illuminated area, as well as the non-illuminated portions of the UOA, with an opaque
708 (black) artificial dura. For each UOA we stimulated 2 or 3 separate sites. At each site we used
709 phasic photostimulation (50Hz for 2.5 min, 2.5 min pause, and 20Hz for an additional 2.5 min;
710 pulse duration was 10 msec) at 3.8mW power output (corresponding to an estimated irradiance
711 of 15-19mW/mm²).

712

713 **Electrophysiological Recordings**

714 Extracellular recordings were made in V1 with 24-channel linear electrode arrays (LEAs; V-
715 Probe, Plexon, Dallas, TX; 100 μ m contact spacing, 300 μ m from tip to first contact, 20 μ m
716 contact diameter). The LEAs were inserted into the cortex next to the UOA to a depth of 2.4-
717 2.6mm, slightly angled laterally (towards the UOA) and posteriorly. We made a total of 3
718 penetrations (P1-P3; **Extended Data Fig. 3A**), of which only P2 and P3 provided useful data.
719 After UOA and LEA were inserted into the cortex, we applied a layer of Dura-Gel
720 (CambridgeNeuroTech, Cambridge, UK) over the cortex and UOA, to prevent the cortex from
721 drying and stabilize the recordings. A 128-channel recording system (Cerebus, Blackrock
722 Microsystems, Salt Lake City, UT) was used for standard signal amplification and filtering.
723 Multi-unit spiking activity was defined as any signal deflection that exceeded a voltage threshold
724 (set at 4 x the SD of the signal on each channel). Threshold crossings were timestamped with
725 sub-millisecond accuracy. We did not record responses to visual stimuli but only to UOA
726 photostimulation performed as described above; thus, the monkey's eyes were closed during the
727 duration of the experiment.

728

729 **Analysis of Electrophysiological Data**

730 We analyzed MU spiking responses from a total of 45 contacts deemed to lie within the
731 parafoveal representation of V1 in two penetrations (out of 3 total, see above) for which neural
732 activity was modulated by photostimulation via the active UOA. For the results presented in
733 **Figures 3-5**, quantitative analysis was limited to contacts on which MU activity was stimulus
734 modulated (one-way ANOVA comparing spike rates during full one-second photostimulation
735 trials with spike rates during control periods of equivalent duration, $p < 0.01$).

736 To quantify the change in MU firing rates, relative to background, during
737 photostimulation we calculated firing rates for all pulse epochs within all trials and then
738 compared them to the average background rate. To estimate the preference at each recording site
739 for stimulation across the full range of tested UOA locations (**Fig. 3**), we regressed average
740 evoked-responses on UOA stimulation site and intensity. Preliminary analyses had revealed a
741 non-monotonic relationship between stimulation intensity and response on many contacts (cf.
742 **Fig. 2G**), thus we included a quadratic term in the regression model.

743 **CSD analysis.** For the CSD analysis shown in **Fig. 2D-F**, current source density (CSD)
744 was calculated from the band-pass filtered (1-100Hz) and pulse-aligned and averaged LFP, using
745 the kernel CSD toolbox (kCSD_Matlab)⁴⁷. CSD was calculated as the second spatial derivative
746 of the LFP signal, reflecting the net local transmembrane currents generating the LFP. The depth
747 profile of the CSD was estimated by interpolating every 10 μ m. To facilitate comparisons across
748 conditions, CSDs from different conditions were normalized to the standard deviation (SD) of
749 the baseline (50 msec prior to pulse onset) after subtraction of the baseline mean.

750 **Onset Latency.** To quantify the onset latency of MU responses, we either: (i) calculated
751 the average peri-stimulus time histogram (PSTH) from all pulse-aligned responses (e.g. **Fig. 4**)
752 or (ii) estimated a PSTH separately for the response to each pulse (e.g. **Extended Data Fig. 4**).
753 Peristimulus time histograms (PSTHs) were estimated via an adaptive algorithm in which the
754 MU raster was first convolved with a Gaussian kernel of fixed width (3 msec bandwidth), kernel
755 width was then adapted so that the number of spikes falling under the kernel was the same on
756 average across the response (<http://chronux.org>⁴⁸). We then subtracted the mean baseline
757 response from the stimulus-evoked response. For each response measure, i.e. either the average
758 or pulse-by-pulse PSTHs, we took the time at which the response reached 25% of the peak as the
759 onset latency (results were qualitatively similar using 15% and 35% criteria; data not shown).
760 We report the former measure as the mean onset latency in **Figures 4-5**. We used the latter

761 measure to test for differences in onset latency across contacts within and across UOA
762 stimulation parameters (**Figs. 4-5 and Extended Data Fig. 4**).

763 **Statistical Analysis.** Stimulus-evoked firing rates were calculated from pulse-aligned or
764 trial-aligned responses and baseline corrected (mean baseline activity subtracted). We
765 determined responsiveness to stimulation via a one-way ANOVA comparing firing rates during
766 the full 1-second trial period with inter-leaved control periods of equivalent duration; MU
767 activity at an LEA recording site was deemed responsive if there was a significant difference
768 between stimulation and control trials at the $p=0.01$ level. To estimate the selectivity of MU
769 activity for stimulation at different UOA sites we performed a multiple linear regression, with
770 UOA column, row, and intensity as independent variables and pulse-aligned, baseline corrected,
771 firing rates as the dependent measure. To test for differences in the goodness-of-fit of models
772 with- and without a quadratic term, we used a two-sample Kolmogorov-Smirnov test. We
773 assessed the effects of varying UOA stimulation site and intensity on response amplitude or
774 onset latency using ANOVA models followed by the Tukey-Kramer test for post-hoc
775 comparisons.

776

777 **c-Fos Experiments**

778 We used 4 hemispheres from 3 animals for these experiments (MK414-RH and LH, MK422-RH,
779 and MK421-RH). Two of these animals (MK422 and MK414) were prepared for a terminal
780 experiment (as described above) 5 or 10 weeks, respectively, after the viral injections, and a
781 passive UOA was inserted in regions of high tdT/ChR2 expression in the injected hemisphere. In
782 one of these animals (MK422-RH), UOA insertion was preceded by glutamate block (see
783 below). After UOA insertion, photostimulation was performed via an optical fiber-coupled laser
784 through the UOA, as described above. Two additional hemispheres in 2 animals (MK414-LH
785 and MK421-RH) were used as controls. Specifically, case MK414-LH received insertion of a
786 passive UOA in non-opsin expressing SMA cortex, and was euthanized 4 hrs following UOA
787 insertion without receiving any photostimulation. As a separate control, in case MK421-RH we
788 performed surface photostimulation of SMA cortex not expressing opsins, using a fiber-coupled
789 laser and a collimating lens and the same photostimulation protocol described above for other c-
790 fos experiments; no UOA was inserted in this case. In all animals, UOA insertion and/or
791 photostimulation were performed after a 10-14-hour period of eye closure and at least 5 hours

792 after completion of surgery, and the animals were euthanized 75 minutes after completion of the
793 photostimulation protocol.

794 **Pharmacological Blockade of Local Glutamate Signaling.** To compare changes in c-fos
795 expression due to direct local optogenetic activation with indirect local and long-range changes
796 due to synaptic increases in excitatory glutamatergic neurotransmission downstream of the
797 directly-activated neurons, in one case (MK422-RH) we applied the selective glutamate AMPA
798 receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzoquinoxaline-2,3-dione (NBQX,
799 5mM) (Tocris BioSciences, Minneapolis, MN). NBQX was applied topically prior to UOA
800 insertion, by soaking a piece of Gelfoam placed over ChR2-expressing SMA cortex with 1ml of
801 the drug solution. The drug was allowed to passively diffuse through the cortical layers for 90
802 minutes, during which 100-200 μ l of the solution were applied every 15 minutes to ensure
803 saturation of the Gelfoam, after which the Gelfoam was removed and the passive UOA inserted
804 over the region of glutamate block. Photostimulation was performed as described above for the
805 passive device.

806

807 **Histology**

808 On completion of the experiments, the animals were euthanized by an overdose of Beuthanasia
809 (0.22 ml/kg, i.v.) and perfused transcardially with saline for 2–3 min, followed by 4%
810 paraformaldehyde (PFA) in 0.1M phosphate buffer for 20 min to fix the brain. The brains were
811 post-fixed overnight in the same fixative, sunk in cryoprotectant 30% sucrose solution, and
812 sectioned at 40 μ m on a freezing microtome. The hemisphere used for electrophysiological
813 testing of the active UOA (MK421-LH) was sectioned tangentially. One in 3 sections were wet-
814 mounted and imaged for fluorescent tdT-label at 10x magnification. The same sections were then
815 reacted for cytochrome oxidase (CO) to reveal cortical layers and the location of UOA and LEA
816 insertions visible as discolorations in CO staining (**Extended Data Fig. 3A Left**).

817 All other hemispheres used for c-fos experiments were sectioned sagittally. One full
818 series of sections (1:3) were immunoreacted for c-fos by overnight incubation in primary
819 antibody (1:500 rabbit anti-c-fos, Ab 19089, Abcam, MA) at room temperature, followed by 2
820 hrs incubation in near-infrared secondary antibody (1:200 donkey anti-rabbit IgG-AF647,
821 Jackson ImmunoResearch, PA) at room temperature. Sections were then wet-mounted,
822 counterstained with blue fluorescent Nissl (1:100 N21479, Thermo Fisher Scientific, MA), by

823 dripping the solution onto the slide-mounted sections every 5 min for 20 min, rinsed, and
824 coverslipped and sealed with CoverGrip™ Coverslip Sealant (Biodiamond, CA).

825

826 **Tissue Imaging**

827 Imaging of tissue sections was performed on a Zeiss Axio Imager.Z2 fluorescent microscope
828 (Zeiss GmbH, Germany) with a Zeiss X-cite 120 LED Boost light source, using a 10x objective
829 and an Axiocam 506 mono camera (Zeiss GmbH, Germany). Image files were created and
830 analyzed using Zen 2.6 Blue Software (Zeiss GmbH, Germany). The light intensity was set to
831 100%, and the exposure time for each channel was kept the same between images. The
832 tangentially-sectioned hemisphere (MK421-LH) was imaged as described above. In all other
833 cases, each sagittal section was imaged in 3 channels simultaneously, one channel for tdT/ChR2
834 (red- but note the color was artificially changed to green in **Fig. 6B, F**), one channel for Alexa-
835 647-c-Fos (far-red), and the third channel for 435-455 Nissl (blue).

836

837 **Analysis of c-Fos Expression**

838 To quantify c-fos expression, c-fos+ cells were plotted and counted in sampled areas,
839 using Neurolucida software 2006 (Microbrightfield Bioscience, VT). For each case, we selected
840 for counts 5 sections spaced 1 mm apart encompassing the area of UOA insertion and/or
841 photostimulation (for the light-only case). In each section, we plotted and counted cells within
842 three 200 μ m-wide windows spanning all cortical layers, one positioned at or near the center of
843 the UOA insertion region (or of photostimulation-only), and the other two located at distances of
844 4mm and 8mm, respectively, from the center of the UO insertion (**Fig. 6**). Thus, a total of 15
845 regions of interest (ROIs) were counted for each case. The laminar distribution of c-fos+ cells
846 was analyzed by tracing the layers on the Nissl stain and counting the number of c-fos+ cells
847 within each layer in Neurolucida. Statistical differences in c-fos+ cell counts among
848 experimental and control cases, and across distances were estimated using a one-way ANOVA
849 with post-hoc comparisons and Bonferroni correction).

850

851

REFERENCES

- 852 1. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. *Nat. Neurosci.* 853 18, 1213-1225 (2015).
- 854 2. El-Shamayleh, Y. & Horwitz, G.D. Primate optogenetics: Progress and prognosis. *Proc. 855 Natl. Acad. Sci. U.S.A.* 116, 26195-26203 (2019).
- 856 3. Goldberg, M.E. The neurology clinic needs monkey research. *Proc. Natl. Acad. Sci. 857 U.S.A.* 116, 26255-26258 (2019).
- 858 4. Lynall, M.-E. et al. Functional Connectivity and Brain Networks in Schizophrenia. *J. 859 Neurosci.* 30, 9477-9487 (2010).
- 860 5. Belmonte, M.K. et al. Autism and Abnormal Development of Brain Connectivity. *J. 861 Neurosci.* 24, 9228-9231 (2004).
- 862 6. Vitek, J.L. & Johnson, L.A. Understanding Parkinson's disease and deep brain 863 stimulation: Role of monkey models. *Proc. Natl. Acad. Sci. U.S.A.* 116, 26259-26265 864 (2019).
- 865 7. Andersen, R.A., Aflalo, T. & Kellis, S. From thought to action: The brain-machine 866 interface in posterior parietal cortex. *Proc. Natl. Acad. Sci. U.S.A.* 116, 26274-26279 867 (2019).
- 868 8. Picaud, S. et al. The primate model for understanding and restoring vision. *Proc. Natl. 869 Acad. Sci. U.S.A.* 116, 26280-26287 (2019).
- 870 9. Jarvis, S. & Schultz, S.R. Prospects for Optogenetic Augmentation of Brain Function. 871 *Front. Syst. Neurosci.* 9, 157 (2015).
- 872 10. Nurminen, L., Merlin, S., Bijanzadeh, M., Federer, F. & Angelucci, A. Top-down 873 feedback controls spatial summation and response amplitude in primate visual cortex. 874 *Nature Commun.* 9, 2281 (2018).
- 875 11. Siu, C., Balsor, J., Merlin, S., Federer, F. & Angelucci, A. A direct interareal feedback- 876 to-feedforward circuit in primate visual cortex. *Nat Commun* 12, 4911 (2021).
- 877 12. Mehta, P. et al. Functional Access to Neuron Subclasses in Rodent and Primate 878 Forebrain. *Cell Rep.* 26, 2818-2832 e2818 (2019).
- 879 13. Vormstein-Schneider, D.C. et al. Viral manipulation of functionally distinct interneurons 880 in mice, non-human primates and humans. *Nat. Neurosci.* 23, 1629-1636 (2020).
- 881 14. Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons 882 across vertebrate species. *Nat. Neurosci.* 19, 1743-1749 (2016).
- 883 15. Tremblay, S. et al. An Open Resource for Non-human Primate Optogenetics. *Neuron*

884 108, 1075-1090 e1076 (2020).

885 16. Angelucci, A. et al. Circuits and mechanisms for surround modulation in visual cortex.
886 *Ann. Rev. Neurosci.* 40, 425-451 (2017).

887 17. Moore, T. & Zirnsak, M. Neural Mechanisms of Selective Visual Attention. *Annu. Rev.*
888 *Psychol.* 68, 47-72 (2017).

889 18. Barbas, H., J., W., Joyce, M.K.P. & Garcia-Cabezas, M.A. *J. Neurophysiol.* 120, 2659-
890 2678 (2018).

891 19. Rockland, K.S. & Pandya, D.N. Laminar origins and terminations of cortical connections
892 of the occipital lobe in the Rhesus monkey. *Brain Res.* 179, 3-20 (1979).

893 20. Usrey, W.M. & Sherman, S.M. Corticofugal circuits: Communication lines from the
894 cortex to the rest of the brain. *J. Comp. Neurol.* 527, 640-650 (2019).

895 21. Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture of monkey
896 striate cortex. *J. Physiol. (Lond.)* 195, 215-243. (1968).

897 22. Huang, X., Elyada, Y.M., Bosking, W.H., Walker, T. & Fitzpatrick, D. Optogenetic
898 assessment of horizontal interactions in primary visual cortex. *J. Neurosci.* 34, 4976-4990
899 (2014).

900 23. Roy, A. et al. Optogenetic spatial and temporal control of cortical circuits on a columnar
901 scale. *J. Neurophysiol.* 115, 1043-1062 (2016).

902 24. Rajalingham, R. et al. Chronically implantable LED arrays for behavioral optogenetics in
903 primates. *Nat. Methods.* 18, 1112-1116 (2021).

904 25. Owen, S.F., Liu, M.H. & Kreitzer, A.C. Thermal constraints on in vivo optogenetic
905 manipulations. *Nat. Neurosci.* 22, 1061-1065 (2019).

906 26. Wang, J. et al. Integrated device for combined optical neuromodulation and electrical
907 recording for chronic in vivo applications. *J. Neural Eng.* 9, 016001 (2012).

908 27. Ozden, I. et al. A coaxial optrode as multifunction write-read probe for optogenetic
909 studies in non-human primates. *J. Neurosci. Methods* 219, 142-154 (2013).

910 28. Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely
911 moving mice. *Nat. Neurosci.* 15, 163-170 (2011).

912 29. McAlinden, N. et al. Multisite microLED optrode array for neural interfacing.
913 *Neurophotonics* 6, 035010 (2019).

914 30. Scharf, R. et al. Depth-specific optogenetic control in vivo with a scalable, high-density
915 muLED neural probe. *Sci. Rep.* 6, 28381 (2016).

916 31. Maynard, E.M., Nordhausen, C.T. & Normann, R.A. The Utah intracortical Electrode

917 Array: a recording structure for potential brain-computer interfaces. *Electroencephalogr.*
918 *Clin. Neurophysiol.* 102, 228-239 (1997).

919 32. Lin, J.Y. Optogenetic excitation of neurons with channelrhodopsins: light
920 instrumentation, expression systems, and channelrhodopsin variants. *Prog. Brain Res.*
921 196, 29-47 (2012).

922 33. Wiegert, J.S., Mahn, M., Prigge, M., Printz, Y. & Yizhar, O. Silencing Neurons: Tools,
923 Applications, and Experimental Constraints. *Neuron* 95, 504-529 (2017).

924 34. Kim, K. et al. Artifact-free and high-temporal-resolution *in vivo* opto-electrophysiology
925 with microLED optoelectrodes. *Nat. Commun.* 11, 2063 (2020).

926 35. Callaway, E.M. & Wiser, A.K. Contributions of individual layer 2-5 spiny neurons to
927 local circuits in macaque primary visual cortex. *Vis. Neurosci.* 13, 907-922 (1996).

928 36. Pluta, S. et al. A direct translaminar inhibitory circuit tunes cortical output. *Nat.*
929 *Neurosci.* 18, 1631-1640 (2015).

930 37. Qi, G. & Feldmeyer, D. Dendritic Target Region-Specific Formation of Synapses
931 Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells. *Cereb. Cortex* 26,
932 1569-1579 (2016).

933 38. Acker, L., Pino, E.N., Boyden, E.S. & Desimone, R. FEF inactivation with improved
934 optogenetic methods. *Proc. Natl. Acad. Sci. U.S.A.* 113, E7297-E7306 (2016).

935 39. Andrei, A.R., Pojoga, S., Janz, R. & Dragoi, V. Integration of cortical population signals
936 for visual perception. *Nat. Commun.* 10, 3832 (2019).

937 40. Sagar, S.M., Sharp, F.R. & Curran, T. Expression of c-fos protein in brain: metabolic
938 mapping at the cellular level. *Science* 240, 1328-1331 (1988).

939 41. Kovacs, K.J. c-Fos as a transcription factor: a stressful (re)view from a functional map.
940 *Neurochem. Int.* 33, 287-297 (1998).

941 42. Tamura, K. et al. A glass-coated tungsten microelectrode enclosing optical fibers for
942 optogenetic exploration in primate deep brain structures. *Journal of neuroscience*
943 methods 211, 49-57 (2012).

944 43. Stark, E., Koos, T. & Buzsaki, G. Diode probes for spatiotemporal optical control of
945 multiple neurons in freely moving animals. *J. Neurophysiol.* 108, 349-363 (2012).

946 44. Royer, S. et al. Multi-array silicon probes with integrated optical fibers: light-assisted
947 perturbation and recording of local neural circuits in the behaving animal. *Eur. J.*
948 *Neurosci.* 31, 2279-2291 (2010).

949 45. Scharf, R. et al. A compact integrated device for spatially-selective optogenetic neural
950 stimulation based on the Utah Optrode Array. *Proc. SPIE* 10482, 104820M (2018).

951 46. Bernstein, J.G. et al. Prosthetic systems for therapeutic optical activation and silencing of
952 genetically-targeted neurons. *Proc. SPIE Int. Soc. Opt. Eng.* 6854, 68540H (2008).

953 47. Potworowski, J., Jakuczun, W., Leski, S. & Wojcik, D. Kernel current source density
954 method. *Neural. Comput.* 24, 541-575 (2012).

955 48. Mitra, P. & Bokil, H. Observed Brain Dynamics. (Oxford University Press, New York;
956 2008).

957

958 **ACKNOWLEDGMENTS**

959 We thank Kesi Sainsbury for histological assistance, Seminare Ta'afua for help with experiments, and
960 Julian Haberland and Christine Kallmayer at the Fraunhofer-Institut für Zuverlässigkeit und
961 Mikrointegration (IZM) for μ LED-to-interposer bonding. This work was supported primarily by a
962 BRAIN grant (U01 NS099702) from the National Institute of Health (NIH) to S.B., A.A. L.R and S.M.
963 Additional support was provided by grant from the NIH (R01 EY026812, R01 EY019743, R01
964 EY031959) and the National Science Foundation (IOS 175543) to A.A, and an unrestricted grant from
965 Research to Prevent Blindness, Inc. and a core grant from the NIH (EY014800) to the Department of
966 Ophthalmology, University of Utah.

967
968 **AUTHOR CONTRIBUTIONS**

969 Conceptualization: A.C., A.I., C.F.R., N.M., L.R., K.M., S.B. A.A. Device Fabrication and
970 Bench Testing: C.F.R., N.M., L.R., K.M., M.D.D., S.B. Modeling: N.M., K.M. *In Vivo*
971 Electrophysiology Testing: A.C., D.C., C.F.R., F.F., A.A. *In Vivo* cFos Testing: A.I., J.B., F.F.,
972 J.D.R., A.A., A.C. Analysis of Electrophysiology Data: A.C. Analysis of cFos Data: A.I., J.B.,
973 F.F., A.A. Writing-Original Draft: A.C., L.R., S.B., A.A. Writing-Review/Editing: all authors.
974 Supervision & Funding Acquisition: A.A., S.B., K.M., L.R.

975
976 **COMPETING INTERESTS STATEMENT**

977 The authors declare no competing interests.

978

FIGURE LEGENDS

979 **Figure 1. UOA Design and Optical Properties**

980 **(A)** Schematics of UOA design superimposed to a Nissl-stained coronal section of macaque V1
981 showing the layers. The UOA consists of 3 main components: a μ LED array (B), an optical
982 interposer (C) and a glass needle array (D). **(B)** Two interleaved μ LED arrays on a sapphire
983 substrate are shown in this image; the first 10x10 array is needle-aligned for deep layer
984 stimulation, the second 9x9 interstitial array lies in-between the first for surface stimulation. The
985 interstitial array, although built into the UOA, was not used in this study. Scale bar: 1mm. **(C)** A
986 region of the silicon optical interposer corresponding to approximately the size of the *white box*
987 in (B); the optical “vias” are etched through the silicon and matched to the size of a μ LED
988 ($80 \times 80 \mu\text{m}^2$). Scale bar: 200 μm . **(D)** High magnification image of the glass needle shanks bonded
989 to the interposer. Scale bar: 200 μm . **(E) LEFT:** The μ LED on sapphire and needle array
990 components are integrated into the final device, wire-bonded, and encapsulated. The image
991 shown is a representative device. The integrated UOA used in this study consisted of 10x10 glass
992 needle shanks, 1.6 mm long (to target deeper layers) and 100-110 μm wide, with tip apex angles
993 about 64°. An image of the actual device used in the *in vivo* testing studies, after completion of
994 the experiment and explantation is shown in **Extended Data Fig. 2**. Scale bar: 1mm. **RIGHT:**
995 Example spatial patterns of device operation. **(F)** Average output optical power (in mW) across
996 each needle tip at different drive voltages (currents), when the entire UOA was turned on (*top*
997 *left inset*). *Blue and gray bars*: needle shanks with estimated tip irradiances above and below,
998 respectively, the 1mW/mm² threshold for ChR2 activation. **(G) LEFT:** Ray trace model of light
999 spread in cortical tissue when a single μ LED (in column 1 and row 8, i.e. the closest to the linear
1000 electrode array —LEA— in penetration 2 —P2— used for the electrophysiological testing
1001 experiment, and indicated as a *black dot*) is activated at various input voltages (% of maximum
1002 intensity used), with power output calibrated to the bench tests. **RIGHT:** Model of light spread in
1003 tissue when column 1 (the nearest to the LEA in P2 and P3) is activated at various input
1004 voltages. *Green contour* encloses tissue volume within which the light irradiance is above
1005 1mW/mm², the threshold for ChR2 activation. Scale bars: 400 μm .

1006

1007 **Figure 2. Laminar Distribution of Responses Induced by UOA Photostimulation.**

1008 (A) The UOA inserted in macaque V1. (B) Same field of view as in (A) shown under fluorescent
1009 illumination to reveal expression of the red fluorescent protein tdTomato (*arrow*). (C)
1010 Preparation for recording electrophysiological responses to photostimulation. A 24 channel
1011 linear electrode array (LEA) was inserted next to the UOA (guide tube protecting array marked
1012 “LEA”) slightly angled laterally (towards the UOA) and posteriorly. Here the UOA is partially
1013 covered with a piece of Gelfoam. (D) Current Source Density analysis (CSD; Left) and multiunit
1014 (MU) spiking activity (Right) signals recorded through the depth of V1 in P2 in response to
1015 phasic UOA photostimulation (pulse parameters: 100 msec pulse duration, 5Hz, 7.4mW/mm²;
1016 pulse periods denoted as *blue bars* above MU plot). Here, all 100 needle-aligned μ LED sites
1017 (“whole μ LED array” condition) were activated simultaneously. CSD responses to each 100
1018 msec pulse were zero-aligned, while MU activity is shown for the full 5Hz pulse train. *The*
1019 *dashed lines in the CSD panel* demarcate the borders of layer 4C (L4C); *the gray shaded region*
1020 *in the MU activity panel* delimits the extent of L4C. (E) Same as in (D), but for photostimulation
1021 irradiance of 0.82 mW/mm². (F) Same as in (D-E), but following surface photostimulation of V1
1022 via a laser-coupled optical fiber with pulse parameters of 10 msec, 5Hz, 2.2mW/mm². (G-J)
1023 Left: Relative cortical depth of each contact on P2 (*black dot in the insets*) is plotted versus the
1024 relative response (% firing rate increase over baseline) to UOA stimulation for different 450nm
1025 μ LED illumination patterns (*insets*). Different colored traces are data for different
1026 photostimulation intensities (expressed as voltage or percent of max intensity used). *Gray area*:
1027 extent of L4C; *dashed lines*: approximate location of the L4A/4B (upper) and L5/L6 (lower)
1028 borders. Right: PSTHs with and without μ LED activation are shown for the same contact on the
1029 LEA in L4C (marked by the *black circle*) across conditions. *Dashed line in the PSTH*: pulse
1030 periods.
1031

1032 **Figure 3. Tangential Extent of Responses Induced by UOA Photostimulation.**

1033 A) Examples of model fits to single μ LED and single column photostimulation for an example
1034 contact from P2, the one that showed the largest relative response increase across these
1035 stimulation conditions. This contact preferred stimulation in the proximal UOA columns 1-2, at
1036 sites closer to the top of the device (rows 9-7). The schematics on the left of the UOA and of the
1037 LEA-P2 indicates as *blue shading* the UOA sites represented in the heat map, and as a *red dot*
1038 the contact on the LEA whose response is mapped on the right. The *horizontal lines* and *gray*

1039 *shading* on the LEA schematics mark the pial and white matter, and L4C boundaries,
1040 respectively. Color scale applies to panels (A-B, E-F). **(B)** Average normalized fitted responses
1041 across all responsive contacts in P2 (*red dots* in schematics of LEA to the left). **(C)** Change in
1042 response in the column direction for P2. Average relative response amplitude (% of peak
1043 response) is plotted as a function of stimulation intensity and distance along a straight line
1044 extending from the preferred UOA site in the column direction. Data averaged across all
1045 contacts. **(D)** Change in response in the row direction for P2. Average relative response
1046 amplitude (% of peak response) is plotted as a function of stimulation intensity and distance
1047 along a straight line extending from the preferred UOA site in the row direction. Data averaged
1048 across all contacts. **(E-H)** Same as in (A-D) but for P3. (E-F) P2 preferred stimulation in the
1049 proximal UOA columns 1-3, at sites closer to the middle of the UOA (rows 4-7).

1050 **Figure 4. Onset Latencies Reveal Local Networks Activated by Focal Optogenetic
1051 Modulation.** **(A)** Left: Schematics of UOA stimulation through a single μ LED site (C1-R8) and
1052 of LEA in P2. Right: Pulse-aligned raster plots for all 21 channels on the LEA through the depth
1053 of V1. *Black lines* separate data from different channels. *Gray shaded region*: channels in L4C.
1054 *Blue line above plot*: 100ms pulse period at the input voltage (irradiance) indicated. *Red and
1055 black arrows* denote example contacts in L4C and 6, respectively. A graded shift in MU onset
1056 latency is apparent. **(B)** Left: Pulse-aligned PSTHs for the two channels indicated by arrows in
1057 the raster plot in (A). Responses are plotted as baseline-subtracted firing rate versus time.
1058 Response onset latency at the L6 contact (35 msec) clearly lagged that on the L4C contact
1059 nearest the UOA needle tips (17 msec). Right: Histograms of pulse-by-pulse onset latencies for
1060 the two example contacts. **(C)** Heatmaps of MU response (firing rate) through the depth of V1
1061 during the peri-pulse period, for the UOA stimulation condition indicated by the insets at the top
1062 left of each plot. Stimulation intensity (average irradiance) is reported above each plot. The firing
1063 rate color scale applies to all panels. *White dots* mark the onset latency (estimated from the mean
1064 PSTH- see Online Methods) for each contact that was significantly responsive to UOA
1065 stimulation.

1066

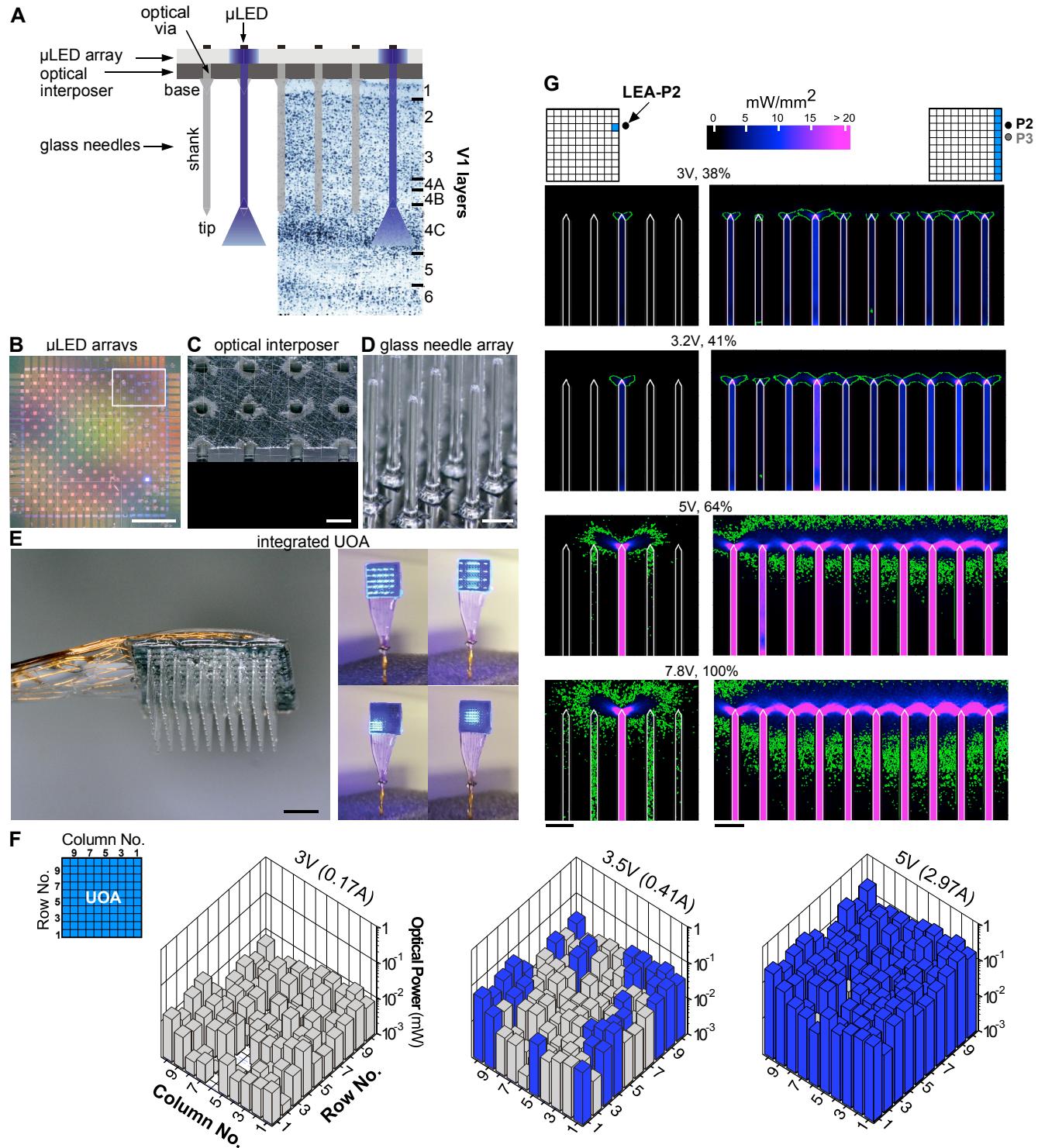
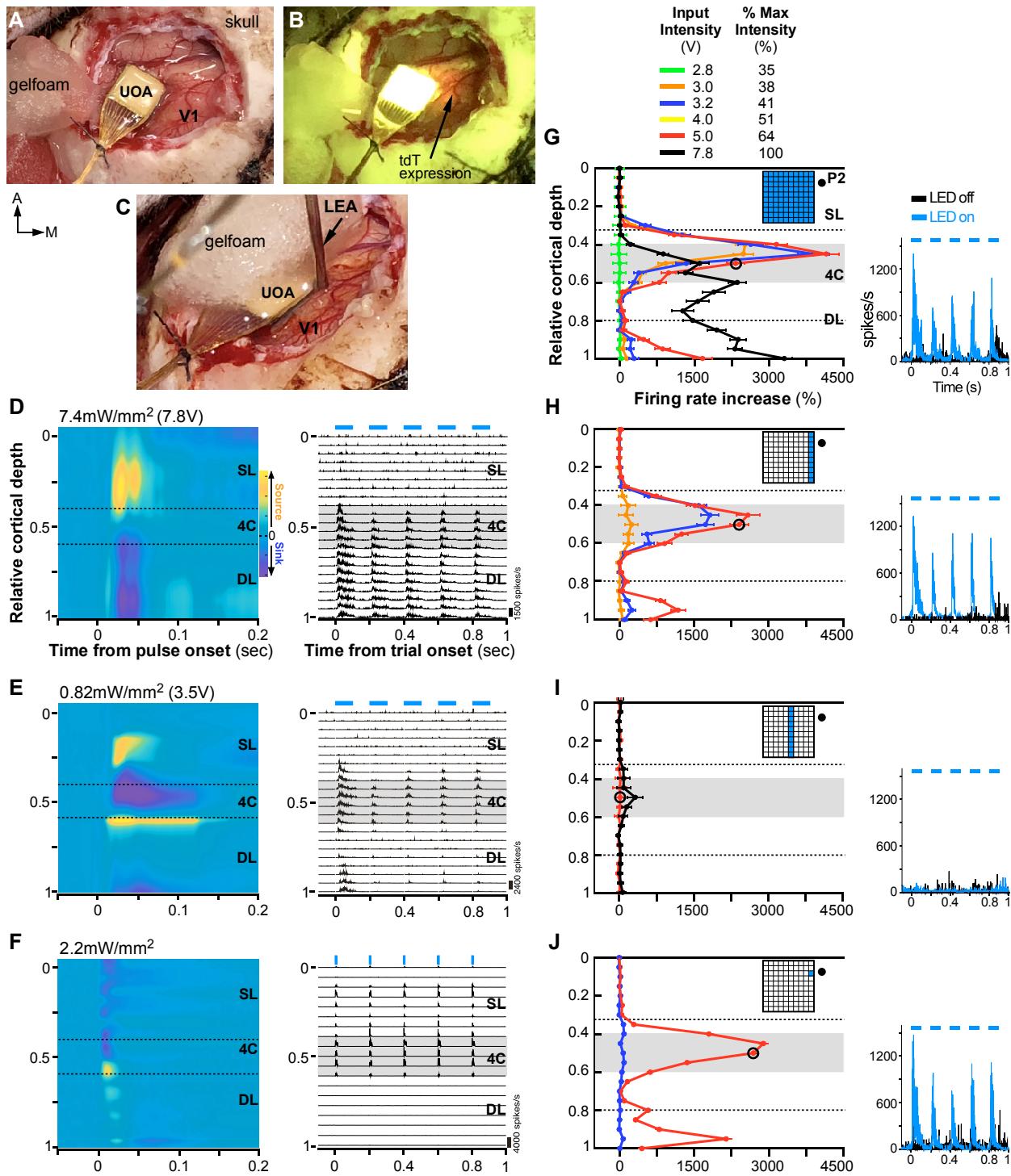
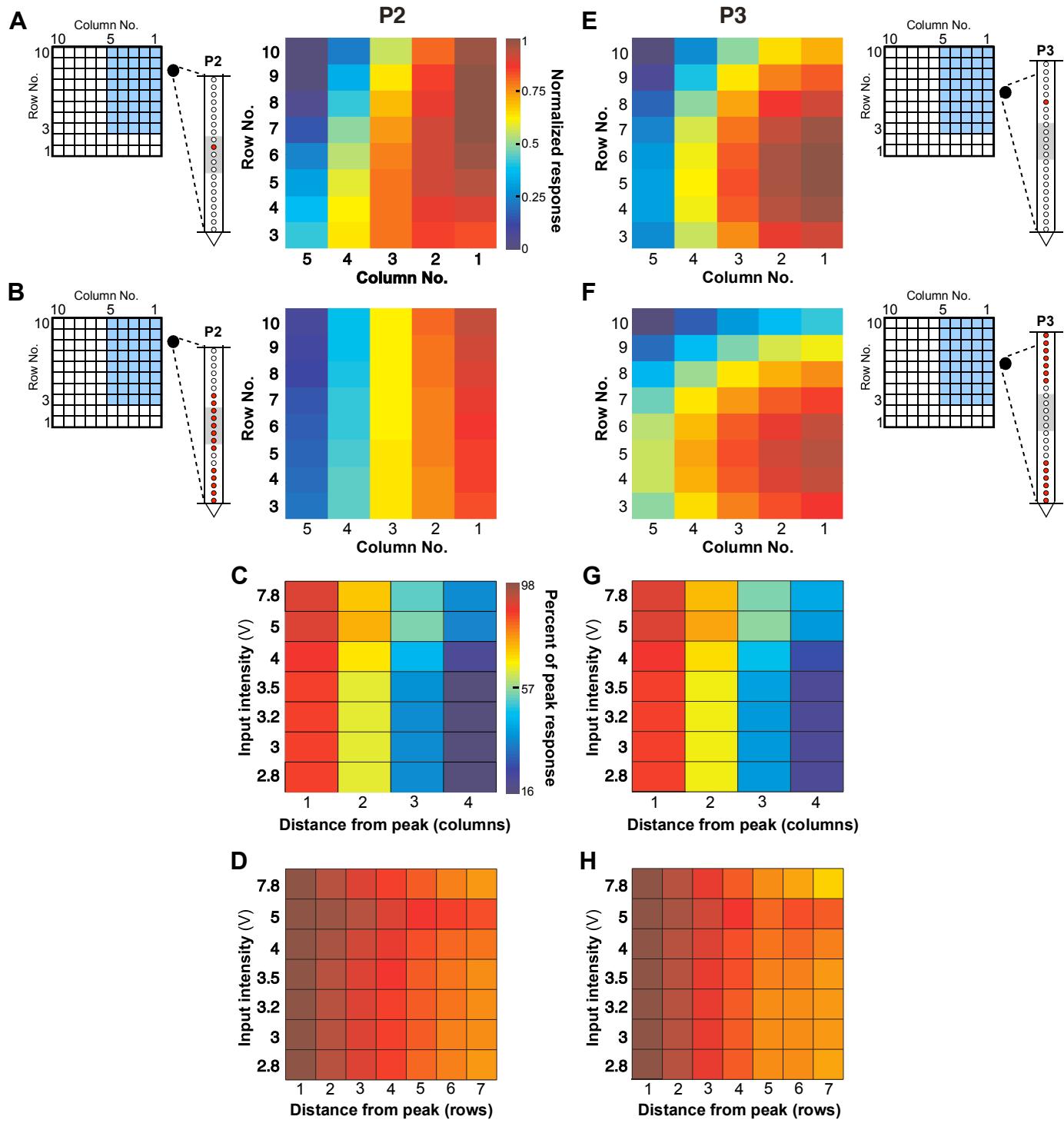
1067 **Figure 5. Population Onset Latencies as a Function of UOA Stimulation Intensity and
1068 Spatial Pattern.**

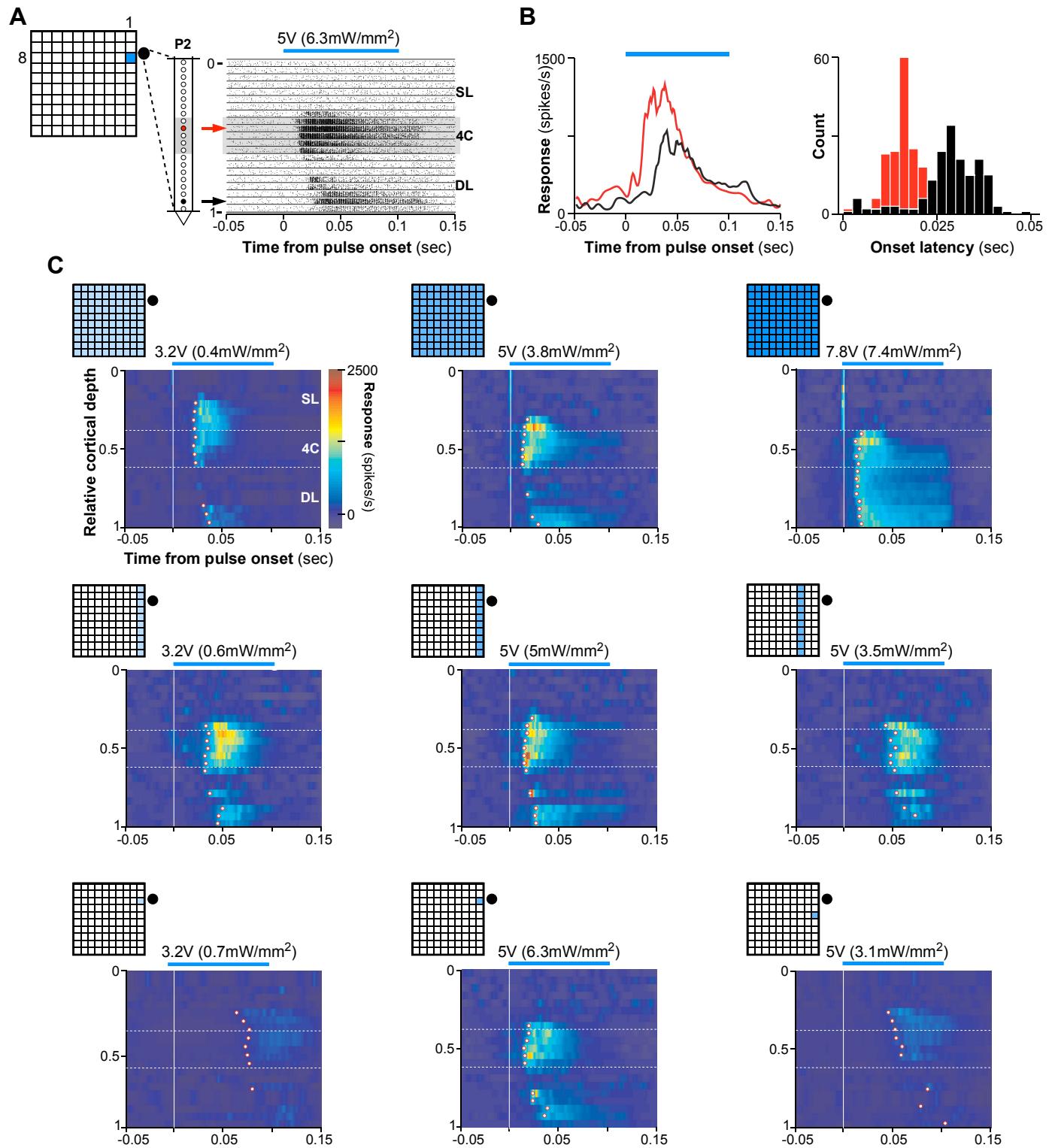
1069 (A) Distance on the LEA of each contact from the contact with the fastest onset latency is plotted
1070 against onset latency; lines are linear fits. Each line is from simultaneous stimulation throughout
1071 the whole μ LED array at each indicated intensity. (B) Left: Effect of varying photostimulation
1072 intensity for a fixed column (C1). Right: Effect of varying stimulated column (C1 to C4) for a
1073 fixed photostimulation intensity (5V). Either lowering intensity for a given column or increasing
1074 the distance between an activated column and the LEA had similar effects on the latency of
1075 network activation. (C) As in (B), but for a single μ LED stimulation condition. On the left
1076 panel, photostimulation intensity was varied for a fixed μ LED (C1-R8), while on the right panel,
1077 the stimulated μ LED was varied along column 1 (from row 3 to 9) at a fixed intensity (5V for
1078 μ LEDS in rows 8-10, but 7.8V for those in rows 4-7, as lower intensities did not evoke a
1079 response from many of these latter μ LEDs). (D) The shortest onset latency across all intensities
1080 (here expressed as percent of max- see legend in **Fig. 2G** for corresponding input voltage) is
1081 plotted for the whole array condition (Left), and selected columns (Middle) or μ LEDs (Right).
1082

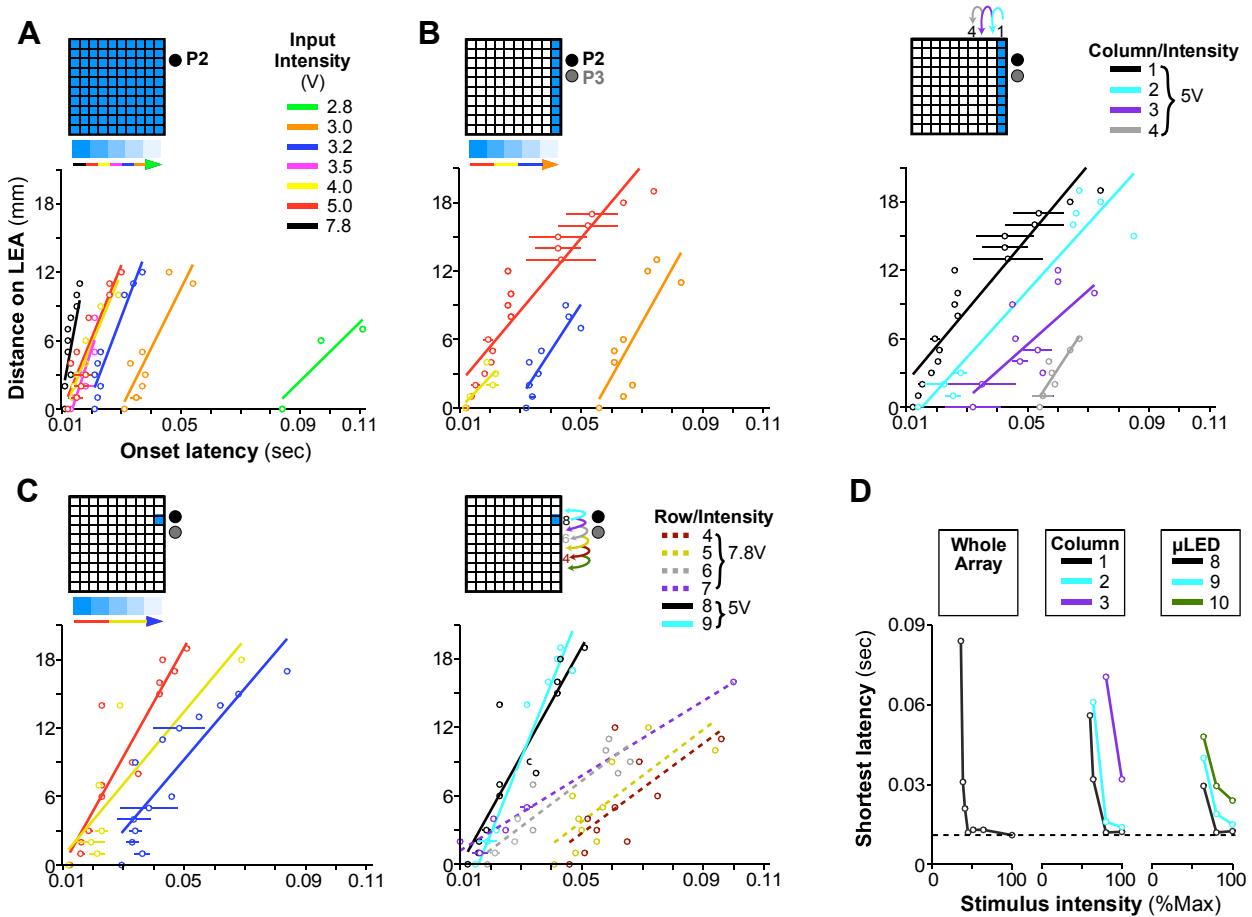
1083 **Figure 6. Local Optogenetic Activation Through the UOA Spreads Through Cortico-
1084 Cortical Networks.**

1085 (A-C) Case MK414-RH. The same sagittal section encompassing parts of V1 and V2 is shown
1086 under 3 different fluorescent illuminations, to reveal Nissl stain (A), tdT/Chr2 expression (B; the
1087 red tdT fluorescence was converted to green for purpose of illustration), and c-fos IHC (C).
1088 *White solid contour*: V1/V2 border; *dashed contours*: layer boundaries (layers are indicated);
1089 *white boxes*: ROIs (numbered 1-3 in panel C) where c-fos+ cells were counted. *White Arrows in*
1090 (B) point to the visible damage caused by each UOA needle, while the *gray arrow* points to the
1091 likely location of one of the UOA needles which did not cause visible damage in this section.
1092 *Asterisks in (B)* mark the core of the viral injections, and sites of highest tdT/Chr2 expression.
1093 *P*: posterior; *V*: ventral. C-fos expression in this case is observed throughout all layers (local)
1094 and across cortical areas (long-range). Scale bar in (A): 1mm (valid for A-C). (D) Higher
1095 magnification of c-fos IHC in and around each ROI. Scale bar: 0.2mm. (E-H) Case MK422-RH.
1096 Same as in (A-D) but for a different case in which an AMPA receptor antagonist was injected
1097 into the SMA prior to UOA insertion and photostimulation. The sagittal section is from the
1098 SMA. *D*: dorsal; *A*: anterior. Scale bars: 1mm (E and valid for E-G); 0.2 mm (H). Blocking
1099 AMPA receptors demonstrates that initial optogenetic activation is limited to the stimulated

1100 layers in the region of UOA insertion. **(I-J)** Case MK414-LH. C-fos IHC in a sagittal section of
1101 SMA cortex (I) and at higher magnification in and around each ROI used for cell counts (J), in a
1102 case which only received UOA insertion. Scale bars: 1mm (I), 0.2mm (J). **(K-L)** Case MK421-
1103 RH. Same as in (I-J), but for a control case in which SMA cortex only received surface
1104 photostimulation via an optical fiber-coupled laser. Here only one ROI is shown at higher
1105 magnification to reveal the few labeled cells in L1. Scale bars: 0.5mm (K), 0.2mm (L). Increases
1106 in cFos expression cannot be explained by device insertion or surface illumination. **(M)** Average
1107 number of c-fos+ cells across sections used for quantification, as a function of distance from the
1108 center of UOA insertion for the 4 different cases. Error bars: s.e.m **(N)** Distribution of c-fos+
1109 cells across layers at each distance.


Figure 1


Figure 2

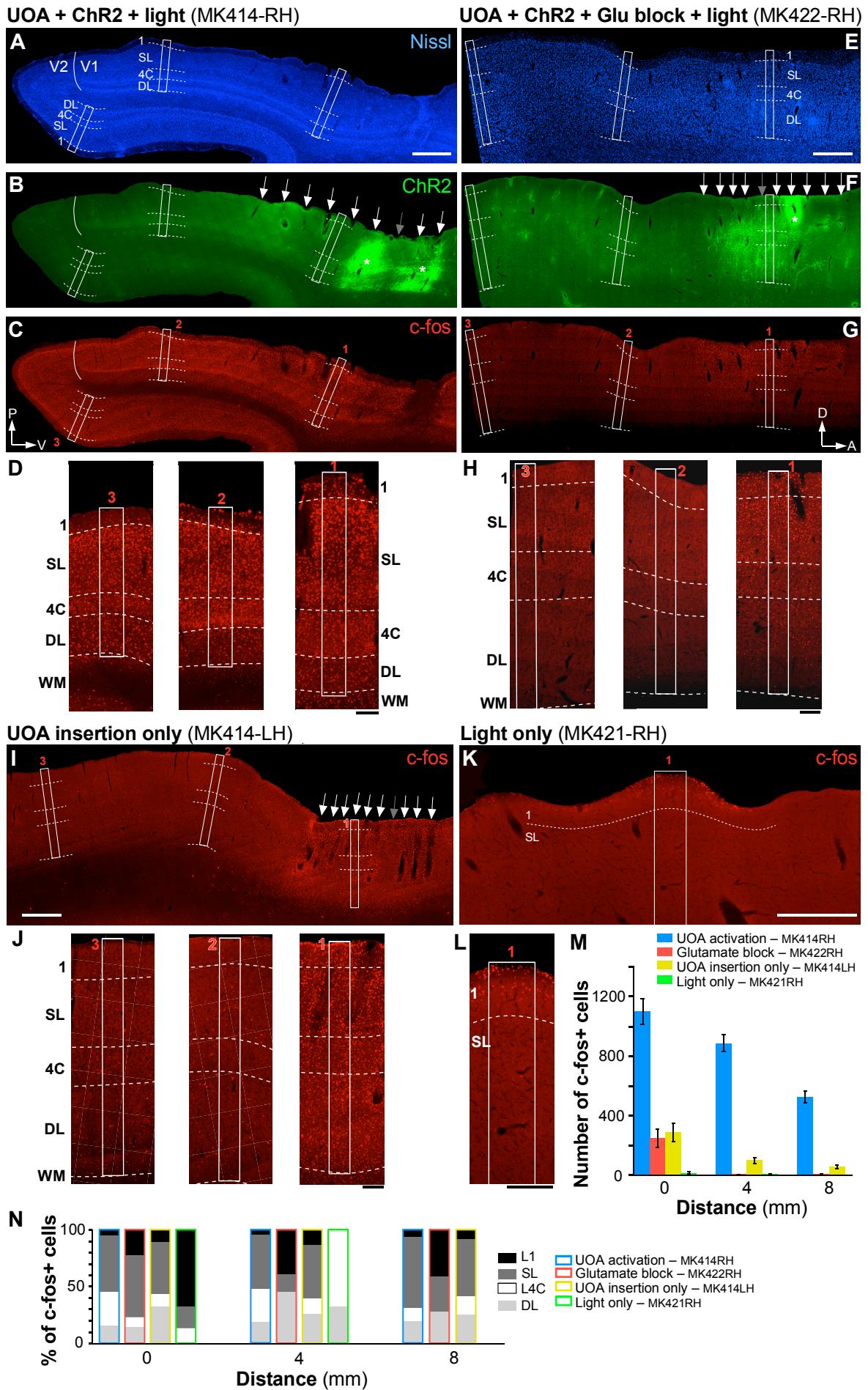

Figure 3

Figure 4

Figure 5

Measured Mean Output Photostimulation Intensities for Different Input Voltages

WHOLE ARRAY

Input Voltage (V)	Output Optical Power (mW)					
	Mean	SD	Median	Min	Max	IQR
2.8	0.0022	0.0016	0.0019	0	0.010	0.0014
3	0.0057	0.0040	0.0050	0.0005	0.024	0.0051
3.2	0.011	0.0072	0.010	0.0010	0.042	0.0091
3.5	0.022	0.013	0.020	0.0024	0.075	0.0170
4	0.044	0.026	0.041	0.0075	0.13	0.0313
5	0.10	0.056	0.088	0.018	0.27	0.0629
7.8	0.19	0.09	0.18	0.039	0.42	0.12

Input Voltage (V)	Output Irradiance (mW/mm ²)					
	Mean	SD	Median	Min	Max	IQR
2.8	0.08	0.06	0.07	0.01	0.38	0.05
3	0.21	0.14	0.20	0.02	0.91	0.19
3.2	0.41	0.27	0.38	0.04	1.56	0.33
3.5	0.82	0.49	0.75	0.09	2.79	0.62
4	1.67	0.95	1.53	0.28	4.98	1.16
5	3.79	2.08	3.33	0.67	9.88	2.48
7.8	7.4	3.19	6.9	1.45	15.6	4.46

COLUMN 1

Input Voltage (V)	Output Optical Power (mW)					
	Mean	SD	Median	Min	Max	IQR
2.8	0.0030	0.0016	0.0024	0.0010	0.0068	0.0013
3	0.0079	0.0046	0.0071	0.0019	0.0181	0.0043
3.2	0.0156	0.0082	0.0146	0.0040	0.0321	0.0091
3.5	0.0305	0.0146	0.0301	0.0089	0.0570	0.0170
4	0.0611	0.0276	0.0627	0.0181	0.1016	0.0354
5	0.1350	0.0597	0.1324	0.0400	0.2424	0.0873
7.8	0.2548	0.0981	0.2719	0.1016	0.4168	0.1411

Input Voltage (V)	Output Irradiance (mW/mm ²)					
	Mean	SD	Median	Min	Max	IQR
2.8	0.11	0.06	0.09	0.04	0.25	0.05
3	0.29	0.17	0.27	0.07	0.67	0.16

3.2	0.58	0.31	0.54	0.15	1.19	0.34
3.5	1.13	0.54	1.12	0.33	2.11	0.63
4	2.26	1.02	2.32	0.67	3.77	1.31
5	5.00	2.21	4.90	1.48	8.98	3.23
7.8	9.43	3.63	10.07	3.77	15.44	5.23

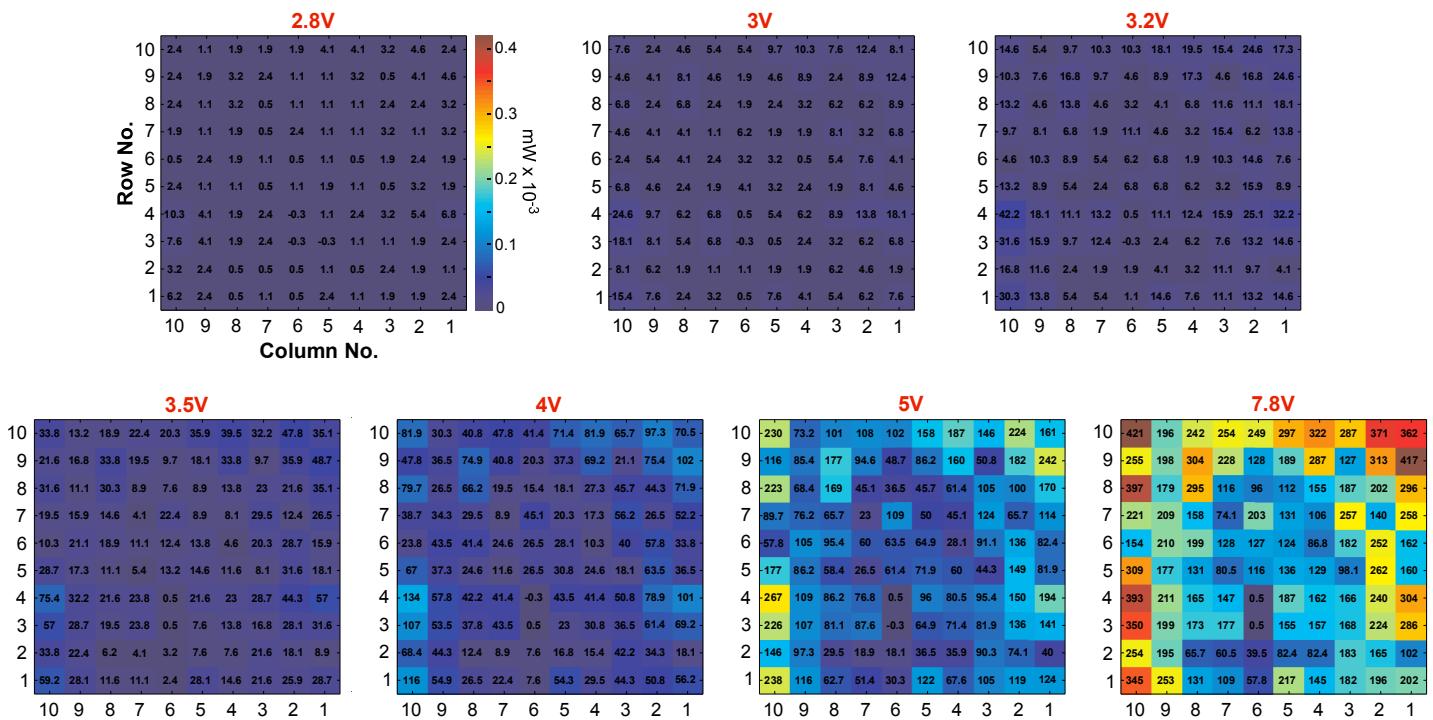
COLUMN 3

Input Voltage (V)	Output Optical Power (mW)					
	Mean	SD	Median	Min	Max	IQR
2.8	0.0020	0.0010	0.0022	0.0005	0.0032	0.0021
3	0.0055	0.0023	0.0058	0.0019	0.0089	0.0043
3.2	0.0106	0.0044	0.0110	0.0032	0.0159	0.0078
3.5	0.0211	0.0080	0.0216	0.0081	0.0321	0.0119
4	0.0421	0.0145	0.0432	0.0181	0.0657	0.0143
5	0.0933	0.0303	0.0932	0.0443	0.1460	0.0232
7.8	0.1836	0.0550	0.1820	0.0981	0.2871	0.0202

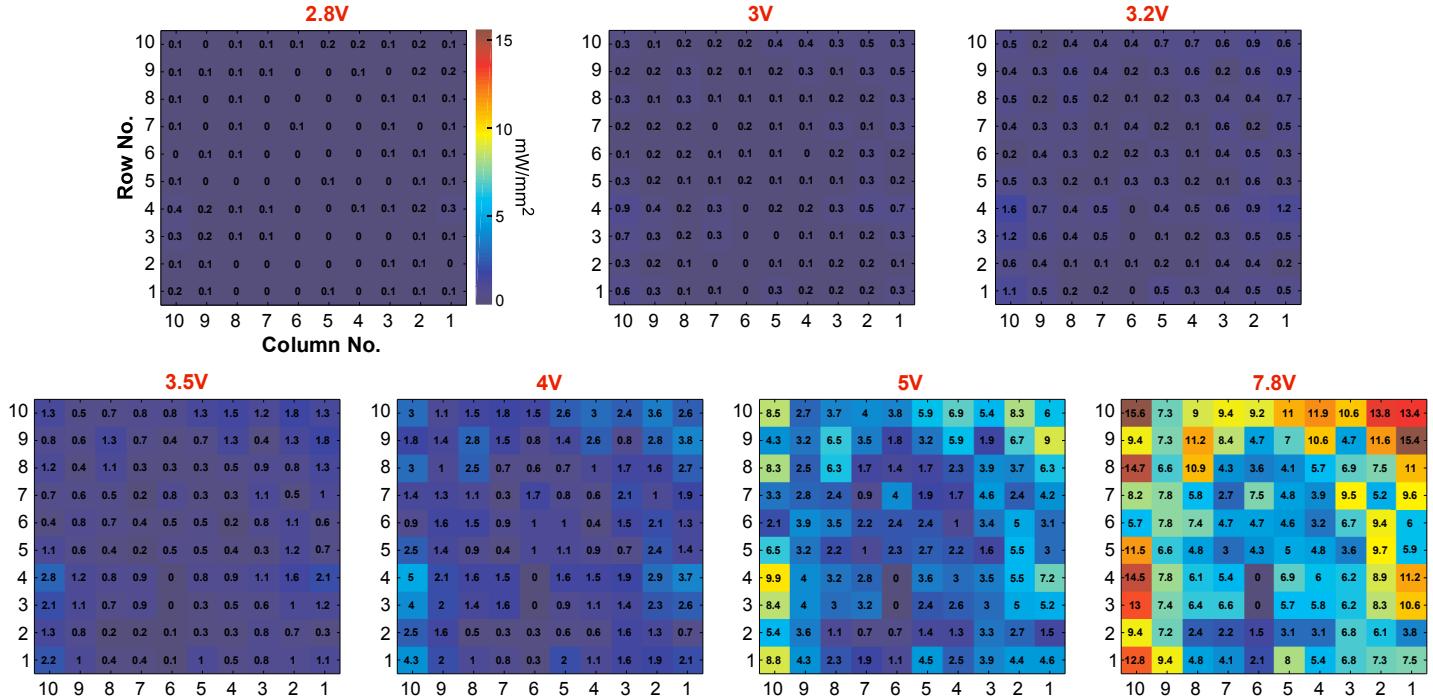
Input Voltage (V)	Output Irradiance (mW/mm ²)					
	Mean	SD	Median	Min	Max	IQR
2.8	0.07	0.04	0.08	0.02	0.12	0.08
3	0.20	0.09	0.22	0.07	0.33	0.16
3.2	0.39	0.16	0.41	0.12	0.59	0.29
3.5	0.78	0.30	0.80	0.30	1.19	0.44
4	156	0.54	1.60	0.67	2.43	0.53
5	3.46	1.12	3.46	1.64	5.40	0.86
7.8	6.80	2.03	6.74	3.63	10.63	0.75

COLUMN 5

Input Voltage (V)	Output Optical Power (mW)					
	Mean	SD	Median	Min	Max	IQR
2.8	0.0014	0.0011	0.0010	0.0003	0.0041	0.0008
3	0.0041	0.0028	0.0032	0.0005	0.0097	0.0035
3.2	0.0081	0.0051	0.0068	0.0024	0.0181	0.0070
3.5	0.0165	0.0110	0.0142	0.0076	0.0360	0.0127
4	0.0344	0.0177	0.0249	0.0168	0.0713	0.0232
5	0.0797	0.0376	0.0683	0.0365	0.1583	0.0460
7.8	0.1623	0.0620	0.1456	0.0824	0.2971	0.0651

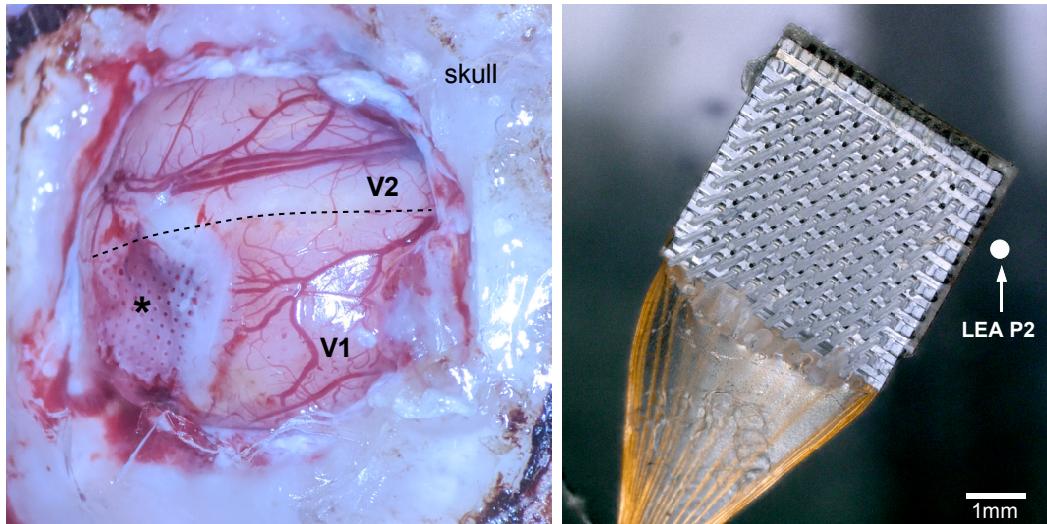

Input Voltage (V)	Output Irradiance (mW/mm ²)					
	Mean	SD	Median	Min	Max	IQR
2.8	0.05	0.04	0.04	0.01	0.15	0.03
3	0.15	0.11	0.12	0.02	0.36	0.13
3.2	0.30	0.18	0.25	0.09	0.67	0.26
3.5	0.61	0.36	0.53	0.28	1.33	0.47
4	1.27	0.66	1.09	0.62	2.64	0.86
5	2.95	1.39	2.53	1.35	5.87	1.7
7.8	6.03	2.30	5.39	3.05	11.00	2.41

SINGLE μLEDs IN COLUMN 1


Input Voltage (V)	Mean Output Optical Power (mW)									
	Row 1	Row 2	Row 3	Row 4	Row 5	Row 6	Row 7	Row 8	Row 9	
2.8	0.0024	0.0011	0.0024	0.0068	0.0019	0.0019	0.0032	0.0032	0.0046	
3	0.0076	0.0019	0.0068	0.0181	0.0046	0.0041	0.0068	0.0089	0.0124	
3.2	0.0146	0.0040	0.0146	0.0322	0.0089	0.0076	0.0138	0.0181	0.0246	
3.5	0.0287	0.0089	0.0316	0.0570	0.0181	0.0159	0.0265	0.0351	0.0487	
4	0.0562	0.0181	0.0691	0.1010	0.0365	0.0338	0.0521	0.0719	0.1016	
5	0.1243	0.0400	0.1406	0.1938	0.0819	0.0824	0.1138	0.1697	0.2425	
7.8	0.2016	0.1016	0.2857	0.3035	0.1597	0.1624	0.2581	0.2957	0.4168	

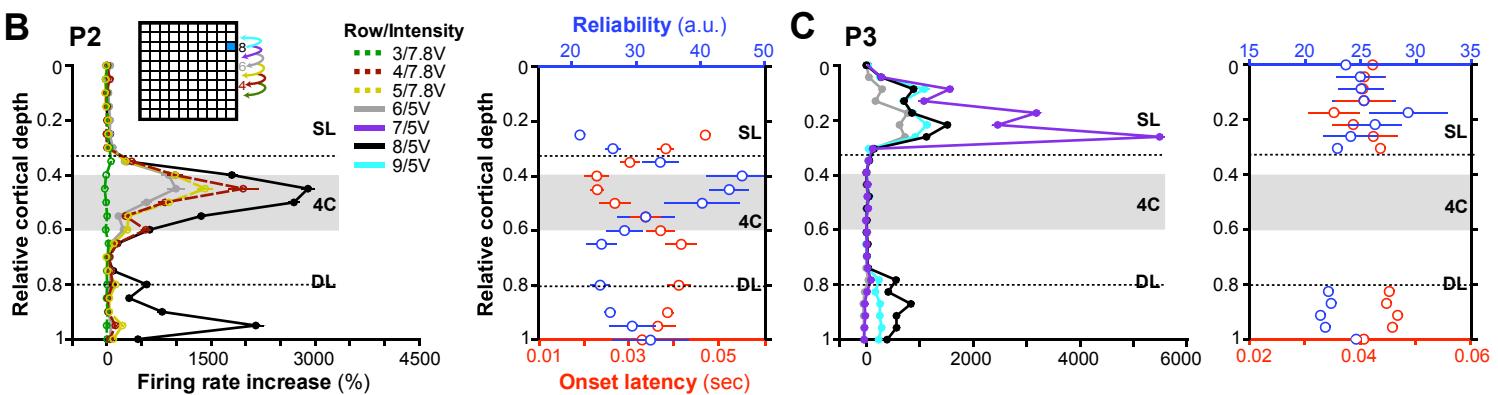
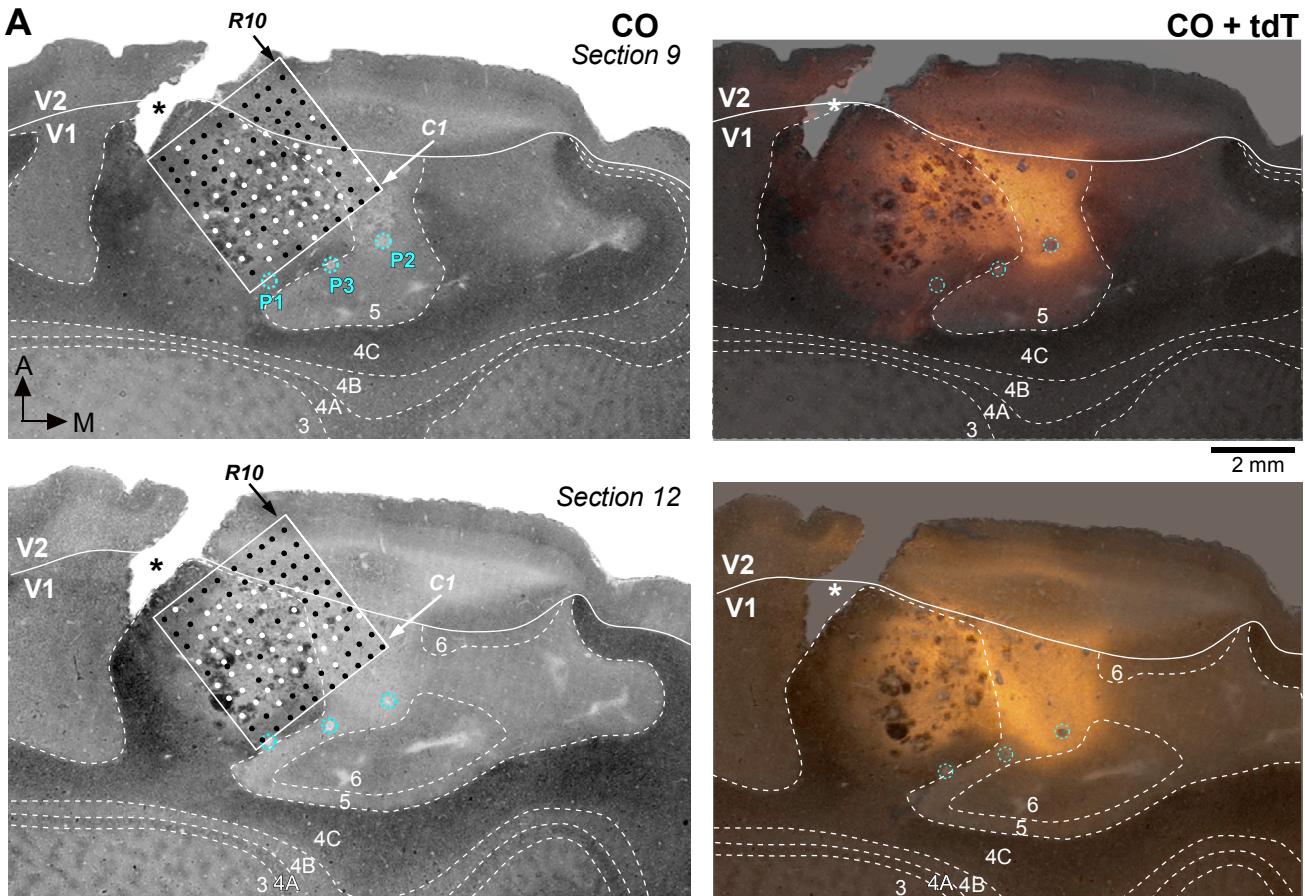
Input Voltage (V)	Mean Output Irradiance (mW/mm ²)									
	Row 1	Row 2	Row 3	Row 4	Row 5	Row 6	Row 7	Row 8	Row 9	
2.8	0.1	0	0.1	0.3	0.1	0.1	0.1	0.1	0.2	
3	0.3	0.1	0.3	0.7	0.2	0.2	0.3	0.3	0.5	
3.2	0.5	0.2	0.5	1.2	0.3	0.3	0.5	0.7	0.9	
3.5	1.1	0.3	1.2	2.1	0.7	0.6	1	1.3	1.8	
4	2.1	0.7	2.6	3.7	1.4	1.3	1.9	2.7	3.8	
5	4.6	1.5	5.2	7.2	3	3.1	4.2	6.3	9	
7.8	7.5	3.8	10.6	11.2	5.9	6	9.6	11	15.4	

A UOA output power (mW) at different input voltages


B UOA output irradiance (mW/mm²) at different input voltages

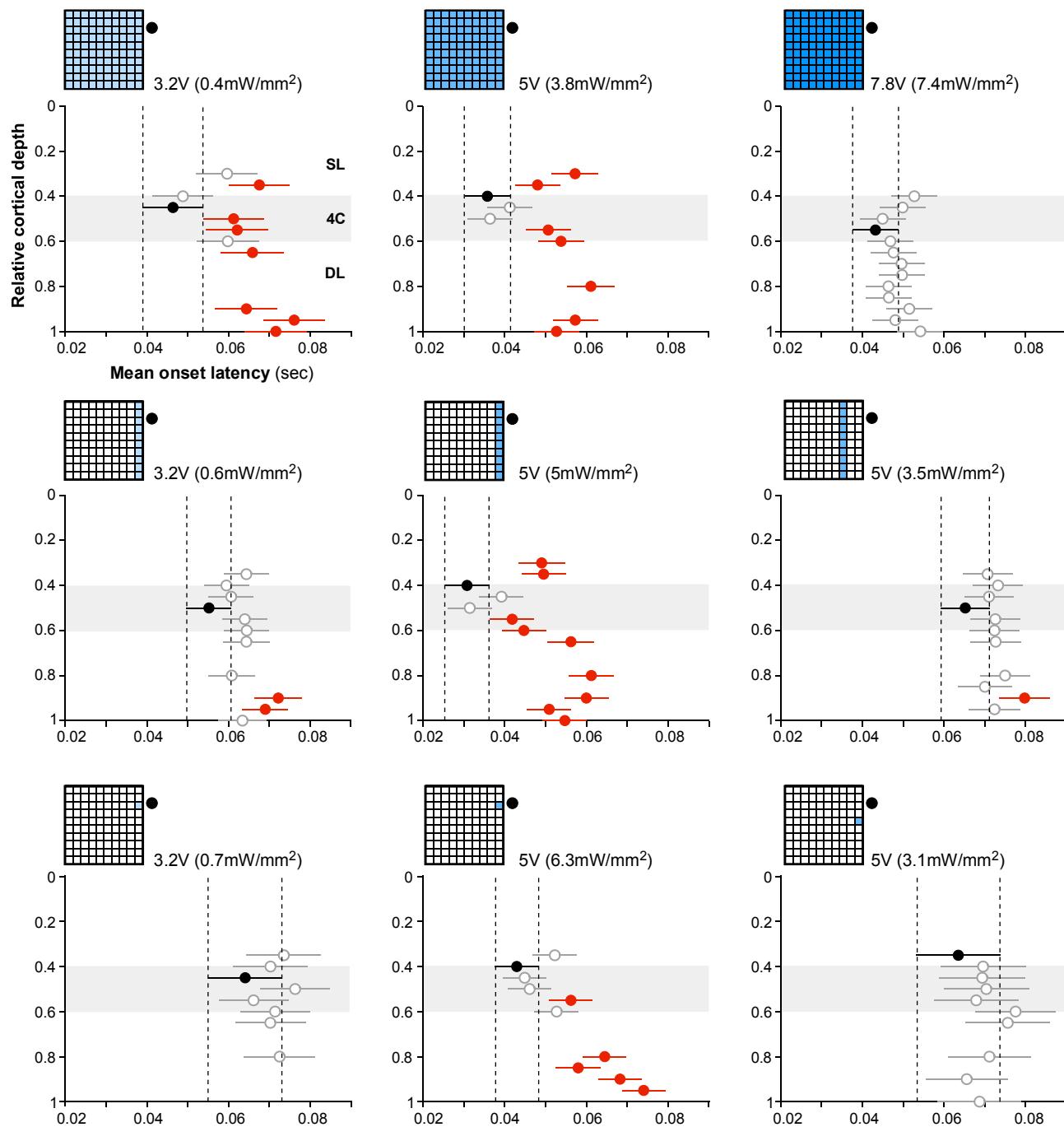
Extended Data Figure 1

Output optical power and irradiance of the UOA



Each heat map represents the output optical power (A) or irradiance (B) measured at each needle tip across the entire UOA for different input voltages (indicated at the top of each map). Needles C6-R3 and C6-R4 did not emit light at their tips, thus, they were not included in the descriptive statistics in Extended Data Table 1.

Extended Data Figure 2

UOA after explantation


(A) Image of the brain after explantation of the UOA at the end of the *in vivo* testing experiment. The *asterisk* marks the center of the UOA implantation site. The white area at the site of the explantation is the *Duragel* that was placed on the brain after insertion of the UOA to protect the cortical surface and prevent dehydration. The *dashed line* marks the border between V2 and V1. **(B)** The UOA after explantation. The *white dot* indicates the approximate location of the LEA used for penetration 2 (P2) relative to the UOA. The shank at the top right corner (column 1 row 10) was broken prior to the UOA insertion. The remaining shanks are intact.

Extended Data Figure 3

Laminar and tangential location of UOA and LEA penetrations

(A) Left: The locations of the UOA (white box) and of 3 LEA penetrations (*P1-P3*, cyan dashed circles) are shown on two cytochrome-oxidase (CO)-stained tangential sections through V1 and V2 (top section is more superficial). *Solid white contour*: V1/V2 border; *dashed white contours* delineate V1 layers (indicated). The location of column 1 (*C1*) and row 10 (*R10*) are indicated by arrows. *White dots* mark the locations of UOA needles visible in these sections as cortical damage. *Black dots* mark the location of UOA needles visible in more superficial sections, but not in these sections. Note that the majority of white dots are located in layer 4C in both sections. There are no white dots in column 1 in section #12 and only 2 in section #9, as the needle tips in this column terminated in the sections just above, thus in the superficial part of L4C. The postero-lateral half of the UOA terminated in slightly more superficial layers compared to its antero-medial half. *A*:anterior; *M*: medial. **Right:** Same CO-stained section as shown on the left, with superimposed image of the same section viewed under tdT fluorescence. The fluorescent image was rendered transparent in Adobe Photoshop. *P2* and *P3* were located inside or near, respectively, the region of tdT/ChR2 expression, whereas *P1* was more distant from it; accordingly, only the neurons recorded in *P2* and *P3*, but not in *P1*, could be modulated by the laser. *P2* was located about 1-1.1 mm medial to the nearest UOA needle (*C1-R8*, *C1-R9*, in these sections), while *P3* was located about 800 μ m from the UOA (*C1-R5* and *C1-R4* are the nearest needles to *P3* in these sections, but, as this penetration was not vertical, the more superficial LEA contacts were closer to needles *C1-R6* and *C1-R7* and more distant from the UOA, as also indicated by the physiological recordings in (C), and in Fig. 3F). The asterisk in all panels marks a crack in the tissue caused by histological processing, not by the UOA insertion. **(B) Left:** Relative cortical depth of each contact on the LEA in *P2* is plotted versus the increase in firing rate caused by stimulation of single μ LEDs along column 1 (inset). Different color traces are data for different μ LEDs (rows 3-9) at 5 or 7.8V stimulation intensity (the most distant μ LEDs only evoked responses at the higher intensity). μ LED *C1-R8* evoked the max response, indicating this needle tip was the closest to *P2*. **Right:** Relative cortical depth on the LEA-P2 is plotted versus the mean onset latency (red) or the mean onset latency reliability (blue; inverse of the SD of the distribution of pulse by pulse onset latencies) of responses at each contact evoked by stimulation of the whole μ LED array; means are averages across all photostimulation intensities ≤ 5 V. The shortest and most reliable response latencies are for contacts in L4C, indicating the UOA tips nearest *P2* ended in this layer. **(C) Same as in (B) but for *P3*.** The data indicate that the μ LED closest to *P3* was *C1-R7* whose tip terminated in the superficial layers.

Extended Data Figure 4

Statistical analysis of onset latencies for penetration 2 (data shown in Figure 4C)

Mean onset latency (\pm s.e.m) for each contact in P2 which showed significant response to UOA stimulation, for the UOA stimulation condition indicated by the *insets* at the top left of each plot. The mean latency was estimated from distributions of single-trial latency estimates. The *black dot* indicates the contact with the shortest latency in each condition. The *red dots* indicate the contacts that showed a statistically significant (Tukey HSD test) pairwise difference with the shortest latency contact (*black dot*), and the *gray dots* the contacts that did not differ significantly from the black dot. The *vertical dashed lines* indicate the points beyond which comparisons are significant.