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Abstract

We present Polarity Sampling, a theoretically justified plug-
and-play method for controlling the generation quality
and diversity of any pre-trained deep generative network
(DGN). Leveraging the fact that DGNs are, or can be ap-
proximated by, continuous piecewise affine splines, we de-
rive the analytical DGN output space distribution as a func-
tion of the product of the DGN’s Jacobian singular val-
ues raised to a power ρ. We dub ρ the polarity param-
eter and prove that ρ focuses the DGN sampling on the
modes (ρ < 0) or anti-modes (ρ > 0) of the DGN output-
space probability distribution. We demonstrate that nonzero
polarity values achieve a better precision-recall (quality-
diversity) Pareto frontier than standard methods, such as
truncation, for a number of state-of-the-art DGNs. We also
present quantitative and qualitative results on the improve-
ment of overall generation quality (e.g., in terms of the
Fréchet Inception Distance) for a number of state-of-the-
art DGNs, including StyleGAN3, BigGAN-deep, NVAE, for
different conditional and unconditional image generation
tasks. In particular, Polarity Sampling redefines the state-
of-the-art for StyleGAN2 on the FFHQ Dataset to FID 2.57,
StyleGAN2 on the LSUN Car Dataset to FID 2.27 and Style-
GAN3 on the AFHQv2 Dataset to FID 3.95. Colab Demo.

1. Introduction
Deep Generative Networks (DGNs) have emerged as

the go-to framework for generative modeling of high-
dimensional datasets, such as natural images. Within the
realm of DGNs, different frameworks can be used to pro-
duce an approximation of the data distribution, e.g., Gen-
erative Adversarial Networks (GANs) [18], Variational Au-
toEncoders (VAEs) [31] or flow-based models [40]. But
despite the different training settings and losses that each
of these frameworks aim to minimize, the evaluation met-
ric of choice that is used to characterize the overall quality
of generation is the Fréchet Inception Distance (FID) [22].
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Figure 1. First row: Evolution of generation quality and diversity
for varying truncation [29] ψ and polarity ρ. Polarity Sampling
achieves a better Pareto trade-off than truncation, e.g., polarity can
be used to achieve a specified recall at higher precision or a spec-
ified precision at higher recall, compared to truncation. For addi-
tional Pareto examples, see Fig. 3. Second, Third, and Fourth
row: Samples obtained from BigGAN-deep on Golden Retriever,
Tiger and House Finch classes of Imagenet with samples of greater
quality (ρ < 0) and greater diversity (ρ > 0). For examples with
LSUN [54], see Fig. 4.

The FID is obtained by taking the Fréchet Distance in the
InceptionV3 [48] embedding space between two distribu-
tions; the distributions are usually taken to be the training
dataset and samples from a DGN trained on the dataset.
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It has been established in prior work [45] that FID non-
linearly combines measures of quality and diversity of the
samples, which has inspired further research into disentan-
glement of these quantities as precision and recall [32, 45]
metrics respectively.

Recent state-of-the-art DGNs such as BigGAN [8],
StyleGAN2/3 [28, 30], and NVAE [53], have reached FIDs
nearly as low as one could obtain when comparing sub-
sets of real data with themselves. This has led to the
deployment of DGNs in a variety of applications, such
as real-world high-quality content generation and data-
augmentation. However, it is clear that, depending on the
domain of application, generating samples from the best
FID model could be suboptimal. For example, realistic
content generation might benefit more from high-quality
(precision) samples, while data-augmentation might ben-
efit more from samples of high-diversity (recall), even if
in each case, the overall FID slightly diminishes [16, 25].
Therefore, a number of state-of-the-art DGNs have intro-
duced a controllable parameter to trade-off between the pre-
cision and recall of the generated samples, e.g., truncated
latent space sampling [8], interpolating truncation [29, 30].
However, these methods do not always work “out-of-the-
box” [8], e.g., BigGAN requires orthogonal regularization
of the DGN’s parameters during training. These methods
also lack a clear theoretical understanding which can limit
their deployment for sensitive applications.

In this paper, we propose a principled solution to con-
trol the quality (precision) and diversity (recall) of DGN
samples that does not require retraining nor specific
conditioning of model training. Our method, termed Po-
larity Sampling, builds on our previous work on the analyt-
ical form of the learned DGN sample distribution [24] and
introduces a new hyperparameter, that we dub the polarity
ρ ∈ R, that adapts the latent space distribution for post-
training control. The polarity parameter provably forces
the latent distribution to concentrate on the modes of
the DGN distribution, i.e., regions of high probability
(ρ < 0), or on the anti-modes, i.e., regions of low-
probability (ρ > 0); with ρ = 0 recovering the original
DGN distribution. The Polarity Sampling process depends
only on the top singular values of the DGN’s output Jaco-
bian matrices evaluated at each input sample and can be im-
plemented to perform online sampling. A crucial benefit
of Polarity Sampling lies in its theoretical derivation from
the analytical DGN data distribution [24] where the product
of the DGN Jacobian matrices singular values – raised to
the power ρ – provably controls the DGN samples distribu-
tion as desired. See Fig. 1 for an initial example of Polarity
Sampling in action.

Our main contributions are as follows:
[C1] We first provide the theoretical derivation of Polarity
Sampling based on the singular values of the generator Ja-

cobian matrix. We provide pseudocode for Polarity Sam-
pling and an approximation scheme to control its computa-
tional complexity as desired (Sec. 3).
[C2] We demonstrate on a range of DGNs and datasets that
Polarity Sampling not only enables one to move on the
precision-recall Pareto frontier (Sec. 4.1), i.e., it controls
the quality and diversity efficiently, but it also reaches im-
proved FID scores for each model (Sec. 4.2).
[C3] We leverage the fact that negative Polarity Sam-
pling provides access to the modes of the learned DGN
distribution, which enables us to explore several timely
and important questions regarding DGNs. We provide
visualization of the modes of trained GANs and VAEs
(Sec. 5.1) and assess the perceptual smoothness around the
modes (Sec. 5.2).

2. Related Work
Deep Generative Networks as Piecewise-Linear Map-
pings. In most DGN settings, once training has been com-
pleted, sampling new data points is performed by first sam-
pling latent space samples zi ∈ RK from a latent space
distribution zi ∼ pz and then processing those samples
throughout a DGN G : RK 7→ RD to obtain the sample
xi ≜ G(zi), ∀i. One recent line of research that we will
rely on through our study consists in formulating DGNs as
Continuous Piecewise Affine (CPA) mappings [3, 35], that
be expressed as

G(z) =
∑
ω∈Ω

(Aωz + bω)1{z∈ω}, (1)

where Ω is the input space partition induced by the DGN
architecture, ω is a partition-region where z resides, and
Aω, bω are the corresponding slope and offset parameters.
The CPA formulation of Eq. (1) either represents the ex-
act DGN mapping, when the nonlinearities are CPA e.g.
(leaky-)ReLU, max-pooling, or represents a first-order ap-
proximation of the DGN mapping. For more background
on CPA networks, see [4]. The key result from [12] that we
will leverage is that Eq. (1) is either exact, or can be made
close enough to the true mapping G, to be considered exact
for practical purposes.
Post-Training Improvement of a DGN’s Latent Distri-
bution. The idea that the training-time latent distribution pz
might be suboptimal for test-time evaluation has led to mul-
tiple research directions to improve the quality of samples
post-training. [10,49] proposed to optimize the samples z ∼
pz based on a Wasserstein discriminator, leading to the Dis-
criminator Optimal Transport (DOT) method. That is, after
sampling a latent vector z, the latter is repeatedly updated
such that the produced datum has greater quality. [50] pro-
poses to simply remove the samples that produce data out of
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the true data manifold. This can be viewed as a binary rejec-
tion decision of any new sample z ∼ pz . [2] were the first to
formally introduce rejection sampling based on a discrim-
inator providing a quality estimate used for the rejection
sampling of candidate vectors z ∼ pz . Replacing rejec-
tion sampling with the Metropolis-Hasting algorithm [21]
led to the method of [52], coined MH-GAN. An improve-
ment made by [19] was to use the Sampling-Importance-
Resampling (SIR) algorithm [43]. [26] proposes latentRS
which consists in training a WGAN-GP [20] on top of any
given DGN to learn an improved latent space distribution
producing higher-quality samples. [26] also proposes laten-
tRS+GA, where the generated samples from that learned
distribution are further improved through gradient ascent.
Truncation of the Latent Distribution. Latent space trun-
cation was introduced for high-resolution face image gen-
eration by [33] as a method of removing generated arti-
facts. The authors employed a latent prior of z ∼ U [−1, 1]
during training and z ∼ U [−0.5, 0.5] for qualitative im-
provement during evaluation. The “truncation trick” was
formally introduced by [8] where the authors propose re-
sampling latents z if they exceed a specified threshold for
truncation. The authors also use weight orthogonalization
during training to make truncation amenable. Style-based
architectures [29, 30] introduce a linear interpolation based
truncation in the style-space, which is also designed to con-
verge to the average of the dataset [29]. Ablations for trun-
cation in style-based generators are provided in [32].

3. Introducing The Polarity Parameter From
First Principles

In this section, we introduce Polarity Sampling, a
method that enables us to control the generation quality
and diversity of DGNs. We will proceed by first expressing
the analytical form of DGNs’ output distribution (Sec. 3.1),
and parametrizing the latent space distribution by the singu-
lar values of its Jacobian matrix and our polarity parameter
(Sec. 3.2). We provide pseudo-code and an approximation
strategy that enables fast sampling (Sec. 3.3).

3.1. Analytical Output-Space Density Distribution

Given a DGN G, samples are obtained by sampling G(z)
with a given latent space distribution, as in z ∼ pz . This
produces samples that will lie on the image of G, the distri-
bution of which is subject to pz , the DGN latent space parti-
tion Ω and per-region affine parameters Aω, bω . We denote
the DGN output space distribution as pG. Under an injec-
tive DGN mapping assumption (g(z) = g(z′) =⇒ z = z′)
(which holds for various architectures, see, e.g., [41]) it is
possible to obtain the analytical form of the DGN output
distribution by pG [24]. For a reason that will become clear
in the next section, we focus here on the case z ∼ U(D)

i.e., using a Uniform latent space distribution over the do-
mainD. Leveraging the Moore-Penrose pseudo inverse [51]
A† ≜ (ATA)−1AT , we obtain the following.

Theorem 1. For z ∼ U(D), the probability density pG(x)
is given by

pG(x) ∝
∑
ω∈Ω

det(AT
ωAω)

− 1
21{A†

ω(x−bω)∈ω∩D}, (2)

where det is the pseudo-determinant, i.e., the product of the
nonzero eigenvalues of AT

ωAω . (Proof in Appendix B.1.)

Note that one can also view det(AT
ωAω)

1/2 as the prod-
uct of the nonzero singular values of Aω . Theorem 1 is
crucial to our development since it demonstrates that the
probability of a sample x = g(z) is proportional to the
change in volume (det(AT

ωAω)
1/2) produced by the coor-

dinate system Aω of the region ω in which z lies in (recall
Eq. (1)). If a region ω ∈ Ω has a slope matrix Aω that
contracts the space (det(AT

ωAω) < 1) then the output den-
sity on that region — mapped to the output space region
{Aωu + bω : u ∈ ω}— is increased, as opposed to other
regions that either do not contract the space as much, or
even expand it (det(AT

ωAω) > 1). Hence, the concentra-
tion of samples in each output space region depends on how
that region’s slope matrix contracts or expands the space,
relative to all other regions.

3.2. Controlling the Density Concentration with a
Single Parameter

From Theorem 1 we can directly obtain an explicit
parametrization of pz that enables us to control the dis-
tribution of samples in the output space, i.e., to control
pG. In fact, note that one can sample from the mode of
the DGN distribution by employing z ∼ U(ω∗), ω∗ =
argminω∈Ω det(AT

ωAω). Alternatively, one can sample
from the region of lowest probability, i.e., the anti-mode, by
employing z ∼ U(ω∗), ω∗ = argmaxω∈Ω det(AT

ωAω).
This directly leads to our Polarity Sampling method that
adapts the latent space distribution based on the per-region
pseudo-determinants.

Corollary 1. The latent space distribution

pρ(z) ∝
∑
ω∈Ω

det(AT
ωAω)

ρ
21{z∈ω}, (3)

where ρ ∈ R is the polarity parameter, produces the DGN
output distribution

pG(x) ∝
∑
ω∈Ω

det(AT
ωAω)

ρ−1
2 1{A†

ω(x−bω)∈ω∩D}, (4)

which falls back to the standard DGN distribution for ρ =
0, to sampling of the mode(s) for ρ→ −∞ and to sampling
of the anti-mode(s) for ρ→∞. (Proof in Appendix B.2.)
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Polarity Sampling consists of using the latent space dis-
tribution Eq. (3) with a polarity parameter ρ, that is either
negative, concentrating the samples toward the mode(s) of
the DGN distribution pG, positive, concentrating the sam-
ples towards the anti-modes(s) of the DGN distribution pG
or zero, which removes the effect of polarity. Note that Po-
larity Sampling changes the output density in a continuous
fashion. Its practical effect, as we will see in Sec. 4.1, is to
control the quality and diversity of the obtained samples.

3.3. Approximation and Implementation

We now provide the details and pseudocode for the Po-
larity Sampling procedure that implements Corollary 1.
Computing the Aω Matrix. The per-region slope matrix
as in Eq. (1), can be obtained given any DGN by first sam-
pling a latent vector z ∈ ω, and then obtaining the Jacobian
matrix of the DGN Aω = JzG(z), ∀z ∈ ω. This has the
benefit of directly employing automatic differentiation li-
braries and thus does not require any exhaustive implemen-
tation nor derivation. Computing JzG(z) of a generator is
not uncommon in practice, e.g., it is employed during path
length regularization of StyleGAN2 [30].
Discovering the Regions ω ∈ Ω. As per Eq. (3), we need
to obtain the singular values of Aω (see next paragraph) for
each region ω ∈ Ω. This is often a complicated task, espe-
cially for state-of-the-art DGNs that can have a partition Ω
whose number of regions grows with the architecture depth
and width [36]. Furthermore, checking if z ∈ ω requires
one to solve a linear program [15], which is expensive. As
a result, we develop an approximation that consists of sam-
pling many z ∼ U(D) vectors from the latent space (hence
our uniform prior assumption in Corollary 1), and comput-
ing their corresponding matrices Aω(z). This way, we are
guaranteed that Aω(z) corresponds to the slope of the region
ω in which z falls in, removing the need to check whether
z ∈ ω. We do so over N samples obtained uniformly from
the DGN latent space (based on the original latent space
domain). Selection of N can impact performance as this
exploration needs to discover as many regions from Ω as
possible.
Singular Value Computation. Computing the singular val-
ues of Aω is an O(min(K,D)3) operation [17]. However,
not all singular values might be relevant, e.g., the small-
est singular values that are nearly constant across regions
ω can be omitted without altering Corollary 1. Hence, we
employ only the top-k singular values of Aω to speed up
singular value computation to O(Dk2), details provided in
Appendix A.3. (Further approximation could be employed
if needed, e.g., power iteration [39]).

While the required number of latent space samples N
and the number of top singular values k might seem to be
a limitation of Polarity Sampling, we have found in prac-
tice that N and k for state-of-the-art DGNs can be set at

Algorithm 1 Polarity Sampling procedure with polarity ρ;
online version and 2D examples in Appendix. Algorithm 2
and Fig. 11. For implementation details, see Sec. 3.3.

Input: K > 0, S > 0, N ≫ S,G,D, ρ ∈ R
Z,S,R ← [], [], []
for n = 1, . . . , N do

z ∼ U(D)
σ = SingularValues(JzG(z), decreasing = True)
Z.append(z)
S.append(ρ

∑K
k=1 log(σ[k] + ϵ))

for n = 1, . . . , S do
i ∼ Categorical(prob = softmax(S))
R.append(Z[i])

Output: R
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Figure 2. Effect of Polarity Sampling on FID of a StyleGAN2-F
model pretrained on FFHQ for varying number of top-k singular
values (left) and varying number of latent space samples N used
to obtain per-region slope matrix Aω singular values (right) (re-
call Sec. 3.3 and Algorithm 1). The trend in FIDs to evaluate the
impact of ρ stabilizes when using around k = 40 singular values
and N ≈200,000 latent space samples. For the effect of k and N
on precision and recall, see Fig. 9.

N ≈ 200K, k ∈ [30, 100]. We conduct a careful ablation
study and demonstrate the impact of different choices for N
and k in Fig. 2 and Tabs. 3 and 4 in Appendix A.2. Com-
putation times and software/hardware details are provided
in Appendix A.3. To reduce round-off errors that can occur
for extreme values of ρ, we compute the product of singular
values in log-space, as shown in Algorithm 1.

We summarize how to obtain S samples using the above
steps in the pseudocode given in Algorithm 1 and pro-
vide an efficient solution to reduce the memory require-
ment incurred when computing the large matrix Aω in Ap-
pendix A.4. We also provide an implementation that en-
ables online sampling in Algorithm 2 (Appendix A.1). It is
also possible to control the DGN prior pz with respect to a
different space than the data-space e.g. inception-space, or
with a different input space than the latent-space e.g. style-
space in StyleGAN2/3. This incurs no changes in Algo-
rithm 1 except that the DGN is now considered to be ei-
ther a subset of the original one, or to be composed with
a VGG/InceptionV3 network. We provide the implemen-
tation details for style-space, VGG-space, and Inception-
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space in Appendix A.5. In those cases, the partition Ω and
the per-region mapping parameters Aω, bω are the ones of
the corresponding sub-network or composition of networks
(recall Eq. (1)). Polarity Sampling adapts the DGN prior
distribution to obtain the modes or anti-modes with respect
to the considered output spaces.

4. Controlling Precision, Recall, and FID via
Polarity

We now provide empirical validation of Polarity Sam-
pling with an extensive array of experiments. Since calcu-
lation of distribution metrics such as FID, precision, and re-
call are sensitive to image processing nuances, we use each
model’s original code repository except for BigGAN-deep
on ImageNet [13], for which we use the evaluation pipeline
specified for ADM [14]. For NVAE (trained on colored-
MNIST [1]), we use a modified version of the StyleGAN3
evaluation pipeline. Precision and recall metrics are all
based on the implementation of [32]. Metrics in Tab. 2
are calculated for 50K training samples to be able to com-
pare with existing latent reweighing methods. For all other
results, the metrics are calculated using min{ND, 100K}
training samples, where ND is the number of samples in
the dataset.

4.1. Polarity Efficiently Parametrizes the Precision-
Recall Pareto Frontier

As we have discussed above, Polarity Sampling can ex-
plicitly sample from the modes or anti-modes of any learned
DGN distribution. Since the DGN is trained to fit the train-
ing distribution, sampling from the modes and anti-modes
correspond to sampling from regions of the data manifold
that are approximated better/worse by the DGN . There-
fore, Polarity Sampling is an efficient parameterization of
the trade-off between precision and recall of generation [32]
since regions with higher precision are regions where the
manifold approximation is more accurate.

As experimental proof, we provide in Fig. 3 the
precision-recall trade-off when sweeping polarity, and com-
pare it with truncation [29] for pretrained StyleGAN{2,3}
architectures. We see that Polarity Sampling offers a
competitive alternative to truncation for controlling the
precision-recall trade-off of DGNs across datasets and mod-
els. For any given precision, the ρ parameter allows us to
reach greater recall than what is possible via latent space
truncation [29]. And conversely, for any given recall, it is
possible to reach a higher precision than what can be at-
tained using latent space truncation. We see that diversity
collapses rapidly for latent truncation compared to Polarity
Sampling, across all architectures, which is a major limi-
tation. In addition to that, controlling both truncation and
polarity allows us to further extend the Pareto frontier for
all of our experiments.
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Figure 3. Pareto frontier of the precision-recall metrics can be
obtained solely by varying the polarity parameter, for any given
truncation level. We depict here six different models and datasets.
Results for additional models and datasets are provided in Fig. 1
and Fig. 8.

Apart from the results presented here, we also see that
polarity can be used to effectively control the precision-
recall trade-off for BigGAN-deep [8] and ProGAN [27].
ProGAN unlike BigGAN and StyleGAN, is not compatible
with truncation based methods, i.e., latent space truncation
has negligible effect on precision-recall. Hence, polarity
offers a great benefit over those existing solutions: Polarity
Sampling can be applied regardless of training or controlla-
bility factors that are preset in the DGN design. We provide
additional results in Appendix C.

4.2. Polarity Improves Any DGN’s FID

We saw in Sec. 4.1 that polarity can be used to control
quality versus diversity in a meaningful and controllable
manner. In this section, we connect the effect of polarity
with FID. Recall that the FID metric nonlinearly combines
quality and diversity [45] into a distribution distance mea-
sure. Since polarity allows us to control the output distri-
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Figure 4. Curated samples of cars and cats for Polarity Sampling in style-space, and church for Polarity Sampling in pixel-space. (Qualita-
tive comparison with truncation sweep in Fig. 10 and nearest training samples in Fig. 12 in the Appendix.) None of the images correspond
to training samples, as we discuss in Sec. 5.1.

bution of the DGN, an indirect result of polarity is the re-
duction of FID by matching the inception embedding distri-
bution of the DGN with that of the training set distribution.
Recall that ρ = 0 recovers the baseline DGN sampling; for
all the state-of-the-art methods in question, we reach lower
(better) FID by using a nonzero polarity. In Tab. 1, we com-
pare Polarity Sampling with state-of-the-art solutions that
propose to improve FID by learning novel DGN latent space
distributions, as were discussed in Sec. 2. We see that for
a StyleGAN2 pre-trained on the LSUN church [54] dataset,
by increasing the diversity (ρ = 0.2) of the VGG embed-
ding distribution, Polarity Sampling surpasses the FID of
methods reported in literature that post-hoc improves qual-
ity of generation.

In Tab. 2, we present for LSUN {Church, Car, Cat} [54],
ImageNet [13], FFHQ [29], and AFHQv2 [11,28] improved
FID obtained solely by changing the polarity ρ of a state-of-
the-art DGN. This implies that Polarity Sampling provides
an efficient solution to adapt the DGN latent space.

We observe that, given any specific setting, ρ ̸= 0 al-
ways improves a model’s FID. We see that in a case specific
manner, both positive and negative ρ improves the FID.For

LSUN Church 256×256
StyleGAN2 variant FID ↓ Prec ↑ Recall ↑
Standard 6.29 .60 .51
SIR† [43] 7.36 .61 .58
DOT† [49] 6.85 .67 .48
latentRS† [26] 6.31 .63 .58
latentRS+GA† [26] 6.27 .73 .43
ρ-sampling 0.2 6.02 .57 .53

Table 1. Comparison of Polarity Sampling with latent reweight-
ing techniques from literature. FID, Precision and Recall is cal-
culated using 50,000 samples. †Metrics reported from papers due
to unavailability of code. †Precision-recall is calculated with 1024
samples only.

StyleGAN2-F trained on FFHQ, increasing the diversity
of the inception space embedding distribution helps reach
a new state-of-the-art FID. By increasing the precision of
StyleGAN3-T via Polarity Sampling in the Vgg space, we
are able to surpass the FID of baseline StyleGAN2-F [28].
We observe that controlling the polarity of the InceptionV3
embedding distribution of StyleGAN2-F gives the most sig-
nificant gains in terms of FID. This is due to the fact that the
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Model FID ↓ Precision ↑ Recall ↑ Model FID ↓ Precision ↑ Recall ↑
LSUN Church 256×256 LSUN Cat 256×256

DDPM† [23] 7.86 - - ADM (dropout)† 5.57 0.63 0.52
StyleGAN2 3.97 0.59 0.39 StyleGAN2 6.49 0.62 0.32
+ ρ-sampling Vgg 0.001 3.94 0.59 0.39 + ρ-sampling Pix 0.01 6.44 0.62 0.32
+ ρ-sampling Pix -0.001 3.92 0.61 0.39 + ρ-sampling Sty -0.1 6.39 0.64 0.32

LSUN Car 512×384 FFHQ 1024×1024
StyleGAN† 3.27 0.70 0.44 StyleGAN2-E 3.31 0.71 0.45
StyleGAN2 2.34 0.67 0.51 Projected GAN† [46] 3.08 0.65 0.46
+ ρ-sampling Vgg -0.001 2.33 0.68 0.51 StyleGAN3-T 2.88 0.65 0.53
+ ρ-sampling Sty 0.01 2.27 0.68 0.51 + ρ-sampling Vgg -0.01 2.71 0.66 0.54
+ ρ-sampling Pix 0.01 2.31 0.68 0.50

ImageNet 256×256 StyleGAN2-F 2.74 0.68 0.49
DCTransformer† [37] 36.51 0.36 0.67 + ρ-sampling Ic3 0.01 2.57 0.67 0.5
VQ-VAE-2† [42] 31.11 0.36 0.57 + ρ-sampling Pix 0.01 2.66 0.67 0.5
SR3 † [44] 11.30 - -
IDDPM† [38] 12.26 0.70 0.62 AFHQv2 512×512
ADM† [14] 10.94 0.69 0.63 StyleGAN2† 4.62 - -
ICGAN+DA† [9] 7.50 - - StyleGAN3-R† 4.40 - -
BigGAN-deep 6.86 0.85 0.29 StyleGAN3-T 4.05 0.70 0.55
+ ρ-sampling Pix 0.0065 6.82 0.86 0.29 + ρ-sampling Vgg -0.001 3.95 0.71 0.55
ADM+classifier guidance 4.59 0.82 0.52

Table 2. †Paper reported metrics. We observe that moving away from ρ = 0, Polarity Sampling improves FID across models and datasets,
empirically validating that the top singular values of a DGN’s Jacobian matrices contain meaningful information to improve the overall
quality of generation

.

Frechet distance between real and generated distributions is
directly affected while performing Polarity Sampling in the
Inception space. We provide generated samples in Fig. 4
varying the style-space ρ for LSUN cars and LSUN cats,
whereas varying the pixel-space ρ for LSUN Church. It is
clear that ρ < 0 i.e. sampling closer to the DGN distribution
modes produce samples of high visual quality, while ρ > 0
i.e. sampling closer to the regions of low-probability pro-
duce samples of high-diversity, with some samples which
are off the data manifold due to the approximation qual-
ity of the DGN in that region. Using Polarity Sampling, we
are able to advance the state-of-the-art performance on three
different settings: for StyleGAN2 on the FFHQ [29] Dataset
to FID 2.57, StyleGAN2 on the LSUN [54] Car Dataset to
FID 2.27, and StyleGAN3 on the AFHQv2 [28] Dataset to
FID 3.95. For additional experiments with ProGAN, and
NVAE under controlled training and reference dataset dis-
tribution shift, see Appendix C.

5. New Insights into DGN Distributions
In Sec. 4 we demonstrated that Polarity Sampling is a

practical method to manipulate DGN output distributions to
control their quality and diversity. We now demonstrate that
Polarity Sampling has more foundational theoretical appli-
cations as well. In particular, we dive into several timely
questions regarding DGNs that can be probed using our

framework.

5.1. Are GAN/VAE Modes Training Samples?
Mode collapse [5, 34, 47] has complicated GAN training

for many years. It consists of the entire DGN collapsing
to generate a few different samples or modes. For VAEs,
modes can be expected to be related to the modes of the
empirical dataset distribution, as reconstruction is part of
the objective. But this might not be the case with GANs
e.g., the modes can correspond to parts of the space where
the discriminator is the least good at differentiating between
true and fake samples. There has been no reported methods
in literature that allows us to observe the modes of a trained
GAN. Existing visualization techniques focus on finding the
role of each DGN unit [6] or finding images that GANs can-
not generate [7]. Using Polarity Sampling, we can visualize
the modes of DGNs for the first time. In Fig. 5, we present
samples from the modes of BigGAN-deep trained on Ima-
geNet, StyleGAN3 trained on AFHQv2, and NVAE trained
on colored-MNIST. We observe that BigGAN modes tend
to reproduce the unique features of the class, removing the
background and focusing more on the object that the class
is assigned to. AFHQv2 modes on the other hand, focus on
younger animal faces and smoother textures. NVAE mode
sampling predominately produce the digit ‘1’ which corre-
sponds to the dataset mode (digit with the least intra-class
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BigGAN Samoyed

BigGAN Tench

BigGAN Flamingo

StyleGAN3 AFHQv2

BigGAN Egyptian cat

NVAE colored-MNIST

Figure 5. Modes for BigGAN-deep, StyleGAN3-T and NVAE
obtained via ρ ≪ 0 Polarity Sampling. This is, to the best of
our knowledge, the first visualization of the modes of DGNs in
pixel space.

1000 1500 2000 2500 3000 3500 4000 4500 600 800 1000 1200 1400 1600 1800 2000 2200

Polarity -5
Polarity 1

Figure 6. Distribution of l2 distance to 3 training set nearest
neighbors at 32 × 32 resolution, for 1000 generated samples
from LSUN Church StyleGAN2 (left) and colored-MNIST NVAE
(right). Samples closer to the modes (ρ < 0) have a significant
shift in the distribution closer to the training samples for NVAE,
while for StyleGAN2 the distribution shift is minimal with sig-
nificant overlap. This behavior is expected as VAE models are
encouraged to position their modes on the training samples, as
opposed to GANs whose modes depend on the discriminator.

variation). We also provide in Fig. 6 the distribution of the
l2 distances between generated samples and their 3 near-
est training samples for modal (ρ = −5) and anti-modal
(ρ = 1) polarity. We see that even after reducing the polar-
ity, StyleGAN2 nearest neighbor distributions have overlap
whereas for NVAE the modes move significantly closer to
the training samples. In Appendix. Fig. 15 we observe a
similar effect for WGAN and NVAE trained on MNIST.

5.2. Perceptual Path Length Around Modes

Perceptual Path Length (PPL) is the distance between
the Vgg space image of two latent space points. It has
previously been proposed as a measure of perceptual dis-
tance [30]. In Fig. 7, we report the PPL of a StyleGAN2-F
trained on FFHQ, for an interpolation step of length 10−4

between endpoints from the latent/style space. We sample
points using Polarity Sampling varying ρ ∈ [1,−1], es-

200 400 600 800 1000 1200 1400
perceptual path length

-1.0
-0.5
-0.2
0.0
0.2
0.5
1.0

100 200 300 400 500 600
perceptual path length

-0.2
-0.5
-1.0
0.0
0.2
0.5
1.0

Figure 7. Distribution of PPL for StyleGAN2-F trained on FFHQ
with varying Polarity Sampling (in VGG space) setting (ρ given
in the legend) for endpoints in the input latent space (left) and
endpoints in style-space (right). The means of the distributions
(PPL score) are provided as markers on the horizontal axis.

sentially measuring the PPL for regions of the data mani-
fold with increasing density as we increase ρ. We see that
for negative values of polarity, we have significantly lower
PPL compared to positive polarity or even baseline sam-
pling (ρ = 0). This result shows that for StyleGAN2, there
are smoother perceptual transitions closer to modes. While
truncation also reduces the PPL, it essentially does so by
sampling points closer to the style space mean [29], see
Appendix C.5 for comparisons. Polarity Sampling in the
Vgg space, can be used to directly sample from Vgg modes,
making it the first method that can be used to explicitly
sample regions that are perceptually smoother. It can there-
fore be used to develop sophisticated interpolation meth-
ods where, the interpolation is done along a high-likelihood
path on a feature space manifold.

6. Conclusions
We have proposed a new parameterization of the DGN

prior pz in terms of a single parameter – the polarity ρ– to
force the DGN samples to be concentrated on the distribu-
tion modes or anti-modes (Sec. 3). As a byproduct, for a
range of DGNs, we improve the state-of-the-art FID perfor-
mance. On the theoretical side, Polarity Sampling’s guaran-
tee that it samples from the modes of a DGN enabled us to
explore some timely open questions, including the relation
between distribution modes and training samples (Sec. 5.1),
and the effect of going from mode to anti-mode generation
on the perceptual path length (Sec. 5.2). We show that Po-
larity sampling can also be performed on feature space dis-
tributions of classifiers appended with a generator, which
can be possibly used for fair attribute generation, out-of-
distribution synthetic data generation and much more.
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