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Co-Optimization of Design and Fabrication Plans for Carpentry
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Fig. 1. Our system jointly explores the space of discrete design variants and fabrication plans to generate a Pareto front of (design, fabrication plan) pairs

that minimize fabrication costs. In this figure, (a) is the input design for a chair and the Pareto front that only explores the space of fabrication plans for

this design, (b) shows the Pareto front generated by joint exploration of both the design variants and fabrication plans for the chair, where each point is a

(design, fabrication plan) pair. Design variations indicate different ways to compose the same 3D model from a collection of parts and are illustrated with

the same color in the Pareto front. A physical chair is fabricated by following the result fabrication plan. The Pareto front of joint exploration dominates

the Pareto front of (a), which shows that the fabrication cost can be significantly improved by exploring design variations.

Past work on optimizing fabrication plans given a carpentry design can pro-

vide Pareto-optimal plans trading off between material waste, fabrication

time, precision, and other considerations. However, when developing fab-

rication plans, experts rarely restrict to a single design, instead considering

families of design variations, sometimes adjusting designs to simplify fab-

rication. Jointly exploring the design and fabrication plan spaces for each

design is intractable using current techniques. We present a new approach
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to jointly optimize design and fabrication plans for carpentered objects. To

make this bi-level optimization tractable, we adapt recent work from pro-

gram synthesis based on equality graphs (e-graphs), which encode sets of

equivalent programs. Our insight is that subproblems within our bi-level

problem share significant substructures. By representing both designs and

fabrication plans in a new bag of parts (BOP) e-graph, we amortize the

cost of optimizing design components shared among multiple candidates.

Even using BOP e-graphs, the optimization space grows quickly in prac-

tice. Hence, we also show how a feedback-guided search strategy dubbed

Iterative Contraction and Expansion on E-graphs (ICEE) can keep the size

of the e-graph manageable and direct the search towards promising candi-

dates. We illustrate the advantages of our pipeline through examples from

the carpentry domain.

CCS Concepts: • Computing methodologies→ Computer graphics;

Additional Key Words and Phrases: Fabrication, programming languages

ACM Reference format:

Haisen Zhao, Max Willsey, Amy Zhu, Chandrakana Nandi, Zachary Tat-

lock, Justin Solomon, and Adriana Schulz. 2022. Co-Optimization of Design

and Fabrication Plans for Carpentry. ACM Trans. Graph. 41, 3, Article 32

(March 2022), 13 pages.

https://doi.org/10.1145/3508499

1 INTRODUCTION

While optimizing designs for fabrication is a long-standing and

well-studied engineering problem, the vast majority of the work

in this area assumes that there is a unique map from a design

to a fabrication plan. In reality, however, many applications al-

low for multiple fabrication alternatives. Consider, for example,
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the model is shown in Figure 1(a), where different fabrication

plans trade-off material cost and fabrication time. In this context,

fabrication-oriented design optimization becomes even more chal-

lenging, since it requires exploring the landscape of optimal fab-

rication plans for many design variations. Every variation of the

original design (Figure 1(b)) determines a new landscape of fabrica-

tion plans with different cost trade-offs. Designers must therefore

navigate the joint space of design and fabrication plans to find the

optimal landscape of solutions.

In this work, we present a novel approach that simultaneously

optimizes both the design and fabrication plans for carpentry. Prior

work represents carpentry designs and fabrication plans as pro-

grams [Wu et al. 2019] to optimize the fabrication plan of a single

design at a time. Our approach also uses a program-like represen-

tation, but we jointly optimize the design and the fabrication plan.

Our problem setting has two main challenges. First, the discrete

space of fabrication plan alternatives can vary significantly for

each discrete design variation. This setup can be understood as a bi-

level problem, characterized by the existence of two optimization

problems in which the constraint region of the upper-level prob-

lem (the joint space of designs and fabrication plans) is implicitly

determined by the lower-level optimization problem (the space of

feasible fabrication plans given a design). The second challenge

is that there are multiple conflicting fabrication objectives. Plans

that improve the total production time may waste more material

or involve less precise cutting operations. Our goal is therefore

to find multiple solutions to our fabrication problem that repre-

sent optimal points in the landscape of possible trade-offs, called

the Pareto front. Importantly, the different fabrication plans on the

Pareto front may come from different design variations. The com-

plexity of the bi-level search space combined with the need for

finding a landscape of Pareto-optimal solutions makes this opti-

mization challenging.

We propose a method to make this problem computationally

tractable in light of the challenges above. Our key observation is

that there is redundancy on both levels of the search space that can

be exploited. In particular, different design variations may share

similar subsets of parts, which can use the same fabrication plans.

We propose exploiting this sharing to encode a large number of de-

sign variations and their possible fabrication plans compactly. We

use a data structure called an equivalence graph (e-graph) [Nelson

1980] to maximize sharing and thus amortize the cost of heavily

optimizing part of a design since all other design variations share

a part benefit from its optimization.

E-graphs have been growing in popularity in the programming

languages community; they provide a compact representation for

equivalent programs that can be leveraged for theorem proving

and code optimization. There are two challenges in directly apply-

ing e-graphs to design optimization under fabrication variations,

detailed below.

First, the different fabrication plans for a given design are all

semantically equivalent programs. However, the fabrication plans

associated with different design variations, in general, are not se-

mantically equivalent, i.e., they may produce different sets of parts.

This makes it difficult to directly apply traditional techniques,

which exploit sharing by searching for minimal cost, but still se-

mantically equivalent, versions of a program. One of our key tech-

nical contributions is therefore a new data structure for repre-

senting the search space, which we call the Bag-of-Parts (BOP)

E-graph. This data structure takes advantage of common substruc-

tures across both design and fabrication plans to maximize redun-

dancy and boost the expressive power of e-graphs.

Second, optimization techniques built around e-graphs have

adopted a two-stage approach: expansion (incrementally growing

the e-graph by including more equivalent programs1) followed by

extraction (the process of searching the e-graph for an optimal pro-

gram). In particular, the expansion stage has not been feedback-

directed, i.e., the cost of candidate programs has only been used in

extraction, but that information has not been fed back in to guide

further e-graph expansion. A key contribution of our work is a

method for Iterative Contraction and Expansion on E-graphs

(ICEE). Because ICEE is feedback-directed, it enables us to effec-

tively explore the large combinatorial space of designs and their

corresponding fabrication plans. ICEE also uses feedback to prune

the least valuable parts of the e-graph during the search, keeping

its size manageable. Furthermore, these expansion and contraction

decisions are driven by amulti-objective problem that enables find-

ing a diverse set of points on the Pareto front.

We implemented our approach and compared it against prior

work and against results generated by carpentry experts. Our re-

sults show that ICEE is up to 17 times faster than prior approaches

while achieving similar results. In some cases, it is the only ap-

proach that successfully generates an optimal set of results due to

its efficiency in exploring large design spaces. We showcase how

our method can be applied to a variety of designs of different com-

plexity and show how our method is advantageous in diverse con-

texts. For example, we achieve 25% reduced material in one model,

60% reduced time in another, and 20% saved total cost in a third

when assuming a carpenter charges $40/h when compared to a

method that does not explore design variations.

2 RELATED WORK

Optimization for Design and Fabrication. Design for fabrication is

an exciting area of research that aims at automatically achiev-

ing desired properties while optimizing fabrication plans. Exam-

ples of recent work include the computational design of glass

façades [Gavriil et al. 2020], compliant mechanical systems [Tang

et al. 2020], barcode embeddings [Maia et al. 2019], and interlock-

ing assemblies [Cignoni et al. 2014; Hildebrand et al. 2013; Wang

et al. 2019], among many others [Bickel et al. 2018; Schwartzburg

and Pauly 2013]. Fabrication considerations are typically taken

into account as constraints during design optimization, but these

methods assume that there is an algorithm for generating one fab-

rication plan for a given design. To the best of our knowledge, no

prior work explores the multi-objective space of fabrication alter-

natives during design optimization.

There is also significant literature on fabrication plan optimiza-

tion for a given design under different constraints. Recent work in-

cludes optimization of composite molds for casting [Alderighi et al.

2019], tool paths for 3D printing [Etienne et al. 2019; Zhao et al.

2016], and decomposition for CNC milling [Mahdavi-Amiri et al.

2020; Yang et al. 2020]. While some of these methods minimize the

1In the programming languages literature, this is known as equality saturation.
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distance to a target design under fabrication constraints [Duenser

et al. 2020; Zhang et al. 2019], none of them explores a space of

design modification to minimize fabrication cost.

In contrast, our work jointly explores the design and fabrication

space in the carpentry domain, searching for the Pareto-optimal

design variations that minimize multiple fabrication costs.

Design and Fabrication for Carpentry. Carpentry is a well-

studied domain in design and fabrication due to its wide applica-

tion scope. Prior work has investigated interactive and optimiza-

tion methods for carpentry design [Fu et al. 2015; Garg et al. 2016;

Koo et al. 2014; Song et al. 2017; Umetani et al. 2012]. There is also a

body of work on fabrication plan optimization [Koo et al. 2017; Lau

et al. 2011; Leen et al. 2019; Yang et al. 2015]. Closest to our work

is the system of Wu et al. [2019], which represents both carpentry

designs and fabrication plans as programs and introduces a com-

piler that optimizes fabrication plans for a single design. While our

work builds on the domain specific languages (DSLs) proposed

in that prior work, ours is centered on the fundamental problem of

design optimization under fabrication alternatives, which has not

been previously addressed.

Bi-Level Multi-Objective Optimization. Our problem and others

like it are bi-level, with a nested structure in which each design de-

termines a different space of feasible fabrication plans. The great-

est challenge in handling bi-level problems lies in the fact that the

lower level problem determines the feasible space of the upper-

level optimization problem. More background on bi-level optimiza-

tion can be found in the book by Dempe [2018], as well as review

articles by Lu et al. [2016] and Sinha et al. [2017].

Bi-level problems with multiple objectives can be even more

challenging to solve [Dempe 2018]. Some specific cases are solved

with classical approaches, such as numerical optimization [Eich-

felder 2010] and the ϵ-constraint method [Shi and Xia 2001].

Heuristic-driven search techniques have been used to address bi-

level multi-objective problems, such as genetic algorithms [Yin

2000] and particle swarm optimization [Halter and Mostaghim

2006]. These methods apply a heuristic search to both levels in a

nested manner, searching over the upper level with NSGA-II oper-

ations, while evaluating each individual call in a low-level NSGA-

II process [Deb and Sinha 2009]. Our ICEE framework also ap-

plies a genetic algorithm during the search. Different from past

techniques, ICEE does not nest the two-level search but rather

reuses structure between different upper-level feasible points.

ICEE jointly explores both the design and fabrication spaces using

the BOP E-graph representation.

E-graphs. An e-graph is an efficient data structure for compactly

representing large sets of equivalent programs. E-graphswere orig-

inally developed for automated theorem proving [Nelson 1980],

and were first adapted for program optimization by Joshi et al.

[2002]. These ideas were further expanded to handle programs

with loops and conditionals [Tate et al. 2009] and applied to a va-

riety of domains for program optimization, synthesis, and equiva-

lence checking [Nandi et al. 2020; Panchekha et al. 2015; Premtoon

et al. 2020; Stepp et al. 2011; Wang et al. 2020; Willsey et al. 2021;

Wu et al. 2019].

Recently, e-graphs have been used for optimizing de-

signs [Nandi et al. 2020], and also for optimizing fabrication

plans [Wu et al. 2019], but they have not been used to simulta-

neously optimize both designs and fabrication plans. Prior work

also does not explore feedback-driven e-graph expansion and

contraction for managing large optimization search spaces.

3 BACKGROUND

In this section, to increase the readability of the article and help

readers get necessary background knowledge earlier, we introduce

some mathematical preliminaries used in the rest of the article.

3.1 Multi-Objective Optimization

A multi-objective optimization problem is defined by a set of ob-

jectives fi : x �→ R that assign a real value to each point x ∈ X in

the feasible search space X. We choose the convention that small

values of fi (x) are desirable for objective fi .
As these objectives as typically conflicting, our algorithm

searches for a diverse set of points that represent optimal trade-

offs, called Pareto optimal [Deb 2014]:

Definition 3.1 (Pareto Optimality). A point x ∈ X is Pareto opti-

mal if there does not exist any x′ ∈ X so that fi (x) ≥ fi (x
′) for all

i and fi (x) > fi (x
′) for at least one i .

We use F : x �→ R
N to denote the concatenation

( f1 (x), . . . , fN (x)). Pareto optimal points are the solution to the

multi-objective optimization:

min
x

F (x) s.t. x ∈ X. (1)

The image of all Pareto-optimal points is called the Pareto front.

Non-Dominated Sorting. Genetic algorithms based on non-

dominated sorting are a classic approach to multi-objective opti-

mization [Deb and Jain 2013; Deb et al. 2002]. Sorting is the step of

genetic algorithms that select parent populations for crossover and

mutation. The key idea behind non-dominated sorting is that this

selection should be done based on proximity to the Pareto front.

These articles define the concept of Pareto layers, where layer 0 is

the Pareto front, and layer l is the Pareto front that would result

if all solutions from layers 0 to l − 1 are removed. When selecting

parent populations or when pruning children populations, solu-

tions in lower layers are added first, and when a layer can only be

added partially, elements of this layer are chosen to increase diver-

sity. Different variations of this method use different strategies for

diversity; we use NSGA-III [Deb and Jain 2013] in our work.

Hypervolume. Hypervolume [Auger et al. 2009] is a metric com-

monly used to compare two sets of image points during Pareto

front discovery. Intuitively, the hypervolume measures the region

dominated by a given reference point and therefore a larger hyper-

volume implies a better approximation of the Pareto front. To cal-

culate the hypervolume, we draw the smallest rectangular prism

(axis-aligned, as per the L1 norm) between some reference point

and each point on the pareto front. We then union the volume of

each shape to calculate the hypervolume.
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3.2 Bi-level Multi-Objective Optimization

Given a design spaceD that defines possible variations of a carpen-

try model, our goal is to find a design d ∈ D and a corresponding

fabrication plan p ∈ Pd that minimizes a vector of conflicting ob-

jectives, where Pd is the space of fabrication plans corresponding

to design d . This setup yields the following multi-objective opti-

mization problem:

min
p,d

F (d,p) s.t. d ∈ D, p ∈ Pd ,

where Pd defines the space of all possible plans for fabrication

the design d . Generally, our problem can be expressed as a bi-

level multi-objective optimization that searches across designs

to find those with the best fabrication costs, and requires opti-

mizing the fabrication for each design during this exploration

[Lu et al. 2016]:

min
d

F (d,p) s.t. d ∈ D, p = argmin
p

F (d,p),

where argmin refers to Pareto-optimal solutions to the multi-

objective optimization problem.

A naïve solution to this bi-level problemwould be to search over

the design space D using a standard multi-objective optimization

method, while solving the nested optimization problem to find the

fabrication plans given a design at each iteration. Given the com-

binatorial nature of our domain, this would be prohibitively slow,

which motivates our proposed solution.

3.3 Equivalence Graphs (E-graphs)

Typically, programs (often referred to as terms) are viewed as

tree-like structures containing smaller sub-terms. For example, the

term 3 × 2 has the operator × at its “root” and two sub-terms, 3

and 2, each of which has no sub-terms. Terms can be expressed

in multiple syntactically different ways. For example, in the lan-

guage of arithmetic, the term 3 × 2 is semantically equivalent to

3 + 3, but they are syntactically different. Naïvely computing and

storing all semantically equivalent but syntactically different vari-

ants of the a term requires exponential time and memory. For a

large program, this makes searching the space of equivalent terms

intractable.

E-graphs [Nelson 1980] are designed to address this challenge—

an e-graph is a data structure that represents many equivalent

terms efficiently by sharing sub-terms whenever possible. An e-

graph not only stores a large set of terms, but it represents an equiv-

alence relation over those terms, i.e., it partitions the set of terms

into equivalence classes, or e-classes, each of which contains seman-

tically equivalent but syntactically distinct terms. In Section 4.2, we

show how to express carpentry designs in a way that captures the

benefits of the e-graph.

Definition 3.2 (E-graph). An e-graph is a set of equivalence

classes or e-classes. An e-class is a set of equivalent e-nodes. An

e-node is an operator from the given language paired with some

e-class children, i.e., f (c1, . . . , cn ) is an e-node where f is an

operator and each ci is an e-class that is a child of this e-node.

An e-node may have no children, in which case we call it a

leaf. An e-graph represents an equivalence relation over terms.

Representation is defined recursively:

Fig. 2. An example e-graph. E-classes (dotted boxes labeled by letters) con-

tain equivalent e-nodes (solid boxed) which refer to children e-classes (ar-

rows). The e-class (c) contains one leaf e-node, 3, and it represents one

term, 3. The e-class (b) contains two e-nodes, (c) + (c) and (c) ∗ (d), and it

represents two terms: 3+3 and 3∗2. Although the e-class (a) only contains

one e-node, it represents 4 terms: (3+3)+ (2+2), (3∗2)+ (2+2), (3+3)+4,
and (3 ∗ 2) + 4. If + is cheaper than ∗, then (3+ 3) + 4 is the cheapest term
represented by e-class (a).

Fig. 3. Example of three different design variations of a model and cor-

responding fabrication plans. Design variations determine different ways

to decompose a 3D model into a set of parts. Fabrication plans define

how these parts are arranged in pieces of stock material and the cut order

(illustrated by the numbers along with each cut).

— An e-graph represents a term if any of its e-classes do.

— An e-class represents a term if any of its e-nodes do. All terms

represented by e-nodes in the same e-class are equivalent.

— An e-node f (c1, . . . , cn ) represents a term f (t1, . . . , tn ) if

each e-class ci represents term ti . A leaf e-node д represents

just that term д.

Figure 2 shows an example of an e-graph and representation.

Note how the e-graph maximizes sharing even across syntactically

distinct, semantically equivalent terms. When adding e-nodes

or combining e-classes, the e-graph automatically maintains

this maximal sharing property, using existing e-nodes whenever

possible.

4 OPTIMIZATION ALGORITHM

Our algorithm takes as input a carpentry design with a discrete set

D of possible design variations. Design variations determine dif-

ferent ways to decompose a 3D model into a set of fabricable parts,

as shown in Figures 3 and 4. These can be manually or automati-

cally generated (see Section 1.1 of the supplemental material).

Our goal is to find Pareto-optimal solutions that minimize fab-

rication cost, where each solution is a pair of design variation and

fabrication plan. Similar to prior work [Wu et al. 2019], we mea-

sure cost in terms of material usage (fc ), cutting precision (fp ),
and fabrication time (ft ). Section 1.3 of the supplemental material

describes how these metrics are computed for this work.
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Fig. 4. Example of a space of design variations, D. Each of the four connec-

tors can have three different connecting variations, resulting in 81 design

variations. Note that some of the different design variations may use the

same parts (as d1, d2), and will be treated as redundant during our opti-

mization. This model produces 13 unique bags of parts.

4.1 Motivation and Insights

Given an algorithm for finding the Pareto-optimal fabrication

plans for a given design (e.g., the one proposed byWu et al. [2019]),

a brute force method would simply find the Pareto-optimal solu-

tions for each of the possible design variations d ∈ D and take the

dominant ones to form the Pareto front of the combined design/

fabrication space. Since design variations can produce an exponen-

tially large space of designsD, this approach would be intractable

for complex models. An alternative approach could use a discrete

optimization algorithm to explore the design space (e.g., hill climb-

ing). This approachwould still need to compute the Pareto-optimal

fabrication plans for each design explored in every iteration, which

can expensive for complex design variants (e.g., it takes 8–10 min-

utes to compute Pareto-optimal fabrication plans for a single de-

sign variation of the chair model in Figure 1 using the approach of

Wu et al. [2019]).

We address these challenges with two key insights:

(1) Design variants will share common sub-parts (both within

a single variant and across different variants). As shown in

Figure 3, even in a design where no two parts are the same,

there is significant overlap across design variations. Exploit-

ing this sharing can prevent recomputing the fabrication cost

from scratch for every design variation. We propose using an

e-graph to capture this sharing when (sub-)designs have the

same BOP; we call this e-graph the BOP E-graph.

(2) The space of design variants is too large to exhaustively

explore, and even a single variant may have many Pareto-

optimal fabrication plans.We propose using the BOP E-graph

to guide the exploration in an incremental manner, with a

new technique called ICEE that jointly explores the design

and fabrication plan spaces.

4.2 Bag of Parts (BOP) E-graph

Our algorithm selects a Pareto-optimal set of fabrication plans,

each of which will produce a design variation of the given model.

A fabrication plan consists of four increasingly detailed things:

(1) A BOP, a bag2 (a.k.a. multiset) of atomic parts that compose

the model.

(2) An assignment that maps those parts to individual pieces of

stock material (see the parts in stock pieces in Figure 3).

2A bag or multiset is an unordered set with multiplicity, i.e. it may contain the same
item multiple times. We will use the terms interchangeably.

(3) A packing for each piece of stock in the assignment that

dictates how those parts are arranged in that stock (see the

layout on the stock pieces in Figure 3).

(4) A cutting order for each packing that specifies the order and

the tool (chopsaw, tracksaw, etc.) used to cut the stock into

the parts (see the numbers indicating the order in Figure 3).

We say that an arrangement is items 1–3: a BOP assigned to and

packed within pieces of stock material, but without cutting order

decided. We can create a language to describe arrangements; a

term in the arrangement language is one of the following:

— An atomic node is a childless operator that represents a BOP

packed into a single piece of stock. For example, {�,�,�}p,b
maps two squares and one triangle all to the same piece of

stock of type b using a packing p.
— A union node takes two- child arrangements and composes

them into a single arrangement. The following arrangement

is a union node of two atomic nodes: {�,�}p1,b ∪ {�}p2,b . It
packs two squares into the stock of type b using packing p1,
and it packs a triangle into a different piece of stock of the

same type b using packing p2.

To put arrangements into an e-graph, we must define the notion

of equivalence that the e-graph uses to determine which e-nodes

go in the same e-class. The more flexible this notion is (i.e., the

larger the equivalence relation), the more sharing the e-graph can

capture.

Tomaximize sharing, we say two arrangements are equivalent if

they use the same BOP, even if those parts are assigned to different

stock or packed differently. For example, {�,�}p1,b is equivalent

to {�,�}p2,c even though they use different kinds of stock, and

{�,�,�}p3,b is equivalent to {�,�}p4,b ∪ {�}p5,b even though the

former uses one piece of b stock and the latter uses two.

Given our arrangement language and the BOP notion of equiv-

alence, we can now describe the central data structure of our al-

gorithm, the BOP E-graph. Recall from Section 3.3 that e-nodes

within an e-graph have e-class children rather than e-node chil-

dren. So, viewing our arrangement language at the e-graph level,

union e-nodes take two e-classes as children. All e-nodes in the

same e-class are equivalent, i.e., they represent terms that use the

same BOP but that arrange those parts differently into stock.

Figure 5 gives two example design variations and a BOP E-graph

that captures a common sub-arrangement between the two. The

e-classes E1 and E2 represent terms that correspond to the two

box designs, and E4 captures ways to arrange the y and z parts

which the variants share. The design variant including partw also

captures sharing with itself: e-class E5 reuses the arrangement in

e-class E9.
Note that arrangements and the BOP E-graph do not mention

designs. We do not “store” designs in the e-graph, we just need to

remember which e-classes represent bags of parts that correspond

to designs that we are interested in. This can be done outside the

e-graph with a mapping from designs to e-classes. Many designs

(especially symmetric ones) may have the same BOP. We call an

e-class that is associated with a design a root e-class, and we call a

term represented by a root e-class a root term. The BOP E-graph

itself does not handle root vs. non-root e-classes or terms differ-

ently, these are only used by the remainder of the algorithm to
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Fig. 5. Two variants (a) of a box design encoded in one BOP E-graph

(b). The bold edges show a root term that requires three atomic pack-

ings (c). The BOP E-graph encodes multiple arrangements for both de-

sign variants. E-classes are drawn as dotted boxes and annotated with the

BOP represented by that e-class. (Only the e-nodes are semantically in

the e-graph; the name and BOP are just visual aides.) E-classes E1 and

E2 are root e-classes since they represent the BOP required by the de-

sign variants. Union and atomic e-nodes are shown as squares with “U”s

or circles with “A”s, respectively. Atomic e-nodes correspond to packings

of parts within a piece of stock (c). An example root term in the BOP

E-graph is bolded; using the syntax from Section 4.2, this is the term

{x, y }A4, long ∪ {y }A9,short ∪ {z }A10,short.

remember which arrangements correspond to design variants. The

BOP E-graph will maximize sharing across design variations and

arrangements since it makes no distinction between the two.

4.3 Iterative Contraction and Extension on E-graphs
(ICEE)

4.3.1 Overview. ICEE takes a feasible design space D as input,

and outputs a Pareto front where each solution s represents a (de-
sign, fabrication) pair. An overview of this algorithm is shown

in Figure 6. The pseudocode is included in the supplemental

material.

The initialization step selects a small subset of design variants

from D (Section 4.3.2) and then generates a small number of fab-

rication arrangements for each one (Section 4.3.3). All of these are

added to the BOP E-graph, maintaining the property of maximal

sharing, as described above. ICEE then applies the extraction al-

gorithm (Section 4.3.4) to generate a Pareto front from the current

BOP E-graph. This process will computemany different solutions s
and their fabrication costs F (s ) = ( fm (s ), fp (s ), ft (s )), all of which
are stored in the solution set S.

The resulting Pareto front is used to compute ranking scores for

each e-class in the BOP E-graph; the ranking score measures how

often this BOP is used in Pareto-optimal solutions and how many

fabrication variations have been explored for this BOP. Using these

scores, ICEE contracts the BOP E-graph by pruning e-classes that

have been sufficiently explored but still do not contribute to Pareto-

optimal solutions (Section 4.3.5).

Having pruned the e-graph of the less relevant e-classes, ICEE

then expands the BOP E-graph in two ways (Section 4.3.6).

First, it suggests more design variations based on the extracted

Pareto-Optimal designs. Second, it generates more fabrication ar-

rangements for both the newly generated design variations and

some of the previously existing e-classes. The ranking scores are

used to select e-classes for expansion.

ICEE then extracts the new Pareto front from the updated BOP

E-graph and repeats the contraction and expansion steps until the

following termination criteria are met: (1) There is no hypervol-

ume improvement within td iterations, or (2) We exceed mtd it-

erations. Additionally, we set a timeout T beyond which we no

longer change the BOP E-graph, but continue to extract based on

crossover and mutation until one of the termination criteria is met.

In our experiments, we set td = 10,mtd = 200, and T = 4 hours.

4.3.2 Initial Generation of Design Variants. We bootstrap our

search with the observation that design variations with more iden-

tical parts tend to be cheaper to fabricate because less time is spent

setting up fabrication processes. Therefore, instead of initializing

the BOP E-graph with Kd designs randomly selected from D, we

randomly select up to 105 designs and select the top Kd designs

from this set that have a maximal number of identical parts.

4.3.3 Fabrication Arrangements Generation. Again, instead of

randomly generating Kf arrangement variations for a given de-

sign, we use heuristics; namely, that (1) We can minimize the num-

ber of cuts by stacking and aligning material to cut multiple parts

with a single cut, and (2) We can minimize the material cost by

packing as many parts as possible to a single stock. Since a sim-

ilar method for generating arrangement variations has been pre-

viously proposed by Wu et al. [2019], we leave a detailed discus-

sion of the algorithm for supplemental material (Section 1.2). We

note that the key difference between our method and the prior

heuristic-driven algorithm is that we incorporate storage and di-

rect control schemes that enable the method to output Kf varia-

tions that are different from the ones generated during previous

iterations of ICEE. This is essential to enable incremental expan-

sion of the BOP E-graph without restoring variations that have

already been pruned in the previous contraction steps.

4.3.4 Pareto Front Extraction. In e-graph parlance, extraction is

the process of selecting the “best” represented term from an e-

graph according to some (typically single-objective) cost functions.

One way to view extraction is that it simply chooses which e-node

should be the canonical representative of each e-class; once that is

done, each e-class represents a single term. Since our cost function

is multi-objective, we must instead extract a set of terms (arrange-

ments) from the BOP E-graph that forms a Pareto front.

We use a genetic algorithm [Deb and Jain 2013] to extract terms

from the BOP E-graph. The population size is set to Npop . The

genome is essentially a list of integers, one per e-class, that speci-

fies which e-node is the representative. Since the BOP E-graphmay

havemultiple root e-classes (corresponding tomultiple design vari-

ations), we combine the genes for all the root e-classes, only pick-

ing a single e-node among all of them. In effect, this means the

genome defines both a design variation and the arrangement for

that design.

For example, consider the bold term within the BOP E-graph in

Figure 5. The genome for that term is as follows, where ∗ could be
any integer since that e-class is not used by the term:

E1,E2 E3 E4 E5 E6 E7 E8 E9
0 1 0 ∗ ∗ 0 0 ∗
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Fig. 6. Algorithm overview used the example in Figure 5. The first step initializes a BOP E-graph (Sections 4.3.2 and 4.3.3) with several design variants and

a small number of fabrication arrangements (a). U and A represent union and atomic e-nodes respectively. As part of the ICEE loop, the algorithm extracts

a Pareto Front (Section 4.3.4), which is used to score the e-classes in the BOP E-graph (b). For example, the gray e-class containing a “U” and an “A” e-node
indicates a low score, i.e., the e-class did not contribute to Pareto-optimal solutions. The BOP E-graph is then contracted (Section 4.3.5) by removing the

low-scored e-classes (and their parent e-nodes) to get a compressed BOP E-graph (c). As described in Section 4.3.6, this contracted BOP E-graph is then

further expanded (d) by exploring more design variants and fabrication arrangements. The algorithm exits the loop when the termination conditions are

reached, returning the final Pareto Front (e).

The root e-classes E1 and E2 share a single integer 0, meaning that

the genome chooses the 0th e-node across both e-classes, and that

it uses the first of the two design variants. Since this encoding boils

down to a list of integers, which is valid as long as each integer cor-

responds to an e-node in that e-class, we can use simple mutation

and single-point crossover operations.

A term does not completely determine a fabrication plan; it only

specifies the arrangement. We need to additionally compute the

cutting order for a given term to define a solution s and then eval-

uate the fabrication costs. We observe that the material cost does

not depend on the cutting order and that precision and fabrication

costs strongly correlate once the arrangement is fixed. This is not

surprising since cutting orders that minimize set-ups will jointly

reduce time and precision error. Given this observation, we can

compute two solutions for each term, using two single-objective

optimizations for computing cutting order: one that minimizes pre-

cision, and the other fabrication time.

We use two strategies to speed up these optimizations: (1) stor-

ing computed cutting orders in atomic e-nodes that will be shared

across many terms and (2) a branch and bound technique. The op-

timization works as follows. Given a term, we first compute the

optimal plans for the atomic e-nodes that have not been previously

optimized. For each such e-node, we try to generate maximal P dif-

ferent orders of cuts, then extract the optimal plans with [Wu et al.

2019] method. We use this result to compute an upper and a lower

bound for the term. If the lower bound is not dominated by the

Pareto front of all computed solutions S, we run an optimization

that uses the upper bound as a starting point (see Section 1.4 of the

supplemental material for details).

We again terminate the algorithm if there is no hypervolume

improvement within tp iterations, or if we exceed mtp iterations.

In our experiments, we set tp = 20 and mtp = 200 and set the

probability of crossover (mcp ) and mutation (mmp ) are set to be

0.95, 0.8 respectively.

4.3.5 BOP E-graph Contraction. As the algorithm proceeds,

BOP E-graph contraction keeps the data structure from growing

too large. To contract the BOP E-graph, we search for e-classes

that represent bags of parts that have been sufficiently explored by

the algorithm but are not present in Pareto-optimal designs. This

indicates that we have already discovered the best way to fabri-

cate these bags of parts but they still do not contribute to Pareto

optimal solutions; these e-classes are then deleted.

To measure how much an e-class has been explored, we first

compute how many variations of fabrication arrangements have

been encoded in the BOP E-graph. This number is stored over the e-

graph and updated after each expansion step to ensure consistency

following contraction steps. The exploration score, Escore , is then
defined as this value divided by the number of possible fabrication

arrangements for an e-class, which we approximate by the number

of parts in the e-class multiplied by the number of orientations of

each part that can be assigned to the stock lumber.

The impact of an e-class, Iscore , is measured based on how often

it is used in the set of solutions in the current Pareto front. We

use the assignment of solutions s to layers determined by the non-

dominated sorting Section (3.1) to compute Iscore for a given e-

class. We initialize a Iscore with value 0 and increment it by 10M−l

every time this e-class is used in a solution from layer l , where M
is the total number of valid layers.

We normalize all computed exploration and impact scores to be

between 0 and one and then assign the following pruning score to

each e-class:

Pscore = w · Iscore + (1 −w ) · (1 − Escore ),w ∈ [0.0, 1.0],

where the weight w is chosen to trade-off between exploration

and impact. If the Pscore is smaller than the pruning rate, Prate ,
the e-class is removed along with any e-nodes pointing to this e-

class (i.e. parent e-nodes). We setw and Prate to 0.7 and 0.3 in our

implementation.
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Table 1. Statistics for Each Input Model, Showing the Complexity

in the Number of Parts (np ), Number of Connectors (#C), Number of

Connecting Variations (#CV), and Number of Design Variations

That Define Unique BOP D

Model np #C #CV |D | Model np #C #CV |D |
Frame 4 4 22 13 A-Chair 18 3 6 4

L-Frame 6 8 16 65 F-Pot 8 1 4 4

A-Bookcase 12 6 16 192 Z-Table 15 6 16 63

S-Chair 14 14 32 66438 Loom 18 4 10 36

Table 12 10 24 1140 J-Gym 23 8 16 54

F-Cube 12 8 23 5 D-Chair 17 10 22 2280

Window 12 16 32 10463 Bookcase 15 22 44 65536

Bench 29 6 14 57 Dresser 10 10 25 480

4.3.6 BOP E-graph Expansion. We expand the BOP E-graph by

first generating new design variations and then by generating fab-

rication arrangements for both the existing and newly generated

design.

We generate new design variations using a single step of a ge-

netic algorithm that operates over the design space. The probabil-

ity of crossover (mcd ) and mutation (mmd ) are set to be 0.95, 0.8 re-

spectively. We select the parent design variations from S based on

the non-dominated sorting technique (Section 3.1). Since many so-

lutions in S can correspond to the same design, we assign designs

to the lowest layer that includes that design.We then generate new

design variations with crossover and mutation operations. We use

an integer vector encoding for each design. This time, the vector

indexes the joint variations, e.g., for the designs shown in Figure 4,

d1 = [0, 2, 1, 0],d2 = [1, 0, 0, 2].We getKm ·Kd design variations by

applying Km times of the single-step genetic algorithm. Then we

apply the same heuristic done during initialization (Section 4.3.2),

selecting the top Knd ,Knd ∈ [0,kd ]. Finally, the resulting Knd de-

signs are included in the BOP E-graph. We set Km = 10 in our

implementation.

We generate fabrication arrangements for each of the new de-

sign variations using the algorithm described in Section 4.3.3, and

they are added to the BOP E-graph maintaining the maximal shar-

ing property. We further generate fabrication arrangements for

existing design variations, using a similar scoring function used

during contraction. This is done in two steps. First, we select root

e-classes to expand based only on their impact score; namely, we

take the top Kd root e-classes using non-dominated sorting. We

then proceed to generate Kf ×Kd fabrication arrangements using

the algorithm described in Section 4.3.3). However, instead of gen-

erating the same number of fabrication arrangements variations

for every selected root e-class, the number is adaptive to their prun-

ing scores Pscore (as defined in Section 4.3.5).

5 RESULTS AND DISCUSSION

In order to gauge the utility of our tool, we want to answer the

following questions:

(1) How much does searching the design space with the fabrica-

tion space improve generated fabrication plans?

(2) How does our tool compare with domain experts who are

asked to consider different design variations?

(3) How does our tool’s performance compare to a baseline naïve

approach?

Fig. 7. Models used for all experiments in Section 5. Brown is used to indi-

cate the models which are only made from 1D sequential cuts of lumber.

Gray is for only from 2D partitioning of sheets. Orange is for both using

1D sequential cuts of lumber and 2D partitioning of sheets.

5.1 Models

We evaluate our method using the examples in Figure 7. Statistics

for each model are shown in Table 1. These models vary widely

in visual complexity and materials used—some are made from 1D

sequential cuts on lumber, where others require 2D partitioning

of sheets. Note the complexity of the search is not inherent to

the visual complexity of the model, rather, it is determined by the

number of connecting variations and the number of arrangements,

which defines the size of the design space and the space of fabrica-

tion plans, respectively. For example, the Adirondack chair is more

visually complex than the simple chair in Figure 7, but because it

has about 5,000 times fewer design variations, it converges much

more quickly. Models of Art bookcase, Dining room chair, F-Pot,

Z-Table, Bench, and Adirondack chair are taken from [Wu et al.

2019].

5.2 Running environment

The parameters used in our ICEE algorithm are scaled based on

the complexity of each model, measured in terms of the number

of parts np and the size of the design space |D|. We further in-

troduce a single tuning parameter α ∈ [0.0, 1.0], which allows

us to trade-off between exploring more design variations (smaller

values of α ) versus exploring more fabrication plans for given de-

sign variations (larger values). For all our experiments, we set α to

the default value of 0.75. The ICEE parameters are set as follows:

Kd = 2 
log10 |D |� , Npop = 4 ·Kd ,Kf = β ·np ,Knd = �(1.0−α ) ·Kd 
,
and P = 2 · (β − 2), td = 10,mtd = 200,mcd = 0.95,mmd = 0.80,

T = 4 hours, tp = 20,mtp = 200,mcp = 0.95,mmp = 0.80,w = 0.7,

Prate = 0.3 andKm = 10, where β = �44 ·α7+2
. A table S1 of the

supplemental material lists all parameters used in our algorithm.

We report the running times of our algorithm in Table 2 for the

models in Figure 7. The above times aremeasured on aMAC laptop

computer with 16 GB RAM and a 2.3 GHz 8-Core Intel Core i9

CPU. More discussion of the running time is in the supplemental

material.
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Table 2. Some Statistics and Running Times for Our ICEE Algorithm

Model #O #Iter #EDV #Arr #PDV CEt(m) Et(m) Total(m)

Frame 2 11 8 181 3 0.7 2.1 2.8

L-Frame 2 24 19 2,818 3 2.1 6.1 8.2

A-Bookcase 3 25 25 28,700 3 20.5 228.6 249.0

S-Chair 2 15 136 35,656 6 27.6 122.0 149.6

Table 2 18 50 9,346 9 5.9 34.9 40.8

F-Cube 2 23 4 3,499 3 1.4 4.0 5.5

Window 2 23 116 81,026 4 32.8 98.9 131.7

Bench 2 25 16 37,436 3 30.3 215.1 245.4

A-Chair 2 28 4 14,440 3 3.1 9.6 12.7

F-Pot 3 14 3 185 2 1.7 13.0 14.7

Z-Table 3 70 41 336,091 6 17.1 71.1 88.2

Loom 3 21 10 1,812 5 3.1 74.6 77.7

J-Gym 3 46 18 286,239 3 37.0 72.0 109.0

D-Chair 2 18 40 15,054 7 27.7 228.8 256.5

Bookcase 3 15 32 34,756 11 39.4 336.8 376.3

Dresser 3 20 44 22,209 5 14.1 241.2 255.4

For each model, we first report the number of targeting objectives (#O) where 2 indicates material usage
(fc ) and fabrication time (ft ), and 3 indicates all of the three objectives including cutting precision (fp ).

We also report the number of iterations (#Iter), explored design variations (#EDV) and arrangements (#Arr),
and Pareto front design variations (#PDV). We report the running time of BOP E-graph contraction and
expansion (CEt), and Pareto front extraction (Et), as well as the total time. All running times are in minutes.

5.3 Benefits of Design Exploration

To demonstrate the benefit of simultaneous exploration of the de-

sign variation and fabrication plan spaces, we compare our tool

against optimizing the fabrication plan for a single design.

Figure 8 shows the comparison between our pipeline and the

Carpentry Compiler pipeline [Wu et al. 2019], which only consid-

ers a single design. The parameter setting of their pipeline and

additional results can be found in Section 2 of the supplemental

material. We explore the trade-offs for fabrication time and mate-

rial usage for the designs where all cuts can be executed with stan-

dard setups (these are considered to have no precision error) and

include a third objective of precision error for the models where

that is not possible. The Pareto fronts across designs generated by

our tool cover a larger space and many of our solutions dominate

those from previous work.

Exploring design variations enables better coverage of the

Pareto front, which enables finding better trade-offs. These trade-

offs are lower-cost overall, covermore of the extrema, and aremore

densely available. For example, a hobbyist may want to minimize

material cost independent of time, as the fabrication process is en-

joyable, and they consider it to have no cost.Material cost is hard to

save, but our exploration of design variations enable solutions that

reduce material cost by 7% in the Loom, 7% in the Jungle Gym, 15%

in the Frame, and 25% in the Bookcase. On the other hand, some-

one with free access to reclaimed wood may only care about the

total fabrication time. Our approach enables solutions that reduce

fabrication time by 60%—two models saved between 50%–60%,

three between 30%–35%, and four between 20%–30%, for example—

a huge time-saving. If creating a very precise model is impera-

tive, and a user would take great care to manufacture it exactly,

then for four models, we find solutions that reduce error by 61%–

77%. The detailed data are listed in Table S6 of the supplemental

material.

Some examples don’t lie at the extrema: businesses often need

to find a balance between the cost of materials, time spent on a

project, and overall project quality, and the particular trade-off

will depend on their accounting needs. Our method enables find-

ing solutions with better trade-offs. Concretely, consider a car-

penter charging $40/h. When scalarizing our multi-objective func-

tion into this single objective of money, we have several examples

where the lowest cost on our Pareto front is 5%–8% cheaper than

the lowest cost on the baseline Pareto front, such as the Z-Table,

Flowerpot, Jungle Gym, Dresser, Bookcase, and Art Bookcase. The

window and frame have cost savings of 12% and 20%, respectively.

Though a cost reduction of several percent might appear insignif-

icant, in production at scale, it represents thousands of dollars po-

tentially saved. This scalarization function is just one way for a

user to judge the trade-off between different aspects of the multi-

objective function. In reality, the user probably has some notion

of what trade-off would be ideal for their purposes, and will use

the pareto front to represent the full space of options and make

an informed choice. This scalarized tradeoff is further examined in

Table S8 of the supplemental material.

Figure 9 highlights how exploring design variations generates

fabrication plans that can dominate those generated from no

design variation exploration. Figure 10 then demonstrates how

design variations enable diverse trade-offs that save on different

costs.

5.4 Comparison with Experts

For each model, we asked carpentry experts to generate design

variations and fabrication plans. The resulting points are plotted as

diamonds in Figure 8. Since experts produce each solution by hand,

they produced Pareto fronts with many fewer solutions than our

tool. For 14 of 16 models (except the Loom and Dresser models), so-

lutions generated by our tool dominate the expert solutions. This

suggests that, generally, although expert plans seem sensible, our

tool generates better output thanks to its ability to generate more

design variations and fabrication plans, including potentially un-

intuitive packing or cutting orders, and evaluate them much more

quickly than a human.

5.5 Performance Evaluation

To test whether the BOP E-graph’s sharing is important for our

tool’s performance, we compare against a nested-optimization

pipeline built on the Carpentry Compiler [Wu et al. 2019]. The

baseline approach invokes the Carpentry Compiler pipeline on

each design variant that our tool explores, and then it takes the

Pareto front across all design variations.

We choose five models of varying complexity to evaluate per-

formance and show result in Table 3. We tuned the parameters

of the baseline method so we could achieve results that were as

close as possible, if not qualitatively the same (when the baseline

method ran to completion). Full results are available in the supple-

mental material (Table S7 and Figure S1). This indicates that our

co-optimization approach yields similar results to the nested ap-

proach over the same space. When it comes to performance, our

approach is about one order of magnitude faster. We attribute this

speedup to the sharing captured by the BOP E-graph; we only had

to evaluate common sub-designs and sub-fabrication-plans one

time, whereas the baseline shared no work across its different in-

vocations for each design variant.

5.6 Fabricated Results

We validated our pipeline by physically constructing some of the

models according to the design variation-fabrication plan pairs

generated by our tool. Figure 11 shows the results.
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Fig. 8. Pareto fronts are computed from our pipeline with design optimization as colored dots. Each color corresponds to a different design. The gray dots

indicate the Pareto fronts of all explored design variations. These are compared against Pareto fronts computed without design optimization (fabrication

optimization only, using the original model as the input design) as squares, and expert fabrication plans as diamonds. Often, fabrication plans from a design

variant are more optimal than those generated from an input design. For the unit of objective metrics, material usage (fc ) is in dollars, cutting precision (fp )

is in inches, and fabrication time (ft ) is in minutes. Some (design, fabrication plan) pairs indicated with capital letters are visualized in Figures 9 and 10.

6 DISCUSSION

6.1 Multi-Materials and Cutting Tools

Mechanical or aesthetic reasons might motivate designers to com-

bine multiple materials, such as different types of wood, or wood

and metal, in one model. Adding newmaterials to our approach in-

volves almost no implementation overhead: we must select which

cutting tools are appropriate, and accommodate the material’s

costs into our metrics. Then, we simply need to indicate which

material a given part is made of, exactly the same way we desig-

nate whether parts belong on 1D lumber or 2D stock. As shown in

Figure 12, we have created a mixed-material model to showcase

our ability to handle this added design complexity. The loom is

made of two different types of wood as well as one kind of metal.

All parts are optimized in the same e-graph and treated identically

to the base implementation. We describe the cost metrics for dif-

ferent materials in the supplemental material (Section 1.3.1).

6.2 Objectives

Ourmethod also naturally extends to other objective functions.We

show one example in Figure 13, where we consider stability as an

Table 3. Results of the Performance Validation Experiment

Model |D | #EDV
Time (min)

Ours Baseline
Frame 13 8 2.8 6.5

Jungle Gym 54 18 109.0 761.2
Long frame 65 19 8.2 59.7

Table 1140 59 40.8 612.8
Window 10463 116 131.7 2050.0

“Ours” indicates the ICEE algorithm of this article. “Baseline” indicates extracting the Pareto front
fabrication plans for each design variation explored by our method independently with the
Carpentry Compiler pipeline [Wu et al. 2019]. The size of design space |D| and the number of
explored design variations (EDV) are also reported. Our method and the baseline method produce
two Pareto fronts which are indistinguishable. This conclusion is not shown here; direct
comparisons of hypervolume can be non-intuitive due to the scale and how hypervolume is
measured. Please refer to the supplemental material (Figure S1), which contains plots comparing the
results of the two methods. Even with identical results, our time improvement is significant.

additional objective which we calculate with physical simulation.

Notably, stability is invariant to the fabrication plan, and depends

solely on the design itself, so it only needs to be measured once,

at the root node. However, two designs can have different stability

costs but share the same BOP. Figure 13 (a) and (b), exhibits one

BOP which captures two different designs.

In this example, since the other metrics (time and material

cost) do not exhibit this dependency, we can simply assign to the
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Fig. 9. Two examples where searching the design space revealed fabrica-

tion plans that completely dominated the fabrication plans generated for

the input design. With the design variations, our pipeline could search for

a design variation of the frame, which turns all angled cutting to verti-

cal. With Design B, we find a fabrication plan which takes less time than

the least time-consuming plan A of the input design. Similarly, we show

two fabrication plans of the A-Bookcase model where the design and fab-

rication plan B dominate the input design A. The fabrication costs are indi-

cated in the figure with the order ofmaterial cost, precision error, and fabri-

cation time. The cutting orders are labeled with colored dots and numbers,

where colors indicate selected cutting tools, and stacked cuts are labeled

with the same number.

root nodes the stability cost of the best-performing design that

corresponds to that BOP; thus, the cost for any given BOP is the

best cost of any design that is represented by that BOP. Note that

fabrication plans depend solely on the BOP. In general, if we want

to use more than one metric like this one—a metric that depends

on the design, and is not completely determined by a term in the e-

graph—we would need to compute the different trade-offs for the

variations during extraction, as was done with cutting order and

precision, described in Section 4.3.4.

6.3 Convergence

While our results show the significance of the approach to reduce

fabrication cost in practice, we cannot make any guarantees that

the plans we output are on the globally-optimal Pareto front. In-

deed, we do not anticipate that any alternative approach would be

able to have such strong guarantees given the inherent complexity

of the problem. This convergence limitation impacts our method

in three different ways.

Parameter Tuning. Due to limitations in exploring the full com-

binatorial space, parameters of our search algorithm may influ-

ence convergence. Because the key aspect of ICEE is simultane-

ously searching “broad” (design variations) and “deep” (fabrication

plans for various designs), we expose the α parameter that trades-

off between depth and breadth during search. Exposing this single

parameter, enables us to improve performance in special circum-

stances. For example, when not much can be gained from design

variations, a larger α will enable searching deeply on a particular

Fig. 10. Two examples where exploring different designs lead to a wider

diversity of plans, where each trade-off on the Pareto front is only pos-

sible because of the underlying design. The window provides a simpler

example. Design A is very uniform, with only three distinct parts. This de-

sign makes it easy to save on fabrication time because we can stack the

cuts across different stocks. Design B features more varied cuts, unlike A,

where each of the sides was the same length. This irregularity allows all

the parts to be effectively rearranged onto just two pieces of stock. Regular

pieces would not fit as nicely and result in wastage. Material cost is very

low, but because of the tight packing, much more time is needed to make

each individual cut. The bookcase example showcases how some unintu-

itive design decisions lead to cost savings. In this example, Design A’s two

long, identical side pieces mean more opportunities for stacking, of which

the fabrication plan takes full advantage. This design enables a very low

time cost, but uses a lot of material. Design B’s left side is broken up by

the shelves, and without a second long piece, it is possible to pack all the

pieces onto a single piece of lumber. Here, the material used is economical,

but the carpenter must take time to cut pieces from a complex layout.

Fig. 11. Fabrication results of twowindow variations. The different designs

and fabrication plans trade-off fabrication time and material usage.

design finding better solutions. All the results shown in this article

use the default value for α that we have found effective in practice.

Comparison with Wu et al. [2019]. The fundamental difference

between our work and [Wu et al. 2019] is that incorporating more

design variations increases the design space, enabling us to find

better performing results. Since the search space of this prior

work is a subset of the search space we explore, our results should

be strictly better. However, since neither method can ensure the
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Fig. 12. A loom model with mixed material where two kinds of wood

(spruce plywood and medium density fiberboard sheet) and one kind of

metal (aluminum sheet) are assigned to each part.

Fig. 13. Pareto fronts computed from by our pipeline for the Frame model

with three objective functions, material usage fc , fabrication time ft and

stability performance. The physical stability of each design variation is

simulated with Abaqus/CAE 2021, measured with the maximal displace-

ment (Max U). All displacements are in inches. In this figure, (a) is the

displacement visualization in a direction, (b) is the displacement visualiza-

tion of the same design but with a different direction, and (c) plots the

Pareto fronts computed from our pipeline where three design variations

are selected.

results lie on the true Pareto front due to limitations in conver-

gence, tuning parameters of both approaches may influence this

result. An example of this limitation is shown in the A-Chair

example in Figure 7. We show in the supplemental material

(Section 2.4) how tuning α to explore more deeply improves this

result and also report experiments for tuning the four parameters

from [Wu et al. 2019].

Increasing the Design Space. Afinal implication of the intractable

search is that it is possible to achieve worse results by increasing

the design space in special circumstances. We discuss in the sup-

plemental material (Section 2.4) an example where we make the

design space 145 times larger by including variations that do not

benefit the search.

6.4 Limitations and Future Work

Our current approach encodes only discrete design variants in the

BOP E-graph. An interesting direction for future work would be to

support continuous variations in the designs space, which can pro-

vide a larger space of fabrication plans to explore. Such variations

could result in designs that do not preserve the original shape but

have similar appearance and functionality. However, supporting

continuous design variants in an e-graph would require designing

a new metric for comparing two design variants for equivalence.

This is challenging because e-graphs heavily exploit transitivity, so

any error in the metric could lead to arbitrarily different designs

being considered “equivalent”.

Several steps of our algorithm can also be parallelized for per-

formance (e.g., generating design variants)—we leave this as an ex-

tension for the future.

Another direction we are eager to explore is accounting for

other factors in the Pareto front. Currently, our technique finds

a design variant and fabrication plan that optimizes fabrication

time, material cost, and precision. Other interesting factors that

can guide the search include stability measurement of different de-

sign variations and assembly considerations. The assembly process

will not only impact the total fabrication time and cost but should

be considered when computing the structural soundness and dura-

bility of the final product. We are also interested in exploring more

complex wood connectors (integral joints).

We are also keen to explore broader applications of the ICEE

strategy for integrating feedback-directed search in other e-graph-

based optimization techniques including additive and subtractive

manufacturing. Past work applying e-graphs for design optimiza-

tion in CAD [Nandi et al. 2020] and for improving accuracy in

floating-point code [Panchekha et al. 2015] have relied on ad hoc

techniques for controlling the growth of the e-graph, e.g., by care-

fully tuning rules used during rewrite-based optimization. We

hope to explore whether ICEE can help with optimization in such

domains by focusing the search on more-profitable candidates and

easing implementation effort by reducing the need for experts to

carefully tune rewrite rules.

The most time-consuming part of our ICEE algorithm lies in the

Pareto front extraction phase. A pruning strategy with learning-

based methods for predicting the objective metrics of an arrange-

ment might be an interesting and valuable area of research.

7 CONCLUSION

We have presented a new approach to co-optimizing model de-

sign variations and their fabrication plans. Our approach relies

on the insight that fabrication plans across design variants will

share similar structure. We capture this sharing with the BOP

E-graph data structure that considers fabrication plans equiva-

lent if they produce the same BOP. The BOP E-graph also lets

us guide the search toward profitable design variants/fabrication

plans with a technique we call ICEE that may be useful for the

uses of e-graphs in other applications. Results generated by our

tool compare favorably against both expert-generated designs and

a baseline built using prior work, indicating that the sharing

captured by the BOP E-graph is essential to efficiently explor-

ing the large, combined space of design variants and fabrication

plans.
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