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ABSTRACT: Cyclic(alkyl)(amino)carbene (CAAC) ligands are found to perturb regioselectivity of the copper-catalyzed
carboboration of terminal alkynes, favoring the less commonly observed internal alkenylboron regiosomer through an α-selective
borylcupration step. A variety of carbon electrophiles participate in the reaction, including allyl alcohol derivatives and alkyl halides.
The method provides a straightforward and selective route to versatile trisubstituted alkenylboron compounds that are otherwise
challenging to access.
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Organoboron compounds play a unique role in the chemical
sciences. Carbon−boron bonds can readily be converted

into a diverse array of carbon−carbon and carbon−heteroatom
linkages via an ever-expanding battery of methods,1−4 and
organoboron molecules themselves possess a myriad of
functions in the context of biology5,6 and materials science.7−9

The invention of new methods to assemble organoboron
compounds from simple chemical inputs streamlines access to
important families of molecules. Multicomponent catalytic
couplings, in which three or more building blocks are united
in a single reaction, hold tremendous promise in enabling direct
synthesis of densely functionalized organoboron compounds. In
this context, copper-catalyzed borylative 1,2-difunctionalization
of alkynes is an established means of preparing tri- and
tetrasubstituted alkenylboron targets via a mechanism involving
migratory insertion of an alkyne into a Ln·Cu

I−boryl
intermediate, followed by coupling of the resulting Ln·
CuI(alkenyl) species with an electrophile.10−13 Controlling the
regioselectivity of these processes to access either regioisomer in
a predictable manner remains challenging (Scheme 1). With
terminal alkynes, the vast majority of catalytic systems deliver
the boryl group to the terminal (β) position, restricting access to
the opposite alkenylboron regioisomers (Scheme 1A). Here, we
demonstrate that appropriately tuned cyclic(alkyl)(amino)-
carbene (CAAC)-ligated copper catalysts enable regioselective
carboboration to give internal (α) alkenylboron compounds
with a broad collection of carbon electrophiles (Scheme 1C).
Regioselectivity trends in Ln·Cu−boryl alkyne addition

processes are complex and reflect an interplay between the
steric and electronic properties of the ligand, the identity of the
boryl group, and the substituent(s) on the alkyne substrate.14−16

N-Heterocyclic carbene (NHC) ligands17,18 have been widely
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Scheme 1. Overview of Cu-Catalyzed Regioselective
Carboboration of Terminal Alkynes
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used in catalytic Ln·Cu−boryl catalysis and generally favor boryl
transfer to the terminal position of terminal alkynes with Bpin
and related boryl groups, though either position can
predominate depending on the nature of substrate and the
ligand environment around boron. We recently demonstrated
that strongly σ-donating CAAC ligands19−21 override sub-
stituent effects of the boryl group and the alkyne, allowing for
reliably Markovnikov (α-selective) protoboration of diverse
terminal alkynes with a variety of bis-boron nucleophiles.22 On
the basis of this result, we questioned whether it would be
possible to employ C(sp3)-based electrophiles in lieu of a proton
to develop a three-component carboboration, with regioselec-
tivity and product substitution patterns that would complement
existing methodology.23−32 Of relevance to this proposal, Xiao
and Fu disclosed an important study in which the combination
of CuCl (10 mol %) as the precatalyst, DMAP (24mol %) as the
ligand, and B2pai2 (pai = (+)-pinanediolato) as the bis-boron
reagent led to branched-selective carboboration, though in this
case yields and regioselectivities were variable (30−70% yield,
64:36−95:5 r.r.) (Scheme 1B). The less common and more
expensive B2pai2 nucleophile was employed to maximize
regioselectivity, and some synthetically useful carbogenic groups
were incompatible with this protocol (e.g., allyl electrophiles).33

To reduce our idea to practice, we examined carboboration of
model terminal alkyne 1a with two representative carbon
electrophiles, allyl diethyl phosphate and methyl iodide. The
former was selected because allyl electrophiles have not been
previously employed in α-selective carboboration of alkynes,
despite being used in several reports of linear selectivity.30−32,34

The latter was selected because it was found to be low-yielding
under previously published conditions (one example, 87:13 r.r.,
32% yield).33

A library of CAAC·CuCl precatalysts with different steric and
electronic properties was tested, and a summary of the data is
shown in Table 1. To our delight, EtCAAC5-ligated Cu complex
(L1CuCl) promoted both transformations with high conversion
and high α-selectivity. Replacement of the ethyl groups on the α-
carbon of L1

35 with either an electron-withdrawing group (L2)
36

or more sterically bulky groups (L3,L4)
35,37 led to decreased

yield and α:β ratio. EtCAAC6 ligand (L5),
38 a much stronger

electron-donor than L1, gave poor yields in both trans-
formations, though high α:β ratio (84:16) was observed in the
methylboration reaction. Interestingly, BiCAAC ligands,39
i‑PrBiCAAC (L6) and

PhEtBiCAAC (L7), which are also strong
electron-donors, furnished the desired methylborylated product
2ad with high α-selectivity (97% and 92%, respectively).
However, neither L6 or L7 could deliver any desired
allylborylated product 2aa. Moreover, further exploration of
substrate scope for methylboration using L6 suggested that this
ligand could not tolerate the presence of Lewis basic functional
groups. For example, when an ether-containing substrate was
attempted (see 2kd below, Table 3), only 23% yield and 47% α-
selectivity were observed. A control experiment with IPr (L8), a
representative N-heterocyclic carbene ligand commonly used in
copper−boryl chemistry,10−13 led to low yield with both
electrophiles.
With the optimized conditions in hand, we examined the

scope of the allylboration reaction (Table 2). Terminal alkynes

bearing primary alkyl groups provided the corresponding
products in excellent yields with high levels of regioselectivity
(2aa and 2ba). In addition, functional groups such as ether
(2ca), cyano (2da), halogen (2ea), protected amines (2fa and
2ga), pendant piperidine (2ha) and azetidine (2ia) were well
tolerated, furnishing desired products in good yields and high α-
selectivity, except in the case of 2ga and 2ia, where moderate α-
selectivity (65% and 70%, respectively) was observed. Notably,
when phenylacetylene was subjected to the optimal reaction
conditions, the desired product 2ja was generated with 75% α-
selectivity. Allyl electrophiles with phenyl and n-propyl groups at
the γ-position were also compatible under the reaction
conditions, furnishing the desired products in high yields
(60−71%) and excellent regioselectivity (>90% α-borylation,
93−97% SN2′ allylation) (2ab and 2ac).

Table 1. Optimization of Reaction Conditionsa

aYields of products (2aa or 3aa) and regioselectivity (±2%) were
determined by 1H NMR spectroscopy (600 MHz) using CH2Br2 as
the internal standard. n.d. = not determined.

Table 2. Scope of α-Selective Allylboration of Terminal
Alkynesa

aConditions: 1 (0.10 mmol), B2pin2 (0.11 mmol), allyl electrophile
(0.30 mmol), L1CuCl (0.006 mmol), LiOt-Bu (0.15 mmol), and
DMA (0.60 mL), r.t. Ratios of α:β (±2) were determined via 1H
NMR spectroscopy (600 MHz) of the crude reaction mixtures.
Percentages represent isolated yields of the α-borylated product. bThe
corresponding protoboration side product (23%) was observed by 1H
NMR analysis of the crude reaction mixture.
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We next explored the scope of terminal alkynes for
alkylboration. Alkynes containing different primary alkyl chains
readily underwent efficient methylboration with high α-
selectivity (2ad and 2bd). In addition, a range of functional
groups, including ether (2kd), chloro (2ed, 2md), cyano (2 cd),
amide (2od), and protected amino group (2ld), were tolerated,
furnishing the desired products in good yields and high
regioselectivity. The reactions of alkynes bearing secondary
alkyl groups at the α-position (2qd and 2rd) gave high α-
selectivity as well. However, like in the previously reported
(CAAC)Cu-catalyzed protoboration reaction,22 tert-butyl ace-
tylene (2td) has very low reactivity under the optimal
conditions. Alkynes with medicinally relevant functional groups,
such as pendant piperidine and azetidine moieties, were both
competent coupling partners (2hd and 2id). Unfortunately,
poor α-selectivity was observed when benzyl-protected
propargyl alcohol (2sd) or phenylacetylene (2jd) were used
as substrates.
The scope of the alkyl electrophile was then examined.

Deuterated methyl iodide works well, showing the ability of this
method to assemble isotopically labeled compounds efficiently.
The reactions of primary alkyl electrophiles with 1a afforded the
α-selective alkylboration products with high yield, though
relatively lower α:β ratios were observed compared to the
reaction using methyl iodide (2af, 2ag). Notably, alkyl
electrophiles containing functional groups, such as terminal
alkene, silyl ether, and ester, were compatible under our reaction
conditions, giving 60−66% yield and 73−75% α-selectivity
(2ah−2aj). Using benzyl bromide as the electrophile, the
desired product (2ak) was generated in excellent yield and high
α-selectivity. A similar α:β ratio was observed when an alkyne
bearing secondary alkyl groups at the α-position was applied
(2hf).
A plausible catalytic cycle for this reaction is depicted in

Scheme 2A. One possible explanation for the observation that
regioselectivity varies across the different C(sp3) electrophiles
tested in Table 3 is that the borylcupration step could be
reversible. Under such a scenario, the nature of the C(sp3)
electrophile and the rate of C−C bond formation may influence
regioselectivity. To test this hypothesis, we performed a
crossover experiment between alkynes 1a and 1j. In this

experiment, L1·CuCl was reacted with LiOt-Bu, then B2pin2,
followed by alkyne 1j in a J. Young tube andmonitored by NMR
spectroscopy to show a 70% yield of the in situ-generated
complex III (Scheme 2B). Subsequent addition of alkyne 1a

Scheme 2. Catalytic Cycle and Mechanistic Studies

Table 3. Scope of α-Selective Alkylboration of Terminal
Alkynesa

aConditions: 1 (0.10 mmol), B2pin2 (0.11 mmol), alkyl iodide (0.30
mmol), L1CuCl (0.006 mmol), LiOt-Bu (0.15 mmol), and DMA
(0.60 mL), r.t. Ratios of α:β (±2) were determined via 1H NMR
spectroscopy (600 MHz) of the crude reaction mixtures. Percentages
represent isolated yields of the α-borylated products.
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afforded a mixture of borylcuprated species III and III′, as
observed by 1H and 13C NMR spectroscopies. These results
support a reversible borylcupration in which complex III reverts
to boryl complex II (Scheme 2A) followed by reinsertion with
alkyne 1a to afford the observed mixture. In parallel, we also
performed kinetic studies of the reaction of alkyne 1a and BnBr
and found a first-order rate dependence in catalyst [L1·CuCl]
and electrophile [BnBr]. Meanwhile, a zeroth-order rate
dependence was observed from the alkyne [1a] and the
borane/base combination [B2pin2·LiOt-Bu] (Scheme 2C).
The resulting rate law is consistent with the mechanism
proposed in Scheme 2A, wherein a reversible borylcupration
precedes the regio- and rate-determining reaction with the
electrophile. These studies taken together support the proposed
mechanism wherein a reversible borylcupration would account
for the change in regioselectivity as a function of electrophile
identity. To investigate the mechanism of the alkylation step, we
performed a radical clock experiment with cyclopropylmethyl
iodide (Scheme 2D). The results of this study show exclusive
formation of the ring-intact product (2al) with no detectable
quantity of ring-opened product (2am) observed. This indicates
that the alkylation step likely does not proceed through a radical-
based mechanism.
In conclusion, we have extended our investigations of

(CAAC)Cu−boryl catalysis to the three-component carbobora-
tion of terminal alkynes and have found that high levels of α-
selectivity are maintained across different carbon electrophiles,
including allyl electrophiles, which have not been previously
employed in anα-selective reaction system. The generality of the
method across different alkyne substrates offers a convenient
means of preparing trisubstituted alkenylboron compounds with
established utility in organic synthesis.
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