
Communication Algorithm-Architecture Co-Design

for Distributed Deep Learning

Jiayi Huang

UC Santa Barbara

jyhuang@ucsb.edu

Pritam Majumder

Texas A&M University

pritam2309@tamu.edu

Sungkeun Kim

Texas A&M University

ksungkeun84@tamu.edu

Abdullah Muzahid

Texas A&M University

abdullah.muzahid@cse.tamu.edu

Ki Hwan Yum

Texas A&M University

yum@cse.tamu.edu

Eun Jung Kim

Texas A&M University

ejkim@cse.tamu.edu

Abstract—Large-scale distributed deep learning training has
enabled developments of more complex deep neural network models
to learn from larger datasets for sophisticated tasks. In particular,
distributed stochastic gradient descent intensively invokes all-reduce
operations for gradient update, which dominates communication
time during iterative training epochs. In this work, we identify the
inefficiency in widely used allreduce algorithms, and the opportunity
of algorithm-architecture co-design. We propose MULTITREE all-reduce
algorithm with topology and resource utilization awareness for
efficient and scalable all-reduce operations, which is applicable to
different interconnect topologies. Moreover, we co-design the
network interface to schedule and coordinate the all-reduce
messages for contention-free communications, working in synergy
with the algorithm. The flow control is also simplified to exploit the
bulk data transfer of big gradient exchange. We evaluate the co-
design using different all-reduce data sizes for synthetic study,
demonstrating its effectiveness on various interconnection network
topologies, in addition to state-of-the-art deep neural networks for
real workload experiments. The results show that MULTITREE achieves
2.3× and 1.56× communication speedup, as well as up to 81% and 30%
training time reduction compared to ring all-reduce and state-of-the-
art approaches, respectively.

Index Terms—distributed deep learning, data-parallel training, all-
reduce, interconnection network, algorithm-architecture codesign

I. INTRODUCTION

The onset of the big data era and rapid advances of

accelerator architectures have enabled deep learning

applications to achieve superhuman accuracy on complex

real-world problems, such as image recognition, natural

language processing, and autonomous driving. State-of-the-

art DNN models such as GPT-3 [1] have hundreds of billions of

parameters, requiring trillions of compute operations and

hundreds of gigabytes of storage and massive bandwidth.

Recent work projects that orders of magnitude growth of

dataset and model size are required to exceed human-level

accuracy, which can take weeks to train a single epoch for

language modeling [2]. As data keep exploding and DNNs

evolve to be larger and deeper, it is crucial to provide scalable

solutions to fulfill the trend in computing requirements.

1 NVIDIA NCCL enables double binary tree when message size is small while

disables it and uses ring all-reduce when message is larger than a threshold,

which requires tuning for different systems [17], [18].

This research was supported in part by NSF Grant #1931078.

To this end, grids of specialized accelerators have been

designed and deployed to train DNN models in a parallel and

distributed manner [3], [4]. In particular, data-parallelism, as

the easiest model of parallel and distributed computing, has

been widely used in large-scale DNN training [5], [6].

Stochastic gradient descent (SGD) is a typical optimization

algorithm to improve DNN accuracy through iterative training,

which intensively invokes all-reduce communication. As the

dominant component of communication, all-reduce can stall

the computations of the next training epoch significantly. Thus,

all-reduce can quickly become a bottleneck for large scale

distributed training [7].

Several communication algorithms have been proposed for

all-reduce operation [8]–[11]. Baidu Research implemented a

bandwidth-optimal ring all-reduce algorithm [9], [12], which

has been later included in NVIDIA Collective Communication

Library (NCCL) [13] and other popular deep learning

frameworks [14], [15]. However, ring all-reduce suffers from

long latency and may have low resource utilization in certain

network topologies, for instance, only 25% link utilization rate

in a 4×4 2D Torus network. Several attempts have been made

to improve all-reduce latency by reducing the algorithmic

steps [10], [11], [16]. Halving-doubling reduces the latency

through recursive distance doubling and halving in the

reducescatter and all-gather phases, respectively [11]. Double

binary tree (DBTree), which is also implemented in NCCL,

improves the latency through two-tree reduction and

broadcast [10], [16]. These two algorithms perform better

than ring all-reduce for short to medium messages. However,

for large messages, they can lead to significant network

congestion since their communication patterns map poorly on

to the physical network topology, turning out to be worse than

rings1 [11], [19]. Therefore, it is crucial to consider the physical

network topology for all-reduce algorithm design with proper

message scheduling to achieve low latency for short to

medium messages and contention-free communication for

large data sizes.

TABLE I: Comparisons of All-Reduce Algorithms.

Algorithms Small data Large data Applied Well on

 Latency Bandwidth Contention Various Topologies

Ring [9], [12] high optimal none X
DBTree [10], [16] low optimal high × (Topo-oblivious)
2D-Ring [28] low sub-optimal none × (2D Torus/Mesh)
HDRM [29] low optimal none ×(BiGraph)
MULTITREE low optimal none X

Recently, dedicated networks with accelerator pods have

been deployed to accelerate emerging deep learning

applications, such as Cloud TPU [4] and Catapult [3]. While

computation acceleration has been significantly studied [20]–

[27], communication specialization with architecture-

algorithm codesign is still in its infancy [28], [29]. Ying et al.

adopted 2D-ring all-reduce for the 2D Torus network in TPU

clusters to fully utilize the links and reduce communication

steps [28]. Although achieving full link utilization, its 2D nature

increases the amount of communicated data, which can be

double the optimal communicated data as the network scales

out. For a 2D N×N Torus network, 2D-ring transmits 2N(N −1)

data while flat ring communicates N2 −1 data. More recently,

Alibaba proposed the EFLOPS training platform by co-

designing algorithm and system with a new server

architecture [29]. It extends the halving-doubling algorithm

with rank mapping (HDRM) on a two-stage fully connected

BiGraph topology to avoid contention, showing promising

potential for the codesign approach. However, it is not trivial

to scale due to its full connections among switches. These

algorithms are limited to specific topologies (2D Torus and

BiGraph) and do not generalize to other network topologies.

With the trend for larger and deeper DNN models, more

accelerator grids are deployed for large-scale distributed

training. Therefore, more scalable solutions are required to

work in synergy with various topologies that can practically

interconnect a large number of nodes [4]. Moreover,

communication acceleration through specialization is urgently

needed to keep up with the computation throughput. In

addition, the lack of hardware support for coordination and

communication scheduling may miss potential optimization

opportunities to further improve performance. Furthermore,

the fine-grained flow control and arbitration designed for

general purpose networks can be inefficient to support such

large gradient exchanges, resulting in extra performance and

significant energy/power overhead. Table I summarizes the

comparisons among these works.

In this work, we co-design an all-reduce communication

algorithm and interconnection architecture to support

efficient and scalable all-reduce operation. We propose

MULTITREE, a scalable topology-aware all-reduce algorithm

that is applicable to various topologies. MULTITREE couples tree

construction and message scheduling with topology and

global link utilization awareness to build trees from roots in a

top-down fashion. It leverages the insight that tree levels

closer to the roots are more sparse and tree levels closer to the

leaves are denser. Based on this, MULTITREE moves more

communication closer to the roots to make communication

closer to the leaves sparse so that communications are

balanced in all levels of the trees. Moreover, we co-design the

network interface according to the proposed communication

algorithm and to facilitate the all-reduce schedule

management to achieve contention-free all-reduce. We also

simplify the flow control and arbitration to exploit the

characteristics of large gradients in all-reduce operations. As a

result, MULTITREE tackles the limitations in previous work, as

summarized in Table I.

In summary, the contributions of this paper are as follows.

• We identify the inefficiency in the state-of-the-art

allreduce algorithms, and co-design all-reduce algorithm

and interconnect hardware for large gradient exchange.

• We propose MULTITREE, an all-reduce algorithm that is

applicable to various interconnect topologies and couple

tree construction and communication scheduling, with

topology and global link utilization awareness, to

efficiently coordinate concurrent reduction/broadcast

trees.

• We augment the network interface to support hardware

based scheduling for MULTITREE and facilitate the lockstep

communications in the schedule, while simplifying the

flow control dedicated for large gradient all-reduce.

• Our evaluations using synthetic messages and state-

ofthe-art DNNs show that MULTITREE greatly improves

scalability over prior works, and achieves 2.3× and 1.56×

communication speedup, as well as up to 81% and 30%

training time reduction compared to ring all-reduce and

the state-of-the-art approach [28], respectively.

The rest of the paper is organized as follows: §II introduces

the background and motivation. §III presents the proposed

MULTITREE all-reduce algorithm followed by the co-designed

architecture detailed in §IV. The methodology is described in

§V and the evaluation is presented in §VI, respectively. Further

discussions are outlined in §VII followed by more related work

in §VIII. Finally, we conclude the paper in §IX.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of

dataparallel deep neural network training followed by all-

reduce communication in distributed stochastic gradient

descent synchronization.. Then, we motivate this research by

outlining the limitations of existing all-reduce algorithms.

A. Data-Parallel Deep Neural Network Training

DNN training is usually done using stochastic gradient

descent where each training sample goes through forward

propagation, gradient calculation followed by backward

propagation. Backward propagation uses the gradient to

update weights of the DNN model in order to minimize a loss

function. To make training faster, mini-batch is used where

there is one pass of weight update for each mini-batch of

training samples. It is a daunting task to train large DNNs with

huge amounts of data. Thus, distributed training is performed

on multiple compute nodes. Each compute node may be

equipped with GPUs and accelerators. This creates the

challenges regarding resource usage, communication

bandwidth provisioning, and trade-off between computation

and storage [30], [31]. Different parallel strategies have been

used to enable scalable and efficient distributed training.

Data parallelism is the most common way for distributed

DNN training where a non-overlapping set of training samples

are distributed to different compute nodes. Each node

calculates gradients based on its own training set. Gradients

are then aggregated to update weights using either a

centralized or a decentralized approach. The centralized

approach relies on a parameter server where each node

periodically reports its computed parameter updates to a (set

of) parameter server(s) [8]. However, parameter servers are

not efficient in terms of bandwidth and latency for larger

DNNs. An alternative is the decentralized approach where

compute nodes exchange parameter updates via an all-reduce

operation, where the all-reduce algorithm plays an important

role. A widely used one is ring all-reduce [9], [12] that only

requires a tree topology to achieve no contention and optimal

bandwidth, where a tree topology is typically embedded in

any network topology. However, it is not latency-optimal [12].

B. All-Reduce for Distributed Stochastic Gradient Descent

Baidu popularized ring all-reduce using a sequence of

reduce-scatter followed by all-gather operations [9], [32].

Reduce-scatter and all-gather operations are further

optimized to exploit the hierarchical nature of communication

bandwidths of heterogeneous network architecture [33].

Fig. 1 shows an example. Let us assume that each row

represents one segment of tensors with segment 0 being the

top row and segment 3 being the bottom one. Each node

forms a ring with the next node. Reduce-scatter is done on

segment 0 starting from Node 1. In the first iteration, segment

0 is sent from Node 1 to Node 2 where the tensors are

aggregated. Thus, two out of four sets of tensors are

aggregated in the first iteration. In the second iteration,

segment 0 is sent from Node 2 to Node 3 and in the third

iteration, segment 0 is sent from Node 3 to Node 0. Thus, after

3 iterations, all tensors of segment 0 are aggregated to Node

0. Similarly, segment 1 starts from Node 2 and after 3

iterations, gets reduced to Node 1. Segments 2 and 3 end up

getting reduced to Nodes 2 and

3, respectively. Thus, it takes 3 iterations for reduce-scatter.

After the sequence of reduce-scatter operations, all-gather

operations are done similarly. In the first iteration, segment 0

is sent from Node 0 to Node 1. Now, Node 1 has two out of

four segments (namely segments 0 and 1). Similarly, at the end

of the first iteration, other nodes end up having 2 segments.

In the second iteration, segment 0 is sent from Node 1 to Node

2 and subsequently from Node 2 to Node 3 in the third

iteration. Thus, after 3 iterations, all nodes will end up having

all 4 aggregated segments.

C. Motivation

Widely used ring all-reduce has been proved

bandwidthoptimal [12], which makes it suitable for large

gradient exchanges [9], [13], [34]. However, it faces link under-

utilization in certain topologies such as Torus and Mesh.

Furthermore, it suffers from long latency as the system scales

out. Several attempts have been made to improve link

utilization and latency [10], [16], [28]. 2D-ring all-reduce

utilizes all the links and reduces the communication steps in

2D Torus and Mesh networks [28], but it transmits twice the

amount of data compared to bandwidth-optimal algorithms.

For instance, 2D-ring communicates 2N(N −1) data while ring

all-reduce communicates N2 −1 data in a 2D N×N Torus

network. On the other hand, the double binary tree algorithm

builds two logical binary trees to reduce latency for small to

medium messages [10], [16]. It constructs the two trees in a

way such that the leaf nodes in one tree are the internal nodes

in the other tree. Therefore, each tree can take half of the data

and all the nodes can send and receive data simultaneously,

outperforming single-tree all-reduce. It better utilizes the end-

node bandwidth and works well on networks with all-to-all like

 Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

Out[0] Out[0] Out[0] Out[0]

Out[1] Out[1] Out[1] Out[1]

Out[2] Out[2] Out[2] Out[2]

Out[3] Out[3] Out[3] Out[3]

Fig. 1: Reduce-scatter and all-gather in ring all-reduce.

In[1][0]

In[1][1]

In[1][2]

In[1][3]

In[0][0]

In[0][1]

In[0][2]

In[0][3]

In[3][0]

In[3][1]

In[3][2]

In[3][3]

In[2][0]

In[2][1]

In[2][2]

In[2][3]

Out[1]

Out[0]

Out[3]

Out[2]

topology for small to medium messages. For large messages,

it can experience significant contention since the two trees are

not mapped well on the physical network topology, especially

severe on unfriendly topology such as Torus [19]. The recently

proposed EFLOPS extends halving-doubling by mapping the

ranks to the nodes to achieve contention-free communication

for large datasets [29]. Since each communication pair always

involves one node connected with an upper switch and one

node connected with a lower switch, it never exploits the

onehop distance between nodes connected to the same

switch, failing to expedite latency-sensitive communications

for small messages. Furthermore, these algorithms are not

general to apply to different network topologies while

achieving good performance for both latency and bandwidth.

Typical interconnection networks for general-purpose

communications use fine-grained flow control that well

supports short messages. However, it can generate many

small packets for large gradients, which can lead to extra

bandwidth and arbitration overheads. To mitigate such an

overhead, flow control can be streamlined to take advantage

of large gradients. In the conventional packet-based flow

control, a packet consists of a

Fig. 2: Packet head flit bandwidth overhead.

few flits, including a head flit for metadata and body/tail flits

for payload, where the head flit incurs bandwidth overhead.

For on-chip networks, the payload of a packet is a cache line

whereas, for off-chip networks, payload size varies from 64 to

256 bytes with 16-byte flits, incurring 6%–25% bandwidth

overhead, as shown in Fig. 2. In distributed DNN training,

streams of consecutive large gradients flow from one node to

the other using many small packets, following the same route

with consecutive addresses. So the head flits of these

consecutive packets contain redundant information, leading

to unnecessary bandwidth overhead. Thus, flow control can

be simplified to exploit this distinct characteristic.

III. MULTITREE ALL-REDUCE ALGORITHM

In this section, we first explain the rationales behind the

MULTITREE approach. Then, we illustrate the main idea with an

example followed by its algorithm.

A. Rationales and Insights

1) Spanning Trees Instead of Rings: In reduce-scatter

and all-gather phases of all-reduce, each node leads a

reduction and a broadcast of one chunk of data. In ring all-

reduce, each node communicates a chunk of data in a

unidirectional ring, which takes (n−1) steps in both phases for

n nodes. If each such communication can take place in a tree

structure, it can reduce the algorithmic steps to 2logk n with a

k-ary tree for n nodes. Thus, the proposed algorithm is not

only bandwidthoptimal but also reduces latency by

constructing multiple trees instead of rings, thereby improving

all-reduce scalability.

2) Topology Awareness: If trees are constructed without

considering network topology and link utilization, it may lead

to even worse performance than ring all-reduce, especially

when multiple trees contend for the same link at the same

time without careful scheduling. Furthermore, tree levels

closer to leaves are denser than tree levels closer to roots. Thus,

when reducing from leaves to roots, the reduce-scatter phase

can experience dense to sparse communications, leading to

high contention near leaf nodes. MULTITREE exploits this insight

to combine message scheduling and tree constructions, with

topology and link utilization awareness to schedule more

communication near the roots to sparsify communication near

leaves. In addition, instead of constructing the trees one

0 %

% 10

20 %

30 %

32 128 512 2048
Packet Payload Size (Bytes)

4- Byte Flit 8- Byte Flit 16- Byte Flit

CMP NoC

Off - Chip
Interconnection Network

t = t +1
0 0 0

(e) All-gather schedule trees (broadcast)
Fig. 3: MULTITREE construction with link allocation and scheduling for

all-reduce communication of a (2×2) Mesh network. Node n in tree T

is denoted as T-n and label (i) of an edge is the allocation sequence of

that link while label t of an edge is the communication time step

between the two nodes: (a) link allocation sequence of the topology

graph for level 1 (time step 1); (b) when no more links are available

for the predecessor levels 0 and 1, a new link topology graph is used

for allocation for level 2 (time step 2); (c) the tree construction

process indicated by edge labels; (d) the constructed reduce-scatter

schedule trees and (e) all-gather schedule trees.

by one, MULTITREE builds them concurrently, generating

balanced trees with global coordination.

B. Main Idea

Given a network G(V,E) with nodes V and edges E, finally |V

| spanning trees are created. To move more communications

near the roots, MULTITREE builds the trees from roots in a top-

down approach, making the predecessor levels denser and

communications balanced across the tree levels. During tree

construction, for each time step (tree level), a topology graph

is used to allocate links to connect remaining nodes to the

spanning trees, and the allocated links are removed from the

graph. When there are no more available links to connect

remaining nodes to any of the trees, a new topology graph is

used for the next time step (tree level).
 R0-0 R0-1 R0-3 R0-2 T0-0 T1-3

 R1-1 R1-3 R1-2 R1-0
 T0-2 T1-1
 R2-2 R2-0 R2-1 R2-3

 R3-3 R3-2 R3-0 R3-1 T0-1 T0-3 T1-2 T1-0

 (a) Ring-based all-gather (b) Double binary tree broadcast
Fig. 4: All-gather or broadcast phase of the ring-based and double

binary tree algorithms: (a) Ring-based all-gather with Ri-n for a node n

involving in data chunk i, and (b) double binary tree broadcast with

black/red edge color indicating communication at even/odd step.

We illustrate the main idea by walking through an

example 2 that constructs schedule trees for a (2×2) Mesh

network as shown in Fig. 3. Fig. 3a and 3b show the topology

graphs that are used to facilitate tree constructions for time

steps 1 and 2, respectively. The edge label (i) in Fig. 3a, 3b and

3c indicates the global link allocation sequence that connects

a node to its parent during the tree construction. Fig. 3c shows

all the trees and their construction sequences, where the trees

take turns to add one node at a time, sustaining tree balance.

2 For demonstration purposes, we use a 2×2 Mesh network that is too small

to show the benefit of MULTITREE. Although a larger network can show the
advantages of MULTITREE, we cannot accommodate it due to page limit.

At sequence number 7, after the last edge (3 → 2) is added to

connect nodes

2 (T3-2) and 3 (T3-3) in tree 3, the topology graph for time step

1 in Fig. 3a runs out of all the edges. Then, a new topology

graph in Fig. 3b is used to start time step 2, which creates a

new level for the trees. (lines 4–14 of the Algorithm 1 in §III-

C). These newly constructed trees are used to build the

reduce-scatter schedule trees and finally, are adjusted to

generate all-gather schedule trees, as shown in Fig. 3d and 3e,

respectively. Note that the trees are well balanced and

symmetric in shape, but not necessarily structurally symmetric.

Structural symmetry requires special representation of each

node with respect to the remaining network and only applies

to specific symmetric networks. Moreover, for networks like a

(4×4) Mesh where the longest distance from a source node

varies depending on its position, the trees are asymmetric

with different heights.

Fig. 4 shows the all-gather and broadcast schedules for ring

and double binary tree (DBTree) on the same network,

respectively. Compared to MULTITREE, ring needs one more

step which leads to longer latency. It also shows rings can be

considered as unary spanning trees. Fig. 4b shows the two

trees in DBTree. Although it has the same logical height as

MULTITREE, its physical height is deeper since the connection

between nodes 1 and 2 crosses two hops due to the mismatch

of tree structure and physical topology. Such a mismatch is

even more severe in larger networks. In addition, DBTree

schedules the communications in even/odd steps (black/red

color) such that a node never receives or sends data

simultaneously in both trees, which can lengthen the

completion time. Note that each edge in MULTITREE maps to a

physical link, which is only one-hop distance.

Algorithm 1: MULTITREE All-Reduce Algorithm.

Input: topology graph G(V,E)
Output: reduce scatter schedule, allgather schedule

// Initialization

1 for each node i ∈ V of graph G(V,E) do

2 Tree Ti adds node i to tree Ti as root;

3 t = 0;

// Compute all-gather schedules

4 while not all trees completed do
// Start a new time step t with a new G

5

6 G (V ,E) = G(V,E);

// Add new nodes to trees and schedule
// communications for this time step

7 while E0 has free edges to add new nodes do

// Trees take turns for balancing

8 Select next tree T by root ID in ascending order;

9 for p ∈ T’s nodes added by previous time steps do
10 if there is an edge (p → c) ∈ E0 then

11Add node c to T and connect to p;

12Remove edge p → c from E0;

// Schedule message p → c at t

13Add (p → c,t) to T’s allgather schedule;

14break;

15 Calculate total time steps tot t = t;

// Compute reduce-scatter schedule, which
// is the reverse of all-gather

16 for (p → c,t0) ∈ allgather schedule of each tree T do
17 Add (c → p,tot t − t0 +1) to T’s reduce scatter schedule;

// Adjust all-gather schedule

18 Replace (p → c,t0) with (p → c,tot t + t0);

C. Algorithm Design

More formally, MULTITREE is presented in Algorithm 1. For

ease of understanding, we describe it for direct networks, and

provide the steps to extend for switch-based networks.

1) Algorithm Description: The algorithm initializes a tree

for each node in the network as the root and the time step t

(lines 1–3). Then it starts to construct the schedule trees for

the all-gather phase (broadcast) instead of reduce-scatter,

since it is more natural for the top-down approach to start

from the root (lines 4–14). For every new time step t, a full

topology graph G0(V 0,E0) is used, whose edges are removed

while adding new nodes to the trees. During this time step t,

trees take turns to add one node c to connect to a predecessor

node p added in previous time steps. Then the edge p → c is

removed from the topology graph and scheduled for

communication at the current time step t. Note that trees

alternate by root ID in ascending order for simplicity, which

works fine in most cases, especially for symmetric networks

like Torus. For asymmetric or irregular networks, trees with

larger remaining height can be prioritized so that

communication on the longest path is scheduled earlier. At

line 9, nodes are examined breadth-first in their order of

adding to the tree by previous time steps so as to make the

predecessor levels denser. For selecting a neighbor of p (line

10), it first checks the neighbors in Y dimension then in X

dimension for Torus and Mesh networks. Other structural

information can be used for asymmetric and irregular

networks, which we leave for future study. When the topology

graph runs out of edges to connect remaining nodes to any of

the trees, it starts a new time step and repeats the same link

allocation procedure until all the allgather schedule trees are

completed. After all-gather schedule trees are constructed,

they are used to construct reduce-scatter trees and adjusted

for communication time step (lines 16–18). Since reduce-

scatter goes in the opposite direction with respect to all-

gather communication, the algorithm simply reverses the

communication pairs of all-gather schedule trees with

adjusted time steps. The all-gather schedules are also adjusted

in time to run after reduce-scatter schedules. In static systems,

the algorithm only needs to run once and can be used for any

DNN workloads. In dynamic and shared systems, it runs every

time a new set of nodes is allocated for the workloads.

2) Complexity Analysis: The most expensive part of the

algorithm is the loop for all-gather schedule tree constructions

(lines 4–14). Let us consider a topology graph G(V,E). The core

part of adding new nodes to schedule trees is from lines 9–14.

To add a new node, the algorithm checks whether the already

added nodes of that tree still have edges connected to a

pending node. In the worst case, it may check all the edges of

the graph, which is |E|. In total, we have |V | trees and each

tree has |V | nodes. So the worst case is O(|V |2|E|).

3) Indirect Networks Support: In switch-based networks,

only some switches are connected to end nodes, other

switches connect with each other to form the indirect network.

In Algorithm 1, the topology graph G(V,E) is the adjacency lists

of switch-to-switch connections in a direct network, where each

switch is attached with a node. In order to support indirect

networks, we extend G(V,E) with additional node-to-switch and

switch-to-node connection lists. To find an available child c for

a node p, it follows breadth-first search on these three

topology components as described in the following steps:

(1) Get p’s attached switch sw0 from its node-to-switch list.

(2) When multiple nodes are attached to the same switch,

check whether sw0’s switch-to-node has connections to

connect with p. If there is an available connection, pick a

node as c and remove one connection (p → sw0) from p’s

node-to-switch list and one connection (sw0 → c) from sw0’s

switch-to-node list, then return. If there is no available

connection, go to step 3.

(3) Get the neighbor switch sw1 from the switch-to-switch list

of sw0. Repeat the same process as step 2 with sw1 until a

node c is found or no connection is available. In this case,

if a node is found, besides the connections removed in

step 2, connections in traversed switch-to-switch lists

should also be removed for the allocated links.
 All-Reduce Schedule Table Entry Op: Reduce, Gather, NOP

FlowID: tree ID

Reduce 3 1 nil nil nil nil 1
Reduce 1 1 nil nil nil nil 2
Reduce 2 2 1 nil nil nil 2
Gather 0 nil 1 2 nil nil 3

Reduce 2 0 nil nil nil nil 1
Reduce 0 0 nil nil nil nil 2
Reduce 3 3 0 nil nil nil 2
Gather 1 nil 0 3 nil nil 3

Accelerator 0 Accelerator 1
Op FlowID Parent Children Step Start Addr Size

Op FlowID Parent Children Step Op FlowID Parent Children Step

Gather 2 2 1 nil nil nil 4 Gather 3

 3 0 nil nil nil 4 Accelerator 2 Accelerator 3
Op FlowID Parent Children Step Op FlowID Parent Children Step

Reduce 1 3 nil nil nil nil 1
Reduce 3 3 nil nil nil nil 2
Reduce 0 0 3 nil nil nil 2
Gather 1 nil 0 3 nil nil 3

Reduce 0 2 nil nil nil nil 1
Reduce 2 2 nil nil nil nil 2
Reduce 1 1 2 nil nil nil 2
Gather 3 nil 1 2 nil nil 3

Gather 0 0 3 nil nil nil 4 Gather 1 1 2 nil nil nil 4

Fig. 5: All-Reduce schedule tables for the example in §III-B (The Start

Addr and Size fields are omitted in the tables for brevity).

IV. ARCHITECTURAL SUPPORTS

In this section, we outline the co-designed communication

architecture and the specialized flow control mechanism for

MULTITREE all-reduce operations.

A. All-Reduce Schedule Management

We co-design the network interface (NI) to facilitate MUL-

TITREE all-reduce scheduling. Algorithm 1 constructs trees for

each data chunk. These tree schedules can be converted into

schedule tables (one table per node). Fig. 5 shows the

allreduce schedule tables for the example in §III-B. Each table

entry consists of an Op filed for the opcode, a FlowID field for

the tree flow (tree ID), a Parent and Children fields for the

dependencies in this tree flow 3 . In addition, the Step field

indicates the time step in which this communication should be

initiated. The Start Addr and Size fields are for the starting

address and the size for the gradient message, respectively.

There are three opcodes for all-reduce, namely, Reduce,

Gather, and NOP. During Reduce operation, communication

happens from the leaf to the root. Each internal node of the

trees must receive Reduce before communicating to its parent.

For example, in Fig. 5, accelerator 0 can send a Reduce to its

parent (accelerator 1) for tree flow 3, because it is the leaf

node at step 0 in tree 3. The last Reduce of accelerator 0 should

not be sent to the parent (accelerator 2) until it receives a

dependent Reduce from its child (accelerator 1) in the flow tree

2. On the other hand, during Gather operation, a node sends

messages to the children after receiving a Gather from the

parent unless the node is the root of the tree.

We also provide a NOP to maintain the communication of

different time steps in a lockstep manner. Link contention can

happen without proper scheduling of messages among the

trees. This is more frequent in topologies that generate

imbalanced trees, such as large-scale Mesh, and can limit the

improvement or even degrade performance by destroying the

3 The size of the Children field is calculated as the bandwidth ratio between

the network interface and a network link bandwidth.
4 The step time is estimated as the number of flits (num_flits) for the perstep

data chunk if the NI buffers can hold it completely. Otherwise, it is estimated

as num_flits subtracting the NI buffer size (translating to flit size).

scheduling. Therefore, a mechanism to maintain the

communication in a lockstep fashion is needed to achieve the

Fig. 6: Architecture of all-reduce schedule management.

best performance. One option is to use some simple message

passing scheme but that can introduce additional coordination

overhead, which can be very high especially for small

messages. Therefore, we propose a lockstep mechanism for

implicit coordination by exploiting the static communication

patterns in all-reduce. Given the message size, the step time is

estimated as the serialization latency assuming no contention4.

When a NOP is inserted, the all-reduce injection is forced to

stall for the estimated step time. Although NOP may leave links

under-utilized, based on our observations, it only happens in

irregular networks and at the leaves of the trees, while other

time steps can fully utilize the links5. Pruning and adjusting the

trees may help in these cases, we leave it for future

exploration. In addition, the estimated lockstep mechanism

does not require a global synchronization across all the NIs.

When the data size is small, minor variation in the same time

step in different nodes has minimum impact as bandwidth is

not the bottleneck. When the data size is large, the long

serialization latency becomes dominant, making the small

clock variance insignificant.

Fig. 6 depicts the architecture for all-reduce schedule

management and injection regulation. It includes an all-

reduce schedule table, a timestep counter, a decoder, a

5 Note that even in best-effort utilization, links may be under-utilized as

data size may not be perfectly divisible by the aggregated bandwidth.

lockstep downcounter and the conventional NI facilities. Upon

an all-reduce operation, the schedule table is initialized; the

timestep and lockstep counters are reset by the processor to

configure the scheduling. During all-reduce, the head entry of

the table is inspected (1). If the Step is the same as the

timestep counter value and the children (for Reduce) or parent

(for Gather) dependencies are satisfied, the operation is issued

to send the messages. Then, the Op is decoded to decide the

corresponding action (2). If it is a NOP, the lockstep counter is

set and starts down counting for an estimated time step. If it

is a Reduce/Gather, the Start Addr and Size are used to request

the DMA engine for bulk data transfer. When the data comes

back, the FlowID is encapsulated with other address

information in the data packet to start communication. When

the lockstep counter is zero and the all-reduce units are idle,

the timestep counter is incremented if the next operation in

the schedule table is for the next step (3). Upon receiving

Reduce messages, it is issued to the reduction logic for

aggregation (4). Once the aggregation for Reduce of the

current step is finished, they are used to clear the

dependencies of future

Reduce/Gather (5). When a Gather is received, it is directed to

the schedule table to clear the parent dependence for the

upcoming Gather (6).

B. Message-based Flow Control for Big Gradient Exchanges

Unlike general purpose applications, all-reduce

communication in data-parallel DNN training has a relatively

fixed traffic pattern. With a specific all-reduce algorithm, the

communication pattern is known in advance for a training task.

For example, MULTITREE constructs schedule trees before

training starts. This prior knowledge can be leveraged for

simpler control and arbitration in hardware, thereby

simplifying logic and improving energy efficiency. MULTITREE

algorithm aims to coordinate among the trees with a global

view, where less dynamism in interconnection networks helps

maintain the communication schedules, thereby keeping

concurrent communications progressing at a similar rate. In

addition, the long traffic (between a communicating pair) for

all-reduce of large gradients unnecessarily incurs bandwidth

overhead of massive number of packet head flits. To optimize

these aspects, we revisit the traditional flow control

techniques and redesign them specifically for all-reduce

communication.

Fig. 7a shows a commonly used packet-based switching

mechanism, where large gradients are divided into many

messages. Each message is partitioned into multiple packets.

Each packet consists of a head flit and body/tail flits. The

highlighted head flits consumes bandwidth and incurs extra

control such as routing and arbitration, causing extra delay

and energy consumption. On the other hand, we adapt a

message-based approach to reduce such overheads, as shown

in Fig. 7b. Instead of having a fixed message size, we take the

whole chunk of gradients as a message, which can be further

converted to many sub-messages starting with a head sub-

message and ending with a tail sub-message. Each

submessage is divided into sub-packets, where the first sub-

packet of the head sub-message is a head sub-packet, which

behaves as the head of the large gradient message. The last

subpacket of the tail sub-message is the tail sub-packet to end

the gradient message. Similarly, the sub-packets are

partitioned into flits. Unlike conventional packet-based

switching, body

VC Type Packet Info Header Info

(a) Head and head&tail flit

VC Type unused Payload

(d) Sub-packet information in head flit
Fig. 8: Flit formatting in a (4×4) Torus network for (a) head and

head&tail flit, (b) body and tail flit, (c) packet information in head flit

for normal packet, and (d) sub-packet.

and tail sub-packets start with a body flit, while head and body

sub-packets end with a sub-tail flit to indicate the completion

of a sub-packet. This leads to only one head flit for a large

gradient message, achieving near perfect bandwidth

 (a) Original gradient message (b) Big gradient message
Fig. 7: Flow control: (a) original many messages with small packets of gradients and (b) big message with large packet of full gradients.

2 3 10 1

2 3 3

Packet Info Route Info Dest Src ⟹ ⟹
2 4 4

Packet Info Route Info Tree Info Next Eject Tree ID ⟹ ⟹
3 4 3 4 6

efficiency to improve performance and energy efficiency. This

not only gains the benefit of circuit switching without setup

time, but also avoids blocking other critical short packets from

using the physical links.

TABLE II: Packet and Flit Types
 Normal Packet Flit Code Sub-Packet Flit Code

Head1 0 0
Body1 0 1
Tail1 1 0

Head & Tail1 1 1

Fig. 8a and 8b show the flit formats for head/head&tail flit

and body/tail flit, respectively. The VC field indicates the

allocated virtual channel and the Type field specifies the packet

and flit type, as listed in Table II. The Packet Info field is encoded

differently for normal packets and all-reduce sub-packets, as

shown in Fig. 8c and 8d. For normal packets, the Packet Info is

simply the Route Info, including Dest and Src that are used by

the distributed routing algorithms. For all-reduce sub-packets,

Packet Info includes both Route

Info and Tree Info, where the Tree Info is the Tree ID that this

message belongs to. Since MULTITREE only communicates

between neighbors, we use source routing to include the next

hop output port Next and ejection port Eject in the head flit. In

the network interface, these pieces of information are pre-

computed and stored in Route Info, which can be directly used

in the routers. More specifically, in the source router, the Next

field is used to route to the neighbor, which will interchange

with the Eject field after the routing computation stage. The

Next field is kept toward the destination in order to identify

which child the message is from to clear dependencies for

scheduling purposes.

Since MULTITREE all-reduce only schedules communications

between two neighboring nodes, the flits always take one hop.

Therefore, such a design does not increase the possibility and

risk of deadlock. Note that it can still work with wormhole

switching seamlessly to support other types of traffic, such as

control and synchronization traffic. Virtual channels are used

to avoid starvation of other short messages.

V. METHODOLOGY

A. System Modeling and Configuration

We extended SCALE-Sim [35], a DNN inference simulator, to

support back-propagation for training, where output

stationary dataflow is applied. We configure a TPU-like

accelerator with 16 processing elements (PEs), where each PE

has a (32×32) systolic array. We assume double buffering and

sufficient memory bandwidth (such as high bandwidth

memory) to maintain the peak compute throughput. The

accelerator is also used for aggregation during all-reduce

communication.

We use BookSim [36] for interconnect modeling and

implemented a python interface between SCALE-Sim and

BookSim so that the accelerator and network can interact

through network interface, which implements the co-

designed all-reduce scheduling. The extra hardware overhead

includes a schedule table and two counters, one for the

lockstep down counter and the other for the time step counter.

Since each tree needs two entries in each node, one for

reduce-scatter and one for allgather, the number of table

entries is double the number of trees, which is the total

number of nodes. So a table needs 2N entries for an N-node

system. For a 64-node system, each table entry needs 200 bits

and the table needs only 128 entries, which incurs 3.2 KB

overhead. The schedules are computed once during

initialization and loaded to network interfaces for reuse in the

iterative training epochs. Since the offloading and scheduling

of communication are supported in hardware, protocol and

software overhead compared to

TABLE III: System Configurations

PE

MAC array 32×32

Dataflow Output Stationary

Precision 32 bits

Accelerator
Number of PEs 16

Clock 1 GHz

Network

Number of Accelerators 16, 32, 64

Topology 2D Torus, Mesh, Fat-Tree, BiGraph

Flow Control Virtual Cut-Through

Router Clock 1 GHz

Number of VCs 4

VC Buffer Depth 318 flits

Data Packet Payload 256 Bytes for Baselines

Link Latency/Bandwidth 150 ns / 16 GB/s

software scheduling can be reduced. Note that this scheduling

mechanism is applied to all the baselines for fair comparison.

We configure the buffer size to cover the credit round-trip

loop, the link to match the targeting bandwidth, and the

payload size that is used in modern training systems [37]. Note

that larger link bandwidth can relax the pressure of all-reduce,

but the benefit of MULTITREE over other approaches still holds.

To demonstrate the effectiveness and generality of MULTI-

TREE, we study several topologies, including 2D Torus, Mesh,

Fat-Tree (similar to NVIDIA DGX-2 [38]) and the recent BiGraph

[29]. For all the networks, we test a smaller scale (16node or

32-node) and a larger scale (64-node). We also conduct a

scalability study on Torus by scaling out to 256 accelerators.

The 2D Torus and Mesh direct networks are similar to Google

Cloud TPU [4], whose network interface is integrated on chip.

We also assume the network interface bandwidth matches the

0 0 0 Head

0 0 1 Body

0 1 0 Sub-Tail

0 1 1 Tail

network bandwidth of the attached router in direct networks.

For switch-based networks, each accelerator is connected

with a NIC that connects to a port of the leaf switch. We also

use a 2D 8×8 Torus for DNN benchmark evaluation. The

system configuration parameters are listed in Table III.

B. Workloads

We conduct synthetic study for all-reduce bandwidth on

network topology (§VI-A) and for scalability evaluation (§VI-B).

The all-reduce data size is chosen such that good amounts of

communication is created to stress the network and

simulations can finish in reasonable time. To test all-reduce

bandwidth on different network topologies, we vary the all-

reduce data size from 32 KiB to 64 MiB. For scalability study,

we use an allreduce size of 375×N KiB, where N is the number

of nodes. We also evaluate the DNN models provided by

SCALE-

Sim [35] (§VI-C), including AlexNet [39], AlphaGoZero [40],

FasterRCNN [41], GoogLeNet [42], NCF recommendation (NCF)

[43], ResNet50 [44] and Transformer [45], [46]. We run with a

mini-batch size of 16×N for an N-node system (16 samples per

accelerator)6 and evaluate the training time for one

6We choose a mini-batch size of 16×N for an N-node system to fully utilize
the compute resources, while trade-off between mini-batch size, training time
and model accuracy is out of our scope [47].
iteration for both non-overlap (forward+back-

propagation+allreduce) and computation-communication

overlap (layer-wise all-reduce). In layer-wise all-reduce, each

layer is queued for all-reduce once they finish back-

propagation. So communication overlaps with computation

while SGD is propagating back to previous layers [48].

VI. EVALUATION

We evaluate the MULTITREE without and MULTITREEMSG with

the message-based flow control enabled, respectively. We

also compare our proposed approach with several state-of-

theart all-reduce algorithms as follows.

• RING: ring all-reduce algorithm [9] that can be applied to

all our evaluated topologies.

• DBTREE: double binary tree [10], [16] that is

topologyoblivious and can be applied to all network

topologies.

• 2D-RING: two-dimensional ring all-reduce that is

dedicated to 2D Torus and Mesh networks [28].

• HDRM: halving-doubling with rank mapping that is

dedicated to BiGraph topology in EFLOPS [29].

A. All-Reduce Bandwidth

To show the applicability of MULTITREE on various network

topologies, we configure 4×4 and 8×8 Torus networks, 4×4

and 8×8 Mesh networks, a 16-node Fat-Tree network similar

to DGX-2 but with one physical network and a 64node 8-ary 2-

level Fat-Tree, 32-node 4×8 and 64-node 4×16 BiGraph

networks. We applied the extended version of the algorithm

described in §III-C3 to switch-based systems such as Fat-Tree

and BiGraph. We vary the all-reduce data size from 32 KiB to

64 MiB and evaluate the bandwidth by calculating the all-

reduce data size divided by simulation time. The results are

shown in Fig. 9.

As shown in Fig. 9a and 9b, MULTITREE and MUL-

TITREEMSG always achieve better bandwidth than others

regardless of the data size. This is because when data size is

small, MULTITREE can finish the all-reduce with less steps; when

data size is large, MULTITREE exploits the network topology and

increases the link utilization. Particularly for DBTREE, it is the

worst in these two topologies since the tree nodes map poorly

to the network, which causes severe contention. 2D-RING is

better than RING in Torus and 4×4 Mesh but always worse than

MULTITREE and MULTITREEMSG since 2D-RING is not bandwidth-

optimal and communicates much more data than MULTITREE

due to its two ring allreduce phases in the two dimensions of

the networks. Interestingly, 2D-RING is worse than RING in the

larger 8×8 Mesh network. The reason is twofold. First, there is

no perfect ring topology in a dimension of the Mesh network,

the latency is determined by the slowest pair, which is the two

farthest nodes in the same dimension. Second, 2D-RING is

bandwidth suboptimal and can send twice the amount of data

compared to bandwidth-optimal algorithms (RING and

MULTITREE).

In both Fat-Tree and BiGraph as shown in Fig. 9c and

9d, MULTITREE and MULTITREEMSG outperform RING with smaller

data size; when data size is large, they achieve

 0
2
4
6
8

10
12
14
16
18

MultiTreeMsg

MultiTree

D-Ring 2

Ring

 16 36 64 100 144 196 256
Number of Nodes in 2D Torus Network

Fig. 10: Scalability with 375×N KiB all-reduce data size normalized to

16-node performance of RING, where N is the number of nodes.

almost the same performance. In these two topologies, both

MULTITREE and RING derive the same number of steps. In

MULTITREE, nodes first communicate with the nodes that are

connected to the same switch and have less link traversals,

which is very critical for reducing latency in offchip

interconnection networks. In contrast, RING’s latency is

serialized by the slowest pair of nodes that connect to

different leaf switches, causing more link traversal. Therefore,

MULTITREE is better with a small data size which is

latencysensitive. When with large data size, both algorithms

fully utilize the bandwidth and achieve the same performance.

In DBTREE-friendly networks, DBTREE can achieve better

latency compared to RING due to smaller number of steps, but

it suffers from contention when messages get large. For larger

network size such as 64-node systems, their break-even data

size point is shifted right. We also compare MULTITREE and

MULTITREEMSG with HDRM that is co-designed with the

BiGraph network [29]. Although HDRM has a smaller number

of steps than MULTITREE, the extra link traversal incurred for

each communication between the upper and lower switches

offsets its benefit, leading to worse performance with small

data size. When dealing with large data sizes, HDRM also fully

utilizes the bandwidth. MULTITREEMSG increases the payload

bandwidth by another 6%.

B. Scalability

Fig. 10 shows the weak scalability with the all-reduce size of

375×N KiB for an N-node system, and scaling out N from 16 to

256. The communication time is normalized to RING’s 16-node

network performance. All the three algorithms scale linearly

to the number of nodes while sustaining different linear

factors, where MULTITREEMSG is the best and RING is the worst.

Although both fully utilize the network links,

MULTITREEMSG is better than 2D-RING because 2D-RING is

bandwidth sub-optimal and can communicate nearly twice the

amount of data compared to MULTITREEMSG. As RING does not

fully utilize the network links, it achieves the least

performance. In summary, MULTITREEMSG achieves 3× and

1.4× speedup over RING and 2D-RING, respectively. We also

experimented with strong scalability with a large problem size

and there is only small variation for each algorithm since they

are all contention-free and serialization latency is more

dominant for large all-reduce size.

C. DNN Benchmark Performance

Fig. 11 shows the training time breakdown on an 8×8 Torus

network normalized to RING, for both non-overlapped training

approach (Fig. 11a) and computation-communication overlap

approach (Fig. 11b). As shown in Fig. 11a, except for AlexNet,

 (a) Torus networks (b) Mesh networks (c) Fat-Tree networks (d) BiGraph networks

Fig. 9: All-Reduce bandwidth on different topologies with various data size: (a) 4×4 and 8×8 Torus, (b) 4×4 and 8×8 Mesh, (c) 16-node

(similar to DGX-2) and 64-node 2-level Fat-Tree, (d) 32-node 4×8 and 64-node 4×16 BiGraph in EFLOPS.

training approach with layer-wise all-reduce.

other DNNs have a considerable amount of time on allreduce

communication. CNNs such as AlexNet, FasterRCNN,

GoogLeNet, and ResNet50 are compute-intensive and need to

compute transposed convolution to for input gradients in

order to propagate back to the previous layer. In contrast, NCF

and Transformer have more embedding and attention layers,

which have less computation requirements, making

communication more dominant. In summary, communication

time can vary from 30%–88% in the baseline RING. For

compute-intensive CNNs, MULTITREE improves training

performance by up to 34% and 15% compared to RING and 2D-

RING, respectively. For communication-intensive DNNs,

MULTITREE improves training performance by 81% and 30%

compared to RING and 2D-RING, respectively.

Fig. 11a also shows normalized all-reduce speedup over

RING. On average, MULTITREE achieves 2.2× and 1.51× speedup

over RING and 2D-RING, respectively. When applying message-

based flow control, all-reduce performance is further

improved by 6%, leading to an average of 2.3× and 1.56×

speedup compared to RING and 2D-RING, respectively.

It also shows that double binary tree (DBTREE) is worse than

all other algorithms on 2D Torus. Since DBTREE is a topology-

oblivious algorithm that builds two logical trees, where the

tree nodes map poorly onto the physical network. As a result,

the connected nodes in the trees can cross multiple hops and

cause network contention. Furthermore, the contention on

links of large messages due to large models even worsen the

performance. Note that message-based flow control can also

be applied to other algorithms. The 6% bandwidth saving on

head flits can contribute to nearly the same amount of

improvement for all-reduce communication.

To understand the effect of computation-communication

overlap on reducing all-reduce communication overhead, we

also experimented with an overlapped training approach

using layer-wise all-reduce. The training time breakdown for

computation, computation-communication overlap and

communication is depicted in Fig. 11b. In general, MULTITREE

achieves the best performance while DBTREE performs the

worst. For computation dominant workloads such as CNNs

(AlexNet, FasterRCNN, GoogLeNet, ResNet50), computation

can largely overlap with most of the all-reduce communication

time and mitigate the communication bottleneck. For these

workloads, MULTITREE improves training performance by up to

10% compared to RING. And 2D-RING can perform similarly to

MULTITREE but it has a larger portion of

computationcommunication overlap due to its longer

communication time. On the contrary, for communication

dominant DNNs such as NCF and Transformer, computation

can only overlap a small amount of communication time.

These workloads have large amounts of embedding and

attention computations, which have less computation

requirements, leaving communication still a bottleneck. In

such cases, MULTITREE can still achieve 2× 1.37× speedup

compared to RING and 2D-RING, respectively, in terms of

training performance. Recent study shows that most of the

DNN computation cycles are on non-CNN layers [49], meaning

most DNN models in data centers are communication

dominant. Therefore, MULTITREE is promising to drive faster

distributed training at scale.

VII. DISCUSSIONS

A. Bandwidth versus Latency

An ideal algorithm should be optimal for both bandwidth

and latency. Theoretically, MULTITREE aims to build multiple k-

ary trees, which have tree height of logk n for n nodes, where

ring and butterfly exchanges [50] are special cases whose k is

1 and 2, respectively. When the all-reduce data size is small,

butterfly can achieve better latency than ring due to less

number of steps. However, it suffers from contention for large

data size, where serialization latency plays a more important

role [12]. Similar to DBTREE, the multi-hop communication on

butterfly-unfriendly topologies can further worsen the

situation. In cases of multi-phase rings, the benefit of

(a) Non-overlapped training time breakdown and all-reduce speedup (b) Overlapped training time breakdown with layer-wise all-reduce

Fig. 11: Training time breakdown of DNN training on an 8×8 Torus network: (a) forward+back-propagation computation and all-reduce

communication breakdown (primary) and all-reduce speedup (secondary) normalized to RING using non-overlapped training approach; (b)

computation and computation-communication overlap as well as communication time breakdown normalized to RING using overlapped

algorithmic step reduction can be offset by more

communicated data and require more bandwidth for large

data sizes, leading to higher serialization latency similar to

2DRING. In contrast, MULTITREE is not only bandwidth optimal,

but also low-latency by reducing the communication steps and

hops in switch-based networks.

B. Broader Applications

Although MULTITREE is designed for data parallelism, it can

also support hybrid-parallel inference and training. Reduce-

scatter and all-gather are naturally supported. The message-

based flow control can also be used to improve bandwidth

efficiency in both cases. In addition, MULTITREE can speed up

data-parallel components in a hybrid approach. When the

parallelism strategy and DNN workload are determined,

MULTITREE runs for the nodes that involve allreduce

communication. The all-gather trees can also easily support

all-to-all collective in recent DNN workloads such as DLRM [51].

MultiTree can also be implemented in software, but the

scheduling and synchronization can offset the benefit. For

networks with heterogeneous link bandwidths, the topology

graph can be modeled as a multigraph where each edge is a

unit of bandwidth, and wider links can be modeled as multiple

edges proportional to the link bandwidth, so MULTITREE applies

properly. MULTITREE can also support general purpose cluster

networks or public clouds if the network topology is provided

or can be probed. However, it may not achieve best

performance due to interference if the training job is co-

located with other jobs.

C. Opportunities

Although the theoretical number of steps is logarithmic of

the number of nodes for trees, the best number of algorithmic

steps MULTITREE achieves is limited to the network diameter

when considering network topology. Nonetheless, MULTITREE

demonstrates the effectiveness of algorithm-architecture co-

design for communication acceleration by exploiting network

topology and big message size of all-reduce for distributed

deep learning. This study also reveals more co-design

opportunities with topology, such as topology design for

dataparallel training [29] or more complex hybrid-parallel

deep learning. In addition, reducing the number of trees by

trading bandwidth and latency as an attempt in recent work

[17] can be further explored. We leave these aspects for future

work.

VIII. ADDITIONAL RELATED WORK

A. Collectives Acceleration for DNN Training.

Recent research has also considered topology information

with tree structures to improve all-reduce [52]. However, the

linear programming complexity does not scale well to larger

networks in practice. Another implementation applies a

partitioning optimization algorithm to build trees from leaves,

which only supports a specific network topology [53]. Its

backtracking operation using exhaustive search can take days

to find a single solution even with a small network. Therefore,

it is neither practical nor portable to various network

configurations. The recently proposed Blink [17] also

generates multiple directed spanning trees to increase link

utilization. However, spanning trees for DGX-2 is a dedicated

design but not from the main algorithm. In contrast, MULTITREE

is generalized for various topologies and generates the same

trees as Blink’s dedicated DGX-2 design. In addition, Blink has

no control on the usage order among the trees on the same

link, while MULTITREE’s co-design provides finegrained control

to schedule link communication earlier for the critical tree.

Blink’s main algorithm first creates trees stemming from the

same root for DGX-1 using approximate packing and then

minimizes the number of trees using integer linear

programming (ILP). Such a flow rate optimization does not

consider the all-reduce computation dependency, while

MULTITREE inherently considers the computation dependency

in tree construction. Since multiple trees swan from the same

root, only one way of the bidirectional links attached to the

root are used for receiving or sending data in the distinct

reduction and broadcast phases, leaving the link bandwidth

under-utilized. In MULTITREE, each node is both a root of a tree

and internal/leaf node(s) in all other trees in order to utilize all

the bidirectional links. Moreover, MULTITREE scales well to

larger network size while Blink may be limited by the

expensive ILP. Recently, Luo et al. designed a library for the

cloud to probe the physical network and schedule a two-level

hierarchical aggregation plan for efficient gradient update [54].

Li et al. addressed the communication overhead of DNN

training by applying in-network acceleration [55]. More

recently, Klenk et al. proposed an in-network architecture for

in-switch reduction to accelerate all-reduce [56], which

targets shared-memory multiprocessors.

B. Flow Control and Arbitration

General flow control techniques are used to ensure correct

flow of packets from source to destination. In addition to the

basic functionality, Peh et al. extended the flow control to

reserve the path using a control packet ahead of data packet

arrival [57]. It allows them to achieve better buffer usage, and

eliminates latency for routing and arbitration decisions. With

similar motivation, Ahn et al. proposed pseudo-circuit by

exploiting communication temporal locality [58]. Kumar et al.

proposed a token based technique for improving routing and

flow control [59], which also tries to establish a bypass path to

avoid the routing and switching arbitration logic.

IX. CONCLUSIONS

In this paper, we identify the inefficiency in the widely used

all-reduce algorithms and the opportunity of

algorithmarchitecture co-design. We propose MULTITREE all-

reduce algorithm that constructs multiple trees with topology

and link utilization considerations for contention-free all-

reduce scheduling. We augment the network interface to

coordinate the communications among the trees by enforcing

the scheduling with a simple lockstep estimation mechanism.

The evaluation shows that the message-based flow control

can achieve 6% bandwidth improvement. Furthermore, the

codesign works well on different topologies and achieves 2.3×

and 1.56× communication speedup (up to 81% and 30%

training time reduction) over RING and state-of-the-art 2DRING,

respectively.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their valuable comments and suggestions. This work was

done while Jiayi Huang was with Texas A&M University and

supported by a TAMU Dissertation Fellowship.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. HerbertVoss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C.
Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei,
“Language Models are Few-Shot Learners,” arXiv preprint
arXiv:2005.14165, 2020.

[2] J. Hestness, N. Ardalani, and G. Diamos, “Beyond Human-level Accuracy:
Computational Challenges in Deep Learning,” in Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’19, 2019, pp. 1–14.

[3] Microsoft, “Project Catapult,” https://www.tacc.utexas.edu/systems/
catapulta, [Online; accessed 4-November-2019].

[4] C. Chao and B. Saeta, “Cloud TPU: Codesigning Architecture and
Infrastructure,” HotChips 2019 Tutorial, 2019. [Online]. Available:

https://www.hotchips.org/hc31/HC31 T3 Cloud TPU Codesign.pdf
[5] A. Krizhevsky, “One Weird Trick for Parallelizing Convolutional Neural

Networks,” CoRR, vol. abs/1404.5997, 2014. [Online]. Available:
http://arxiv.org/abs/1404.5997

[6] J. Huang, M. Patwary, and G. Diamos, “Coloring Big Graphs with
AlphaGoZero,” CoRR, vol. abs/1902.10162, 2019. [Online]. Available:
http://arxiv.org/abs/1902.10162

[7] S. A. Mojumder, M. S. Louis, Y. Sun, A. K. Ziabari, J. L. Abellan, ́J. Kim, D.
Kaeli, and A. Joshi, “Profiling DNN Workloads on a Voltabased DGX-1
System,” in 2018 IEEE International Symposium on Workload
Characterization (IISWC), 2018, pp. 122–133.

[8] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J.
Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed Machine Learning
with the Parameter Server,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), 2014, pp. 583–598.

[9] A. Gibiansky and J. Hestness, “baidu-research/tensorflow-allreduce,”
https://github.com/baidu-research/tensorflow-allreduce, 2017, [Online;
accessed 4-November-2019].

[10] P. Sanders, J. Speck, and J. L. Traff, “Two-tree Algorithms for Full Band- ̈
width Broadcast, Reduction and Scan,” Parallel Computing, vol. 35, no.
12, pp. 581–594, 2009.

[11] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective
Communication Operations in MPICH,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[12] P. Patarasuk and X. Yuan, “Bandwidth Optimal All-Reduce Algorithms for
Clusters of Workstations,” Journal of Parallel and Distributed Computing,
vol. 69, no. 2, pp. 117–124, 2009.

[13] NVIDIA, “NVIDIA Collective Communication Library (NCCL),” https:
//developer.nvidia.com/nccl, 2017, [Online; accessed 4-November-
2019].

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,S.
Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M.
Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 265–283. [Online].
Available: https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf

[15] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “MXNET: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed Systems,” CoRR, vol.
abs/1512.01274, 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

[16] S. Jeaugey, “Massively Scale Your Deep Learning Training with NCCL 2.4,”
https://devblogs.nvidia.com/ massively-scale-deep-learning-training-
nccl-2-4/, Feburary 2019, [Online; accessed 6-February-2020].

[17] G. Wang, S. Venkataraman, A. Phanishayee, J. Thelin, N. Devanur, and I.
Stoica, “Blink: Fast and Generic Collectives for Distributed ML,” in MLSys
2020, 2020.

[18] L. Luo and S. Jeaugey, “[Question] NCCL Logs with multiple nodes.”
https://github.com/NVIDIA/nccl/issues/226, May 2019, [Online;
accessed 6-February-2020].

[19] S. Shi, Z. Tang, X. Chu, C. Liu, W. Wang, and B. Li,
“CommunicationEfficient Distributed Deep Learning: Survey, Evaluation,
and Challenges,” arXiv preprint arXiv:2005.13247, 2020.

[20] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “DianNao Family: Energy-
efficient Hardware Accelerators for Machine Learning,” Commun. ACM,
vol. 59, no. 11, pp. 105–112, Oct. 2016.

[21] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,C.
Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D.
Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D.
Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M.
Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T.
Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in Proceedings of the
44th Annual International Symposium on Computer Architecture, ser.
ISCA ’17, 2017, pp. 1–12.

[22] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in
Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA ’16, 2016, pp. 367–379.

[23] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: Efficient Inference Engine on Compressed Deep Neural Network,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA ’16, 2016, pp. 243–254.

[24] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME:
A Novel Processing-in-memory Architecture for Neural Network
Computation in ReRAM-based Main Memory,” in Proceedings of the
43rd International Symposium on Computer Architecture, ser. ISCA ’16,
2016, pp. 27–39.

[25] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling Low- ́
power, Highly-accurate Deep Neural Network Accelerators,” in
Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA ’16, 2016, pp. 267–278.

[26] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable
and Efficient Neural Network Acceleration with 3D Memory,” in ACM

https://www.tacc.utexas.edu/systems/catapulta
https://www.tacc.utexas.edu/systems/catapulta
https://www.tacc.utexas.edu/systems/catapulta
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1902.10162
https://github.com/baidu-research/tensorflow-allreduce
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://arxiv.org/abs/1512.01274
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://github.com/NVIDIA/nccl/issues/226

SIGARCH Computer Architecture News, vol. 45, no. 1. ACM, 2017, pp.
751–764.

[27] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2018, pp. 461–475.

[28] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image Classification
at Supercomputer Scale,” arXiv preprint arXiv:1811.06992, 2018.

[29] J. Dong, Z. Cao, T. Zhang, J. Ye, S. Wang, F. Feng, L. Zhao, X. Liu,
L. Song, L. Peng, Y. Guo, X. Jiang, L. Tang, Y. Du, Y. Zhang, P. Pan, and Y.
Xie, “EFLOPS: Algorithm and System Co-design for a High Performance
Distributed Training Platform,” in Proceedings of the 26th International
Symposium on High Performance Computer Architecture6(HPCA-25),
February 2020, pp. 610–622.

[30] R. Mayer and H.-A. Jacobsen, “Scalable Deep Learning on Distributed
Infrastructures: Challenges, Techniques and Tools,” ACM Computing
Surveys (CSUR), vol. 53, no. 1, pp. 1–37, 2020.

[31] T. Ben-Nun and T. Hoefler, “Demystifying Parallel and Distributed Deep
Learning: An In-depth Concurrency Analysis,” ACM Comput. Surv., vol.
52, no. 4, pp. 65:1–65:43, Aug. 2019.

[32] A. Gibiansky, “Bringing HPC Techniques to Deep Learning,” http://
andrew.gibiansky.com, 2017, [Online; accessed 24-November-2019].

[33] M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter, “BlueConnect:
Decomposing All-Reduce for Deep Learning on Heterogeneous Network
Hierarchy,” in SysML 2019, 2019. [Online]. Available:
https://www.sysml.cc/doc/2019/130.pdf

[34] A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep
Learning in TensorFlow,” CoRR, vol. abs/1802.05799, 2018.
[Online]. Available: http://arxiv.org/abs/1802.05799

[35] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, “SCALE-
Sim: Systolic CNN Accelerator Simulator,” CoRR, vol. abs/1811.02883,
2018. [Online]. Available: http://arxiv.org/abs/1811. 02883

[36] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J.-H. Kim, and W. J. Dally, “A Detailed and Flexible CycleAccurate
Network-on-Chip Simulator,” in International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2013, pp. 86–
96.

[37] NVIDIA, “NVIDIA Tesla P100 Whitepaper,” NVIDIA Corporation,
2016. [Online]. Available: https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf

[38] A. Ishii, D. Foley, E. Anderson, B. Dally, G. Dearth, L. Dennison, M.
Hummel, and J. Schafer, “NVSwitch and DGX-2,” in Hot Chips,
2018.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in International Conference
on Neural Information Processing Systems (NIPS), 2012, pp. 1097– 1105.

[40] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the Game of Go
without Human Knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[41] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards RealTime
Object Detection with Region Proposal Networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 91–99.

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, “Going Deeper With Convolutions,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[43] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
Collaborative Filtering,” in Proceedings of the 26th International
Conference on World Wide Web, 2017, pp. 173–182.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
u. Kaiser, and I. Polosukhin, “Attention is All You Need,” in Advances in
Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.

Curran Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[46] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser, “Universal
Transformers,” CoRR, vol. abs/1807.03819, 2018. [Online]. Available:
http://arxiv.org/abs/1807.03819

[47] N. S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere, and M. Smelyanskiy,
“On Large-batch Training for Deep Learning: Generalization Gap and
Sharp Minima,” in 5th International Conference on Learning
Representations, ICLR 2017, 2017.

[48] S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna, “ASTRA-SIM:
Enabling SW/HW Co-Design Exploration for Distributed DL Training
Platforms,” in IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 2020, Boston, MA, USA, August 22-26,
2020. IEEE, 2020.

[49] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel,
K. Hazelwood, B. Jia, H.-H. S. Lee, A. Malevich, D. Mudigere, M.
Smelyanskiy, L. Xiong, and X. Zhang, “The Architectural Implications of
Facebook’s DNN-based Personalized Recommendation,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 488–501.

[50] R. Rabenseifner, “Optimization of Collective Reduction Operations,” in
International Conference on Computational Science. Springer, 2004, pp.
1–9.

[51] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov, A.
Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko,
S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and M. Smelyanskiy,
“Deep Learning Recommendation Model for Personalization and
Recommendation Systems,” CoRR, vol. abs/1906.00091, 2019. [Online].
Available: https://arxiv.org/abs/1906. 00091

[52] L. Wang, M. Li, E. Liberty, and A. J. Smola, “Optimal Message Scheduling
for Aggregation,” in SysML 2018, 2018. [Online]. Available:
https://www.sysml.cc/doc/2018/178.pdf

[53] C. Yang, “Tree-based Allreduce Communication on MXNet,”
https://web.ece.ucdavis.edu/∼ctcyang/pub/amaz-techreport2018.pdf,
Tech. Rep., 2018, [Online; accessed 26-August-2019].

[54] L. Luo, P. West, A. Krishnamurthy, L. Ceze, and J. Nelson, “PLink:
Discovering and Exploiting Datacenter Network Locaility for Efficient
Cloud-based Distributed Training,” in MLSys 2020, 2020.

[55] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. Schwing, H.
Esmaeilzadeh, and N. S. Kim, “A Network-Centric
Hardware/Algorithm Co-Design to Accelerate Distributed Training of
Deep Neural Networks,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018, pp. 175–188.

[56] B. Klenk, N. Jiang, G. Thorson, and L. Dennison, “An In-Network
Architecture for Accelerating Shared-Memory Multiprocessor
Collectives,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2020, pp. 996–1009.

[57] L.-S. Peh and W. J. Dally, “Flit-Reservation Flow Control,” in Proceedings
of the 6th International Symposium on High-Performance Computer
Architecture (HPCA-6), 2000, pp. 73–84.

[58] M. Ahn and E. J. Kim, “Pseudo-Circuit: Accelerating Communication for
On-Chip Interconnection Networks,” in Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’43, 2010, pp. 399–408.

[59] A. Kumar, L.-S. Peh, and N. K. Jha, “Token Flow Control,” in Proceedings
of the 41st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 41, 2008, pp. 342–353.

http://andrew.gibiansky.com/
http://andrew.gibiansky.com/
http://andrew.gibiansky.com/
https://www.sysml.cc/doc/2019/130.pdf
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1811.02883
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://www.sysml.cc/doc/2018/178.pdf
https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf
https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf
https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf
https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf

