Communication Algorithm-Architecture Co-Design

for Distributed

Jiayi Huang
UC Santa Barbara
jyhuang@ucsb.edu

Abdullah Muzahid
Texas A&M University
abdullah.muzahid@cse.tamu.edu

Abstract—Large-scale distributed deep learning training has
enabled developments of more complex deep neural network models
to learn from larger datasets for sophisticated tasks. In particular,
distributed stochastic gradient descent intensively invokes all-reduce
operations for gradient update, which dominates communication
time during iterative training epochs. In this work, we identify the
inefficiency in widely used allreduce algorithms, and the opportunity
of algorithm-architecture co-design. We propose MuLTITRee all-reduce
algorithm with topology and resource utilization awareness for
efficient and scalable all-reduce operations, which is applicable to
different interconnect topologies. Moreover, we co-design the
network interface to schedule and coordinate the all-reduce
messages for contention-free communications, working in synergy
with the algorithm. The flow control is also simplified to exploit the
bulk data transfer of big gradient exchange. We evaluate the co-
design using different all-reduce data sizes for synthetic study,
demonstrating its effectiveness on various interconnection network
topologies, in addition to state-of-the-art deep neural networks for
real workload experiments. The results show that MULTITREE achieves
2.3x and 1.56x communication speedup, as well as up to 81% and 30%
training time reduction compared to ring all-reduce and state-of-the-
art approaches, respectively.

Index Terms—distributed deep learning, data-parallel training, all-
reduce, interconnection network, algorithm-architecture codesign

|. INTRODUCTION

The onset of the big data era and rapid advances of
accelerator architectures have enabled deep learning
applications to achieve superhuman accuracy on complex
real-world problems, such as image recognition, natural
language processing, and autonomous driving. State-of-the-
art DNN models such as GPT-3 [1] have hundreds of billions of
parameters, requiring trillions of compute operations and
hundreds of gigabytes of storage and massive bandwidth.
Recent work projects that orders of magnitude growth of
dataset and model size are required to exceed human-level
accuracy, which can take weeks to train a single epoch for
language modeling [2]. As data keep exploding and DNNs
evolve to be larger and deeper, it is crucial to provide scalable
solutions to fulfill the trend in computing requirements.

1 NVIDIA NCCL enables double binary tree when message size is small while
disables it and uses ring all-reduce when message is larger than a threshold,
which requires tuning for different systems [17], [18].

Pritam Majumder
Texas A&M University
pritam2309@tamu.edu

Ki Hwan Yum
Texas A&M University
yum@cse.tamu.edu

Deep Learning

Sungkeun Kim
Texas A&M University
ksungkeun84@tamu.edu

Eun Jung Kim
Texas A&M University
ejkim@cse.tamu.edu

This research was supported in part by NSF Grant #1931078.

To this end, grids of specialized accelerators have been
designed and deployed to train DNN models in a parallel and
distributed manner [3], [4]. In particular, data-parallelism, as
the easiest model of parallel and distributed computing, has
been widely used in large-scale DNN training [5], [6].
Stochastic gradient descent (SGD) is a typical optimization
algorithm to improve DNN accuracy through iterative training,
which intensively invokes all-reduce communication. As the
dominant component of communication, all-reduce can stall
the computations of the next training epoch significantly. Thus,
all-reduce can quickly become a bottleneck for large scale
distributed training [7].

Several communication algorithms have been proposed for
all-reduce operation [8]—[11]. Baidu Research implemented a
bandwidth-optimal ring all-reduce algorithm [9], [12], which
has been later included in NVIDIA Collective Communication
Library (NCCL) [13] and other popular deep learning
frameworks [14], [15]. However, ring all-reduce suffers from
long latency and may have low resource utilization in certain
network topologies, for instance, only 25% link utilization rate
in a 4x4 2D Torus network. Several attempts have been made
to improve all-reduce latency by reducing the algorithmic
steps [10], [11], [16]. Halving-doubling reduces the latency
through recursive distance doubling and halving in the
reducescatter and all-gather phases, respectively [11]. Double
binary tree (DBTree), which is also implemented in NCCL,
improves the latency through two-tree reduction and
broadcast [10], [16]. These two algorithms perform better
than ring all-reduce for short to medium messages. However,
for large messages, they can lead to significant network
congestion since their communication patterns map poorly on
to the physical network topology, turning out to be worse than
rings® [11], [19]. Therefore, it is crucial to consider the physical
network topology for all-reduce algorithm design with proper
message scheduling to achieve low latency for short to

medium messages and contention-free communication for
large data sizes.
TABLE I: Comparisons of All-Reduce Algorithms.

. Small data Large data Applied Well on

Algorithms

Latency Bandwidth Contention Various Topologies
Ring [9], [12] high optimal none X
DBTree [10], [16] low optimal high x (Topo-oblivious)
2D-Ring [28] low sub-optimal none x (2D Torus/Mesh)
HDRM [29] low optimal none x(BiGraph)
MULTITREE low optimal none X

Recently, dedicated networks with accelerator pods have
been deployed to accelerate emerging deep learning
applications, such as Cloud TPU [4] and Catapult [3]. While
computation acceleration has been significantly studied [20]—
[27], communication specialization with architecture-
algorithm codesign is still in its infancy [28], [29]. Ying et al.
adopted 2D-ring all-reduce for the 2D Torus network in TPU
clusters to fully utilize the links and reduce communication
steps [28]. Although achieving full link utilization, its 2D nature
increases the amount of communicated data, which can be
double the optimal communicated data as the network scales
out. For a 2D NxN Torus network, 2D-ring transmits 2N(N -1)
data while flat ring communicates N2 -1 data. More recently,
Alibaba proposed the EFLOPS training platform by co-
designing algorithm and system with a new server
architecture [29]. It extends the halving-doubling algorithm
with rank mapping (HDRM) on a two-stage fully connected
BiGraph topology to avoid contention, showing promising
potential for the codesign approach. However, it is not trivial
to scale due to its full connections among switches. These
algorithms are limited to specific topologies (2D Torus and
BiGraph) and do not generalize to other network topologies.
With the trend for larger and deeper DNN models, more
accelerator grids are deployed for large-scale distributed
training. Therefore, more scalable solutions are required to
work in synergy with various topologies that can practically
interconnect a large number of nodes [4]. Moreover,
communication acceleration through specialization is urgently
needed to keep up with the computation throughput. In
addition, the lack of hardware support for coordination and
communication scheduling may miss potential optimization
opportunities to further improve performance. Furthermore,
the fine-grained flow control and arbitration designed for
general purpose networks can be inefficient to support such
large gradient exchanges, resulting in extra performance and
significant energy/power overhead. Table | summarizes the
comparisons among these works.

In this work, we co-design an all-reduce communication
algorithm and interconnection architecture to support
efficient and scalable all-reduce operation. We propose

MULTITREE, a scalable topology-aware all-reduce algorithm
that is applicable to various topologies. MULTITREE couples tree
construction and message scheduling with topology and
global link utilization awareness to build trees from roots in a
top-down fashion. It leverages the insight that tree levels
closer to the roots are more sparse and tree levels closer to the
leaves are denser. Based on this, MULTITREE moves more
communication closer to the roots to make communication
closer to the leaves sparse so that communications are
balanced in all levels of the trees. Moreover, we co-design the
network interface according to the proposed communication
algorithm and to facilitate the all-reduce schedule
management to achieve contention-free all-reduce. We also
simplify the flow control and arbitration to exploit the
characteristics of large gradients in all-reduce operations. As a
result, MULTITREE tackles the limitations in previous work, as
summarized in Table I.

In summary, the contributions of this paper are as follows.

. We identify the inefficiency in the state-of-the-art
allreduce algorithms, and co-design all-reduce algorithm
and interconnect hardware for large gradient exchange.

. We propose MULTITREE, an all-reduce algorithm that is
applicable to various interconnect topologies and couple
tree construction and communication scheduling, with
topology and global link utilization awareness, to
efficiently coordinate concurrent reduction/broadcast
trees.

- We augment the network interface to support hardware
based scheduling for MULTITREE and facilitate the lockstep
communications in the schedule, while simplifying the
flow control dedicated for large gradient all-reduce.

. Our evaluations using synthetic messages and state-
ofthe-art DNNs show that MULTITREE greatly improves
scalability over prior works, and achieves 2.3x and 1.56x
communication speedup, as well as up to 81% and 30%
training time reduction compared to ring all-reduce and
the state-of-the-art approach [28], respectively.

The rest of the paper is organized as follows: §1l introduces
the background and motivation. §lll presents the proposed
MULTITREE all-reduce algorithm followed by the co-designed
architecture detailed in §IV. The methodology is described in
§V and the evaluation is presented in §VI, respectively. Further
discussions are outlined in §VII followed by more related work
in §VIII. Finally, we conclude the paper in §IX.

Il. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of
dataparallel deep neural network training followed by all-
reduce communication in distributed stochastic gradient
descent synchronization.. Then, we motivate this research by
outlining the limitations of existing all-reduce algorithms.

A. Data-Parallel Deep Neural Network Training

DNN training is usually done using stochastic gradient
descent where each training sample goes through forward
propagation, gradient calculation followed by backward
propagation. Backward propagation uses the gradient to
update weights of the DNN model in order to minimize a loss
function. To make training faster, mini-batch is used where
there is one pass of weight update for each mini-batch of
training samples. It is a daunting task to train large DNNs with
huge amounts of data. Thus, distributed training is performed
on multiple compute nodes. Each compute node may be
equipped with GPUs and accelerators. This creates the

forms a ring with the next node. Reduce-scatter is done on
segment O starting from Node 1. In the first iteration, segment
0 is sent from Node 1 to Node 2 where the tensors are
aggregated. Thus, two out of four sets of tensors are
aggregated in the first iteration. In the second iteration,
segment 0 is sent from Node 2 to Node 3 and in the third
iteration, segment 0 is sent from Node 3 to Node 0. Thus, after
3 iterations, all tensors of segment 0 are aggregated to Node
0. Similarly, segment 1 starts from Node 2 and after 3
iterations, gets reduced to Node 1. Segments 2 and 3 end up
getting reduced to Nodes 2 and
3, respectively. Thus, it takes 3 iterations for reduce-scatter.
After the sequence of reduce-scatter operations, all-gather

challenges regarding resource usage, communication
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
In[0][0] In[1][0] | In[2][O] — In[3][O] — — Out[0] []]
5 = - Out[0] Out[0] Out[0] Out[0]
A n[o)1] [1013 | [in[20013 | Ing3]017 |- =, Out{1] | [£
-5 I -8»
In[O][2] | In[1][2] | In[2][2] In[3][2] [§ ! ™ — Out[2] | 5 <=;: Out1] Out[1] Out[1] Out[1]
3 =

bandwidth provisioning, and trade-off between computation
and storage [30], [31]. Different parallel strategies have been
used to enable scalable and efficient distributed training.
Data parallelism is the most common way for distributed
DNN training where a non-overlapping set of training samples
are distributed to different compute nodes. Each node
calculates gradients based on its own training set. Gradients
are then aggregated to update weights using either a
centralized or a decentralized approach. The centralized
approach relies on a parameter server where each node
periodically reports its computed parameter updates to a (set
of) parameter server(s) [8]. However, parameter servers are
not efficient in terms of bandwidth and latency for larger
DNNs. An alternative is the decentralized approach where
compute nodes exchange parameter updates via an all-reduce
operation, where the all-reduce algorithm plays an important
role. A widely used one is ring all-reduce [9], [12] that only
requires a tree topology to achieve no contention and optimal
bandwidth, where a tree topology is typically embedded in
any network topology. However, it is not latency-optimal [12].

B. All-Reduce for Distributed Stochastic Gradient Descent

Baidu popularized ring all-reduce using a sequence of
reduce-scatter followed by all-gather operations [9], [32].
Reduce-scatter and all-gather operations are further
optimized to exploit the hierarchical nature of communication
bandwidths of heterogeneous network architecture [33].

Fig. 1 shows an example. Let us assume that each row
represents one segment of tensors with segment 0 being the
top row and segment 3 being the bottom one. Each node

Fig. 1: Reduce-scatter and all-gather in ring all-reduce.

operations are done similarly. In the first iteration, segment 0
is sent from Node 0 to Node 1. Now, Node 1 has two out of
four segments (namely segments 0 and 1). Similarly, at the end
of the first iteration, other nodes end up having 2 segments.
In the second iteration, segment 0 is sent from Node 1 to Node
2 and subsequently from Node 2 to Node 3 in the third
iteration. Thus, after 3 iterations, all nodes will end up having
all 4 aggregated segments.

C. Motivation

Widely used ring all-reduce has been proved
bandwidthoptimal [12], which makes it suitable for large
gradient exchanges [9], [13], [34]. However, it faces link under-
utilization in certain topologies such as Torus and Mesh.
Furthermore, it suffers from long latency as the system scales
out. Several attempts have been made to improve link
utilization and latency [10], [16], [28]. 2D-ring all-reduce
utilizes all the links and reduces the communication steps in
2D Torus and Mesh networks [28], but it transmits twice the
amount of data compared to bandwidth-optimal algorithms.
For instance, 2D-ring communicates 2N(N -1) data while ring
all-reduce communicates N2 -1 data in a 2D NxN Torus
network. On the other hand, the double binary tree algorithm
builds two logical binary trees to reduce latency for small to
medium messages [10], [16]. It constructs the two trees in a
way such that the leaf nodes in one tree are the internal nodes
in the other tree. Therefore, each tree can take half of the data
and all the nodes can send and receive data simultaneously,
outperforming single-tree all-reduce. It better utilizes the end-
node bandwidth and works well on networks with all-to-all like

topology for small to medium messages. For large messages,
it can experience significant contention since the two trees are
not mapped well on the physical network topology, especially
severe on unfriendly topology such as Torus [19]. The recently
proposed EFLOPS extends halving-doubling by mapping the
ranks to the nodes to achieve contention-free communication
for large datasets [29]. Since each communication pair always
involves one node connected with an upper switch and one
node connected with a lower switch, it never exploits the
onehop distance between nodes connected to the same
switch, failing to expedite latency-sensitive communications
for small messages. Furthermore, these algorithms are not
general to apply to different network topologies while
achieving good performance for both latency and bandwidth.

Typical interconnection networks for general-purpose
communications use fine-grained flow control that well
supports short messages. However, it can generate many
small packets for large gradients, which can lead to extra
bandwidth and arbitration overheads. To mitigate such an
overhead, flow control can be streamlined to take advantage
of large gradients. In the conventional packet-based flow
control, a packet consists of a

O 4-Byte Flit 8-Byte Flit 16-Byte Flit

- 30%

o] i

2 20% ‘ ~Off-Chip

o) ; :

et ; nterconnection Network

8 i

£ 10% o K

()

=~ t

g CM&J c9 ®

~ 0% NoC™: @ & X
32 128 512 2048

Packet Payload Size (Bytes)
Fig. 2: Packet head flit bandwidth overhead.

few flits, including a head flit for metadata and body/tail flits
for payload, where the head flit incurs bandwidth overhead.
For on-chip networks, the payload of a packet is a cache line
whereas, for off-chip networks, payload size varies from 64 to
256 bytes with 16-byte flits, incurring 6%—25% bandwidth
overhead, as shown in Fig. 2. In distributed DNN training,
streams of consecutive large gradients flow from one node to
the other using many small packets, following the same route
with consecutive addresses. So the head flits of these
consecutive packets contain redundant information, leading
to unnecessary bandwidth overhead. Thus, flow control can
be simplified to exploit this distinct characteristic.

[Il. MULTITREE ALL-REDUCE ALGORITHM

In this section, we first explain the rationales behind the
MULTITREE approach. Then, we illustrate the main idea with an
example followed by its algorithm.

A. Rationales and Insights

1) Spanning Trees Instead of Rings: In reduce-scatter
and all-gather phases of all-reduce, each node leads a
reduction and a broadcast of one chunk of data. In ring all-
reduce, each node communicates a chunk of data in a
unidirectional ring, which takes (n—1) steps in both phases for
n nodes. If each such communication can take place in a tree
structure, it can reduce the algorithmic steps to 2logkn with a
k-ary tree for n nodes. Thus, the proposed algorithm is not
only bandwidthoptimal but also reduces latency by
constructing multiple trees instead of rings, thereby improving
all-reduce scalability.

2) Topology Awareness: If trees are constructed without
considering network topology and link utilization, it may lead
to even worse performance than ring all-reduce, especially
when multiple trees contend for the same link at the same
time without careful scheduling. Furthermore, tree levels
closer to leaves are denser than tree levels closer to roots. Thus,
when reducing from leaves to roots, the reduce-scatter phase
can experience dense to sparse communications, leading to
high contention near leaf nodes. MULTITREE exploits this insight
to combine message scheduling and tree constructions, with
topology and link utilization awareness to schedule more
communication near the roots to sparsify communication near
leaves. In addition, instead of constructing the trees one

D
&5
e

(a) Time step 1

(c) Tree construction (link allocation) at levels (time steps) 1 and 2

@3 @1 @D &
@) @h @3 @9 @H @) @) @3
{09 L @2 @3

(d) Reduce-scatter schedule trees (reduction)

Time step 3 @ @ @ @
Timesep4 @0-) @D @3 @19 @20 @) @) @D
@3 @12 @D @9

Time step 1

Time step 2

(e) All-gather schedule trees (broadcast)

Fig. 3: MuLTITREE construction with link allocation and scheduling for
all-reduce communi of a (2x2) Mesh network. Node nintree T
(i) of an edge is the allocation sequence of
that link while label t of an edge is the communication time step
between the two nodes: (a) link allocation sequence of the topology
graph for level 1 (time step 1); (b) when no more links are available
for the predecessor levels 0 and 1, a new link topology graph is used
for allocation for level 2 (time step 2); (c) the tree construction
process indicated by edge labels; (d) the constructed reduce-scatter
schedule trees and (e) all-gather schedule trees.

is denoted as 1-nand

by one, MULTITREE builds them concurrently, generating
balanced trees with global coordination.

B. Main Idea

Given a network G(V,E) with nodes Vand edges E, finally |V
| spanning trees are created. To move more communications
near the roots, MULTITREE builds the trees from roots in a top-
down approach, making the predecessor levels denser and
communications balanced across the tree levels. During tree
construction, for each time step (tree level), a topology graph
is used to allocate links to connect remaining nodes to the
spanning trees, and the allocated links are removed from the
graph. When there are no more available links to connect

remaining nodes to any of the trees, a new topology graph is
used for the next time step (tree level).
R0-D+R0-D+R02-R0D T T3
®1-D+R1D>R1ID-RLD
@ @
@) >RO>D R
RIr@+@I-@D @D @) @
(a) Ring-based all-gather (b) Double binary tree broadcast
Fig. 4: All-gather or broadcast phase of the ring-based a ouble
binary tree algorithms: (a) Ring-based all-gather with gi-n den
involving in data chunk i, and (b) double binary tree broadcast with
black/red edge color indicating communication at even/odd step.

We illustrate the main idea by walking through an
example that constructs schedule trees for a (2x2) Mesh
network as shown in Fig. 3. Fig. 3a and 3b show the topology
graphs that are used to facilitate tree constructions for time
steps 1 and 2, respectively. The edge label (i) in Fig. 3a, 3b and
3c indicates the global link allocation sequence that connects
a node to its parent during the tree construction. Fig. 3c shows
all the trees and their construction sequences, where the trees
take turns to add one node at a time, sustaining tree balance.

2 For demonstration purposes, we use a 2x2 Mesh network that is too small
to show the benefit of MULTITREE. Although a larger network can show the
advantages of MULTITREE, we cannot accommodate it due to page limit.

At sequence number 7, after the last edge (3 — 2) is added to
connect nodes

2 (@d 3 (7133)@3, the topology graph for time step
1 in Fig. 3a runs out of all the edges. Then, a new topology
graph in Fig. 3b is used to start time step 2, which creates a
new level for the trees. (lines 4-14 of the Algorithm 1 in §llI-
C). These newly constructed trees are used to build the
reduce-scatter schedule trees and finally, are adjusted to
generate all-gather schedule trees, as shown in Fig. 3d and 3e,
respectively. Note that the trees are well balanced and
symmetric in shape, but not necessarily structurally symmetric.
Structural symmetry requires special representation of each
node with respect to the remaining network and only applies
to specific symmetric networks. Moreover, for networks like a
(4x4) Mesh where the longest distance from a source node
varies depending on its position, the trees are asymmetric
with different heights.

Fig. 4 shows the all-gather and broadcast schedules for ring
and double binary tree (DBTree) on the same network,
respectively. Compared to MULTITREE, ring needs one more
step which leads to longer latency. It also shows rings can be
considered as unary spanning trees. Fig. 4b shows the two
trees in DBTree. Although it has the same logical height as
MULTITREE, its physical height is deeper since the connection
between nodes 1 and 2 crosses two hops due to the mismatch
of tree structure and physical topology. Such a mismatch is
even more severe in larger networks. In addition, DBTree
schedules the communications in even/odd steps (black/red
color) such that a node never receives or sends data
simultaneously in both trees, which can lengthen the
completion time. Note that each edge in MULTITREE maps to a
physical link, which is only one-hop distance.

Algorithm 1: MULTITREE All-Reduce Algorithm.

Input: topology graph G(V,E)

Output: reduce scatter schedule, allgather schedule

// Initialization
1 foreach node i € V of graph G(V,E) do
LTree Tiadds node i to tree Tias root;
3 t=0;
// Compute all-gather schedules

4 while not all trees completed do
// Start a new time step t with a new G

t=t+1,
6 o o G(V.,E)=G(VE);
// Add new nodes to trees and schedule
// communications for this time step

7 while E® has free edges to add new nodes do

// Trees take turns for balancing

8 Select next tree T by root ID in ascending order;

9 for p € T’s nodes added by previous time steps do
10 if there is an edge (p — ¢) € E0then

11Add node c to T and connect to p;

12Remove edge p — ¢ from E9;

// Schedule message p = cat t
13Add (p = ¢t) to T’s allgather schedule;

14break;

15 Calculate total time steps tot t = ¢;

// Compute reduce-scatter schedule, which
// is the reverse of all-gather
16 for (p = ¢,t%) € allgather schedule of each tree T do
17 Add (c = p,tot t - t°+1) to T's reduce scatter schedule;
// Adjust all-gather schedule
18 Replace (p — ¢,t%) with (p = ¢ tot t + t9);

C. Algorithm Design

More formally, MULTITREE is presented in Algorithm 1. For
ease of understanding, we describe it for direct networks, and
provide the steps to extend for switch-based networks.

1) Algorithm Description: The algorithm initializes a tree
for each node in the network as the root and the time step t
(lines 1-3). Then it starts to construct the schedule trees for
the all-gather phase (broadcast) instead of reduce-scatter,
since it is more natural for the top-down approach to start
from the root (lines 4-14). For every new time step t, a full
topology graph GO(V 9E0) is used, whose edges are removed
while adding new nodes to the trees. During this time step ¢,
trees take turns to add one node c to connect to a predecessor
node p added in previous time steps. Then the edge p — c is
removed from the topology graph and scheduled for
communication at the current time step t. Note that trees
alternate by root ID in ascending order for simplicity, which
works fine in most cases, especially for symmetric networks
like Torus. For asymmetric or irregular networks, trees with
larger remaining height can be prioritized so that
communication on the longest path is scheduled earlier. At
line 9, nodes are examined breadth-first in their order of
adding to the tree by previous time steps so as to make the
predecessor levels denser. For selecting a neighbor of p (line
10), it first checks the neighbors in Y dimension then in X
dimension for Torus and Mesh networks. Other structural
information can be used for asymmetric and irregular
networks, which we leave for future study. When the topology
graph runs out of edges to connect remaining nodes to any of
the trees, it starts a new time step and repeats the same link
allocation procedure until all the allgather schedule trees are
completed. After all-gather schedule trees are constructed,
they are used to construct reduce-scatter trees and adjusted

for communication time step (lines 16-18). Since reduce-
scatter goes in the opposite direction with respect to all-
gather communication, the algorithm simply reverses the
communication pairs of all-gather schedule trees with
adjusted time steps. The all-gather schedules are also adjusted
in time to run after reduce-scatter schedules. In static systems,
the algorithm only needs to run once and can be used for any
DNN workloads. In dynamic and shared systemes, it runs every
time a new set of nodes is allocated for the workloads.

2) Complexity Analysis: The most expensive part of the
algorithm is the loop for all-gather schedule tree constructions
(lines 4-14). Let us consider a topology graph G(V,E). The core
part of adding new nodes to schedule trees is from lines 9-14.
To add a new node, the algorithm checks whether the already
added nodes of that tree still have edges connected to a
pending node. In the worst case, it may check all the edges of
the graph, which is |E]|. In total, we have |V | trees and each
tree has |V | nodes. So the worst case is O(|V |2|E]).

3) Indirect Networks Support: In switch-based networks,
only some switches are connected to end nodes, other
switches connect with each other to form the indirect network.
In Algorithm 1, the topology graph G(V,E) is the adjacency lists
of switch-to-switch connections in a direct network, where each
switch is attached with a node. In order to support indirect
networks, we extend G(V,E) with additional node-to-switch and
switch-to-node connection lists. To find an available child ¢ for
a node p, it follows breadth-first search on these three
topology components as described in the following steps:

(1) Get p’s attached switch swo from its node-to-switch list.

(2) When multiple nodes are attached to the same switch,
check whether swo’s switch-to-node has connections to
connect with p. If there is an available connection, pick a
node as ¢ and remove one connection (p — swo) from p’s
node-to-switch list and one connection (swo— c¢) from swo’s
switch-to-node list, then return. If there is no available
connection, go to step 3.

(3) Get the neighbor switch swifrom the switch-to-switch list
of swo. Repeat the same process as step 2 with swi1 until a
node c is found or no connection is available. In this case,
if a node is found, besides the connections removed in
step 2, connections in traversed switch-to-switch lists

should also be removed for the allocated links.
All-Reduce Schedule Table Entry
[op [FlowlD [Parent |

Op: Reduce, Gather, NOP

Children [step]Start Addr] ize |

Accelerator O Accelerator 1

[op [Flowid] Parent | Children [step | [Op [FlowiD] Parent | Children [step |

FlowID: tree ID

Reduce 3 1 Reduce 2 0 nilfnil| nil |nil 1

Reduce 1 1 Reduce 0 0 nil(nil| nil |nil 2

Reduce 2 2 Reduce 3 3 0 [nil| nil |nil 2

Gather 0 nil Gather 1 nil 0 3 nil |nil 3

Gather 2 2 1 nil nil nil 4 Gather 3
3 0 nil nil nil 4 Accelerator 2 Accelerator 3
Pe [Flow] Parent | Children [step] [Op [FlowlD] Parent | Children [sted
Reduce 1 3 Reduce 0 2 nil|nil| nil |nil 1
Reduce 3 3 Reduce 2 2 nil(nil| nil |nil 2
Reduce 0 0 Reduce 1 1 2 |nil| nil |nil 2
Gather 1 nil Gather 3 nil 1 2 nil |nil 3
Gather 0 0 3 nil nil nil 4 Gather 1 1 2 nil nil nil 4

Fig. 5: All-Reduce schedule tables for the example in §lII-B (The Start
Addr and Size fields are omitted in the tables for brevity).

IV. ARCHITECTURAL SUPPORTS

In this section, we outline the co-designed communication
architecture and the specialized flow control mechanism for
MULTITREE all-reduce operations.

A. All-Reduce Schedule Management

We co-design the network interface (NI) to facilitate MulL-
TITReE all-reduce scheduling. Algorithm 1 constructs trees for
each data chunk. These tree schedules can be converted into
schedule tables (one table per node). Fig. 5 shows the
allreduce schedule tables for the example in §11I-B. Each table
entry consists of an Op filed for the opcode, a FlowID field for
the tree flow (tree ID), a Parent and Children fields for the
dependencies in this tree flow?>. In addition, the Step field
indicates the time step in which this communication should be
initiated. The Start Addr and Size fields are for the starting
address and the size for the gradient message, respectively.

There are three opcodes for all-reduce, namely, Reduce,
Gather, and NOP. During Reduce operation, communication
happens from the leaf to the root. Each internal node of the
trees must receive Reduce before communicating to its parent.
For example, in Fig. 5, accelerator O can send a Reduce to its
parent (accelerator 1) for tree flow 3, because it is the leaf
node at step 0 in tree 3. The last Reduce of accelerator 0 should
not be sent to the parent (accelerator 2) until it receives a
dependent Reduce from its child (accelerator 1) in the flow tree
2. On the other hand, during Gather operation, a node sends
messages to the children after receiving a Gather from the
parent unless the node is the root of the tree.

We also provide a NOP to maintain the communication of
different time steps in a lockstep manner. Link contention can
happen without proper scheduling of messages among the
trees. This is more frequent in topologies that generate
imbalanced trees, such as large-scale Mesh, and can limit the
improvement or even degrade performance by destroying the

3 The size of the children field is calculated as the bandwidth ratio between
the network interface and a network link bandwidth.

4 The step time is estimated as the number of flits (num_flits) for the perstep
data chunk if the NI buffers can hold it completely. Otherwise, it is estimated
as num_flits subtracting the NI buffer size (translating to flit size).

scheduling. Therefore, a mechanism to maintain the
communication in a lockstep fashion is needed to achieve the

Reduce Message o_ Reduction
from Network Logic
Gather Message
from Network e e
v
Op FlowlD | Parent ‘ Children Step | Start Addr | Size

(nil, nil, nil, nil]

O ©

Reduce /Gather/NOP ‘
Timestep)
Counter Step > Timestep
T
[Gather] Send to Children [Reduce] Send to Parent 9

(FlowID, Start Addr, Size)

| L
Decode —
Reduce /Gather

O Hﬁﬁﬁ - D

°

Fig. 6: Architecture of all-reduce schedule management.

(FlowID, Start Addr, Size)
Increment
Counter

[NOP] Set Counter
"

Lockstep
Down Counter

Reduce/Gather
Message to Network

best performance. One option is to use some simple message
passing scheme but that can introduce additional coordination
overhead, which can be very high especially for small
messages. Therefore, we propose a lockstep mechanism for
implicit coordination by exploiting the static communication
patterns in all-reduce. Given the message size, the step time is
estimated as the serialization latency assuming no contention®.
When a NOP is inserted, the all-reduce injection is forced to
stall for the estimated step time. Although NOP may leave links
under-utilized, based on our observations, it only happens in
irregular networks and at the leaves of the trees, while other
time steps can fully utilize the links®. Pruning and adjusting the
trees may help in these cases, we leave it for future
exploration. In addition, the estimated lockstep mechanism
does not require a global synchronization across all the Nis.
When the data size is small, minor variation in the same time
step in different nodes has minimum impact as bandwidth is
not the bottleneck. When the data size is large, the long
serialization latency becomes dominant, making the small
clock variance insignificant.

Fig. 6 depicts the architecture for all-reduce schedule
management and injection regulation. It includes an all-
reduce schedule table, a timestep counter, a decoder, a

5 Note that even in best-effort utilization, links may be under-utilized as
data size may not be perfectly divisible by the aggregated bandwidth.

lockstep downcounter and the conventional NI facilities. Upon
an all-reduce operation, the schedule table is initialized; the
timestep and lockstep counters are reset by the processor to
configure the scheduling. During all-reduce, the head entry of
the table is inspected (). If the Step is the same as the
timestep counter value and the children (for Reduce) or parent
(for Gather) dependencies are satisfied, the operation is issued
to send the messages. Then, the Op is decoded to decide the
corresponding action (). If it is a NOP, the lockstep counter is
set and starts down counting for an estimated time step. If it
is a Reduce/Gather, the Start Addr and Size are used to request
the DMA engine for bulk data transfer. When the data comes

; Gradients .

Message | ‘ Message ‘

techniques and redesign them specifically for all-reduce
communication.

Fig. 7a shows a commonly used packet-based switching
mechanism, where large gradients are divided into many
messages. Each message is partitioned into multiple packets.
Each packet consists of a head flit and body/tail flits. The
highlighted head flits consumes bandwidth and incurs extra
control such as routing and arbitration, causing extra delay
and energy consumption. On the other hand, we adapt a
message-based approach to reduce such overheads, as shown
in Fig. 7b. Instead of having a fixed message size, we take the
whole chunk of gradients as a message, which can be further

r Gradients

I Head Sub-Message ‘ Body Sub-Message | | Tail Sub-Message |

Body

Body Body | Body o
ub-Packet

Body
Sub-Packet|

Body Sub
Flit Tail

———n Flits——

(a) Original gradient message

Head Body
b-Packet | Sub-Packet | "

Body Tail
Sub-Packet | """ |Sub-Packet

Body
Flit

\——n-1 Flits —

Sub-Packet | Sub-Packet | " [Sub-Packet

Body Sub
Fiit Tail

——n-1 Flits —

(b) Big gradient message

Fig. 7: Flow control: (a) original many messages with small packets of gradients and (b) big message with large packet of full gradients.

back, the FlowID is encapsulated with other address
information in the data packet to start communication. When
the lockstep counter is zero and the all-reduce units are idle,
the timestep counter is incremented if the next operation in
the schedule table is for the next step (). Upon receiving
Reduce messages, it is issued to the reduction logic for
aggregation (). Once the aggregation for Reduce of the
current step is finished, they are used to clear the
dependencies of future

Reduce/Gather (,When a Gather is received, it is directed to
the schedule table to clear the parent dependence for the
upcoming Gather (.

B. Message-based Flow Control for Big Gradient Exchanges

Unlike general purpose applications, all-reduce
communication in data-parallel DNN training has a relatively
fixed traffic pattern. With a specific all-reduce algorithm, the

communication pattern is known in advance for a training task.

For example, MULTITREE constructs schedule trees before
training starts. This prior knowledge can be leveraged for
simpler control and arbitration in hardware, thereby
simplifying logic and improving energy efficiency. MULTITREE
algorithm aims to coordinate among the trees with a global
view, where less dynamism in interconnection networks helps
maintain the communication schedules, thereby keeping
concurrent communications progressing at a similar rate. In
addition, the long traffic (between a communicating pair) for
all-reduce of large gradients unnecessarily incurs bandwidth
overhead of massive number of packet head flits. To optimize
these aspects, we revisit the traditional flow control

converted to many sub-messages starting with a head sub-
message and ending with a tail sub-message. Each
submessage is divided into sub-packets, where the first sub-
packet of the head sub-message is a head sub-packet, which
behaves as the head of the large gradient message. The last
subpacket of the tail sub-message is the tail sub-packet to end
the gradient message. Similarly, the sub-packets are
partitioned into flits. Unlike conventional packet-based
switching, body

231 j0

VC| Type

Packet Info Header Info

(a) Head and head&tail flit

Payload
(b) Body and tail flit

o w———a]
|$|Dest|$rc||

| Packet Info | = | Route Info

(c) Normal packet information in head flit

[6 T 4 1 fiq T 3 T

| = | Route Info |Tree Inf4 = | Next| Eiec1| Tree IDi

| Packet Info

(d) Sub-packet information in head flit
Fig. 8: Flit formatting in a (4x4) Torus network for (a) head and
head&tail flit, (b) body and tail flit, (c) packet information in head flit
for normal packet, and (d) sub-packet.

and tail sub-packets start with a body flit, while head and body
sub-packets end with a sub-tail flit to indicate the completion
of a sub-packet. This leads to only one head flit for a large
gradient message, achieving near perfect bandwidth

efficiency to improve performance and energy efficiency. This
not only gains the benefit of circuit switching without setup
time, but also avoids blocking other critical short packets from
using the physical links.

TABLE II: Packet and Flit Types
Normal Packet Flit ‘ Code

Sub-Packet Flit Code
Head100 000 Head
Bodyl1 01 001 Body
Taill10
X 010 Sub-Tail
Head & Tail111
011 Tail

Fig. 8a and 8b show the flit formats for head/head&tail flit
and body/tail flit, respectively. The VvC field indicates the
allocated virtual channel and the Type field specifies the packet
and flit type, as listed in Table II. The Packet Info field is encoded
differently for normal packets and all-reduce sub-packets, as
shown in Fig. 8c and 8d. For normal packets, the Packet Info is
simply the Route Info, including Dest and Src that are used by
the distributed routing algorithms. For all-reduce sub-packets,
Packet Info includes both Route
Info and Tree Info, where the Tree Info is the Tree ID that this
message belongs to. Since MULTITREE only communicates
between neighbors, we use source routing to include the next
hop output port Next and ejection port Eject in the head flit. In
the network interface, these pieces of information are pre-
computed and stored in Route Info, which can be directly used
in the routers. More specifically, in the source router, the Next
field is used to route to the neighbor, which will interchange
with the Eject field after the routing computation stage. The
Next field is kept toward the destination in order to identify
which child the message is from to clear dependencies for
scheduling purposes.

Since MULTITREE all-reduce only schedules communications
between two neighboring nodes, the flits always take one hop.
Therefore, such a design does not increase the possibility and
risk of deadlock. Note that it can still work with wormhole
switching seamlessly to support other types of traffic, such as
control and synchronization traffic. Virtual channels are used
to avoid starvation of other short messages.

V. METHODOLOGY
A. System Modeling and Configuration

We extended SCALE-Sim [35], a DNN inference simulator, to
support back-propagation for training, where output
stationary dataflow is applied. We configure a TPU-like
accelerator with 16 processing elements (PEs), where each PE
has a (32x32) systolic array. We assume double buffering and
sufficient memory bandwidth (such as high bandwidth
memory) to maintain the peak compute throughput. The
accelerator is also used for aggregation during all-reduce
communication.

We use BookSim [36] for interconnect modeling and
implemented a python interface between SCALE-Sim and
BookSim so that the accelerator and network can interact
through network interface, which implements the co-
designed all-reduce scheduling. The extra hardware overhead
includes a schedule table and two counters, one for the
lockstep down counter and the other for the time step counter.
Since each tree needs two entries in each node, one for
reduce-scatter and one for allgather, the number of table
entries is double the number of trees, which is the total
number of nodes. So a table needs 2N entries for an N-node
system. For a 64-node system, each table entry needs 200 bits
and the table needs only 128 entries, which incurs 3.2 KB
overhead. The schedules are computed once during
initialization and loaded to network interfaces for reuse in the
iterative training epochs. Since the offloading and scheduling
of communication are supported in hardware, protocol and
software overhead compared to

TABLE Ill: System Configurations

Parameter ‘

Configuration
MAC array 32x32
PE Dataflow Output Stationary
Precision 32 bits
Number of PEs 16
Accelerator
Clock 1GHz
Number of Accelerators 16, 32, 64

Topology 2D Torus, Mesh, Fat-Tree, BiGraph
Flow Control Virtual Cut-Through
Router Clock 1GHz

Number of VCs 4
VC Buffer Depth 318 flits

Data Packet Payload 256 Bytes for Baselines

150 ns / 16 GB/s

Network Link Latency/Bandwidth

software scheduling can be reduced. Note that this scheduling
mechanism is applied to all the baselines for fair comparison.
We configure the buffer size to cover the credit round-trip
loop, the link to match the targeting bandwidth, and the
payload size that is used in modern training systems [37]. Note
that larger link bandwidth can relax the pressure of all-reduce,
but the benefit of MULTITREE over other approaches still holds.

To demonstrate the effectiveness and generality of MuLTI-
TREE, we study several topologies, including 2D Torus, Mesh,
Fat-Tree (similar to NVIDIA DGX-2 [38]) and the recent BiGraph
[29]. For all the networks, we test a smaller scale (16node or
32-node) and a larger scale (64-node). We also conduct a
scalability study on Torus by scaling out to 256 accelerators.
The 2D Torus and Mesh direct networks are similar to Google
Cloud TPU [4], whose network interface is integrated on chip.
We also assume the network interface bandwidth matches the

network bandwidth of the attached router in direct networks.
For switch-based networks, each accelerator is connected
with a NIC that connects to a port of the leaf switch. We also
use a 2D 8x8 Torus for DNN benchmark evaluation. The
system configuration parameters are listed in Table Il.

B. Workloads

We conduct synthetic study for all-reduce bandwidth on
network topology (§VI-A) and for scalability evaluation (§VI-B).
The all-reduce data size is chosen such that good amounts of
communication is created to stress the network and
simulations can finish in reasonable time. To test all-reduce
bandwidth on different network topologies, we vary the all-
reduce data size from 32 KiB to 64 MiB. For scalability study,
we use an allreduce size of 375xN KiB, where N is the number
of nodes. We also evaluate the DNN models provided by
SCALE-

Sim [35] (§VI-C), including AlexNet [39], AlphaGoZero [40],
FasterRCNN [41], GoogLeNet [42], NCF recommendation (NCF)
[43], ResNet50 [44] and Transformer [45], [46]. We run with a
mini-batch size of 16xN for an N-node system (16 samples per
accelerator)®and evaluate the training time for one

5We choose a mini-batch size of 16xN for an N-node system to fully utilize
the compute resources, while trade-off between mini-batch size, training time
and model accuracy is out of our scope [47].

iteration for both non-overlap (forward+back-
propagation+allreduce) and computation-communication
overlap (layer-wise all-reduce). In layer-wise all-reduce, each
layer is queued for all-reduce once they finish back-
propagation. So communication overlaps with computation
while SGD is propagating back to previous layers [48].

VI. EVALUATION

We evaluate the MULTITREE without and MULTITREEMSG with
the message-based flow control enabled, respectively. We
also compare our proposed approach with several state-of-
theart all-reduce algorithms as follows.

« RING: ring all-reduce algorithm [9] that can be applied to
all our evaluated topologies.

. DBTRee: double binary tree [10], [16] that is
topologyoblivious and can be applied to all network
topologies.

. 2D-RING: two-dimensional ring all-reduce that is

dedicated to 2D Torus and Mesh networks [28].
« HDRM: halving-doubling with rank mapping that is
dedicated to BiGraph topology in EFLOPS [29].

A. All-Reduce Bandwidth

To show the applicability of MULTITREE on various network
topologies, we configure 4x4 and 8x8 Torus networks, 4x4
and 8x8 Mesh networks, a 16-node Fat-Tree network similar
to DGX-2 but with one physical network and a 64node 8-ary 2-
level Fat-Tree, 32-node 4x8 and 64-node 4x16 BiGraph

networks. We applied the extended version of the algorithm
described in §111-C3 to switch-based systems such as Fat-Tree
and BiGraph. We vary the all-reduce data size from 32 KiB to
64 MiB and evaluate the bandwidth by calculating the all-
reduce data size divided by simulation time. The results are
shown in Fig. 9.

As shown in Fig. 9a and 9b, MULTITREE and MuL-
TITREEMSG always achieve better bandwidth than others
regardless of the data size. This is because when data size is
small, MULTITREE can finish the all-reduce with less steps; when
data size is large, MULTITREE exploits the network topology and
increases the link utilization. Particularly for DBTREE, it is the
worst in these two topologies since the tree nodes map poorly
to the network, which causes severe contention. 2D-RING is
better than RING in Torus and 4x4 Mesh but always worse than
MULTITREE and MULTITREEMSG since 2D-RING is not bandwidth-
optimal and communicates much more data than MULTITREE
due to its two ring allreduce phases in the two dimensions of
the networks. Interestingly, 2D-RING is worse than RING in the
larger 8x8 Mesh network. The reason is twofold. First, there is
no perfect ring topology in a dimension of the Mesh network,
the latency is determined by the slowest pair, which is the two
farthest nodes in the same dimension. Second, 2D-RING is
bandwidth suboptimal and can send twice the amount of data
compared to bandwidth-optimal algorithms (RiNG and
MULTITREE).

In both Fat-Tree and BiGraph as shown in Fig. 9c and
9d, MULTITREE and MULTITREEMSG outperform RING with smaller
data size; when data size is large, they achieve

18 .

1610 MultiTreeMsg

4
} ; O0—0 MuliiTree

1044 2D:Ri

Normalized Runtime

OO0 MultiTreeMsg MultiTree

DBTree

0—0 2D-Ring O—0 Ring O‘O HDRM‘

Bandwidth (GB/s)

64KB 512KB 4MB 32MB
All-Reduce Data Size -- 16-node 4 x 4 Mesh

0
64KB 512KB 4MB 32MB

All-Reduce Data Size -- 16-node 4 x 4 Torus

20

Bandwidth (GB/s)
Bandwidth (GB/s)

Q
64KB 512KB 4MB 32MB
All-Reduce Data Size -- 32-node 4 x 8 BiGraph

0
64KB 512KB 4MB 32MB
All-Reduce Data Size -- 16-node Fat-Tree (DGX-2)

n

Bandwidth (GB/s)
S
Bandwidth (GB/s)

©n

BW

Bandwidth (GB/s)

0
64KB
All-Reduce Data Size -- 64-node 8 x 8 Mesh

0
64KB 512KB 4MB 32MB
All-Reduce Data Size -- 64-node 8 x 8 Torus

512KB 4MB 32mB

(a) Torus networks (b) Mesh networks

0
64KB
All-Reduce Data Size -- 64-node 4 x 16 BiGraph

512KB 4MB 32MB

0
64KB
All-Reduce Data Size -- 64-node 2-level Fat-Tree

512KB 4MB 32MB

(c) Fat-Tree networks (d) BiGraph networks

Fig. 9: All-Reduce bandwidth on different topologies with various data size: (a) 4x4 and 8x8 Torus, (b) 4x4 and 8x8 Mesh, (c) 16-node
(similar to DGX-2) and 64-node 2-level Fat-Tree, (d) 32-node 4x8 and 64-node 4x16 BiGraph in EFLOPS.

1636 64 100 144 196

Number of Nodes in 2D Torus Network

Fig. 10: Scalability with 375xN KiB all-reduce data size normalized to
16-node performance of RING, where N is the number of nodes.

256

almost the same performance. In these two topologies, both
MULTITREE and RING derive the same number of steps. In
MULTITREE, nodes first communicate with the nodes that are
connected to the same switch and have less link traversals,
which is very critical for reducing latency in offchip
interconnection networks. In contrast, RING’s latency is
serialized by the slowest pair of nodes that connect to
different leaf switches, causing more link traversal. Therefore,
MULTITREE is better with a small data size which is
latencysensitive. When with large data size, both algorithms
fully utilize the bandwidth and achieve the same performance.
In DBTREee-friendly networks, DBTREE can achieve better
latency compared to RING due to smaller number of steps, but
it suffers from contention when messages get large. For larger
network size such as 64-node systems, their break-even data
size point is shifted right. We also compare MULTITREE and
MULTITREEMSG with HDRM that is co-designed with the
BiGraph network [29]. Although HDRM has a smaller number
of steps than MULTITREE, the extra link traversal incurred for
each communication between the upper and lower switches
offsets its benefit, leading to worse performance with small
data size. When dealing with large data sizes, HDRM also fully
utilizes the bandwidth. MULTITREEMSG increases the payload
bandwidth by another 6%.

B. Scalability

Fig. 10 shows the weak scalability with the all-reduce size of

375xN KiB for an N-node system, and scaling out N from 16 to
256. The communication time is normalized to RING’s 16-node
network performance. All the three algorithms scale linearly
to the number of nodes while sustaining different linear
factors, where MULTITREEMSG is the best and RING is the worst.
Although both fully utilize the network links,
MULTITREEMSG is better than 2D-RING because 2D-RING is
bandwidth sub-optimal and can communicate nearly twice the
amount of data compared to MULTITREEMSG. As RING does not
fully utilize the network links, it achieves the least
performance. In summary, MULTITREEMSG achieves 3x and
1.4x speedup over RING and 2D-RING, respectively. We also
experimented with strong scalability with a large problem size
and there is only small variation for each algorithm since they
are all contention-free and serialization latency is more
dominant for large all-reduce size.

C. DNN Benchmark Performance

Fig. 11 shows the training time breakdown on an 8x8 Torus
network normalized to RING, for both non-overlapped training
approach (Fig. 11a) and computation-communication overlap
approach (Fig. 11b). As shown in Fig. 11a, except for AlexNet,

[All-Reduce [] Forward+Back-Propagation *—* All-Reduce Speedup

25 2.5
c
2
o
T20 20,
[>
o o
& o
v 1.5 158
E v
E 8
L I e T TN T HH L .05
o o
o &
8 =
3 <
E 0.5 -+0.5
o
z

0.0 0.0

AlexNet | FasterRCNN| GoogleNet | ResNet50 lAlphaGoZero Transformer

(a) Non-overlapped training time breakdown and all-reduce speedup

I Communication [] Computation-Communicatioin-Overlap | | Computation

Communication Dominant

Normalized Runtime Breakdown

AlexNet | FasterRCN ResNet5

AlphaGoZera

(b) Overlapped training time breakdown with layer-wise all-reduce

Fig. 11: Training time breakdown of DNN training on an 8x8 Torus network: (a) forward+back-propagation computation and all-reduce
communication breakdown (primary) and all-reduce speedup (secondary) normalized to RING using non-overlapped training approach; (b)

computation and computation-communication overlap as well as communication time breakdown normalized to RING using overlapped

training approach with layer-wise all-reduce.

other DNNs have a considerable amount of time on allreduce
communication. CNNs such as AlexNet, FasterRCNN,
GoogleNet, and ResNet50 are compute-intensive and need to
compute transposed convolution to for input gradients in
order to propagate back to the previous layer. In contrast, NCF
and Transformer have more embedding and attention layers,
which have less computation requirements, making
communication more dominant. In summary, communication
time can vary from 30%-88% in the baseline RING. For
compute-intensive CNNs, MULTITREE improves training
performance by up to 34% and 15% compared to RING and 2D-
RING, respectively. For communication-intensive DNNs,
MULTITREE improves training performance by 81% and 30%
compared to RING and 2D-RING, respectively.

Fig. 11a also shows normalized all-reduce speedup over
RING. On average, MULTITREE achieves 2.2x and 1.51x speedup
over RING and 2D-RING, respectively. When applying message-
based flow control, all-reduce performance is further
improved by 6%, leading to an average of 2.3x and 1.56x
speedup compared to RING and 2D-RING, respectively.

It also shows that double binary tree (DBTREE) is worse than
all other algorithms on 2D Torus. Since DBTREE is a topology-
oblivious algorithm that builds two logical trees, where the
tree nodes map poorly onto the physical network. As a result,
the connected nodes in the trees can cross multiple hops and
cause network contention. Furthermore, the contention on
links of large messages due to large models even worsen the
performance. Note that message-based flow control can also
be applied to other algorithms. The 6% bandwidth saving on
head flits can contribute to nearly the same amount of
improvement for all-reduce communication.

To understand the effect of computation-communication
overlap on reducing all-reduce communication overhead, we
also experimented with an overlapped training approach
using layer-wise all-reduce. The training time breakdown for

computation, computation-communication overlap and
communication is depicted in Fig. 11b. In general, MULTITREE
achieves the best performance while DBTREE performs the
worst. For computation dominant workloads such as CNNs
(AlexNet, FasterRCNN, GoogleNet, ResNet50), computation
can largely overlap with most of the all-reduce communication
time and mitigate the communication bottleneck. For these
workloads, MULTITREE improves training performance by up to
10% compared to RING. And 2D-RING can perform similarly to
MULTITREE but it has a larger portion of
computationcommunication overlap due to its longer
communication time. On the contrary, for communication
dominant DNNs such as NCF and Transformer, computation
can only overlap a small amount of communication time.
These workloads have large amounts of embedding and
attention computations, which have less computation
requirements, leaving communication still a bottleneck. In
such cases, MULTITREE can still achieve 2x 1.37x speedup
compared to RING and 2D-RING, respectively, in terms of
training performance. Recent study shows that most of the
DNN computation cycles are on non-CNN layers [49], meaning
most DNN models in data centers are communication
dominant. Therefore, MULTITREE is promising to drive faster
distributed training at scale.

VII. DISCUSSIONS

A. Bandwidth versus Latency

An ideal algorithm should be optimal for both bandwidth
and latency. Theoretically, MULTITREE aims to build multiple k-
ary trees, which have tree height of logkn for n nodes, where
ring and butterfly exchanges [50] are special cases whose k is
1 and 2, respectively. When the all-reduce data size is small,
butterfly can achieve better latency than ring due to less
number of steps. However, it suffers from contention for large
data size, where serialization latency plays a more important
role [12]. Similar to DBTREE, the multi-hop communication on
butterfly-unfriendly topologies can further worsen the
situation. In cases of multi-phase rings, the benefit of

algorithmic step reduction can be offset by more
communicated data and require more bandwidth for large
data sizes, leading to higher serialization latency similar to
2DRING. In contrast, MULTITREE is not only bandwidth optimal,
but also low-latency by reducing the communication steps and
hops in switch-based networks.

B. Broader Applications

Although MULTITREE is designed for data parallelism, it can
also support hybrid-parallel inference and training. Reduce-
scatter and all-gather are naturally supported. The message-
based flow control can also be used to improve bandwidth
efficiency in both cases. In addition, MULTITREE can speed up
data-parallel components in a hybrid approach. When the
parallelism strategy and DNN workload are determined,
MULTITREE runs for the nodes that involve allreduce
communication. The all-gather trees can also easily support

all-to-all collective in recent DNN workloads such as DLRM [51].

MultiTree can also be implemented in software, but the
scheduling and synchronization can offset the benefit. For
networks with heterogeneous link bandwidths, the topology
graph can be modeled as a multigraph where each edge is a
unit of bandwidth, and wider links can be modeled as multiple
edges proportional to the link bandwidth, so MULTITREE applies
properly. MULTITREE can also support general purpose cluster
networks or public clouds if the network topology is provided
or can be probed. However, it may not achieve best
performance due to interference if the training job is co-
located with other jobs.

C. Opportunities

Although the theoretical number of steps is logarithmic of
the number of nodes for trees, the best number of algorithmic
steps MULTITREE achieves is limited to the network diameter
when considering network topology. Nonetheless, MULTITREE
demonstrates the effectiveness of algorithm-architecture co-
design for communication acceleration by exploiting network
topology and big message size of all-reduce for distributed
deep learning. This study also reveals more co-design
opportunities with topology, such as topology design for
dataparallel training [29] or more complex hybrid-parallel
deep learning. In addition, reducing the number of trees by
trading bandwidth and latency as an attempt in recent work
[17] can be further explored. We leave these aspects for future
work.

VIIl. ADDITIONAL RELATED WORK
A. Collectives Acceleration for DNN Training.

Recent research has also considered topology information
with tree structures to improve all-reduce [52]. However, the
linear programming complexity does not scale well to larger
networks in practice. Another implementation applies a
partitioning optimization algorithm to build trees from leaves,

which only supports a specific network topology [53]. Its
backtracking operation using exhaustive search can take days
to find a single solution even with a small network. Therefore,
it is neither practical nor portable to various network
configurations. The recently proposed Blink [17] also
generates multiple directed spanning trees to increase link
utilization. However, spanning trees for DGX-2 is a dedicated
design but not from the main algorithm. In contrast, MULTITREE
is generalized for various topologies and generates the same
trees as Blink’s dedicated DGX-2 design. In addition, Blink has
no control on the usage order among the trees on the same
link, while MULTITREE’s co-design provides finegrained control
to schedule link communication earlier for the critical tree.
Blink’s main algorithm first creates trees stemming from the
same root for DGX-1 using approximate packing and then
minimizes the number of trees using integer linear
programming (ILP). Such a flow rate optimization does not
consider the all-reduce computation dependency, while
MULTITREE inherently considers the computation dependency
in tree construction. Since multiple trees swan from the same
root, only one way of the bidirectional links attached to the
root are used for receiving or sending data in the distinct
reduction and broadcast phases, leaving the link bandwidth
under-utilized. In MULTITREE, each node is both a root of a tree
and internal/leaf node(s) in all other trees in order to utilize all
the bidirectional links. Moreover, MULTITREE scales well to
larger network size while Blink may be limited by the
expensive ILP. Recently, Luo et al. designed a library for the
cloud to probe the physical network and schedule a two-level
hierarchical aggregation plan for efficient gradient update [54].
Li et al. addressed the communication overhead of DNN
training by applying in-network acceleration [55]. More
recently, Klenk et al. proposed an in-network architecture for
in-switch reduction to accelerate all-reduce [56], which
targets shared-memory multiprocessors.

B. Flow Control and Arbitration

General flow control techniques are used to ensure correct
flow of packets from source to destination. In addition to the
basic functionality, Peh et al. extended the flow control to
reserve the path using a control packet ahead of data packet
arrival [57]. It allows them to achieve better buffer usage, and
eliminates latency for routing and arbitration decisions. With
similar motivation, Ahn et al. proposed pseudo-circuit by
exploiting communication temporal locality [58]. Kumar et al.
proposed a token based technique for improving routing and
flow control [59], which also tries to establish a bypass path to
avoid the routing and switching arbitration logic.

IX. CONCLUSIONS

In this paper, we identify the inefficiency in the widely used
all-reduce algorithms and the opportunity of
algorithmarchitecture co-design. We propose MULTITREE all-

reduce algorithm that constructs multiple trees with topology
and link utilization considerations for contention-free all-
reduce scheduling. We augment the network interface to
coordinate the communications among the trees by enforcing
the scheduling with a simple lockstep estimation mechanism.
The evaluation shows that the message-based flow control
can achieve 6% bandwidth improvement. Furthermore, the
codesign works well on different topologies and achieves 2.3x
and 1.56x communication speedup (up to 81% and 30%
training time reduction) over RING and state-of-the-art 2DRING,
respectively.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. This work was
done while Jiayi Huang was with Texas A&M University and
supported by a TAMU Dissertation Fellowship.

(1]

[2]

(3]

(4]

[5]

(6]

(7]

(8]

19l

[10]

[11]

[12]

REFERENCES

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. HerbertVoss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C.
Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei,
“Language Models are Few-Shot Learners,” arXiv preprint
arXiv:2005.14165, 2020.
J. Hestness, N. Ardalani, and G. Diamos, “Beyond Human-level Accuracy:
Computational Challenges in Deep Learning,” in Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’19, 2019, pp. 1-14.
Microsoft, “Project Catapult,” https://www.tacc.utexas.edu/systems/
catapulta, [Online; accessed 4-November-2019].
C. Chao and B. Saeta, “Cloud TPU: Codesigning Architecture and
Infrastructure,” HotChips 2019 Tutorial, 2019. [Online]. Available:
https://www.hotchips.org/hc31/HC31 T3 Cloud TPU Codesign.pdf
A. Krizhevsky, “One Weird Trick for Parallelizing Convolutional Neural
Networks,” CoRR, vol. abs/1404.5997, 2014. [Online]. Available:
http://arxiv.org/abs/1404.5997
J. Huang, M. Patwary, and G. Diamos, “Coloring Big Graphs with
AlphaGoZero,” CoRR, vol. abs/1902.10162, 2019. [Online]. Available:
http://arxiv.org/abs/1902.10162
S. A. Mojumder, M. S. Louis, Y. Sun, A. K. Ziabari, J. L. Abellan,” J. Kim, D.
Kaeli, and A. Joshi, “Profiling DNN Workloads on a Voltabased DGX-1
System,” in 2018 IEEE International Symposium on Workload
Characterization (lISWC), 2018, pp. 122-133.
M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J.
Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed Machine Learning
with the Parameter Server,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), 2014, pp. 583-598.
A. Gibiansky and J. Hestness, “baidu-research/tensorflow-allreduce,”
https://github.com/baidu-research/tensorflow-allreduce, 2017, [Online;
accessed 4-November-2019].
P. Sanders, J. Speck, and J. L. Traff, “Two-tree Algorithms for Full Band-"
width Broadcast, Reduction and Scan,” Parallel Computing, vol. 35, no.
12, pp. 581-594, 2009.
R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective
Communication Operations in MPICH,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49-66, 2005.
P. Patarasuk and X. Yuan, “Bandwidth Optimal All-Reduce Algorithms for
Clusters of Workstations,” Journal of Parallel and Distributed Computing,
vol. 69, no. 2, pp. 117-124, 2009.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

NVIDIA, “NVIDIA Collective Communication Library (NCCL),” https:
//developer.nvidia.com/nccl, 2017, [Online; accessed 4-November-
2019].

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,S.
Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M.
Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 265-283. [Online].
Available: https://www.usenix.org/system/files/
conference/osdil6/o0sdil6-abadi.pdf

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang, “MXNET: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed Systems,” CoRR, vol.
abs/1512.01274, 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

S.Jeaugey, “Massively Scale Your Deep Learning Training with NCCL 2.4,”
https://devblogs.nvidia.com/ massively-scale-deep-learning-training-
nccl-2-4/, Feburary 2019, [Online; accessed 6-February-2020].

G. Wang, S. Venkataraman, A. Phanishayee, J. Thelin, N. Devanur, and I.
Stoica, “Blink: Fast and Generic Collectives for Distributed ML,” in MLSys
2020, 2020.

L. Luo and S. Jeaugey, “[Question] NCCL Logs with multiple nodes.”

https://github.com/NVIDIA/nccl/issues/226, May 2019, [Online;
accessed 6-February-2020].
S. Shi, Z. Tang, X. Chu, C. Liu, W. Wang, and B. Li

“CommunicationEfficient Distributed Deep Learning: Survey, Evaluation,
and Challenges,” arXiv preprint arXiv:2005.13247, 2020.

Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “DianNao Family: Energy-
efficient Hardware Accelerators for Machine Learning,” Commun. ACM,
vol. 59, no. 11, pp. 105-112, Oct. 2016.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-I. Cantin,C.
Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D.
Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D.
Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M.
Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T.
Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in Proceedings of the
44th Annual International Symposium on Computer Architecture, ser.
ISCA’17, 2017, pp. 1-12.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in
Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA’16, 2016, pp. 367—-379.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: Efficient Inference Engine on Compressed Deep Neural Network,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA’16, 2016, pp. 243-254.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME:
A Novel Processing-in-memory Architecture for Neural Network
Computation in ReRAM-based Main Memory,” in Proceedings of the
43rd International Symposium on Computer Architecture, ser. ISCA ’16,
2016, pp. 27-39.

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling Low-’
power, Highly-accurate Deep Neural Network Accelerators,” in
Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA’16, 2016, pp. 267-278.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable
and Efficient Neural Network Acceleration with 3D Memory,” in ACM

https://www.tacc.utexas.edu/systems/catapulta
https://www.tacc.utexas.edu/systems/catapulta
https://www.tacc.utexas.edu/systems/catapulta
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1902.10162
https://github.com/baidu-research/tensorflow-allreduce
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://arxiv.org/abs/1512.01274
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://github.com/NVIDIA/nccl/issues/226

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

SIGARCH Computer Architecture News, vol. 45, no. 1. ACM, 2017, pp.
751-764.

H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2018, pp. 461-475.

C.Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image Classification
at Supercomputer Scale,” arXiv preprint arXiv:1811.06992, 2018.

J. Dong, Z. Cao, T. Zhang, J. Ye, S. Wang, F. Feng, L. Zhao, X. Liu,

L. Song, L. Peng, Y. Guo, X. Jiang, L. Tang, Y. Du, Y. Zhang, P. Pan, and Y.
Xie, “EFLOPS: Algorithm and System Co-design for a High Performance
Distributed Training Platform,” in Proceedings of the 26th International
Symposium on High Performance Computer Architecture6(HPCA-25),
February 2020, pp. 610-622.

R. Mayer and H.-A. Jacobsen, “Scalable Deep Learning on Distributed
Infrastructures: Challenges, Techniques and Tools,” ACM Computing
Surveys (CSUR), vol. 53, no. 1, pp. 1-37, 2020.

T. Ben-Nun and T. Hoefler, “Demystifying Parallel and Distributed Deep
Learning: An In-depth Concurrency Analysis,” ACM Comput. Surv., vol.
52, no. 4, pp. 65:1-65:43, Aug. 2019.

A. Gibiansky, “Bringing HPC Techniques to Deep Learning,” http://
andrew.gibiansky.com, 2017, [Online; accessed 24-November-2019].
M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter, “BlueConnect:
Decomposing All-Reduce for Deep Learning on Heterogeneous Network
Hierarchy,” in SysML 2019, 2019. [Online]. Available:
https://www.sysml.cc/doc/2019/130.pdf

A. Sergeev and M. D. Balso, “Horovod: Fast and Easy Distributed Deep
Learning in TensorFlow,” CoRR, vol. abs/1802.05799, 2018.

[Online]. Available: http://arxiv.org/abs/1802.05799

A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, “SCALE-
Sim: Systolic CNN Accelerator Simulator,” CoRR, vol. abs/1811.02883,
2018. [Online]. Available: http://arxiv.org/abs/1811. 02883

N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J.-H. Kim, and W. J. Dally, “A Detailed and Flexible CycleAccurate
Network-on-Chip ~ Simulator,” in International ~Symposium on
Performance Analysis of Systems and Software (ISPASS), 2013, pp. 86—
96.

NVIDIA, “NVIDIA Tesla P100 Whitepaper,” NVIDIA Corporation,

2016. [Online]. Available: https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf

A. Ishii, D. Foley, E. Anderson, B. Dally, G. Dearth, L. Dennison, M.
Hummel, and J. Schafer, “NVSwitch and DGX-2,” in Hot Chips,

2018.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in International Conference
on Neural Information Processing Systems (NIPS), 2012, pp. 1097— 1105.
D. Silver, J. Schrittwieser, K. Simonyan, |. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the Game of Go
without Human Knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.
S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards RealTime
Object Detection with Region Proposal Networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 91-99.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, “Going Deeper With Convolutions,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
Collaborative Filtering,” in Proceedings of the 26th International
Conference on World Wide Web, 2017, pp. 173-182.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
u. Kaiser, and I. Polosukhin, “Attention is All You Need,” in Advances in
Neural Information Processing Systems 30, |. Guyon, U. V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Curran Associates, Inc., 2017, pp. 5998-6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and t. Kaiser, “Universal
Transformers,” CoRR, vol. abs/1807.03819, 2018. [Online]. Available:
http://arxiv.org/abs/1807.03819

N. S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere, and M. Smelyanskiy,
“On Large-batch Training for Deep Learning: Generalization Gap and
Sharp Minima,” in 5th International Conference on Learning
Representations, ICLR 2017, 2017.

S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna, “ASTRA-SIM:
Enabling SW/HW Co-Design Exploration for Distributed DL Training
Platforms,” in IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 2020, Boston, MA, USA, August 22-26,
2020. IEEE, 2020.

U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel,
K. Hazelwood, B. lJia, H.-H. S. Lee, A. Malevich, D. Mudigere, M.
Smelyanskiy, L. Xiong, and X. Zhang, “The Architectural Implications of
Facebook’s DNN-based Personalized Recommendation,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 488-501.

R. Rabenseifner, “Optimization of Collective Reduction Operations,” in
International Conference on Computational Science. Springer, 2004, pp.
1-9.

M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,

J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov, A.
Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko,
S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and M. Smelyanskiy,
“Deep Learning Recommendation Model for Personalization and
Recommendation Systems,” CoRR, vol. abs/1906.00091, 2019. [Online].
Available: https://arxiv.org/abs/1906. 00091

L. Wang, M. Li, E. Liberty, and A. J. Smola, “Optimal Message Scheduling

for Aggregation,” in SysML 2018, 2018. [Online]. Available:
https://www.sysml.cc/doc/2018/178.pdf
C. Yang, “Tree-based Allreduce Communication on MXNet,”

https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf,
Tech. Rep., 2018, [Online; accessed 26-August-2019].

L. Luo, P. West, A. Krishnamurthy, L. Ceze, and J. Nelson, “PLink:
Discovering and Exploiting Datacenter Network Locaility for Efficient
Cloud-based Distributed Training,” in MLSys 2020, 2020.

Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. Schwing, H.
Esmaeilzadeh, and N. S. Kim, “A Network-Centric

Hardware/Algorithm Co-Design to Accelerate Distributed Training of
Deep Neural Networks,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018, pp. 175-188.

B. Klenk, N. Jiang, G. Thorson, and L. Dennison, “An In-Network
Architecture for Accelerating Shared-Memory Multiprocessor
Collectives,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2020, pp. 996—-1009.

L.-S. Peh and W. J. Dally, “Flit-Reservation Flow Control,” in Proceedings
of the 6th International Symposium on High-Performance Computer
Architecture (HPCA-6), 2000, pp. 73-84.

M. Ahn and E. J. Kim, “Pseudo-Circuit: Accelerating Communication for
On-Chip Interconnection Networks,” in Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ‘43, 2010, pp. 399-408.

A. Kumar, L.-S. Peh, and N. K. Jha, “Token Flow Control,” in Proceedings
of the 41st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 41, 2008, pp. 342—-353.

http://andrew.gibiansky.com/
http://andrew.gibiansky.com/
http://andrew.gibiansky.com/
https://www.sysml.cc/doc/2019/130.pdf
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1811.02883
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://www.sysml.cc/doc/2018/178.pdf
https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf
https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf
https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf
https://web.ece.ucdavis.edu/~ctcyang/pub/amaz-techreport2018.pdf

