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Abstract—Large-scale distributed deep learning training has 
enabled developments of more complex deep neural network models 
to learn from larger datasets for sophisticated tasks. In particular, 
distributed stochastic gradient descent intensively invokes all-reduce 
operations for gradient update, which dominates communication 
time during iterative training epochs. In this work, we identify the 
inefficiency in widely used allreduce algorithms, and the opportunity 
of algorithm-architecture co-design. We propose MULTITREE all-reduce 
algorithm with topology and resource utilization awareness for 
efficient and scalable all-reduce operations, which is applicable to 
different interconnect topologies. Moreover, we co-design the 
network interface to schedule and coordinate the all-reduce 
messages for contention-free communications, working in synergy 
with the algorithm. The flow control is also simplified to exploit the 
bulk data transfer of big gradient exchange. We evaluate the co-
design using different all-reduce data sizes for synthetic study, 
demonstrating its effectiveness on various interconnection network 
topologies, in addition to state-of-the-art deep neural networks for 
real workload experiments. The results show that MULTITREE achieves 
2.3× and 1.56× communication speedup, as well as up to 81% and 30% 
training time reduction compared to ring all-reduce and state-of-the-
art approaches, respectively. 

Index Terms—distributed deep learning, data-parallel training, all-
reduce, interconnection network, algorithm-architecture codesign 

I. INTRODUCTION 

The onset of the big data era and rapid advances of 

accelerator architectures have enabled deep learning 

applications to achieve superhuman accuracy on complex 

real-world problems, such as image recognition, natural 

language processing, and autonomous driving. State-of-the-

art DNN models such as GPT-3 [1] have hundreds of billions of 

parameters, requiring trillions of compute operations and 

hundreds of gigabytes of storage and massive bandwidth. 

Recent work projects that orders of magnitude growth of 

dataset and model size are required to exceed human-level 

accuracy, which can take weeks to train a single epoch for 

language modeling [2]. As data keep exploding and DNNs 

evolve to be larger and deeper, it is crucial to provide scalable 

solutions to fulfill the trend in computing requirements. 

 
1 NVIDIA NCCL enables double binary tree when message size is small while 

disables it and uses ring all-reduce when message is larger than a threshold, 

which requires tuning for different systems [17], [18]. 

This research was supported in part by NSF Grant #1931078. 

To this end, grids of specialized accelerators have been 

designed and deployed to train DNN models in a parallel and 

distributed manner [3], [4]. In particular, data-parallelism, as 

the easiest model of parallel and distributed computing, has 

been widely used in large-scale DNN training [5], [6]. 

Stochastic gradient descent (SGD) is a typical optimization 

algorithm to improve DNN accuracy through iterative training, 

which intensively invokes all-reduce communication. As the 

dominant component of communication, all-reduce can stall 

the computations of the next training epoch significantly. Thus, 

all-reduce can quickly become a bottleneck for large scale 

distributed training [7]. 

Several communication algorithms have been proposed for 

all-reduce operation [8]–[11]. Baidu Research implemented a 

bandwidth-optimal ring all-reduce algorithm [9], [12], which 

has been later included in NVIDIA Collective Communication 

Library (NCCL) [13] and other popular deep learning 

frameworks [14], [15]. However, ring all-reduce suffers from 

long latency and may have low resource utilization in certain 

network topologies, for instance, only 25% link utilization rate 

in a 4×4 2D Torus network. Several attempts have been made 

to improve all-reduce latency by reducing the algorithmic 

steps [10], [11], [16]. Halving-doubling reduces the latency 

through recursive distance doubling and halving in the 

reducescatter and all-gather phases, respectively [11]. Double 

binary tree (DBTree), which is also implemented in NCCL, 

improves the latency through two-tree reduction and 

broadcast [10], [16]. These two algorithms perform better 

than ring all-reduce for short to medium messages. However, 

for large messages, they can lead to significant network 

congestion since their communication patterns map poorly on 

to the physical network topology, turning out to be worse than 

rings1 [11], [19]. Therefore, it is crucial to consider the physical 

network topology for all-reduce algorithm design with proper 

message scheduling to achieve low latency for short to 



medium messages and contention-free communication for 

large data sizes. 

TABLE I: Comparisons of All-Reduce Algorithms. 

Algorithms Small data Large data Applied Well on 

 Latency Bandwidth Contention Various Topologies 

Ring [9], [12] high optimal none X 
DBTree [10], [16] low optimal high × (Topo-oblivious) 
2D-Ring [28] low sub-optimal none × (2D Torus/Mesh) 
HDRM [29] low optimal none ×(BiGraph) 
MULTITREE low optimal none X 

 

Recently, dedicated networks with accelerator pods have 

been deployed to accelerate emerging deep learning 

applications, such as Cloud TPU [4] and Catapult [3]. While 

computation acceleration has been significantly studied [20]–

[27], communication specialization with architecture-

algorithm codesign is still in its infancy [28], [29]. Ying et al. 

adopted 2D-ring all-reduce for the 2D Torus network in TPU 

clusters to fully utilize the links and reduce communication 

steps [28]. Although achieving full link utilization, its 2D nature 

increases the amount of communicated data, which can be 

double the optimal communicated data as the network scales 

out. For a 2D N×N Torus network, 2D-ring transmits 2N(N −1) 

data while flat ring communicates N2 −1 data. More recently, 

Alibaba proposed the EFLOPS training platform by co-

designing algorithm and system with a new server 

architecture [29]. It extends the halving-doubling algorithm 

with rank mapping (HDRM) on a two-stage fully connected 

BiGraph topology to avoid contention, showing promising 

potential for the codesign approach. However, it is not trivial 

to scale due to its full connections among switches. These 

algorithms are limited to specific topologies (2D Torus and 

BiGraph) and do not generalize to other network topologies. 

With the trend for larger and deeper DNN models, more 

accelerator grids are deployed for large-scale distributed 

training. Therefore, more scalable solutions are required to 

work in synergy with various topologies that can practically 

interconnect a large number of nodes [4]. Moreover, 

communication acceleration through specialization is urgently 

needed to keep up with the computation throughput. In 

addition, the lack of hardware support for coordination and 

communication scheduling may miss potential optimization 

opportunities to further improve performance. Furthermore, 

the fine-grained flow control and arbitration designed for 

general purpose networks can be inefficient to support such 

large gradient exchanges, resulting in extra performance and 

significant energy/power overhead. Table I summarizes the 

comparisons among these works. 

In this work, we co-design an all-reduce communication 

algorithm and interconnection architecture to support 

efficient and scalable all-reduce operation. We propose 

MULTITREE, a scalable topology-aware all-reduce algorithm 

that is applicable to various topologies. MULTITREE couples tree 

construction and message scheduling with topology and 

global link utilization awareness to build trees from roots in a 

top-down fashion. It leverages the insight that tree levels 

closer to the roots are more sparse and tree levels closer to the 

leaves are denser. Based on this, MULTITREE moves more 

communication closer to the roots to make communication 

closer to the leaves sparse so that communications are 

balanced in all levels of the trees. Moreover, we co-design the 

network interface according to the proposed communication 

algorithm and to facilitate the all-reduce schedule 

management to achieve contention-free all-reduce. We also 

simplify the flow control and arbitration to exploit the 

characteristics of large gradients in all-reduce operations. As a 

result, MULTITREE tackles the limitations in previous work, as 

summarized in Table I. 

In summary, the contributions of this paper are as follows. 

• We identify the inefficiency in the state-of-the-art 

allreduce algorithms, and co-design all-reduce algorithm 

and interconnect hardware for large gradient exchange. 

• We propose MULTITREE, an all-reduce algorithm that is 

applicable to various interconnect topologies and couple 

tree construction and communication scheduling, with 

topology and global link utilization awareness, to 

efficiently coordinate concurrent reduction/broadcast 

trees. 

• We augment the network interface to support hardware 

based scheduling for MULTITREE and facilitate the lockstep 

communications in the schedule, while simplifying the 

flow control dedicated for large gradient all-reduce. 

• Our evaluations using synthetic messages and state-

ofthe-art DNNs show that MULTITREE greatly improves 

scalability over prior works, and achieves 2.3× and 1.56× 

communication speedup, as well as up to 81% and 30% 

training time reduction compared to ring all-reduce and 

the state-of-the-art approach [28], respectively. 

The rest of the paper is organized as follows: §II introduces 

the background and motivation. §III presents the proposed 

MULTITREE all-reduce algorithm followed by the co-designed 

architecture detailed in §IV. The methodology is described in 

§V and the evaluation is presented in §VI, respectively. Further 

discussions are outlined in §VII followed by more related work 

in §VIII. Finally, we conclude the paper in §IX. 

II. BACKGROUND AND MOTIVATION 

In this section, we first introduce the background of 

dataparallel deep neural network training followed by all-

reduce communication in distributed stochastic gradient 

descent synchronization.. Then, we motivate this research by 

outlining the limitations of existing all-reduce algorithms. 



A. Data-Parallel Deep Neural Network Training 

DNN training is usually done using stochastic gradient 

descent where each training sample goes through forward 

propagation, gradient calculation followed by backward 

propagation. Backward propagation uses the gradient to 

update weights of the DNN model in order to minimize a loss 

function. To make training faster, mini-batch is used where 

there is one pass of weight update for each mini-batch of 

training samples. It is a daunting task to train large DNNs with 

huge amounts of data. Thus, distributed training is performed 

on multiple compute nodes. Each compute node may be 

equipped with GPUs and accelerators. This creates the 

challenges regarding resource usage, communication 

bandwidth provisioning, and trade-off between computation 

and storage [30], [31]. Different parallel strategies have been 

used to enable scalable and efficient distributed training. 

Data parallelism is the most common way for distributed 

DNN training where a non-overlapping set of training samples 

are distributed to different compute nodes. Each node 

calculates gradients based on its own training set. Gradients 

are then aggregated to update weights using either a 

centralized or a decentralized approach. The centralized 

approach relies on a parameter server where each node 

periodically reports its computed parameter updates to a (set 

of) parameter server(s) [8]. However, parameter servers are 

not efficient in terms of bandwidth and latency for larger 

DNNs. An alternative is the decentralized approach where 

compute nodes exchange parameter updates via an all-reduce 

operation, where the all-reduce algorithm plays an important 

role. A widely used one is ring all-reduce [9], [12] that only 

requires a tree topology to achieve no contention and optimal 

bandwidth, where a tree topology is typically embedded in 

any network topology. However, it is not latency-optimal [12]. 

B. All-Reduce for Distributed Stochastic Gradient Descent 

Baidu popularized ring all-reduce using a sequence of 

reduce-scatter followed by all-gather operations [9], [32]. 

Reduce-scatter and all-gather operations are further 

optimized to exploit the hierarchical nature of communication 

bandwidths of heterogeneous network architecture [33]. 

Fig. 1 shows an example. Let us assume that each row 

represents one segment of tensors with segment 0 being the 

top row and segment 3 being the bottom one. Each node 

forms a ring with the next node. Reduce-scatter is done on 

segment 0 starting from Node 1. In the first iteration, segment 

0 is sent from Node 1 to Node 2 where the tensors are 

aggregated. Thus, two out of four sets of tensors are 

aggregated in the first iteration. In the second iteration, 

segment 0 is sent from Node 2 to Node 3 and in the third 

iteration, segment 0 is sent from Node 3 to Node 0. Thus, after 

3 iterations, all tensors of segment 0 are aggregated to Node 

0. Similarly, segment 1 starts from Node 2 and after 3 

iterations, gets reduced to Node 1. Segments 2 and 3 end up 

getting reduced to Nodes 2 and 

3, respectively. Thus, it takes 3 iterations for reduce-scatter. 

After the sequence of reduce-scatter operations, all-gather 

operations are done similarly. In the first iteration, segment 0 

is sent from Node 0 to Node 1. Now, Node 1 has two out of 

four segments (namely segments 0 and 1). Similarly, at the end 

of the first iteration, other nodes end up having 2 segments. 

In the second iteration, segment 0 is sent from Node 1 to Node 

2 and subsequently from Node 2 to Node 3 in the third 

iteration. Thus, after 3 iterations, all nodes will end up having 

all 4 aggregated segments. 

C. Motivation 

Widely used ring all-reduce has been proved 

bandwidthoptimal [12], which makes it suitable for large 

gradient exchanges [9], [13], [34]. However, it faces link under-

utilization in certain topologies such as Torus and Mesh. 

Furthermore, it suffers from long latency as the system scales 

out. Several attempts have been made to improve link 

utilization and latency [10], [16], [28]. 2D-ring all-reduce 

utilizes all the links and reduces the communication steps in 

2D Torus and Mesh networks [28], but it transmits twice the 

amount of data compared to bandwidth-optimal algorithms. 

For instance, 2D-ring communicates 2N(N −1) data while ring 

all-reduce communicates N2 −1 data in a 2D N×N Torus 

network. On the other hand, the double binary tree algorithm 

builds two logical binary trees to reduce latency for small to 

medium messages [10], [16]. It constructs the two trees in a 

way such that the leaf nodes in one tree are the internal nodes 

in the other tree. Therefore, each tree can take half of the data 

and all the nodes can send and receive data simultaneously, 

outperforming single-tree all-reduce. It better utilizes the end-

node bandwidth and works well on networks with all-to-all like 
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Out[0]  Out[0]  Out[0]  Out[0] 

Out[1] Out[1] Out[1] Out[1] 

Out[2] Out[2] Out[2] Out[2] 

Out[3] Out[3] Out[3] Out[3] 
 

Fig. 1: Reduce-scatter and all-gather in ring all-reduce. 
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topology for small to medium messages. For large messages, 

it can experience significant contention since the two trees are 

not mapped well on the physical network topology, especially 

severe on unfriendly topology such as Torus [19]. The recently 

proposed EFLOPS extends halving-doubling by mapping the 

ranks to the nodes to achieve contention-free communication 

for large datasets [29]. Since each communication pair always 

involves one node connected with an upper switch and one 

node connected with a lower switch, it never exploits the 

onehop distance between nodes connected to the same 

switch, failing to expedite latency-sensitive communications 

for small messages. Furthermore, these algorithms are not 

general to apply to different network topologies while 

achieving good performance for both latency and bandwidth. 

Typical interconnection networks for general-purpose 

communications use fine-grained flow control that well 

supports short messages. However, it can generate many 

small packets for large gradients, which can lead to extra 

bandwidth and arbitration overheads. To mitigate such an 

overhead, flow control can be streamlined to take advantage 

of large gradients. In the conventional packet-based flow 

control, a packet consists of a 

 

Fig. 2: Packet head flit bandwidth overhead. 

few flits, including a head flit for metadata and body/tail flits 

for payload, where the head flit incurs bandwidth overhead. 

For on-chip networks, the payload of a packet is a cache line 

whereas, for off-chip networks, payload size varies from 64 to 

256 bytes with 16-byte flits, incurring 6%–25% bandwidth 

overhead, as shown in Fig. 2. In distributed DNN training, 

streams of consecutive large gradients flow from one node to 

the other using many small packets, following the same route 

with consecutive addresses. So the head flits of these 

consecutive packets contain redundant information, leading 

to unnecessary bandwidth overhead. Thus, flow control can 

be simplified to exploit this distinct characteristic. 

III. MULTITREE ALL-REDUCE ALGORITHM 

In this section, we first explain the rationales behind the 

MULTITREE approach. Then, we illustrate the main idea with an 

example followed by its algorithm. 

A. Rationales and Insights 

1) Spanning Trees Instead of Rings: In reduce-scatter 

and all-gather phases of all-reduce, each node leads a 

reduction and a broadcast of one chunk of data. In ring all-

reduce, each node communicates a chunk of data in a 

unidirectional ring, which takes (n−1) steps in both phases for 

n nodes. If each such communication can take place in a tree 

structure, it can reduce the algorithmic steps to 2logk n with a 

k-ary tree for n nodes. Thus, the proposed algorithm is not 

only bandwidthoptimal but also reduces latency by 

constructing multiple trees instead of rings, thereby improving 

all-reduce scalability. 

2) Topology Awareness: If trees are constructed without 

considering network topology and link utilization, it may lead 

to even worse performance than ring all-reduce, especially 

when multiple trees contend for the same link at the same 

time without careful scheduling. Furthermore, tree levels 

closer to leaves are denser than tree levels closer to roots. Thus, 

when reducing from leaves to roots, the reduce-scatter phase 

can experience dense to sparse communications, leading to 

high contention near leaf nodes. MULTITREE exploits this insight 

to combine message scheduling and tree constructions, with 

topology and link utilization awareness to schedule more 

communication near the roots to sparsify communication near 

leaves. In addition, instead of constructing the trees one 
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t = t +1  
0 0 0 

(e) All-gather schedule trees (broadcast) 
Fig. 3: MULTITREE construction with link allocation and scheduling for 

all-reduce communication of a (2×2) Mesh network. Node n in tree T 

is denoted as T-n and label (i) of an edge is the allocation sequence of 

that link while label t of an edge is the communication time step 

between the two nodes: (a) link allocation sequence of the topology 

graph for level 1 (time step 1); (b) when no more links are available 

for the predecessor levels 0 and 1, a new link topology graph is used 

for allocation for level 2 (time step 2); (c) the tree construction 

process indicated by edge labels; (d) the constructed reduce-scatter 

schedule trees and (e) all-gather schedule trees. 

by one, MULTITREE builds them concurrently, generating 

balanced trees with global coordination. 

B. Main Idea 

Given a network G(V,E) with nodes V and edges E, finally |V 

| spanning trees are created. To move more communications 

near the roots, MULTITREE builds the trees from roots in a top-

down approach, making the predecessor levels denser and 

communications balanced across the tree levels. During tree 

construction, for each time step (tree level), a topology graph 

is used to allocate links to connect remaining nodes to the 

spanning trees, and the allocated links are removed from the 

graph. When there are no more available links to connect 

remaining nodes to any of the trees, a new topology graph is 

used for the next time step (tree level). 
 R0-0 R0-1 R0-3 R0-2 T0-0 T1-3 

 R1-1 R1-3 R1-2 R1-0 
 T0-2 T1-1 
 R2-2 R2-0 R2-1 R2-3 

 R3-3 R3-2 R3-0 R3-1 T0-1 T0-3 T1-2 T1-0 

 (a) Ring-based all-gather (b) Double binary tree broadcast 
Fig. 4: All-gather or broadcast phase of the ring-based and double 

binary tree algorithms: (a) Ring-based all-gather with Ri-n for a node n 

involving in data chunk i, and (b) double binary tree broadcast with 

black/red edge color indicating communication at even/odd step. 

We illustrate the main idea by walking through an 

example 2 that constructs schedule trees for a (2×2) Mesh 

network as shown in Fig. 3. Fig. 3a and 3b show the topology 

graphs that are used to facilitate tree constructions for time 

steps 1 and 2, respectively. The edge label (i) in Fig. 3a, 3b and 

3c indicates the global link allocation sequence that connects 

a node to its parent during the tree construction. Fig. 3c shows 

all the trees and their construction sequences, where the trees 

take turns to add one node at a time, sustaining tree balance. 

 
2 For demonstration purposes, we use a 2×2 Mesh network that is too small 

to show the benefit of MULTITREE. Although a larger network can show the 
advantages of MULTITREE, we cannot accommodate it due to page limit. 

At sequence number 7, after the last edge (3 → 2) is added to 

connect nodes 

2 ( T3-2 ) and 3 ( T3-3 ) in tree 3, the topology graph for time step 

1 in Fig. 3a runs out of all the edges. Then, a new topology 

graph in Fig. 3b is used to start time step 2, which creates a 

new level for the trees. (lines 4–14 of the Algorithm 1 in §III-

C). These newly constructed trees are used to build the 

reduce-scatter schedule trees and finally, are adjusted to 

generate all-gather schedule trees, as shown in Fig. 3d and 3e, 

respectively. Note that the trees are well balanced and 

symmetric in shape, but not necessarily structurally symmetric. 

Structural symmetry requires special representation of each 

node with respect to the remaining network and only applies 

to specific symmetric networks. Moreover, for networks like a 

(4×4) Mesh where the longest distance from a source node 

varies depending on its position, the trees are asymmetric 

with different heights. 

Fig. 4 shows the all-gather and broadcast schedules for ring 

and double binary tree (DBTree) on the same network, 

respectively. Compared to MULTITREE, ring needs one more 

step which leads to longer latency. It also shows rings can be 

considered as unary spanning trees. Fig. 4b shows the two 

trees in DBTree. Although it has the same logical height as 

MULTITREE, its physical height is deeper since the connection 

between nodes 1 and 2 crosses two hops due to the mismatch 

of tree structure and physical topology. Such a mismatch is 

even more severe in larger networks. In addition, DBTree 

schedules the communications in even/odd steps (black/red 

color) such that a node never receives or sends data 

simultaneously in both trees, which can lengthen the 

completion time. Note that each edge in MULTITREE maps to a 

physical link, which is only one-hop distance. 

Algorithm 1: MULTITREE All-Reduce Algorithm. 

Input: topology graph G(V,E) 
Output: reduce scatter schedule, allgather schedule 

// Initialization 

1 for each node i ∈ V of graph G(V,E) do 

2  Tree Ti adds node i to tree Ti as root; 

3 t = 0; 

// Compute all-gather schedules 

4 while not all trees completed do 
// Start a new time step t with a new G 

5 

6 G (V ,E ) = G(V,E); 

// Add new nodes to trees and schedule 
// communications for this time step 

7 while E0 has free edges to add new nodes do 

// Trees take turns for balancing 



8 Select next tree T by root ID in ascending order; 

9 for p ∈ T’s nodes added by previous time steps do 
10 if there is an edge (p → c) ∈ E0 then 

11Add node c to T and connect to p; 

12Remove edge p → c from E0; 

// Schedule message p → c at t 

13Add (p → c,t) to T’s allgather schedule; 

14break; 

15 Calculate total time steps tot t = t; 

// Compute reduce-scatter schedule, which 
// is the reverse of all-gather 

16 for (p → c,t0) ∈ allgather schedule of each tree T do 
17 Add (c → p,tot t − t0 +1) to T’s reduce scatter schedule; 

// Adjust all-gather schedule 

18 Replace (p → c,t0) with (p → c,tot t + t0); 

C. Algorithm Design 

More formally, MULTITREE is presented in Algorithm 1. For 

ease of understanding, we describe it for direct networks, and 

provide the steps to extend for switch-based networks. 

1) Algorithm Description: The algorithm initializes a tree 

for each node in the network as the root and the time step t 

(lines 1–3). Then it starts to construct the schedule trees for 

the all-gather phase (broadcast) instead of reduce-scatter, 

since it is more natural for the top-down approach to start 

from the root (lines 4–14). For every new time step t, a full 

topology graph G0(V 0,E0) is used, whose edges are removed 

while adding new nodes to the trees. During this time step t, 

trees take turns to add one node c to connect to a predecessor 

node p added in previous time steps. Then the edge p → c is 

removed from the topology graph and scheduled for 

communication at the current time step t. Note that trees 

alternate by root ID in ascending order for simplicity, which 

works fine in most cases, especially for symmetric networks 

like Torus. For asymmetric or irregular networks, trees with 

larger remaining height can be prioritized so that 

communication on the longest path is scheduled earlier. At 

line 9, nodes are examined breadth-first in their order of 

adding to the tree by previous time steps so as to make the 

predecessor levels denser. For selecting a neighbor of p (line 

10), it first checks the neighbors in Y dimension then in X 

dimension for Torus and Mesh networks. Other structural 

information can be used for asymmetric and irregular 

networks, which we leave for future study. When the topology 

graph runs out of edges to connect remaining nodes to any of 

the trees, it starts a new time step and repeats the same link 

allocation procedure until all the allgather schedule trees are 

completed. After all-gather schedule trees are constructed, 

they are used to construct reduce-scatter trees and adjusted 

for communication time step (lines 16–18). Since reduce-

scatter goes in the opposite direction with respect to all-

gather communication, the algorithm simply reverses the 

communication pairs of all-gather schedule trees with 

adjusted time steps. The all-gather schedules are also adjusted 

in time to run after reduce-scatter schedules. In static systems, 

the algorithm only needs to run once and can be used for any 

DNN workloads. In dynamic and shared systems, it runs every 

time a new set of nodes is allocated for the workloads. 

2) Complexity Analysis: The most expensive part of the 

algorithm is the loop for all-gather schedule tree constructions 

(lines 4–14). Let us consider a topology graph G(V,E). The core 

part of adding new nodes to schedule trees is from lines 9–14. 

To add a new node, the algorithm checks whether the already 

added nodes of that tree still have edges connected to a 

pending node. In the worst case, it may check all the edges of 

the graph, which is |E|. In total, we have |V | trees and each 

tree has |V | nodes. So the worst case is O(|V |2|E|). 

3) Indirect Networks Support: In switch-based networks, 

only some switches are connected to end nodes, other 

switches connect with each other to form the indirect network. 

In Algorithm 1, the topology graph G(V,E) is the adjacency lists 

of switch-to-switch connections in a direct network, where each 

switch is attached with a node. In order to support indirect 

networks, we extend G(V,E) with additional node-to-switch and 

switch-to-node connection lists. To find an available child c for 

a node p, it follows breadth-first search on these three 

topology components as described in the following steps: 

(1) Get p’s attached switch sw0 from its node-to-switch list. 

(2) When multiple nodes are attached to the same switch, 

check whether sw0’s switch-to-node has connections to 

connect with p. If there is an available connection, pick a 

node as c and remove one connection (p → sw0) from p’s 

node-to-switch list and one connection (sw0 → c) from sw0’s 

switch-to-node list, then return. If there is no available 

connection, go to step 3. 

(3) Get the neighbor switch sw1 from the switch-to-switch list 

of sw0. Repeat the same process as step 2 with sw1 until a 

node c is found or no connection is available. In this case, 

if a node is found, besides the connections removed in 

step 2, connections in traversed switch-to-switch lists 

should also be removed for the allocated links. 
 All-Reduce Schedule Table Entry Op: Reduce, Gather, NOP 

FlowID: tree ID 
 

Reduce 3 1 nil nil nil nil 1 
Reduce 1 1 nil nil nil nil 2 
Reduce 2 2 1 nil nil nil 2 
Gather 0 nil 1 2 nil nil 3 
        

 

 
Reduce 2 0 nil nil nil nil 1 
Reduce 0 0 nil nil nil nil 2 
Reduce 3 3 0 nil nil nil 2 
Gather 1 nil 0 3 nil nil 3 
        

 

Accelerator 0 Accelerator 1 
Op FlowID Parent Children Step Start  Addr Size 

Op FlowID Parent Children Step Op FlowID Parent Children Step 



Gather 2 2 1 nil nil nil 4 Gather 3

 3 0 nil nil nil 4 Accelerator 2 Accelerator 3 
Op FlowID Parent Children Step Op FlowID Parent Children Step 

 
Reduce 1 3 nil nil nil nil 1 
Reduce 3 3 nil nil nil nil 2 
Reduce 0 0 3 nil nil nil 2 
Gather 1 nil 0 3 nil nil 3 
        

 

 
Reduce 0 2 nil nil nil nil 1 
Reduce 2 2 nil nil nil nil 2 
Reduce 1 1 2 nil nil nil 2 
Gather 3 nil 1 2 nil nil 3 
        

 

Gather 0 0 3 nil nil nil 4 Gather 1 1 2 nil nil nil 4 

Fig. 5: All-Reduce schedule tables for the example in §III-B (The Start 

Addr and Size fields are omitted in the tables for brevity). 

IV. ARCHITECTURAL SUPPORTS 

In this section, we outline the co-designed communication 

architecture and the specialized flow control mechanism for 

MULTITREE all-reduce operations. 

A. All-Reduce Schedule Management 

We co-design the network interface (NI) to facilitate MUL- 

TITREE all-reduce scheduling. Algorithm 1 constructs trees for 

each data chunk. These tree schedules can be converted into 

schedule tables (one table per node). Fig. 5 shows the 

allreduce schedule tables for the example in §III-B. Each table 

entry consists of an Op filed for the opcode, a FlowID field for 

the tree flow (tree ID), a Parent and Children fields for the 

dependencies in this tree flow 3 . In addition, the Step field 

indicates the time step in which this communication should be 

initiated. The Start Addr and Size fields are for the starting 

address and the size for the gradient message, respectively. 

There are three opcodes for all-reduce, namely, Reduce, 

Gather, and NOP. During Reduce operation, communication 

happens from the leaf to the root. Each internal node of the 

trees must receive Reduce before communicating to its parent. 

For example, in Fig. 5, accelerator 0 can send a Reduce to its 

parent (accelerator 1) for tree flow 3, because it is the leaf 

node at step 0 in tree 3. The last Reduce of accelerator 0 should 

not be sent to the parent (accelerator 2) until it receives a 

dependent Reduce from its child (accelerator 1) in the flow tree 

2. On the other hand, during Gather operation, a node sends 

messages to the children after receiving a Gather from the 

parent unless the node is the root of the tree. 

We also provide a NOP to maintain the communication of 

different time steps in a lockstep manner. Link contention can 

happen without proper scheduling of messages among the 

trees. This is more frequent in topologies that generate 

imbalanced trees, such as large-scale Mesh, and can limit the 

improvement or even degrade performance by destroying the 

 
3 The size of the Children field is calculated as the bandwidth ratio between 

the network interface and a network link bandwidth. 
4 The step time is estimated as the number of flits (num_flits) for the perstep 

data chunk if the NI buffers can hold it completely. Otherwise, it is estimated 

as num_flits subtracting the NI buffer size (translating to flit size). 

scheduling. Therefore, a mechanism to maintain the 

communication in a lockstep fashion is needed to achieve the 

 

Fig. 6: Architecture of all-reduce schedule management. 

best performance. One option is to use some simple message 

passing scheme but that can introduce additional coordination 

overhead, which can be very high especially for small 

messages. Therefore, we propose a lockstep mechanism for 

implicit coordination by exploiting the static communication 

patterns in all-reduce. Given the message size, the step time is 

estimated as the serialization latency assuming no contention4. 

When a NOP is inserted, the all-reduce injection is forced to 

stall for the estimated step time. Although NOP may leave links 

under-utilized, based on our observations, it only happens in 

irregular networks and at the leaves of the trees, while other 

time steps can fully utilize the links5. Pruning and adjusting the 

trees may help in these cases, we leave it for future 

exploration. In addition, the estimated lockstep mechanism 

does not require a global synchronization across all the NIs. 

When the data size is small, minor variation in the same time 

step in different nodes has minimum impact as bandwidth is 

not the bottleneck. When the data size is large, the long 

serialization latency becomes dominant, making the small 

clock variance insignificant. 

Fig. 6 depicts the architecture for all-reduce schedule 

management and injection regulation. It includes an all-

reduce schedule table, a timestep counter, a decoder, a 

5 Note that even in best-effort utilization, links may be under-utilized as 

data size may not be perfectly divisible by the aggregated bandwidth. 



lockstep downcounter and the conventional NI facilities. Upon 

an all-reduce operation, the schedule table is initialized; the 

timestep and lockstep counters are reset by the processor to 

configure the scheduling. During all-reduce, the head entry of 

the table is inspected ( 1 ). If the Step is the same as the 

timestep counter value and the children (for Reduce) or parent 

(for Gather) dependencies are satisfied, the operation is issued 

to send the messages. Then, the Op is decoded to decide the 

corresponding action ( 2 ). If it is a NOP, the lockstep counter is 

set and starts down counting for an estimated time step. If it 

is a Reduce/Gather, the Start Addr and Size are used to request 

the DMA engine for bulk data transfer. When the data comes 

back, the FlowID is encapsulated with other address 

information in the data packet to start communication. When 

the lockstep counter is zero and the all-reduce units are idle, 

the timestep counter is incremented if the next operation in 

the schedule table is for the next step ( 3 ). Upon receiving 

Reduce messages, it is issued to the reduction logic for 

aggregation ( 4 ). Once the aggregation for Reduce of the 

current step is finished, they are used to clear the 

dependencies of future 

Reduce/Gather ( 5 ). When a Gather is received, it is directed to 

the schedule table to clear the parent dependence for the 

upcoming Gather ( 6 ). 

B. Message-based Flow Control for Big Gradient Exchanges 

Unlike general purpose applications, all-reduce 

communication in data-parallel DNN training has a relatively 

fixed traffic pattern. With a specific all-reduce algorithm, the 

communication pattern is known in advance for a training task. 

For example, MULTITREE constructs schedule trees before 

training starts. This prior knowledge can be leveraged for 

simpler control and arbitration in hardware, thereby 

simplifying logic and improving energy efficiency. MULTITREE 

algorithm aims to coordinate among the trees with a global 

view, where less dynamism in interconnection networks helps 

maintain the communication schedules, thereby keeping 

concurrent communications progressing at a similar rate. In 

addition, the long traffic (between a communicating pair) for 

all-reduce of large gradients unnecessarily incurs bandwidth 

overhead of massive number of packet head flits. To optimize 

these aspects, we revisit the traditional flow control 

techniques and redesign them specifically for all-reduce 

communication. 

Fig. 7a shows a commonly used packet-based switching 

mechanism, where large gradients are divided into many 

messages. Each message is partitioned into multiple packets. 

Each packet consists of a head flit and body/tail flits. The 

highlighted head flits consumes bandwidth and incurs extra 

control such as routing and arbitration, causing extra delay 

and energy consumption. On the other hand, we adapt a 

message-based approach to reduce such overheads, as shown 

in Fig. 7b. Instead of having a fixed message size, we take the 

whole chunk of gradients as a message, which can be further 

converted to many sub-messages starting with a head sub-

message and ending with a tail sub-message. Each 

submessage is divided into sub-packets, where the first sub-

packet of the head sub-message is a head sub-packet, which 

behaves as the head of the large gradient message. The last 

subpacket of the tail sub-message is the tail sub-packet to end 

the gradient message. Similarly, the sub-packets are 

partitioned into flits. Unlike conventional packet-based 

switching, body 

 

VC Type Packet Info Header Info 

(a) Head and head&tail flit 

 

VC Type unused Payload 

 

(d) Sub-packet information in head flit 
Fig. 8: Flit formatting in a (4×4) Torus network for (a) head and 

head&tail flit, (b) body and tail flit, (c) packet information in head flit 

for normal packet, and (d) sub-packet. 

and tail sub-packets start with a body flit, while head and body 

sub-packets end with a sub-tail flit to indicate the completion 

of a sub-packet. This leads to only one head flit for a large 

gradient message, achieving near perfect bandwidth 

 

 (a) Original gradient message (b) Big gradient message 
Fig. 7: Flow control: (a) original many messages with small packets of gradients and (b) big message with large packet of full gradients. 
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efficiency to improve performance and energy efficiency. This 

not only gains the benefit of circuit switching without setup 

time, but also avoids blocking other critical short packets from 

using the physical links. 

TABLE II: Packet and Flit Types 
 Normal Packet Flit Code Sub-Packet Flit Code 

Head1 0 0 
Body1 0 1 
Tail1 1 0 

Head & Tail1 1 1 

 

Fig. 8a and 8b show the flit formats for head/head&tail flit 

and body/tail flit, respectively. The VC field indicates the 

allocated virtual channel and the Type field specifies the packet 

and flit type, as listed in Table II. The Packet Info field is encoded 

differently for normal packets and all-reduce sub-packets, as 

shown in Fig. 8c and 8d. For normal packets, the Packet Info is 

simply the Route Info, including Dest and Src that are used by 

the distributed routing algorithms. For all-reduce sub-packets, 

Packet Info includes both Route 

Info and Tree Info, where the Tree Info is the Tree ID that this 

message belongs to. Since MULTITREE only communicates 

between neighbors, we use source routing to include the next 

hop output port Next and ejection port Eject in the head flit. In 

the network interface, these pieces of information are pre-

computed and stored in Route Info, which can be directly used 

in the routers. More specifically, in the source router, the Next 

field is used to route to the neighbor, which will interchange 

with the Eject field after the routing computation stage. The 

Next field is kept toward the destination in order to identify 

which child the message is from to clear dependencies for 

scheduling purposes. 

Since MULTITREE all-reduce only schedules communications 

between two neighboring nodes, the flits always take one hop. 

Therefore, such a design does not increase the possibility and 

risk of deadlock. Note that it can still work with wormhole 

switching seamlessly to support other types of traffic, such as 

control and synchronization traffic. Virtual channels are used 

to avoid starvation of other short messages. 

V. METHODOLOGY 

A. System Modeling and Configuration 

We extended SCALE-Sim [35], a DNN inference simulator, to 

support back-propagation for training, where output 

stationary dataflow is applied. We configure a TPU-like 

accelerator with 16 processing elements (PEs), where each PE 

has a (32×32) systolic array. We assume double buffering and 

sufficient memory bandwidth (such as high bandwidth 

memory) to maintain the peak compute throughput. The 

accelerator is also used for aggregation during all-reduce 

communication. 

We use BookSim [36] for interconnect modeling and 

implemented a python interface between SCALE-Sim and 

BookSim so that the accelerator and network can interact 

through network interface, which implements the co-

designed all-reduce scheduling. The extra hardware overhead 

includes a schedule table and two counters, one for the 

lockstep down counter and the other for the time step counter. 

Since each tree needs two entries in each node, one for 

reduce-scatter and one for allgather, the number of table 

entries is double the number of trees, which is the total 

number of nodes. So a table needs 2N entries for an N-node 

system. For a 64-node system, each table entry needs 200 bits 

and the table needs only 128 entries, which incurs 3.2 KB 

overhead. The schedules are computed once during 

initialization and loaded to network interfaces for reuse in the 

iterative training epochs. Since the offloading and scheduling 

of communication are supported in hardware, protocol and 

software overhead compared to 

TABLE III: System Configurations 

 

PE 

MAC array 32×32 

Dataflow Output Stationary 

Precision 32 bits 

Accelerator 
Number of PEs 16 

Clock 1 GHz 

Network 

Number of Accelerators 16, 32, 64 

Topology 2D Torus, Mesh, Fat-Tree, BiGraph 

Flow Control Virtual Cut-Through 

Router Clock 1 GHz 

Number of VCs 4 

VC Buffer Depth 318 flits 

Data Packet Payload 256 Bytes for Baselines 

Link Latency/Bandwidth 150 ns / 16 GB/s 

 

software scheduling can be reduced. Note that this scheduling 

mechanism is applied to all the baselines for fair comparison. 

We configure the buffer size to cover the credit round-trip 

loop, the link to match the targeting bandwidth, and the 

payload size that is used in modern training systems [37]. Note 

that larger link bandwidth can relax the pressure of all-reduce, 

but the benefit of MULTITREE over other approaches still holds. 

To demonstrate the effectiveness and generality of MULTI- 

TREE, we study several topologies, including 2D Torus, Mesh, 

Fat-Tree (similar to NVIDIA DGX-2 [38]) and the recent BiGraph 

[29]. For all the networks, we test a smaller scale (16node or 

32-node) and a larger scale (64-node). We also conduct a 

scalability study on Torus by scaling out to 256 accelerators. 

The 2D Torus and Mesh direct networks are similar to Google 

Cloud TPU [4], whose network interface is integrated on chip. 

We also assume the network interface bandwidth matches the 

0 0 0 Head 

0 0 1 Body 

0 1 0 Sub-Tail 

0 1 1 Tail 

  



network bandwidth of the attached router in direct networks. 

For switch-based networks, each accelerator is connected 

with a NIC that connects to a port of the leaf switch. We also 

use a 2D 8×8 Torus for DNN benchmark evaluation. The 

system configuration parameters are listed in Table III. 

B. Workloads 

We conduct synthetic study for all-reduce bandwidth on 

network topology (§VI-A) and for scalability evaluation (§VI-B). 

The all-reduce data size is chosen such that good amounts of 

communication is created to stress the network and 

simulations can finish in reasonable time. To test all-reduce 

bandwidth on different network topologies, we vary the all-

reduce data size from 32 KiB to 64 MiB. For scalability study, 

we use an allreduce size of 375×N KiB, where N is the number 

of nodes. We also evaluate the DNN models provided by 

SCALE- 

Sim [35] (§VI-C), including AlexNet [39], AlphaGoZero [40], 

FasterRCNN [41], GoogLeNet [42], NCF recommendation (NCF) 

[43], ResNet50 [44] and Transformer [45], [46]. We run with a 

mini-batch size of 16×N for an N-node system (16 samples per 

accelerator)6 and evaluate the training time for one 

6We choose a mini-batch size of 16×N for an N-node system to fully utilize 
the compute resources, while trade-off between mini-batch size, training time 
and model accuracy is out of our scope [47]. 
iteration for both non-overlap (forward+back-

propagation+allreduce) and computation-communication 

overlap (layer-wise all-reduce). In layer-wise all-reduce, each 

layer is queued for all-reduce once they finish back-

propagation. So communication overlaps with computation 

while SGD is propagating back to previous layers [48]. 

VI. EVALUATION 

We evaluate the MULTITREE without and MULTITREEMSG with 

the message-based flow control enabled, respectively. We 

also compare our proposed approach with several state-of-

theart all-reduce algorithms as follows. 

• RING: ring all-reduce algorithm [9] that can be applied to 

all our evaluated topologies. 

• DBTREE: double binary tree [10], [16] that is 

topologyoblivious and can be applied to all network 

topologies. 

• 2D-RING: two-dimensional ring all-reduce that is 

dedicated to 2D Torus and Mesh networks [28]. 

• HDRM: halving-doubling with rank mapping that is 

dedicated to BiGraph topology in EFLOPS [29]. 

A. All-Reduce Bandwidth 

To show the applicability of MULTITREE on various network 

topologies, we configure 4×4 and 8×8 Torus networks, 4×4 

and 8×8 Mesh networks, a 16-node Fat-Tree network similar 

to DGX-2 but with one physical network and a 64node 8-ary 2-

level Fat-Tree, 32-node 4×8 and 64-node 4×16 BiGraph 

networks. We applied the extended version of the algorithm 

described in §III-C3 to switch-based systems such as Fat-Tree 

and BiGraph. We vary the all-reduce data size from 32 KiB to 

64 MiB and evaluate the bandwidth by calculating the all-

reduce data size divided by simulation time. The results are 

shown in Fig. 9. 

As shown in Fig. 9a and 9b, MULTITREE and MUL- 

TITREEMSG always achieve better bandwidth than others 

regardless of the data size. This is because when data size is 

small, MULTITREE can finish the all-reduce with less steps; when 

data size is large, MULTITREE exploits the network topology and 

increases the link utilization. Particularly for DBTREE, it is the 

worst in these two topologies since the tree nodes map poorly 

to the network, which causes severe contention. 2D-RING is 

better than RING in Torus and 4×4 Mesh but always worse than 

MULTITREE and MULTITREEMSG since 2D-RING is not bandwidth-

optimal and communicates much more data than MULTITREE 

due to its two ring allreduce phases in the two dimensions of 

the networks. Interestingly, 2D-RING is worse than RING in the 

larger 8×8 Mesh network. The reason is twofold. First, there is 

no perfect ring topology in a dimension of the Mesh network, 

the latency is determined by the slowest pair, which is the two 

farthest nodes in the same dimension. Second, 2D-RING is 

bandwidth suboptimal and can send twice the amount of data 

compared to bandwidth-optimal algorithms (RING and 

MULTITREE). 

In both Fat-Tree and BiGraph as shown in Fig. 9c and 

9d, MULTITREE and MULTITREEMSG outperform RING with smaller 

data size; when data size is large, they achieve 
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Fig. 10: Scalability with 375×N KiB all-reduce data size normalized to 

16-node performance of RING, where N is the number of nodes. 

almost the same performance. In these two topologies, both 

MULTITREE and RING derive the same number of steps. In 

MULTITREE, nodes first communicate with the nodes that are 

connected to the same switch and have less link traversals, 

which is very critical for reducing latency in offchip 

interconnection networks. In contrast, RING’s latency is 

serialized by the slowest pair of nodes that connect to 

different leaf switches, causing more link traversal. Therefore, 

MULTITREE is better with a small data size which is 

latencysensitive. When with large data size, both algorithms 

fully utilize the bandwidth and achieve the same performance. 

In DBTREE-friendly networks, DBTREE can achieve better 

latency compared to RING due to smaller number of steps, but 

it suffers from contention when messages get large. For larger 

network size such as 64-node systems, their break-even data 

size point is shifted right. We also compare MULTITREE and 

MULTITREEMSG with HDRM that is co-designed with the 

BiGraph network [29]. Although HDRM has a smaller number 

of steps than MULTITREE, the extra link traversal incurred for 

each communication between the upper and lower switches 

offsets its benefit, leading to worse performance with small 

data size. When dealing with large data sizes, HDRM also fully 

utilizes the bandwidth. MULTITREEMSG increases the payload 

bandwidth by another 6%. 

B. Scalability 

Fig. 10 shows the weak scalability with the all-reduce size of 

375×N KiB for an N-node system, and scaling out N from 16 to 

256. The communication time is normalized to RING’s 16-node 

network performance. All the three algorithms scale linearly 

to the number of nodes while sustaining different linear 

factors, where MULTITREEMSG is the best and RING is the worst. 

Although both fully utilize the network links, 

MULTITREEMSG is better than 2D-RING because 2D-RING is 

bandwidth sub-optimal and can communicate nearly twice the 

amount of data compared to MULTITREEMSG. As RING does not 

fully utilize the network links, it achieves the least 

performance. In summary, MULTITREEMSG achieves 3× and 

1.4× speedup over RING and 2D-RING, respectively. We also 

experimented with strong scalability with a large problem size 

and there is only small variation for each algorithm since they 

are all contention-free and serialization latency is more 

dominant for large all-reduce size. 

C. DNN Benchmark Performance 

Fig. 11 shows the training time breakdown on an 8×8 Torus 

network normalized to RING, for both non-overlapped training 

approach (Fig. 11a) and computation-communication overlap 

approach (Fig. 11b). As shown in Fig. 11a, except for AlexNet, 

 

 (a) Torus networks (b) Mesh networks (c) Fat-Tree networks (d) BiGraph networks 

Fig. 9: All-Reduce bandwidth on different topologies with various data size: (a) 4×4 and 8×8 Torus, (b) 4×4 and 8×8 Mesh, (c) 16-node 

(similar to DGX-2) and 64-node 2-level Fat-Tree, (d) 32-node 4×8 and 64-node 4×16 BiGraph in EFLOPS. 



training approach with layer-wise all-reduce. 

other DNNs have a considerable amount of time on allreduce 

communication. CNNs such as AlexNet, FasterRCNN, 

GoogLeNet, and ResNet50 are compute-intensive and need to 

compute transposed convolution to for input gradients in 

order to propagate back to the previous layer. In contrast, NCF 

and Transformer have more embedding and attention layers, 

which have less computation requirements, making 

communication more dominant. In summary, communication 

time can vary from 30%–88% in the baseline RING. For 

compute-intensive CNNs, MULTITREE improves training 

performance by up to 34% and 15% compared to RING and 2D-

RING, respectively. For communication-intensive DNNs, 

MULTITREE improves training performance by 81% and 30% 

compared to RING and 2D-RING, respectively. 

Fig. 11a also shows normalized all-reduce speedup over 

RING. On average, MULTITREE achieves 2.2× and 1.51× speedup 

over RING and 2D-RING, respectively. When applying message-

based flow control, all-reduce performance is further 

improved by 6%, leading to an average of 2.3× and 1.56× 

speedup compared to RING and 2D-RING, respectively. 

It also shows that double binary tree (DBTREE) is worse than 

all other algorithms on 2D Torus. Since DBTREE is a topology-

oblivious algorithm that builds two logical trees, where the 

tree nodes map poorly onto the physical network. As a result, 

the connected nodes in the trees can cross multiple hops and 

cause network contention. Furthermore, the contention on 

links of large messages due to large models even worsen the 

performance. Note that message-based flow control can also 

be applied to other algorithms. The 6% bandwidth saving on 

head flits can contribute to nearly the same amount of 

improvement for all-reduce communication. 

To understand the effect of computation-communication 

overlap on reducing all-reduce communication overhead, we 

also experimented with an overlapped training approach 

using layer-wise all-reduce. The training time breakdown for 

computation, computation-communication overlap and 

communication is depicted in Fig. 11b. In general, MULTITREE 

achieves the best performance while DBTREE performs the 

worst. For computation dominant workloads such as CNNs 

(AlexNet, FasterRCNN, GoogLeNet, ResNet50), computation 

can largely overlap with most of the all-reduce communication 

time and mitigate the communication bottleneck. For these 

workloads, MULTITREE improves training performance by up to 

10% compared to RING. And 2D-RING can perform similarly to 

MULTITREE but it has a larger portion of 

computationcommunication overlap due to its longer 

communication time. On the contrary, for communication 

dominant DNNs such as NCF and Transformer, computation 

can only overlap a small amount of communication time. 

These workloads have large amounts of embedding and 

attention computations, which have less computation 

requirements, leaving communication still a bottleneck. In 

such cases, MULTITREE can still achieve 2× 1.37× speedup 

compared to RING and 2D-RING, respectively, in terms of 

training performance. Recent study shows that most of the 

DNN computation cycles are on non-CNN layers [49], meaning 

most DNN models in data centers are communication 

dominant. Therefore, MULTITREE is promising to drive faster 

distributed training at scale. 

VII. DISCUSSIONS 

A. Bandwidth versus Latency 

An ideal algorithm should be optimal for both bandwidth 

and latency. Theoretically, MULTITREE aims to build multiple k-

ary trees, which have tree height of logk n for n nodes, where 

ring and butterfly exchanges [50] are special cases whose k is 

1 and 2, respectively. When the all-reduce data size is small, 

butterfly can achieve better latency than ring due to less 

number of steps. However, it suffers from contention for large 

data size, where serialization latency plays a more important 

role [12]. Similar to DBTREE, the multi-hop communication on 

butterfly-unfriendly topologies can further worsen the 

situation. In cases of multi-phase rings, the benefit of 

 

(a) Non-overlapped training time breakdown and all-reduce speedup (b) Overlapped training time breakdown with layer-wise all-reduce 

Fig. 11: Training time breakdown of DNN training on an 8×8 Torus network: (a) forward+back-propagation computation and all-reduce 

communication breakdown (primary) and all-reduce speedup (secondary) normalized to RING using non-overlapped training approach; (b) 

computation and computation-communication overlap as well as communication time breakdown normalized to RING using overlapped 



algorithmic step reduction can be offset by more 

communicated data and require more bandwidth for large 

data sizes, leading to higher serialization latency similar to 

2DRING. In contrast, MULTITREE is not only bandwidth optimal, 

but also low-latency by reducing the communication steps and 

hops in switch-based networks. 

B. Broader Applications 

Although MULTITREE is designed for data parallelism, it can 

also support hybrid-parallel inference and training. Reduce-

scatter and all-gather are naturally supported. The message-

based flow control can also be used to improve bandwidth 

efficiency in both cases. In addition, MULTITREE can speed up 

data-parallel components in a hybrid approach. When the 

parallelism strategy and DNN workload are determined, 

MULTITREE runs for the nodes that involve allreduce 

communication. The all-gather trees can also easily support 

all-to-all collective in recent DNN workloads such as DLRM [51]. 

MultiTree can also be implemented in software, but the 

scheduling and synchronization can offset the benefit. For 

networks with heterogeneous link bandwidths, the topology 

graph can be modeled as a multigraph where each edge is a 

unit of bandwidth, and wider links can be modeled as multiple 

edges proportional to the link bandwidth, so MULTITREE applies 

properly. MULTITREE can also support general purpose cluster 

networks or public clouds if the network topology is provided 

or can be probed. However, it may not achieve best 

performance due to interference if the training job is co-

located with other jobs. 

C. Opportunities 

Although the theoretical number of steps is logarithmic of 

the number of nodes for trees, the best number of algorithmic 

steps MULTITREE achieves is limited to the network diameter 

when considering network topology. Nonetheless, MULTITREE 

demonstrates the effectiveness of algorithm-architecture co-

design for communication acceleration by exploiting network 

topology and big message size of all-reduce for distributed 

deep learning. This study also reveals more co-design 

opportunities with topology, such as topology design for 

dataparallel training [29] or more complex hybrid-parallel 

deep learning. In addition, reducing the number of trees by 

trading bandwidth and latency as an attempt in recent work 

[17] can be further explored. We leave these aspects for future 

work. 

VIII. ADDITIONAL RELATED WORK 

A. Collectives Acceleration for DNN Training. 

Recent research has also considered topology information 

with tree structures to improve all-reduce [52]. However, the 

linear programming complexity does not scale well to larger 

networks in practice. Another implementation applies a 

partitioning optimization algorithm to build trees from leaves, 

which only supports a specific network topology [53]. Its 

backtracking operation using exhaustive search can take days 

to find a single solution even with a small network. Therefore, 

it is neither practical nor portable to various network 

configurations. The recently proposed Blink [17] also 

generates multiple directed spanning trees to increase link 

utilization. However, spanning trees for DGX-2 is a dedicated 

design but not from the main algorithm. In contrast, MULTITREE 

is generalized for various topologies and generates the same 

trees as Blink’s dedicated DGX-2 design. In addition, Blink has 

no control on the usage order among the trees on the same 

link, while MULTITREE’s co-design provides finegrained control 

to schedule link communication earlier for the critical tree. 

Blink’s main algorithm first creates trees stemming from the 

same root for DGX-1 using approximate packing and then 

minimizes the number of trees using integer linear 

programming (ILP). Such a flow rate optimization does not 

consider the all-reduce computation dependency, while 

MULTITREE inherently considers the computation dependency 

in tree construction. Since multiple trees swan from the same 

root, only one way of the bidirectional links attached to the 

root are used for receiving or sending data in the distinct 

reduction and broadcast phases, leaving the link bandwidth 

under-utilized. In MULTITREE, each node is both a root of a tree 

and internal/leaf node(s) in all other trees in order to utilize all 

the bidirectional links. Moreover, MULTITREE scales well to 

larger network size while Blink may be limited by the 

expensive ILP. Recently, Luo et al. designed a library for the 

cloud to probe the physical network and schedule a two-level 

hierarchical aggregation plan for efficient gradient update [54]. 

Li et al. addressed the communication overhead of DNN 

training by applying in-network acceleration [55]. More 

recently, Klenk et al. proposed an in-network architecture for 

in-switch reduction to accelerate all-reduce [56], which 

targets shared-memory multiprocessors. 

B. Flow Control and Arbitration 

General flow control techniques are used to ensure correct 

flow of packets from source to destination. In addition to the 

basic functionality, Peh et al. extended the flow control to 

reserve the path using a control packet ahead of data packet 

arrival [57]. It allows them to achieve better buffer usage, and 

eliminates latency for routing and arbitration decisions. With 

similar motivation, Ahn et al. proposed pseudo-circuit by 

exploiting communication temporal locality [58]. Kumar et al. 

proposed a token based technique for improving routing and 

flow control [59], which also tries to establish a bypass path to 

avoid the routing and switching arbitration logic. 

IX. CONCLUSIONS 

In this paper, we identify the inefficiency in the widely used 

all-reduce algorithms and the opportunity of 

algorithmarchitecture co-design. We propose MULTITREE all-



reduce algorithm that constructs multiple trees with topology 

and link utilization considerations for contention-free all-

reduce scheduling. We augment the network interface to 

coordinate the communications among the trees by enforcing 

the scheduling with a simple lockstep estimation mechanism. 

The evaluation shows that the message-based flow control 

can achieve 6% bandwidth improvement. Furthermore, the 

codesign works well on different topologies and achieves 2.3× 

and 1.56× communication speedup (up to 81% and 30% 

training time reduction) over RING and state-of-the-art 2DRING, 

respectively. 
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