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Abstract—Memory safety invariants extracted from a program can help defend and detect against both software and hardware memory violations.
For instance, by allowing only specific instructions to access certain memory locations, system can detect out-of-bound or illegal pointer
dereferences that lead to correctness and security issues. In this paper, we propose CPU abstractions, called WHISTLE, to specify and check program
invariants to provide defense mechanism against both software and hardware memory violations at runtime. WHISTLE ensures that the invariants
must be satisfied at every memory accesses. We present a fast invariant address translation and retrieval scheme using a specialized cache. It stores
and checks invariants related to global, stack and heap objects. The invariant checks can be performed synchronously or asynchronously. WHISTLE
uses synchronous checking for high security-critical programs, while others are protected by asynchronous checking. A fast exception is proposed
to alert any violations as soon as possible in order to close the gap for transient attacks. Our evaluation shows that WHISTLE can detect both software
and hardware, spatial and temporal memory violations. WHISTLE incurs 53% overhead when checking synchronously, or 15% overhead when

checking asynchronously.
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1 INTRODUCTION

IVI Emory safety violation is considered one of the most critical
software vulnerabilities leading to both correctness and
security problems. In 2020, the Common Weakness Enumeration
(CWE) community listed three types of memory safety violation
among the five most impactful and serious software issues [1]. A
memory safety violation can manifest from software or hardware
behavior. For illustration purpose, let us consider the examples in
Figure 1. It shows how a memory safety violation (buffer overflow)
can be the result of a vulnerability in software or in hardware. A
software (or software-induced) memory safety violation can be
prevented by software defenses such as boundschecking [2].
However, a hardware (or hardware-induced) memory safety
violation can bypass such defenses in software within the CPU
pipeline as a result of misprediction or out-of-order optimizations.
For example, a Spectre-PHT attack [3] will mistrain the branch
predictors to temporarily bypass the bounds-checking in software
within speculative execution, and then leak the out-ofbound data
through a side channel. Many works either in software or
hardware have addressed memory safety violations. However,
existing works suffer from the following major shortcomings:

« Most existing works have focused on defense against only
software memory safety violations [4], [5], [6], or defense
against only hardware memory safety violations [7], [8], or
defense against software violations with partial defense
against hardware violations [9], [10]. Cryptographic Capa-
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Fig. 1: A comparison of hardware and software memory safety
violations. Due to a branch misprediction or lack of bounds check,
respectively, a malicious input (int offset) can cause memory safety
violations in hardware or in software.

bility Computing (C3) [11] provides uniform defense against
both software and hardware memory safety violations, yet it
requires memory encryption which may not be necessary in
some scenarios. Both No-FAT [12] and HeapCheck [13]
performs bounds checking on both non-speculative and
speculative memory access and raise exceptions on
violations. An uniform, general hardware defense against
both software and hardware violations not only incurs lower
access overheads but also provides economy of mechanisms
and wide coverage of defense.

. Existing works have addressed software memory safety
violations based on either blocking the malicious behaviors
(i.e., blocklisting) [9], [14] or allowing the benign behaviors
(i.e., allowlisting) [5], [15]. However, for hardware memory
safety violations, most existing defense works only focus on
detecting or preventing specific malicious behaviors [9] or
their consequences [16]. These defenses for hardware
violations are specific to the exploits and can be considered
ad-hoc solutions. If any future exploit exhibits different
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behaviors, the attacker can circumvent the defense
mechanism.

To address the limitations, we propose WHISTLE, a set of CPU
abstractions for memory safety violation detection inside the
microarchitecture. It is capable of handling both software and
hardware violations and allows program-specific policies to check
synchronously or asynchronously. WHISTLE provides schemes to
detect violations in stacks, heaps, and global objects of a program,
and can prevent spatial attacks as well as temporal attacks such as
Use-After-Free. WHISTLE is based on programspecific invariants
stemming from a common pattern that most of the memory
locations of a program are accessed (transiently or not) by only a
handful of instructions during normal executions. These “good”
instructions can be formulated for the corresponding memory
locations as invariants of the program. By allowing only memory
accesses within the invariants, WHISTLE can defend against future,
unknown software or hardware vulnerabilities as exploiting these
vulnerabilities will trigger the alarms by accessing disallowed
memory locations. We propose a hardware implementation of
WHISTLE, with the following contributions:

« Uniform Defense: We develop an effective defense
mechanism against both software and hardware memory
violations using invariants. As a proof-of-concept (PoC), we
demonstrate how to generate invariants using profiling in
hardware and store them in program binaries.

« Invariant Cache with Flexible Checks: We propose a small
dedicated cache, namely Top Invariant (TI) cache, to make
the invariant accesses faster. Tl cache works alongside the L1
cache with the rest of the memory hierarchy. During a load
memory request, WHISTLE checks if it is accessing a location
protected by the invariants. If so, WHISTLE accesses the TI
cache to check whether the invariants are satisfied. Memory
accesses to invariants are distributed along the memory
hierarchy based on the access frequency. Thus, the most
frequently accessed invariants reside in the Tl cache, while
others reside in the L2, memory, or disk. Tl cache along with
the rest of the memory hierarchy provides the functionality
to check if the invariants are satisfied. WHISTLE provides two
modes of invariant checking — synchronous and
asynchronous. WHISTLE uses synchronous checking for high
security-critical programs, while others are protected by
asynchronous checking.

« A Fast Exception: When a memory location is accessed by any
instruction outside the invariants, WHISTLE raises the
security exception immediately (i.e., without waiting for the
offending instruction to reach the head of the reorder buffer)
to prevent Meltdown-type [17] attacks. The OS handles the
exception by immediately terminating the process.

We implement WHISTLE in gem5 [18] and evaluate it with SW
and HW violations by using four programs of Spectre variants
Spectre (PHT/BTB/RSB/STL) [19], BugBench [20] and NIST [21]. We
also evaluate overheads of WHISTLE using SPEC CPU2017 [22]. A
thorough security and performance analysis shows that WHISTLE
can detect both HW and SW memory safety violations with 15%-
53% performance overhead across a mix of synchronous and
asynchronous checks.

The rest of the paper is organized as follows: §2 provides a
background, §3 describes the threat model; §4 discusses security
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analysis; §5 presents the main ideas of WHISTLE; §6 shows the
detailed implementation; §7 and §8 evaluate WHISTLE's security
and overhead; §9 provides some related work, and finally, §10
concludes the work.

2 BACKGROUND & MOTIVATION

In this section, we introduce the basic concept of allowlisting and
blocklisting as the strategy of defense and our approach toward
hardware-based solution.

2.1 Allowlisting or Blocklisting?

All access control mechanisms can be categorized as either
allowlisting and blocklisting. Allowlisting defines the policies
based on the “known good” behaviors of the target, and block
everything else by considering them potentially harmful. On the
other hand, blocklisting defines the policies based on the “known
bad” behaviors of the target and explicitly blocks them in the
system. Take memory safety for an example. An allowlisting
approach adds disjoint [5], [15], [23], [24] or co-joint metadata [25]
to keep track of the memory locations which can be safely
accessed. A blocklisting approach may trigger alarm from
generated token or tripwire [9], [14], or detect memory content
corruption. Both approaches have pros and cons. Allowlisting
systematically defends against a class of attacks, even if the attack
factors are unknown. Blocklisting blocks a known threat until the
threat is removed systematically, and thus can’t mitigate
unknown threats.

2.2 Why Allowlisting in WHISTLE?

A lesson from the recent discoveries of hardware and software
vulnerabilities is that anything that can go wrong will go wrong.
We cannot assume even the hardware to be immune from the
classes of vulnerabilities previously found inside software. In
2018-2019, numerous variants of the Spectre and Meltdown
attacks were discovered. In 2020, CWE reported more than 2000
memory safety violations in various popular software [1]. Despite
individual patches in software or hardware, no systematic solution
has been proposed so far to prevent software and hardware
memory safety violations as a class of vulnerabilities. Therefore,
we choose to adopt allowlisting policy in WHISTLE as a stepping
stone towards mitigating all of these attacks.

23

WHISTLE uses invariants to distinguish malicious and benign
behaviors. Just like all access control mechanisms, the
composition and enforcement of security rules are both
sophisticated topics. Fortunately, WHISTLE’s mechanism for
invariant enforcement is not tied to any method of composition,
and thus allows us to focus on the former and leave the latter for
future work.

For now, WHISTLE uses profiling (i.e., dynamic analysis) for
early, unintervened invariant generation, but profiling is not
inherent to our solution. Nevertheless, using profiling can cause
false positives and false negatives. For example, some cases of
misspeculation can be potentially benign, especially for the buffer
overrun that commonly happens after a program loops through

Invariant Generation
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the elements. Using hardware profiling can prevent the false
positives by including these accesses as part of the invariants. The
caveats of doing so is that any protected “secret” cannot be near
the bounds of any buffer. These cases are not violation in regards
to any of the invariants collected, but do pose a risk of being
exploited by the attackers. In all of our program samples, we have
not observed this scenario. We consider this a reasonable caveat,
as a compiler can straightforwardly distance buffers from other
variables with padding?. Other false positives can occur if profiling
is not done sufficiently (e.g., until convergence). In that case, new
accesses might appear as false violations. A programmer can
analyze and confirm the false violations and subsequently update
the invariant section by releasing some type of invariant patch.

A careful reader might wonder what happens if the profiling
runs are buggy or under attack. In order to prevent
buggy/attacked profiling runs from corrupting the invariants, the
standard practice in debugging community is to use some well-
known bug detection tools with each profiling run to make sure
that the execution is bugfree [26]. On top of that, an isolated
machine is used to prevent any attack during profiling.

Other potential alternative methods to profiling include
synthesization (i.e., static analysis) and human composition.
Synthesization can guarantee invariant coverage. However, it may
require sophisticated algorithm, and is less scalable. Human
composition requires significant efforts and is subject to human
error. In practice, profiling can be useful for the initial collection
of raw policies, which can be further refined with synthesization
or human intervention. In software security, profiling has been
used by other papers [26], [27] especially when the work is
focused on expression and enforcement. There is a long line of
research on improving dynamic analysis, such as symbolic
execution, fuzzing [28], and Al-based collection, which we
consider complementary to our work and out of scope.

3 THREAT MODEL

In-scope Attacks: WHISTLE prevents violations to memory safety
rules defined by the invariants. The violations can be the results
of exploiting either software or hardware vulnerabilities, including
the existing Spectre attacks [3]. Besides the known attacks,
WHISTLE is also designed as a defense for future, unknown attacks,
including future Spectre-type attacks that exploits speculative
optimizations to violate memory safety rules, as well as future
Meltdown-type attacks which violates hardware protections but
can still be temporarily executed in the pipeline. WHISTLE
prevents memory safety violations to variables in stacks, heaps,
and global regions, and prevents spatial as well as temporal
violations such as Use-After-Free.

Trusted Components: WHISTLE assumes that the software is
trustworthy but may contain vulnerabilities to be exploited by the
attackers; both the protected program and the OS will not contain
malicious code that deliberately violates the memory safety rules.
WHISTLE also trusts the integrity of invariants stored in the
program binaries, which can be protected by page tables or other
hardware protections. The OS is also trusted to handle exceptions
raised by the hardware during invariant violations.

Out-of-scope Attacks: WHISTLE only prevents violations for
memory safety rules, and does not protect other data structures
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such as registers. WHISTLE does not enforce control flow integrity
but can detect memory safety violations (such as buffer overflows)
that are either prerequisites or outcomes of control flow
violations. WHISTLE also cannot prevent attacks from
attackerforged code such as Javascript or eBPF gadgets, WHISTLE
does not protect the correctness and integrity of memory
contents and cannot prevent or detect semantics-based attacks
that do not violate memory safety rules. In addition, WHISTLE
does

1. The padding is good enough as long as other variables and the padding is
not in the same cache block because the profile granularity is cache line.

Memory Type | Effective Period Invariants Invrs = {Key — PCs}
Global Load —Unload (CallContext, Addr-BinaryBase) —
{PC1,PCy,+++ ,PCr}
CallContext, Addr-FrameBase) —
Stacks Call - Return ( {PCLPCy-r PC} )
Heaps Malloc — Free (CallContextwmaiio Addr-ObjectBase) —
{PCL,PCy,+ ,PCy}

TABLE 1: The memory types, effective periods, and invariants
definitions in WHISTLE.

not prevent data leakage through side channels, including side
channels through structures added by WHISTLE (e.g., Tl Cache),
but rather prevents illegal access to data before leaking through
side channels. Although WHISTLE may introduce new side
channels through its structures, the side channels do not reveal
more information than what L1 or L2 cache already reveals (i.e.,
which memory blocks are recently accessed). Synchronous vs.
Asynchronous Checking: WHISTLE allows flexible security policies,
for each program to choose between (1) blocking the memory
operations until the check is finished (synchronous checking); and
(2) letting the memory operations finish but raising an exception
immediately after the violation is detected (asynchronous
checking). A similar design choice has been adopted by REST [14],
to delay STORE commits (Debug mode) until acknowledgement or
to proceed and issue imprecise exceptions (Secure mode).
Synchronous checking provides stronger security guarantee
because there is no transient window where the CPU pipeline has
access to the data and is able to leak through consequential cache
operations. Synchronous checking is necessary if the attacker can
retrieve the secret with one attempt, such as fetching a single bit
from an encryption key. In other cases where the attacker needs
several attempts or iterations, the program can be prompted by
the exception as soon as the first violation is detected by WHISTLE.
One example where asynchronous checking is appropriate is
when the attacker is using

Spectre to dump the kernel memory, which will be stopped by
WHISTLE immediately.

4 DEFINITION AND SECURITY ARGUMENTS

In this section, we describe the invariants used in WHISTLE and our
security arguments.
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4.1

WHISTLE detects memory safety violations based on program
invariants. We define invariants as Program Counters (PCs)
allowed to read or write a memory location in a program, either
as global, stack, or heap objects. Table 1 defines the invariants of
three different memory types as well as their effective periods:

1) A global object resides inside the program’s data segment.
The invariant would include all the PCs that can access the
virtual address of that object, relative to the base of the
binary. Even if the global objects have a static life time, we
define the invariant of the global objects with the calling
context for the finer grained protection.

2) A stack (local) object resides inside the stack of each thread.
The invariant would include all the PCs that can access the
offset of that current stack frame. The offset is distinguished
by the calling context of the current frame; The calling
context changes when entering a function and gets restored
when returning. This is to differentiate the local objects in
two functions that share the same offset.

(b) Hardware Violation

Memory Safety Invariants

(a) Software Violation . Global Data
/ / Global Data char d i c t [256]; /* char dict[256]; char
othervariables*/intsecret; hex [512]; /*

/ / Vulnerable Code i n t input [J=/* other var
from user * /; for (i =0; input [i];i iables */int sec
++)printf("%d\n”,dict[input ret;

[i11);
//Vulnerable Code i n t x=/* from user
* /[0 f(x>=0 && x<256) printf

("%c%c\n”,hex[dict[x]*2], hex[d
24 ict[x
1¥2+1]);

78

810

Fig. 2: Examples of memory safety violations.

3) A heap object resides inside the heap and is created by
routines such as malloc. Since the heap can be reused, the
invariants of a heap object is related to the timing of
allocation and deallocation. We identify the invariant by the
calling context when malloc is called, and unload the
invariant when the object is freed.

4.2

Here we describe the security argument for the defense of
WHISTLE against software and hardware violations.

Detecting Software Violations: We use a buffer overflow as an
example (Figure 2(a)) for software violations. At line 8, the value
of each element in input is not checked to be within the bounds
of dict. A malicious input may contain values that can load beyond
the bounds of dict and read secret. To detect this attack, WHISTLE
must check the invariant that line 8 should never load data beyond
the bounds of dict. When this invariant is generated, WHISTLE will

Security Arguments
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see that the PC(s) of line 8 only access memory up to the bound of
dict during normal and attack-free executions. Therefore, the PC(s)
of line 8 will only be included in the invariants for dict and input,
and will not be permitted to read secret.

Detecting Hardware Violations: We use Spectre (Bounds Check
Bypass) as an example for hardware violations as a result of
speculative execution (Figure 2(b)). The attack speculatively
accesses beyond the bound of dict at line 10, even reaching secret
with specific x. Based on the return value of dict[x], specific
elements of hex are loaded and create a side channel that can leak
the secret. To detect this attack, WHISTLE must check the
invariant that line 10 should never speculatively load secret, even
though it might still speculatively load beyond the bounds of dict.

5 INVARIANT-BASED IMONITORING

This section presents the details of different components of
WHISTLE and its end-to-end workflow.

Invariant Generation: As a proof-of-concept system for
invariant-based detection, we choose to use profiling for invariant
generation. This choice is influenced by numerous prior works [26],
[27] that show that profiling can be an effective technique to
collect various types of invariants. WHISTLE extends the hardware
to support in-microarchitecture event tracing for both speculative
and non-speculative executions. During profiling, the PCs of all the
memory instructions are recorded irrespective of their execution
status (transient or not). These recorded memory locations and
PCs are then processed by a software tool to generate

)

Executable Exception x

Safe v
Loaded L1 Cache
m > check —
| L2 Cache |
| Memory |

Fig. 3: Invariant-based monitoring system workflow.

the invariants. Each invariant is associated with a protected
memory object and contains the PCs of the memory instructions
that access the corresponding the memory object. WHISTLE
extends the program binary with a special invariant section, to
store the invariants for global, heap, and stack objects.

Invariant Cache: We propose a fast address translation
mechanism to obtain the invariant addresses. Invariant
information is stored in a fully associative shadow cache structure,
named Top Invariant (TI) cache, alongside the L1 data cache. It is
introduced to avoid any interference with the demand data. The
Tl cache stores PCs of the most frequent instructions of the
invariant sets, while other less frequent PCs of the invariant sets
reside in L2 cache or memory. Frequency of accesses is collected
during profiling. We provide both synchronous and asynchronous
modes for invariant checking operations. The synchronous
operation checks invariants before the memory content is
accessed, thereby providing the highest security level. Thus,
synchronous checking is suitable for preventing attacks that can
cause leakage/damage in a single attempt. On the other hand, the
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asynchronous mode can carry out invariant checking lazily off the
critical path without blocking the load instruction execution. Thus,
asynchronous checking is suitable for applications with less
stringent security requirements (e.g., less sensitive data or cases
where multiple attacks are needed for practical purposes). The
detailed implementation of these designs is presented in §6.

Fast Security Exceptions: To handle security violations
appropriately, we introduce a faster exception mechanism.
WHISTLE raises this exception when a memory location is
accessed by any instruction outside the invariant set. We argue
that having a specialized and fast exception is crucial for security.
This exception should be raised as soon as possible in the CPU
pipeline. In other words, the pipeline should deliver the exception
even before the offending instruction becomes the head of the
reorder buffer. Thus, the window for launching a meltdown-type
attack will become smaller. Finally, the OS should immediately
terminate the program and report the violating PC and the
accessed memory location (even though the instruction may or
may not be squashed by the CPU). Thanks to the invariant
information, programmer can easily reason about the violation
and take appropriate remedy.

End-to-end: Figure 3 shows the end-to-end workflow for
WHISTLE. A program is compiled and executed with trusted inputs
and environments for hardware-based profiling. Once profiling
finishes, the collected microarchitecture events are further
processed in software to generate the invariant sets. The program
binary is augmented with an invariant section that stores the
invariant sets. During subsequent executions, the operating
system loads the binary, reads the binary header, and initializes
global invariant registers with range information. When a memory
location is accessed by a load instruction, WHISTLE compares the
virtual address of the location with the invariant registers to

[ Fetch [

Decode [ Issue/Execution/Write back | Commit |

cew Memory Address Heap base, size
8T8
Callsite
CC Encoder cco cap o Start | End | ccp
(caIb +=ccw) Tracing Unit g

RAS i Heap ID Cache
RetAddr
Flush to the Memor ;
L1D Cache

Fig. 4: Out of order core with additional hardware for profiling,
maintaining calling contexts, and heap information. CCID= Calling
Contex ID and CCW = Calling Context Weight.

determine whether an invariant check is needed. If the check is
not needed, the data is accessed as normal. Otherwise, WHISTLE
feeds the memory address to the fast invariant address translator
to generate the invariant pointer address. WHISTLE uses this
pointer address to access the Tl cache and check the invariants. In
cases of Tl cache misses, the check request is sent to the next level
in the memory hierarchy for further checks. Note that the
invariant check can be either synchronous or asynchronous with
the data access depending on the application security level. In
synchronous check, data is not returned back to core until the
check is completed. When asynchronous check is applied, data
can be returned right away to minimize the performance
overhead. An exception is raised if there is any violation. The
exception is raised right away (without waiting for the instruction
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to be at the head of the reorder buffer) and returns the control to
the operating system. The exception handler terminates the
process immediately and reports the instruction and memory
address.

6 IMPLEMENTATION
6.1

WHISTLE adds extra hardware to enable hardware-based profiling.
Figure 4 shows a typical out-of-order core with the extra hardware.
§6.2 explains the tracing support for profiling. WHISTLE profiles
three major memory areas used in a program - global, stack, and
heap. Owing to different characteristics of distinct memory
allocations, it is imperative to profile and record them separately.
To profile data objects, we leverage the calling contexts to
differentiate accesses to the same address (§6.3). Unlike stack, a
conventional CPU is not aware of heap object. We extend CPU and
OS to keep track of heap allocations and deallocations (§6.4).
Once profiling is finished, invariants are generated and embedded
into the executable binary offline (§6.6). To implement invariant
checks efficiently, we use a specialized cache like structure,
namely, Tl Cache (§6.8).

Overview of the Design

6.2 Profiling Support

We augment the out-of-order core with a tracing unit (Figure 4).
Special memory regions are allocated in each core to record the
traces. These accesses can bypass the caches and there is no need
to check its coherence and consistency during profiling as each
core has its private profiler. For multithreaded programs, all the
per-core profiles are merged (offline) into one profile. To be more
specific, the timings of allocating and deallocating a heap object
will be recorded to be associated with the accesses to the virtual
address of the object during this period of time.

As explained in §5, WHISTLE uses multiple bug/attack-free
inputs to collect invariants. WHISTLE collects invariants until no
new invariants are found by profiling more. As profiling can be
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Fig. 5: Convergence of invariants. Invariants are saturated as more
profiles are collected.

part of Continuous Integration (Cl) during development and fully
automated, we believe it will be not a big burden for developers.
Figure 5 shows the convergence of invariants over profiling runs.
In this figure, we profile with different inputs given by SPEC
CPU2017 [22] and randomly generated for real applications
respectively. As profiling more, increment of total invariants are
saturated. This clearly demonstrates the convergence of
invariants. Of course, there is still no guarantee that all possible
invariants are captured. Therefore, as suggested in prior works
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[26], coverage enhancing techniques [28] need to be applied
during profiling runs.

6.3

Memory addresses in stack/heap are reused by many objects as
program runs. To differentiate these objects, we use a calling
context that is a sequence of call sites. Previous works [29] use
xor-folding of the last few call-sites, but PCCE [30] proposed to
efficiently encode/decode precise calling context. PCCE calculates
weights (CCW) of edges on a call-graph. Then, "CCID += CCW”
and ”“CCID -= CCW” instructions where CCID is a calling context ID

Calling Context Encoding

initialized with zero are inserted before/after every call instruction.

WHISTLE adopts this idea to maintain CCID at runtime. Instead of
inserting two extra instructions, we extend call/return
instructions of Intel x86 ISA to deliver CCW to the processor and
extend the processor to update CCID with very simple logic
(add/subtract). Updating CCID is not dependent on existing design
in the processor pipeline stages. Branch Target Buffer (BTB) and
Return Address Stack (RAS) are extended to store CCW or CCID (64
bits each) associated with a predicted call (Figure 4).

6.4

We extend the compiler, instruction set architecture, and the
processor to trace heap object’s creation and deletion. Compiler
inserts the extended instruction - add heapobj/remove heapobj -
to malloc and free function so that the processor updates the
Heap ID cache as shown in Figure 4. Heap ID cache is Content
Addressable Memory (CAM) and uses two tags—begin and end
address of heap objects. The data portion of the cache stores the
allocation CCID of heap objects. During an access to a heap object,
tag matching is done by checking if the heap address lies in
between the two tags. If so, the CCID of the matched line is
returned as data. In case the cache does not have available space,
requests are issued to extended memory controller that manages
designated memory to keep information of additional heap
objects 2. Energy and space overheads are evaluated in § 8.

Hardware Support for Heap Objects

2. In the evaluation, we limit the area of heap profile to store every heap
information in Heap ID cache.

The current Heap ID cache is shared among all the cores to
ensure coherence. This is crucial since temporal memory
violations can occur across multiple cores. For example, core 1 can
deallocate an object while core 2 continues to access the object.
Therefore, as soon as a heap ID is unloaded in the Heap ID cache,
the object is considered invalidated by all the cores.

6.5 Binary Compatibility

The extension of WHISTLE for the compiler, the ISA, and the
processor does not break existing applications that do not provide
their program invariants. For programs that are augmented for
memory safety violation detection, no other instruction needs to
be modified besides only twe-four special instructions added—
call cc/ret cc for delivering weights for updating the CCID, and add
heapobj/remove heapobj for updating the heap ID for tracking
heap objects at malloc and free. The extension to malloc and free
should only impact the system library that implements these
functions (e.g., libc), unless the application binary is statically
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linked against the library. Although WHISTLE does require
recompilation of the program binary, the recompilation is mostly
only for the purpose of embedding the weights for CCIDs. The
program sections for storing the invariant sets are injected directly
into the program binary without the need of recompilation and
can even be populated into a separated binary if necessary.

Portability to Other Platforms: Our extension for the compiler
and the ISA is general enough to be ported to other CPU and
microarchitecture with minor adjustments. For an ISA with
fixedlength instructions (such as ARM), we can add a new
instruction for embedding the weights for CCIDs instead of
extending call/return. The extension is also neutral to
microarchitectural design since it only requires CPU changes. For
other compilation frameworks, such as a runtime for an
interpreted language or a runtime with just-in-time compilation,
invariant collection with profiling may not be possible, so we will
have to rely on static analysis or programming APIs.

6.6

WHISTLE extends the binary with a new section for invariants
(.invr) as shown in Figure 6. Invariant section has two
subsections—one for invariant blocks (GInvrBlks, SinvrBlks,
HinvrBlks) and one for invariant pointers (GInvrPtrs,

SinvrPtrs, HinvrPtrs).

Invariant Blocks store sets of PCs that access to the same
memory address in the same context. These PCs will be used to
check if a requested memory access by a PCis legitimate. First two
8 bytes in an invariant block are reserved to store access
frequency of the memory address and the number of cache blocks
to store the entire invariant block. Access frequency is used for
replacement policy of Tl cache and the number of cache blocks are
used to multicast requests from Tl cache. PCs in each invariant
block are ordered by access frequency of each PC so that the most
frequently used PCs are installed in Tl cache. Tl cache is a shadow
cache structure used to reduce performance impact of invariant
checks. It stores the most frequently used PCs in an invariant block
asa
Top Invariant Block as described in §6.8.

Invariant Pointers store addresses of the corresponding
invariant blocks. WHISTLE uses indirect addressing to reduce
fragmentation of invariant section. Note that size of an invariant
block is not fixed and dependent on the number of PCs that access

to the same memory address. To access an invariant block directly,
Invariant
Blocks

Invariant Section and Memory Hierarchy

Invariant Pointers
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Fig. 6: Memory layout of invariant section (.invr) in executable. F=the
access frequency of invariant block, #CB=the number of cache blocks,
OSET=offset of stack or heap object, SBA=Stack Invariant Address,
HBA=Heap Invariant Address.

the size of the invariant blocks should be uniform resulting in an
internal fragmentation.

6.7 Invariant Access

We store invariant blocks in the separated section of the binary.
One of the challenges of invariant memory management is to
determine the address of an invariant block for a particular
memory location. We propose efficient indirect invariant access
mechanism for global, heap, and stack objects.

We describe the indirect invariant access mechanism with
stack invariants for example. Stack invariants are grouped
according to CCIDs. During the access of a stack object, WHISTLE
uses CCID of the corresponding function as an offset from Stack
Ptr Base to find Offset Block Address as shown in Figure 6. Offset
Block Address points to a region that contains SinvrBlk
Addrs for all offsets associated with the particular CCID. WHIS-
TLE reads the first block of this region to determine the number of
cache blocks. Tl cache issues read request to all of those blocks.
Each cache block contains a number of < of fset,SBA >. As each
cache blocks arrives to the Tl cache, it finds the block with an
offset that matches the offset of the stack object. The SinvrBlk
Addr associated with this offset is used to find the invariant block
of the stack object. Invariants of global and heap objects are
identified in a similar fashion except that the CCIDs used for heap
objects will be the allocation CCIDs. Note that only for Heap
objects, the Heap ID cache is used to find the allocation CCIDs,
whose hardware design presented in §6.4.

6.8 Top Invariant Cache

The major challenge of invariant based approach is the volume of
the profiled invariants. It not only causes huge storage overhead,
but also incurs performance overhead. Since caching invariants in
the conventional data cache may pollute by evicting actual
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demand data, we introduce a special cache with a separate cache
controller, Top Invariant (TI) Cache, for caching and checking the

invariants.
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Fig. 8: Message flow of Invariant check across the memory hierarchy.
GIBA/IBA, GTIB/TIB/TIB/IB, and CHKINVR/INVR(N)ACK are
request/response messages for invariant block address, top invariant
blocks, remaining invariant blocks, and invariant checks, respectively.

6.8.1 Top Invariant Block and Least Frequently Accessed
Replacement Policy

The numbers of PCs in each invariant sets are different and the
sets have different access frequency. We first survey the range of
invariant set sizes and decide size of Tl cache block. Figure 7 shows
cumulative distribution of invariant set size. We observe that 90%
of invariant sets have less than 32 PCs which can be stored in four
conventional cache block size (64 bytes). Therefore, we configure
Tl block size as 256 bytes. To read all 256 bytes effectively, the
invariant section is generated with invariant blocks that are at
least 256 byte long and aligned to conventional cache block size.
Upon an invariant check, Tl cache loads the first four conventional
cache blocks in the invariant block. Then, it merges and installs
them in one Tl cache block. Remaining part of the invariant block
will be installed in a shared cache and checked by CHKINVR and
GIB messages described in the following Section. Second, we
leverage the knowledge during profile for the efficient placement
of PCs in the invariant block and Tl cache replacement policy. By
placing the most frequently accessed PCs first in the invariant
block, the hit rate of Tl cache block increases. In addition, Tl cache
selects a victim block that is the least frequently accessed among
cache blocks for replacement.

6.8.2
Conventionally, a cache tag is part of the address for the cache line.
Global, stack, and heap objects are associated with their unique
invariant pointer addresses. Instead of using the conventional tag,

Indirect Tag for Tl Cache Access
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Tl cache uses the invariant pointer address as the tag as shown in
Figure 9. Note that since stack and heap objects are associated
with CCID and offset (see Figure 6), both Base + CCID and Offset
are used for tagging. Also, Tl cache adds one extra metadata to

store address of invariant block (InvrBIkAddr).
Top Invariant Block (TIBj—————

Invariant Invariant
|v Block Addd] %@ T8 | oy agar | Offset Frequencyl #CB | PCO | PC-29 |
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Fig. 9: Tag matching mechanism between invariant pointers and
offsets, and invariant checking mechanism inside Tl cache. #CB: the
number of conventional cache blocks for the entire invariant sets. In
this work, Tl cache installs 256 bytes of them (four 64 bytes
conventional cache blocks).

6.8.3

Figure 8 demonstrates the interaction in the memory hierarchy
involved in invariant checks. Several messages are introduced to
handle invariant check. Upon a memory access to a protected data
in L1 cache, a CHKINVR message carrying the instruction PC and
the invariant pointer address is sent to Tl cache. The invariant
pointer address is calculated with CCIDs. If it is a miss, Tl cache
ipitiates a sequence of steps to load top invariant block as follows:

GIBA request with the invariant pointer address is issued to get
the actual address of the invariant block. The address of global
invariant block is retrieved with one request but the addresses of
stack and heap"variant blocks are be retrieved with at least two
requests. Then the returned invariant block address is
encapsulated in the GTIB messages to fetch the Top Invariant
Block (TIB) from the shared cache. Note that size of TIB could be
bigger than conventional cache line size (i.e., 64 bytes) depending
on the configuration. In that case, Tl cache loads multiple cache
lines to install the entire TIB. If it hits in the shared cache, the TIB
is returned and installed in the Tl cache. In case of a miss, the
request is forwarded to the memory controller to load it from
memory. After TIB is installed in Tl cache, a check is done to
inspect if the accessed PC is in the block. If it is in the block, a
INVRACK is sent back to L1 cache to acknowledge the @fety of the
access. If it is not in the block, further inspection is initiated.
When the PC is not in TIB, a CHKINVR request is forwarded to the
shared cache to scrutinize the remaining invariant blocks. If they
miss in the shared cache, a GIB request is generated to load them
to the shared cache to finish the check. After inspection, an
INVRACK or INVRNACK is replied to the Tl cache depending on the
success of the check. If a violation happens, the INVRNACK triggers
a security exception. If the type of CHKINVR is synchronous, the
data supply to CPU from L1 is delayed until INVRACK. Otherwise,
the data is supplied to CPU immediately and CHKINVR inspects in
parallel.

Message Flows of Invariant Check

7 SECURITY EVALUATION

We implement the hardware supported invariant profile and
check using the gem5 simulator [18]. Table 2 summarizes the
baseline  configuration and  additional structure in
microarchitecture. WHISTLE uses Tl and Heap ID cache structure
to hold the invariants and CCID of heap creation on the core side.
Also, WHISTLE extends branch target buffer (BTB) and return stack
buffer (RSB) to store CCW and CCID. All the invariants are profiled
based on cache line granularity. To profile invariants of each
benchmark until no more invariants are found, we use all

Core 2.0 GHz, Out-of-Order, no SMT, 32 Load Queue, 32 Store
Queue entries, 192 ROB entries, Tournament branch
predictor, 4096 BTB entries, 16 RSB entries.

L1-1$ Private, 64B line, 4-way, 32KB, 1 cycle access lat.

L1-D$ Private, 64B line, 8-way, 64KB for Baseline, 32KB for
WHISTLE 1 cycle access lat.

HeapID $ 8 B line, 1024 entries, 1 cycle access lat. Fully associative.

TS 2568 line, 256 blocks, 32KB or 64KB, 1 cycle access lat.
Least Frequently Used (LFU) replacement policy, fully
associative.

2s Shared, inclusive, 64B line, 2 cycles access lat. 2MB,
l6way.

DRAM Built-in memory model in gemS5.

TABLE 2: Parameters of the simulated architecture. HeaplD Cache and
Tl Cache are not included in baseline system. 64KB size of Tl cache
used for the fully synchronous check and 32KB size of that used for
the fully asynchronous check.

the inputs given by SPEC2017 [22], downloaded extra input data
from online source [31], and changed the input parameters until
no more invariants are found.

To emulate invariant embedding, we modify the source code
of target benchmarks to allocate additional global memory to hold
the invariant section. We extract information from the binaries
(ELF format) such as regions of data segments (.data, .rodata,
and .bss section) and code segment (.text) as well as addresses of
malloc and free functions. Then, these binary layout information
is referred by gem5 during simulation. This enables us to simply
reflect extensions to compiler and operating systems.

We evaluate WHISTLE for both HW and SW violations. We
write four programs of Spectre variants (SpectrePHT/BTB/RSB/STL)
[19] with eviction based cache side-channel to evaluate HW
violations and use BugBench [20] and test cases from NIST [21] for
SW violations. After profiling with bug-free inputs, the test
programs are executed again with bug-triggering inputs. We also
run SPEC CPU2017 [22] for both security and overhead evaluation.
We use the reference input size and simulate for 1 billion
instructions after warming up microarchitecture states with 1
billion instructions in system-call emulation mode3.

7.1 SW and HW Violations

Table 3 lists the applications and validation results. BugBench
provides simplified real-world applications (gzip, man, ncompress,
and polymorph) with buffer overflow bugs in the stack and global
objects, and NIST provides test cases to evaluate the Use-After-
Free bugs in heap objects. Buffer overflow bugs are detected by
WHISTLE and it also detects the Use-After-Free bugs because
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WHISTLE keeps track of allocation/deallocation of heap objects
using Heap ID cache. We do not observe false positives.

WHISTLE can fully detect three out of four Spectre variants.
First, in Spectre-PHT [3], transient instructions are exploited to
access a secret using an array out-of-bound access. Since this
access was not observed during profiling, WHISTLE raises an
exception and the program stopped. Second, Spectre-RSB exploits

3. System call emulation has one-to-one page mapping and requires no TLB
translation. Also, invariants are stored continuously in virtual and physical
spaces, and invariant address are directly translated using offsets and CCIDs.
We envision that both the program data and invariant addresses should be
translated with page tables managed by OS, and CPU will perform TLB lookup
for both. The existing TLB and Page Miss Handler can be reused for invariant
addresses, with potentially larger buffer to reduce the overhead. Due to
simulation limitations and significant workload for implementing OS-level
handler, we leave this experiment for future work.
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thread. Potentially, WHISTLE can extend the invariant profiling
and checking to instruction cache. That way, WHISTLE will be able
to detect control flow violations that cause invariant violations in
the instruction cache. We leave this extension for future work.

7.2 Comparison against with BOGO and InvisiSpec

We run PoC programs for both BOGO [5] and InvisiSpec [16] that
are SW and HW memory violation detection techniques
respectively. As shown in Table 3, neither BOGO nor InvisiSpec
detect all the violations. BOGO provides full memory safety on top
of MPX-enabled [15] processors, but it is limited to committed
load or store instructions resulting in failure to detect the
transient attacks. InvisiSpec defends against the transient attacks
by blocking cache side channels. However, InvisiSpec is not

= azipl.2.4 7 X 7 designed to defend SW violations. We discuss more related works
g-;- BugBench [20] ncompress v X v in §9.
ugbenc man1.5h1 v X v
polymorph-0.4.0 v X v 7.3 Coverage of HW vs. SW Profiler
(T
‘g ID 102226 v X v We implement both HW and SW profilers, and evaluate the
El NIST[21] D 102247 / X / coverage of using gem5 simulator with out-of-order core. HW
. ID 102618 / X / profiler records every memory access, either transient or
= ID 2151 / il / nontransient. We profile the first billion instructions for collecting
S Spectre-PHT X v v the
% Spectre-BTB X v
| Spectre [19]
Spectre-RSB X v G#V/
Spectre-STL X v v
‘ Parameter | Value ‘ ‘ ‘ Source ‘ Application ‘ BOGO IS ’ WHISTLE ‘
TABLE 3: Evaluation results with spatial, temporal, and transient 20 B SW Invrsets B HW Invrsets
memory violations in BOGO [5], InvisiSpec(IS) [16], and WHISTLE gez s
validation. v/ means that the violation is detected. X means that the §2 0
g2
detected, since WHISTLE only detects Spectre-BTB when there is aG# 2.
[
violation is not detected. means that the violation is circumstantially £10
preceding memory corruption to mistrain the BTB. go.s
I
S S S S S S S S S S S S AN
. L. N7 (7 &N (7 R QN el o7 B &P
Return Stack Buffer to hijack return flow. PoC program mimics the e‘\ve“c ¢ ‘:c&" \"0 &‘Q\%&"‘o W@ ET @ &
< ¢ 9

attacker’s behavior using a gadget function and malicious code
resides after the gadget function call. Gadget function is invoked
only during the attack and WHISTLE detects the violation from the
malicious code. Three, Spectre-STL exploits memory
disambiguator. PoC program inserts malicious load instruction
after naive store instruction clearing secret data so that the load
instruction reads the secret before clearing it. Again, this
malicious load did not appear in the profile and WHISTLE detects
this variant as well.

The only exception is Spectre-BTB, which WHISTLE can only
detect under specific circumstances. Spectre-BTB, unlike other
Spectre variants, exploits control flow violations instead of data
access violations. Since WHISTLE does not check instruction
fetching, it cannot detect control flow violations. However, to
cause Spectre-BTB, the attacker needs to mistrain the BTB in order
to change the control flow. The attacker may use a buffer overflow
to corrupt a code pointer or return address, which can be detected
by WHISTLE. WHISTLE cannot detect Spectre-BTB if the attacker
uses other mistraining methods, such as mistraining from another

Fig. 10: Coverage Comparison in terms of the total number of
invariant sets between SW and HW Profilers.

calling contexts, and the second billion instructions for collecting
both the calling contexts and the invariants. On the other hand,
SW profiler records only committed memory accesses, which can
miss hardware vulnerabilities that rely on transient executions,
such as recent speculation-based attacks, Spectre and Meltdown.
Figure 10 shows the coverage of HW profiler in terms of number
of invariant sets compared to SW profiler. HW profiler covers 60%
more invariant sets. perlbench s and mcf s have higher coverage
than other benchmarks. The number of squashed memory
instruction is dependent on program characteristics, such as
number of branches, indirect jumps, and/or HW components
associated with speculative execution, such as branch predictor.
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7.4 Attack Surface Reduction

We also measure the reduction of attack surface in terms of
software and hardware memory safety violation, based on how
many rogue memory accesses in a program will be accepted by
the system. Here, we define the memory-specific attack surface
as the number of PCs allowed to access a specific memory location
under a specific calling context. In TABLE 4, we show that for each
invariant set, there are 2.60-20.01 PCs in average allowed to
access the memory. However, without WHISTLE, a SpectreBTB
attack can change the control flow speculatively to allow any
memory accessing PC to read/write any memory location.
Considering that for each program in CPU2017, there are at least
1,220-25,405 unique PCs during the profile that access memory,
the attack surface reduction by WHISTLE is 99.80-99.99%.

#Unique | #Invariant | Avg. # PCs Attack Surface
Benchmarks PCs Sets / Inv. Set Reduction
perlbench s 18,482 6,685 14.83 99.98%
gees 16,975 2,671 20.01 99.96%
mcfs 1,258 1,234 5.27 99.91%
cactuBSSN s 25,405 298,649 6.54 99.99%
lbm's 1220 517 4.76 99.80%
omnetpp s 7,934 21,605 5.00 99.99%
xalancbmk s 4,326 16,139 4.23 99.99%
X264 s 3,827 4,200 3.32 99.97%
imagick s 2,865 7,819 2.60 99.98%
leela's 2,678 5,755 2.79 99.98%
nabs 2,515 5,118 4.93 99.98%
XZ's 1,305 897 3.81 99.88%

TABLE 4: Assessment of attack surface reduction in SPEC CPU2017
using WHISTLE, based on the number of PCs allowed to access each
memory location.

7.5
We measure how fast security exception is raised before
instructions are committed. We collect the number of cycles
elapsed

Exception Latency Reduction
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Fig. 11: Reduction of security exception latency in asynchronous
check.

between memory request, invariant check and instruction
retirement, and calculate how much earlier the proposed
exception is raised, compared to the number of cycles elapsed
between memory request and instruction retirement with the
assumption that the exceptions in the baseline without any
mitigation for memory safety violations occur at retirement of the
corresponding instruction. In Figure 11, a light red bar represents
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the cycle difference between memory request and invariant check,
which is the exception latency with asynchronous check. The
entire bar with light and dark red bar represents the cycle
difference between memory request and the retirement, which is
the exception latency with baseline. On an average, the security
exception requires 15% less time than that of the baseline system.
Since, in asynchronous check, data could be supplied to the core
before invariant check is finished, there may exist a small window
of exploitation. Note that for applications with strong security
requirement, we can enable synchronous checking.

8 OVERHEAD EVALUATION

We first show the performance overhead of the proposed
microarchitecture with invariant check over the baseline, analyze
the source of the overhead, and discuss how to overcome. Then,
we describe the trade-off between different invariant check
policies. Last, we evaluate overhead of area and energy. We
observe that cactuBSSN s and Ibm s allocate the large number of
heap objects and few heap objects with large size respectively. We
limit the number of heap objects and the maximum heap size to
500 objects and 100MB respectively. The reason is that the heap
size can be up to gigabytes and causes the invariant size to explode.
We believe that it can be improved by applying compression or
deduplication techniques. We leave this work for future work.
After adjustment, benchmarks generate invariant set with
maximum size 251MB and 27MB on an average.

8.1 Performance Overhead

Figure 12 shows the normalized execution time of CPU2017 over
baseline. For each program, we check the invariants based on
cache line granularity and simulated for 1 billion instructions after
warming up microarchitecture states with 1 billion instructions in
system-call emulation mode. Average performance overheads of
synchronous and asynchronous invariant check are 53% and 15%
respectively. We use 64KB size of the Tl cache for synchronous
checking and 32KB of that for asynchronous checking to efficiently
use the cache capacity. The main sources of performance
degradation are round-trip latency and the number of invariant
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Fig. 12: Execution time for CPU2017. Invariants are profiled as cache
line granularity.
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Fig. 13: Average Roundtrip Latency (Left Y Axis) and Total Number of
Invariant Check (Right Y Axis).

checks out of total L1D cache accesses, which are shown in Figure
134 Benchmarks with greater latency and more number of
invariant check have higher performance overhead compared to
other benchmarks. For instance, we observe the overhead of
cactuBSSN s as an outlier, which can be attributed to extremely
large number of invariant sets (298,649) resulting in high average
round trip latency shown in Figure 13. Note that the number of
Top Invariant Cache Blocks (TIB) are 128 that is not sufficient size
for cactuBSSN s. On the other hand, x264 s and xz s have negligible
overheads (3%) due to small number of invariant sets and good
locality making small Tl cache miss rate as shown in Table 4 and
Figure 14 respectively. Because the number of invariant checks
are the property of benchmarks, we cannot reduce them. Instead,
we focus on latency of invariant check which depends on the
performance of Tl cache. As shown in Figure 14, benchmarks with
high overhead have high miss rate in Tl cache. We consider a hit
in Tl cache if PCis found in the Tl cache block. In other words, even
if the Tl cache block is installed, if the PC is not found, it is miss
because Tl cache should forward CHKINVR message to lower level
cache. For example, cactuBSSN s and imagick s suffer from in low
performance because of the high miss rate in Tl cache with 38%
and 27% respectively.

8.2

We study the sensitivity of Tl cache size to understand the
performance impact with different size of Tl cache and its
configuration. Figure 15 shows the miss rate of Tl cache with
different number of blocks (128 and 256 blocks for every
benchmark except perlbench s) and wider blocks (512 byte that
can store 64 most frequently used PCs for perlbench s). We
observe that

Sensitivity of Tl Cache
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4. We observe that there are many memory accesses to sections of the ELF
binary during libc library functions calls. That is the reason why the number of
checks are not mostly full even if WHISTLE checks all the memory access to

global, stack, and heap objects.
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Fig. 14: Miss rates of L1D, L2, and TI Cache.
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Fig. 15: Sensitivity of TI cache block numbers and size. TI Cache are

configures with 256B block size. perlbench s is configured differently
with 512 block size and 128 cache blocks for 64KB size Tl cache.

miss rates are reduced with more number of Tl cache blocks but
not perlbench s. This is because perlbench s has 10% of invariant
sets with more than 32 PCs as shown in Figure 7 and we observe
that accesses from 10% is still significant. Therefore, we doubled
the block size for perlbench s instead increasing the number of
blocks and the miss rate decreased. Doubling the cache size incurs
negligible area overhead(~ 5%) as discussed in §8.5 so we can
improve the performance with even larger than 64KB Tl cache. On
the other hand, asynchronous is not much sensitive than
synchronous check as shown in Figure 12. This shows the high
performance performance overhead with 32KB TI cache but not
huge reduction of the performance with asynchronous check.
Another optimization can further improve the round trip latency
for invariant check. For example, becuase WHISTLE uses indirect
Tag for Tl cache block access (§6.8.2), it requires extra memory
access that increases the miss penalty. We could use hash function
with tags (invariant pointer address and offset) for getting
addresses of invariant blocks. We leave this work for future work.

8.3

We evaluate size of invariant section and its impact on
performance. Figure 16 shows the increment of binary sizes of
each benchmark after the invariants are embedded. Size of
invariant section is mainly determined by the number of CCID and
the number of invariant blocks for global, stack, and heap as
described in Figure 6. For example, cactuBSSN s is profiled with
251MB size of invariant section due to greater number of invariant
blocks compared to other benchmarks. We observed 27MB size of
invariant section on an average.

Performance Impact of Invariant section
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8.4

We conduct an experiment to evaluate the performance overhead
of WHISTLE with mixture of synchronous and asynchronous
invariant checks. In order to see the performance trade-off
between
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Fig. 16: Increment of binary size after embedding the invariants.
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Fig. 17: Performance changes across different ratios of synchronous

and asynchronous. Tl Cache with 32KB size used. There are spectrum
of synchronous-asynchronous checks - 100%-0% (Sync), 70%-30%
(Syn7-Async3), 50%-50% (Syn5-Async5), 30%-70% (Syn3-Async7), and
0%-100% (Async).

them, all the targeted memory accesses are randomly marked
whether it is either synchronously or asynchronously checked
based on a given ratio. We configure the ratios as 70%-30%, 50%-
50%, and 30%-70% for synchronous-asynchronous checks,
respectively, and have one run for each configuration. Figure 17
shows the performance overhead decreases as the portion of
asynchronous check increases. Depending on the security level,
WHISTLE can adjust the ratio of synchronous-asynchronous check
for better performance.

8.5 Area and Energy Overhead

We estimate hardware budget using CACTI-7 [32] at 22nm.

WHISTLE uses Tl Cache to hold invariant and it has two tags— data
and invariant pointer and extra 8 bytes metadata to store address
of invariant block and its block size is 256 bytes. Heap ID cache
uses both start and end address of corresponding heap object for
tag matching to find CID of heap creation on the core side. Also,
WHISTLE extends branch target buffer (BTB) and return stack
buffer (RSB) to store 8 byte CCW and CCID. Tl cache with 32KB size
takes 3.19561 mm? of area and 1.077067 nJ of energy and 64KB
size of Tl cache incurs 5% more area and 1% more energy. Heap
ID cache takes 0.323398 mm?of area and 0.0991182 nJ of energy.
Extended BTB increase 0.197777129 mm?of area and 0.517251 nJ
of energy. We consider that parallel tag matching logic in Tl cache
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is being implemented using Content Addressable Memory (CAM),
which has very low area, energy, latency implication.

9 RELATED WORK
In this section, we discuss hardware defenses for memory safety.
We summarize the prior works in Table 6.

Area (mm?)

Energy/Access (n))

Tl Cache (32KB/64KB)
HeaplD Cache 0.323398 0.0991182
BTB & RAS 0.1977129 0.0517251

TABLE 5: Area and energy overhead of each component added by
WHISTLE.

3.19561/3.36907 | 1.077067/1.090471

Title SP | TP | TR | SE FS AB
8 | DataSafe[33] v v X X v/
:’5;.
DIFT [34] v/ v X X X #
Rakhsa [35] v v X v v * #
LIFT [36] v v X X X #
% | HardBound [23] v X X 4 X
Q
6
-é’ Intel MPX [15] v/ v/ X v/ X | #
3 | BoGO[5] SOV x| v x|k
® | CHERIvoke [24] v v T x 7 x|+
REST [14] v/ v/ X v/ X | #Q
Caliform [9] A A 4 X )
CHEx86 [10] v v v* X X
AOS [4] v v X v X #
HeapCheck [13] v v v v X #
No-FAT [12] v v v v X | #
#
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CFI SpecCFI [7] v X v v X #
C3[11] v v v v X

WHISTLE v v v v v

TABLE 6: Summary of Prior Works. SP: Spatial memory safety,#TP:
Temporal memory safety, TR: Transient memory safety, SE: Security
exception, FS: Flexible Security, AB: Allowlisting or Blocklisting
approach (v : Fully Supported, X: Not Supported, v *: Partially
Supported, #: Allowlisting, @: Blocklisting.).
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Dynamic Information Flow Tracking (DIFT): One of the
challenges of DIFT is the runtime overhead. To reduce this
overhead, LIFT [36] eliminates unnecessary checks by dynamic
binary inspection. Later, FPGAs are used for low overhead
information tracking. Compared to DIFT, WHISTLE focuses on
detecting the every instruction which accesses the sensitive
variables, rather than tracking the information flow beforehand or
afterwards.

Bounds Checking: Bounds checking [2] detects memory access
that exceeds the expected lower or upper bound. Architectural
stupports are proposed for bound checking in recent works [5],
[15], [23], [24]. Several other works apply coloring to implement
allowlisting policies [25], which fail to support intraobject memory
protection. Recently, REST [14] and Caliform [9] employ
blocklisting policies to detect memory safety violation. CHEx86
proposes a speculative pointer tracking mechanism to track
pointers and support bounds checking by intercepting malloc
function [10] while AOS instruments malloc function to propagate
pointer information to hardware for heap object bounds checking
[4]. HeapCheck [13] enforces bounds checking on memory
requests from the CPUs, based on object bounds provided from
hooked allocation and deallocation routines. No-FAT [12] uses
statically transformed instructions to enforce bounds checking on
heap objects, with object bounds determined from memory
locations. Compared to bounds checking, WHISTLE provides a
more general approach to check memory safety rules, including
rules that are within objects.

Monitoring Based Solutions: Other works focus on monitoring

memory violations at runtime based on given policy [6].
Nile [43] and PHMon [44] are recent works which provide
hardware assisted frameworks for general monitoring. Flexible
support for different security levels can be realized through
different policies and extensions, or allocating various security
budgets [37], [38]. However, none of aforementioned works
considers transient execution memory safety threats as hardware
vulnerabilities exploited by Spectre and Meltdown (except
CHEx86, which defends against Spectre-vl). Recently, hardware
defenses are proposed to isolate the impact of speculative
execution before the changes become permanent in cache
hierarchy [8], [16]. The design of WHISTLE is meant to detect the
violating instruction, instead of mitigating the consequence (e.g.,
side channel) of violation in cache, TLB, or other components.

Similar to this work, SpecCFl [7] takes allowlisting approach
and uses in-architecture checks for jump, call and return targets
within transient execution, to prevent Speculative control-flow
attacks [3]. SpecCFl generates the CFl rules using the existing
compiler support. WHISTLE focuses on data access but can be
extended for CFI.

Cryptographic Capability Computing (C3) [11] encrypts both
the values and the corresponding pointers using encryption keys
generated from the sizes, the size-aligned base addresses, and
versions of the pointers. C3can prevent both spatial and temporal
memory safety violations, since any of these violations will lead to
wrong encryption keys and garbled plaintexts. WHISTLE also offers
uniform protection against spatial, temporal, and speculative
memory violations, but does not require memory encryption.
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CONCLUSIONS

We proposed WHISTLE, a program invariant-based technique to
detect HW and SW memory violations. Our proposed hardware
profiler can construct memory invariants from both transient and
non-transient instructions. The proposed Tl cache enables fast
checking of invariants when loading data. Tl cache works with the
memory hierarchy to store invariants at different levels based on
access frequency. WHISTLE provides both synchronous and
asynchronous checking of invariants; the latter includes a fast
security exception to alert the OS about an attempted access that
violates the invariants. We believe WHISTLE to be a stepping stone
towards a systematic solution to prevent both HW and SW
memory safety violations.
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