
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 1

WHISTLE: CPU Abstractions for Hardware and
Software Memory Safety Invariants

Sungkeun Kim, Farabi Mahmud, Student Member, IEEE, Jiayi Huang, Member, IEEE,

Pritam Majumder, Student Member, IEEE, Chia-Che Tsai, Abdullah Muzahid, Eun Jung Kim,

Member, IEEE

Abstract—Memory safety invariants extracted from a program can help defend and detect against both software and hardware memory violations.
For instance, by allowing only specific instructions to access certain memory locations, system can detect out-of-bound or illegal pointer
dereferences that lead to correctness and security issues. In this paper, we propose CPU abstractions, called WHISTLE, to specify and check program
invariants to provide defense mechanism against both software and hardware memory violations at runtime. WHISTLE ensures that the invariants
must be satisfied at every memory accesses. We present a fast invariant address translation and retrieval scheme using a specialized cache. It stores
and checks invariants related to global, stack and heap objects. The invariant checks can be performed synchronously or asynchronously. WHISTLE
uses synchronous checking for high security-critical programs, while others are protected by asynchronous checking. A fast exception is proposed
to alert any violations as soon as possible in order to close the gap for transient attacks. Our evaluation shows that WHISTLE can detect both software
and hardware, spatial and temporal memory violations. WHISTLE incurs 53% overhead when checking synchronously, or 15% overhead when
checking asynchronously.

Index Terms—Hardware Defense, Hardware-Assisted Security, Memory Safety, Program Invariants, Cache Architecture

✦

1 INTRODUCTION

Emory safety violation is considered one of the most critical

software vulnerabilities leading to both correctness and

security problems. In 2020, the Common Weakness Enumeration

(CWE) community listed three types of memory safety violation

among the five most impactful and serious software issues [1]. A

memory safety violation can manifest from software or hardware

behavior. For illustration purpose, let us consider the examples in

Figure 1. It shows how a memory safety violation (buffer overflow)

can be the result of a vulnerability in software or in hardware. A

software (or software-induced) memory safety violation can be

prevented by software defenses such as boundschecking [2].

However, a hardware (or hardware-induced) memory safety

violation can bypass such defenses in software within the CPU

pipeline as a result of misprediction or out-of-order optimizations.

For example, a Spectre-PHT attack [3] will mistrain the branch

predictors to temporarily bypass the bounds-checking in software

within speculative execution, and then leak the out-ofbound data

through a side channel. Many works either in software or

hardware have addressed memory safety violations. However,

existing works suffer from the following major shortcomings:

• Most existing works have focused on defense against only

software memory safety violations [4], [5], [6], or defense

against only hardware memory safety violations [7], [8], or

defense against software violations with partial defense

against hardware violations [9], [10]. Cryptographic Capa-

• All authors except Jiayi Huang are associated with Department of
Computer Science and Engineering, Texas A&M University, Texas, TX-
77843. E-mail: (ksungkeun84, farabi, pritam2309, chiache,
Abdullah.Muzahid, ejkim)@tamu.edu

• Jiayi Huang is associated with Department of Electrical and Computer
Engineering, University of California, Santa Barbara, CA 93106 USA.
E-mail: jyhuang@ucsb.edu

Fig. 1: A comparison of hardware and software memory safety
violations. Due to a branch misprediction or lack of bounds check,
respectively, a malicious input (int offset) can cause memory safety
violations in hardware or in software.

bility Computing (C3) [11] provides uniform defense against

both software and hardware memory safety violations, yet it

requires memory encryption which may not be necessary in

some scenarios. Both No-FAT [12] and HeapCheck [13]

performs bounds checking on both non-speculative and

speculative memory access and raise exceptions on

violations. An uniform, general hardware defense against

both software and hardware violations not only incurs lower

access overheads but also provides economy of mechanisms

and wide coverage of defense.

• Existing works have addressed software memory safety

violations based on either blocking the malicious behaviors

(i.e., blocklisting) [9], [14] or allowing the benign behaviors

(i.e., allowlisting) [5], [15]. However, for hardware memory

safety violations, most existing defense works only focus on

detecting or preventing specific malicious behaviors [9] or

their consequences [16]. These defenses for hardware

violations are specific to the exploits and can be considered

ad-hoc solutions. If any future exploit exhibits different

M
char read(int offset) {
 return array[offset];
 }

SW Memory Violation

offset = &secret - array

Read secret

char
array[0-15]

char secret

char read(int offset) {
 if (offset < 16)
 return array[offset];
}

HW Memory Violation Virtual
Memory

offset = &secret - array

Read secret
(transient execution)

Branch
Predictor

Mispredicted
as “taken”

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 2
behaviors, the attacker can circumvent the defense

mechanism.

To address the limitations, we propose WHISTLE, a set of CPU

abstractions for memory safety violation detection inside the

microarchitecture. It is capable of handling both software and

hardware violations and allows program-specific policies to check

synchronously or asynchronously. WHISTLE provides schemes to

detect violations in stacks, heaps, and global objects of a program,

and can prevent spatial attacks as well as temporal attacks such as

Use-After-Free. WHISTLE is based on programspecific invariants

stemming from a common pattern that most of the memory

locations of a program are accessed (transiently or not) by only a

handful of instructions during normal executions. These “good”

instructions can be formulated for the corresponding memory

locations as invariants of the program. By allowing only memory

accesses within the invariants, WHISTLE can defend against future,

unknown software or hardware vulnerabilities as exploiting these

vulnerabilities will trigger the alarms by accessing disallowed

memory locations. We propose a hardware implementation of

WHISTLE, with the following contributions:

• Uniform Defense: We develop an effective defense

mechanism against both software and hardware memory

violations using invariants. As a proof-of-concept (PoC), we

demonstrate how to generate invariants using profiling in

hardware and store them in program binaries.

• Invariant Cache with Flexible Checks: We propose a small

dedicated cache, namely Top Invariant (TI) cache, to make

the invariant accesses faster. TI cache works alongside the L1

cache with the rest of the memory hierarchy. During a load

memory request, WHISTLE checks if it is accessing a location

protected by the invariants. If so, WHISTLE accesses the TI

cache to check whether the invariants are satisfied. Memory

accesses to invariants are distributed along the memory

hierarchy based on the access frequency. Thus, the most

frequently accessed invariants reside in the TI cache, while

others reside in the L2, memory, or disk. TI cache along with

the rest of the memory hierarchy provides the functionality

to check if the invariants are satisfied. WHISTLE provides two

modes of invariant checking — synchronous and

asynchronous. WHISTLE uses synchronous checking for high

security-critical programs, while others are protected by

asynchronous checking.

• A Fast Exception: When a memory location is accessed by any

instruction outside the invariants, WHISTLE raises the

security exception immediately (i.e., without waiting for the

offending instruction to reach the head of the reorder buffer)

to prevent Meltdown-type [17] attacks. The OS handles the

exception by immediately terminating the process.

We implement WHISTLE in gem5 [18] and evaluate it with SW

and HW violations by using four programs of Spectre variants

Spectre (PHT/BTB/RSB/STL) [19], BugBench [20] and NIST [21]. We

also evaluate overheads of WHISTLE using SPEC CPU2017 [22]. A

thorough security and performance analysis shows that WHISTLE

can detect both HW and SW memory safety violations with 15%-

53% performance overhead across a mix of synchronous and

asynchronous checks.

The rest of the paper is organized as follows: §2 provides a

background, §3 describes the threat model; §4 discusses security

analysis; §5 presents the main ideas of WHISTLE; §6 shows the

detailed implementation; §7 and §8 evaluate WHISTLE’s security

and overhead; §9 provides some related work, and finally, §10

concludes the work.

2 BACKGROUND & MOTIVATION

In this section, we introduce the basic concept of allowlisting and

blocklisting as the strategy of defense and our approach toward

hardware-based solution.

2.1 Allowlisting or Blocklisting?

All access control mechanisms can be categorized as either

allowlisting and blocklisting. Allowlisting defines the policies

based on the “known good” behaviors of the target, and block

everything else by considering them potentially harmful. On the

other hand, blocklisting defines the policies based on the “known

bad” behaviors of the target and explicitly blocks them in the

system. Take memory safety for an example. An allowlisting

approach adds disjoint [5], [15], [23], [24] or co-joint metadata [25]

to keep track of the memory locations which can be safely

accessed. A blocklisting approach may trigger alarm from

generated token or tripwire [9], [14], or detect memory content

corruption. Both approaches have pros and cons. Allowlisting

systematically defends against a class of attacks, even if the attack

factors are unknown. Blocklisting blocks a known threat until the

threat is removed systematically, and thus can’t mitigate

unknown threats.

2.2 Why Allowlisting in WHISTLE?

A lesson from the recent discoveries of hardware and software

vulnerabilities is that anything that can go wrong will go wrong.

We cannot assume even the hardware to be immune from the

classes of vulnerabilities previously found inside software. In

2018–2019, numerous variants of the Spectre and Meltdown

attacks were discovered. In 2020, CWE reported more than 2000

memory safety violations in various popular software [1]. Despite

individual patches in software or hardware, no systematic solution

has been proposed so far to prevent software and hardware

memory safety violations as a class of vulnerabilities. Therefore,

we choose to adopt allowlisting policy in WHISTLE as a stepping

stone towards mitigating all of these attacks.

2.3 Invariant Generation

WHISTLE uses invariants to distinguish malicious and benign

behaviors. Just like all access control mechanisms, the

composition and enforcement of security rules are both

sophisticated topics. Fortunately, WHISTLE’s mechanism for

invariant enforcement is not tied to any method of composition,

and thus allows us to focus on the former and leave the latter for

future work.

For now, WHISTLE uses profiling (i.e., dynamic analysis) for

early, unintervened invariant generation, but profiling is not

inherent to our solution. Nevertheless, using profiling can cause

false positives and false negatives. For example, some cases of

misspeculation can be potentially benign, especially for the buffer

overrun that commonly happens after a program loops through

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 3
the elements. Using hardware profiling can prevent the false

positives by including these accesses as part of the invariants. The

caveats of doing so is that any protected “secret” cannot be near

the bounds of any buffer. These cases are not violation in regards

to any of the invariants collected, but do pose a risk of being

exploited by the attackers. In all of our program samples, we have

not observed this scenario. We consider this a reasonable caveat,

as a compiler can straightforwardly distance buffers from other

variables with padding1. Other false positives can occur if profiling

is not done sufficiently (e.g., until convergence). In that case, new

accesses might appear as false violations. A programmer can

analyze and confirm the false violations and subsequently update

the invariant section by releasing some type of invariant patch.

A careful reader might wonder what happens if the profiling

runs are buggy or under attack. In order to prevent

buggy/attacked profiling runs from corrupting the invariants, the

standard practice in debugging community is to use some well-

known bug detection tools with each profiling run to make sure

that the execution is bugfree [26]. On top of that, an isolated

machine is used to prevent any attack during profiling.

Other potential alternative methods to profiling include

synthesization (i.e., static analysis) and human composition.

Synthesization can guarantee invariant coverage. However, it may

require sophisticated algorithm, and is less scalable. Human

composition requires significant efforts and is subject to human

error. In practice, profiling can be useful for the initial collection

of raw policies, which can be further refined with synthesization

or human intervention. In software security, profiling has been

used by other papers [26], [27] especially when the work is

focused on expression and enforcement. There is a long line of

research on improving dynamic analysis, such as symbolic

execution, fuzzing [28], and AI-based collection, which we

consider complementary to our work and out of scope.

3 THREAT MODEL

In-scope Attacks: WHISTLE prevents violations to memory safety

rules defined by the invariants. The violations can be the results

of exploiting either software or hardware vulnerabilities, including

the existing Spectre attacks [3]. Besides the known attacks,

WHISTLE is also designed as a defense for future, unknown attacks,

including future Spectre-type attacks that exploits speculative

optimizations to violate memory safety rules, as well as future

Meltdown-type attacks which violates hardware protections but

can still be temporarily executed in the pipeline. WHISTLE

prevents memory safety violations to variables in stacks, heaps,

and global regions, and prevents spatial as well as temporal

violations such as Use-After-Free.

Trusted Components: WHISTLE assumes that the software is

trustworthy but may contain vulnerabilities to be exploited by the

attackers; both the protected program and the OS will not contain

malicious code that deliberately violates the memory safety rules.

WHISTLE also trusts the integrity of invariants stored in the

program binaries, which can be protected by page tables or other

hardware protections. The OS is also trusted to handle exceptions

raised by the hardware during invariant violations.

Out-of-scope Attacks: WHISTLE only prevents violations for

memory safety rules, and does not protect other data structures

such as registers. WHISTLE does not enforce control flow integrity

but can detect memory safety violations (such as buffer overflows)

that are either prerequisites or outcomes of control flow

violations. WHISTLE also cannot prevent attacks from

attackerforged code such as Javascript or eBPF gadgets, WHISTLE

does not protect the correctness and integrity of memory

contents and cannot prevent or detect semantics-based attacks

that do not violate memory safety rules. In addition, WHISTLE

does

1. The padding is good enough as long as other variables and the padding is
not in the same cache block because the profile granularity is cache line.

Memory Type Effective Period Invariants Invrs = {Key → PCs}

Global Load →Unload
(CallContext,Addr−BinaryBase) →

{PC1,PC2,··· ,PCn}

Stacks Call → Return
(CallContext,Addr−FrameBase) →

{PC1,PC2,··· ,PCn}

Heaps Malloc → Free
(CallContextMalloc,Addr−ObjectBase) →

{PC1,PC2,··· ,PCn}

TABLE 1: The memory types, effective periods, and invariants
definitions in WHISTLE.

not prevent data leakage through side channels, including side

channels through structures added by WHISTLE (e.g., TI Cache),

but rather prevents illegal access to data before leaking through

side channels. Although WHISTLE may introduce new side

channels through its structures, the side channels do not reveal

more information than what L1 or L2 cache already reveals (i.e.,

which memory blocks are recently accessed). Synchronous vs.

Asynchronous Checking: WHISTLE allows flexible security policies,

for each program to choose between (1) blocking the memory

operations until the check is finished (synchronous checking); and

(2) letting the memory operations finish but raising an exception

immediately after the violation is detected (asynchronous

checking). A similar design choice has been adopted by REST [14],

to delay STORE commits (Debug mode) until acknowledgement or

to proceed and issue imprecise exceptions (Secure mode).

Synchronous checking provides stronger security guarantee

because there is no transient window where the CPU pipeline has

access to the data and is able to leak through consequential cache

operations. Synchronous checking is necessary if the attacker can

retrieve the secret with one attempt, such as fetching a single bit

from an encryption key. In other cases where the attacker needs

several attempts or iterations, the program can be prompted by

the exception as soon as the first violation is detected by WHISTLE.

One example where asynchronous checking is appropriate is

when the attacker is using

Spectre to dump the kernel memory, which will be stopped by

WHISTLE immediately.

4 DEFINITION AND SECURITY ARGUMENTS

In this section, we describe the invariants used in WHISTLE and our

security arguments.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 4
4.1 Memory Safety Invariants

WHISTLE detects memory safety violations based on program

invariants. We define invariants as Program Counters (PCs)

allowed to read or write a memory location in a program, either

as global, stack, or heap objects. Table 1 defines the invariants of

three different memory types as well as their effective periods:

1) A global object resides inside the program’s data segment.

The invariant would include all the PCs that can access the

virtual address of that object, relative to the base of the

binary. Even if the global objects have a static life time, we

define the invariant of the global objects with the calling

context for the finer grained protection.

2) A stack (local) object resides inside the stack of each thread.

The invariant would include all the PCs that can access the

offset of that current stack frame. The offset is distinguished

by the calling context of the current frame; The calling

context changes when entering a function and gets restored

when returning. This is to differentiate the local objects in

two functions that share the same offset.

(b) Hardware Violation

 (a) Software Violation 1

12
3

24
3
45

6
57
6
78

9
810

Fig. 2: Examples of memory safety violations.

3) A heap object resides inside the heap and is created by

routines such as malloc. Since the heap can be reused, the

invariants of a heap object is related to the timing of

allocation and deallocation. We identify the invariant by the

calling context when malloc is called, and unload the

invariant when the object is freed.

4.2 Security Arguments

Here we describe the security argument for the defense of

WHISTLE against software and hardware violations.

Detecting Software Violations: We use a buffer overflow as an

example (Figure 2(a)) for software violations. At line 8, the value

of each element in input is not checked to be within the bounds

of dict. A malicious input may contain values that can load beyond

the bounds of dict and read secret. To detect this attack, WHISTLE

must check the invariant that line 8 should never load data beyond

the bounds of dict. When this invariant is generated, WHISTLE will

see that the PC(s) of line 8 only access memory up to the bound of

dict during normal and attack-free executions. Therefore, the PC(s)

of line 8 will only be included in the invariants for dict and input,

and will not be permitted to read secret.

Detecting Hardware Violations: We use Spectre (Bounds Check

Bypass) as an example for hardware violations as a result of

speculative execution (Figure 2(b)). The attack speculatively

accesses beyond the bound of dict at line 10, even reaching secret

with specific x. Based on the return value of dict[x], specific

elements of hex are loaded and create a side channel that can leak

the secret. To detect this attack, WHISTLE must check the

invariant that line 10 should never speculatively load secret, even

though it might still speculatively load beyond the bounds of dict.

5 INVARIANT-BASED MONITORING

This section presents the details of different components of

WHISTLE and its end-to-end workflow.

Invariant Generation: As a proof-of-concept system for

invariant-based detection, we choose to use profiling for invariant

generation. This choice is influenced by numerous prior works [26],

[27] that show that profiling can be an effective technique to

collect various types of invariants. WHISTLE extends the hardware

to support in-microarchitecture event tracing for both speculative

and non-speculative executions. During profiling, the PCs of all the

memory instructions are recorded irrespective of their execution

status (transient or not). These recorded memory locations and

PCs are then processed by a software tool to generate

Fig. 3: Invariant-based monitoring system workflow.

the invariants. Each invariant is associated with a protected

memory object and contains the PCs of the memory instructions

that access the corresponding the memory object. WHISTLE

extends the program binary with a special invariant section, to

store the invariants for global, heap, and stack objects.

Invariant Cache: We propose a fast address translation

mechanism to obtain the invariant addresses. Invariant

information is stored in a fully associative shadow cache structure,

named Top Invariant (TI) cache, alongside the L1 data cache. It is

introduced to avoid any interference with the demand data. The

TI cache stores PCs of the most frequent instructions of the

invariant sets, while other less frequent PCs of the invariant sets

reside in L2 cache or memory. Frequency of accesses is collected

during profiling. We provide both synchronous and asynchronous

modes for invariant checking operations. The synchronous

operation checks invariants before the memory content is

accessed, thereby providing the highest security level. Thus,

synchronous checking is suitable for preventing attacks that can

cause leakage/damage in a single attempt. On the other hand, the

/ / Global Data

char d i c t [256]; char

 hex [512]; /*

 other v a r

i a b l e s */ i n t s e c

r e t ;

/ / Vulnerable Code i n t x=/* from user

* / ; i f (x>=0 && x<256) p r i n t f

(”%c%c\n ” , hex [d i c t [x]*2] , hex [d

i c t [x
]*2+1]) ;

/ / Global Data char d i c t [256]; /*

other v a r i a b l e s */ i n t s e c r e t ;

/ / Vulnerable Code i n t input []=/*

from user * / ; for (i =0; input [i] ; i

++) p r i n t f (”%d\n ” , d i c t [input

[i]]) ;

Executable

.data
…
.invr
...

Loaded
by OS

CPU

L1 Cache

Invr Addr
Translator

TI Cache

L2 Cache

Memory

check

Exception ✘

Safe ✔
 1

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 5
asynchronous mode can carry out invariant checking lazily off the

critical path without blocking the load instruction execution. Thus,

asynchronous checking is suitable for applications with less

stringent security requirements (e.g., less sensitive data or cases

where multiple attacks are needed for practical purposes). The

detailed implementation of these designs is presented in §6.

Fast Security Exceptions: To handle security violations

appropriately, we introduce a faster exception mechanism.

WHISTLE raises this exception when a memory location is

accessed by any instruction outside the invariant set. We argue

that having a specialized and fast exception is crucial for security.

This exception should be raised as soon as possible in the CPU

pipeline. In other words, the pipeline should deliver the exception

even before the offending instruction becomes the head of the

reorder buffer. Thus, the window for launching a meltdown-type

attack will become smaller. Finally, the OS should immediately

terminate the program and report the violating PC and the

accessed memory location (even though the instruction may or

may not be squashed by the CPU). Thanks to the invariant

information, programmer can easily reason about the violation

and take appropriate remedy.

End-to-end: Figure 3 shows the end-to-end workflow for

WHISTLE. A program is compiled and executed with trusted inputs

and environments for hardware-based profiling. Once profiling

finishes, the collected microarchitecture events are further

processed in software to generate the invariant sets. The program

binary is augmented with an invariant section that stores the

invariant sets. During subsequent executions, the operating

system loads the binary, reads the binary header, and initializes

global invariant registers with range information. When a memory

location is accessed by a load instruction, WHISTLE compares the

virtual address of the location with the invariant registers to

Fig. 4: Out of order core with additional hardware for profiling,
maintaining calling contexts, and heap information. CCID= Calling
Contex ID and CCW = Calling Context Weight.

determine whether an invariant check is needed. If the check is

not needed, the data is accessed as normal. Otherwise, WHISTLE

feeds the memory address to the fast invariant address translator

to generate the invariant pointer address. WHISTLE uses this

pointer address to access the TI cache and check the invariants. In

cases of TI cache misses, the check request is sent to the next level

in the memory hierarchy for further checks. Note that the

invariant check can be either synchronous or asynchronous with

the data access depending on the application security level. In

synchronous check, data is not returned back to core until the

check is completed. When asynchronous check is applied, data

can be returned right away to minimize the performance

overhead. An exception is raised if there is any violation. The

exception is raised right away (without waiting for the instruction

to be at the head of the reorder buffer) and returns the control to

the operating system. The exception handler terminates the

process immediately and reports the instruction and memory

address.

6 IMPLEMENTATION

6.1 Overview of the Design

WHISTLE adds extra hardware to enable hardware-based profiling.

Figure 4 shows a typical out-of-order core with the extra hardware.

§6.2 explains the tracing support for profiling. WHISTLE profiles

three major memory areas used in a program - global, stack, and

heap. Owing to different characteristics of distinct memory

allocations, it is imperative to profile and record them separately.

To profile data objects, we leverage the calling contexts to

differentiate accesses to the same address (§6.3). Unlike stack, a

conventional CPU is not aware of heap object. We extend CPU and

OS to keep track of heap allocations and deallocations (§6.4).

Once profiling is finished, invariants are generated and embedded

into the executable binary offline (§6.6). To implement invariant

checks efficiently, we use a specialized cache like structure,

namely, TI Cache (§6.8).

6.2 Profiling Support

We augment the out-of-order core with a tracing unit (Figure 4).

Special memory regions are allocated in each core to record the

traces. These accesses can bypass the caches and there is no need

to check its coherence and consistency during profiling as each

core has its private profiler. For multithreaded programs, all the

per-core profiles are merged (offline) into one profile. To be more

specific, the timings of allocating and deallocating a heap object

will be recorded to be associated with the accesses to the virtual

address of the object during this period of time.

As explained in §5, WHISTLE uses multiple bug/attack-free

inputs to collect invariants. WHISTLE collects invariants until no

new invariants are found by profiling more. As profiling can be

Fig. 5: Convergence of invariants. Invariants are saturated as more
profiles are collected.

part of Continuous Integration (CI) during development and fully

automated, we believe it will be not a big burden for developers.

Figure 5 shows the convergence of invariants over profiling runs.

In this figure, we profile with different inputs given by SPEC

CPU2017 [22] and randomly generated for real applications

respectively. As profiling more, increment of total invariants are

saturated. This clearly demonstrates the convergence of

invariants. Of course, there is still no guarantee that all possible

invariants are captured. Therefore, as suggested in prior works

Fetch Decode Issue/Execution/Write back Commit

Callsite CCW

RetAddr CCID

CC Encoder
(CCID += CCW) Tracing Unit

Start End CCID

L1D Cache

BTB

RAS

CCW

CCID CCID

Memory Address Heap base, size

Heap ID Cache

Flush to the Memory

0.0

0.3

0.5

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55
Profile Run Numbers

gzip ncompress polymorph

0.0

0.3

0.5

0.8

1.0

0 1 2 3 4 5 6 7 8 9
Profile Run Numbers

perlbench_s
gcc_s
mcf_s
cactuBSSN_s
lbm_s
omnetpp_s
xalancbmk_s
x264_s
imagick_s
leela_s
nab_s
xz_s

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 6
[26], coverage enhancing techniques [28] need to be applied

during profiling runs.

6.3 Calling Context Encoding

Memory addresses in stack/heap are reused by many objects as

program runs. To differentiate these objects, we use a calling

context that is a sequence of call sites. Previous works [29] use

xor-folding of the last few call-sites, but PCCE [30] proposed to

efficiently encode/decode precise calling context. PCCE calculates

weights (CCW) of edges on a call-graph. Then, ”CCID += CCW”

and ”CCID -= CCW” instructions where CCID is a calling context ID

initialized with zero are inserted before/after every call instruction.

WHISTLE adopts this idea to maintain CCID at runtime. Instead of

inserting two extra instructions, we extend call/return

instructions of Intel x86 ISA to deliver CCW to the processor and

extend the processor to update CCID with very simple logic

(add/subtract). Updating CCID is not dependent on existing design

in the processor pipeline stages. Branch Target Buffer (BTB) and

Return Address Stack (RAS) are extended to store CCW or CCID (64

bits each) associated with a predicted call (Figure 4).

6.4 Hardware Support for Heap Objects

We extend the compiler, instruction set architecture, and the

processor to trace heap object’s creation and deletion. Compiler

inserts the extended instruction - add heapobj/remove heapobj -

to malloc and free function so that the processor updates the

Heap ID cache as shown in Figure 4. Heap ID cache is Content

Addressable Memory (CAM) and uses two tags–begin and end

address of heap objects. The data portion of the cache stores the

allocation CCID of heap objects. During an access to a heap object,

tag matching is done by checking if the heap address lies in

between the two tags. If so, the CCID of the matched line is

returned as data. In case the cache does not have available space,

requests are issued to extended memory controller that manages

designated memory to keep information of additional heap

objects 2. Energy and space overheads are evaluated in § 8.

2. In the evaluation, we limit the area of heap profile to store every heap
information in Heap ID cache.

The current Heap ID cache is shared among all the cores to

ensure coherence. This is crucial since temporal memory

violations can occur across multiple cores. For example, core 1 can

deallocate an object while core 2 continues to access the object.

Therefore, as soon as a heap ID is unloaded in the Heap ID cache,

the object is considered invalidated by all the cores.

6.5 Binary Compatibility

The extension of WHISTLE for the compiler, the ISA, and the

processor does not break existing applications that do not provide

their program invariants. For programs that are augmented for

memory safety violation detection, no other instruction needs to

be modified besides only two four special instructions added—

call cc/ret cc for delivering weights for updating the CCID, and add

heapobj/remove heapobj for updating the heap ID for tracking

heap objects at malloc and free. The extension to malloc and free

should only impact the system library that implements these

functions (e.g., libc), unless the application binary is statically

linked against the library. Although WHISTLE does require

recompilation of the program binary, the recompilation is mostly

only for the purpose of embedding the weights for CCIDs. The

program sections for storing the invariant sets are injected directly

into the program binary without the need of recompilation and

can even be populated into a separated binary if necessary.

Portability to Other Platforms: Our extension for the compiler

and the ISA is general enough to be ported to other CPU and

microarchitecture with minor adjustments. For an ISA with

fixedlength instructions (such as ARM), we can add a new

instruction for embedding the weights for CCIDs instead of

extending call/return. The extension is also neutral to

microarchitectural design since it only requires CPU changes. For

other compilation frameworks, such as a runtime for an

interpreted language or a runtime with just-in-time compilation,

invariant collection with profiling may not be possible, so we will

have to rely on static analysis or programming APIs.

6.6 Invariant Section and Memory Hierarchy

WHISTLE extends the binary with a new section for invariants

(.invr) as shown in Figure 6. Invariant section has two

subsections—one for invariant blocks (GInvrBlks, SInvrBlks,

HInvrBlks) and one for invariant pointers (GInvrPtrs,

SInvrPtrs, HInvrPtrs).

Invariant Blocks store sets of PCs that access to the same

memory address in the same context. These PCs will be used to

check if a requested memory access by a PC is legitimate. First two

8 bytes in an invariant block are reserved to store access

frequency of the memory address and the number of cache blocks

to store the entire invariant block. Access frequency is used for

replacement policy of TI cache and the number of cache blocks are

used to multicast requests from TI cache. PCs in each invariant

block are ordered by access frequency of each PC so that the most

frequently used PCs are installed in TI cache. TI cache is a shadow

cache structure used to reduce performance impact of invariant

checks. It stores the most frequently used PCs in an invariant block

as a

Top Invariant Block as described in §6.8.

Invariant Pointers store addresses of the corresponding

invariant blocks. WHISTLE uses indirect addressing to reduce

fragmentation of invariant section. Note that size of an invariant

block is not fixed and dependent on the number of PCs that access

to the same memory address. To access an invariant block directly,
Invariant

 Invariant Pointers Blocks

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 7

Fig. 6: Memory layout of invariant section (.invr) in executable. F=the
access frequency of invariant block, #CB=the number of cache blocks,
OSET=offset of stack or heap object, SBA=Stack Invariant Address,
HBA=Heap Invariant Address.

the size of the invariant blocks should be uniform resulting in an

internal fragmentation.

6.7 Invariant Access

We store invariant blocks in the separated section of the binary.

One of the challenges of invariant memory management is to

determine the address of an invariant block for a particular

memory location. We propose efficient indirect invariant access

mechanism for global, heap, and stack objects.

We describe the indirect invariant access mechanism with

stack invariants for example. Stack invariants are grouped

according to CCIDs. During the access of a stack object, WHISTLE

uses CCID of the corresponding function as an offset from Stack

Ptr Base to find Offset Block Address as shown in Figure 6. Offset

Block Address points to a region that contains SInvrBlk

Addrs for all offsets associated with the particular CCID. WHIS-

TLE reads the first block of this region to determine the number of

cache blocks. TI cache issues read request to all of those blocks.

Each cache block contains a number of < of fset,SBA >. As each

cache blocks arrives to the TI cache, it finds the block with an

offset that matches the offset of the stack object. The SInvrBlk

Addr associated with this offset is used to find the invariant block

of the stack object. Invariants of global and heap objects are

identified in a similar fashion except that the CCIDs used for heap

objects will be the allocation CCIDs. Note that only for Heap

objects, the Heap ID cache is used to find the allocation CCIDs,

whose hardware design presented in §6.4.

6.8 Top Invariant Cache

The major challenge of invariant based approach is the volume of

the profiled invariants. It not only causes huge storage overhead,

but also incurs performance overhead. Since caching invariants in

the conventional data cache may pollute by evicting actual

demand data, we introduce a special cache with a separate cache

controller, Top Invariant (TI) Cache, for caching and checking the

invariants.

Fig. 7: Cumulative distribution of Invariant set size.

Fig. 8: Message flow of Invariant check across the memory hierarchy.
GIBA/IBA, GTIB/TIB/TIB/IB, and CHKINVR/INVR(N)ACK are
request/response messages for invariant block address, top invariant
blocks, remaining invariant blocks, and invariant checks, respectively.

6.8.1 Top Invariant Block and Least Frequently Accessed

Replacement Policy

The numbers of PCs in each invariant sets are different and the

sets have different access frequency. We first survey the range of

invariant set sizes and decide size of TI cache block. Figure 7 shows

cumulative distribution of invariant set size. We observe that 90%

of invariant sets have less than 32 PCs which can be stored in four

conventional cache block size (64 bytes). Therefore, we configure

TI block size as 256 bytes. To read all 256 bytes effectively, the

invariant section is generated with invariant blocks that are at

least 256 byte long and aligned to conventional cache block size.

Upon an invariant check, TI cache loads the first four conventional

cache blocks in the invariant block. Then, it merges and installs

them in one TI cache block. Remaining part of the invariant block

will be installed in a shared cache and checked by CHKINVR and

GIB messages described in the following Section. Second, we

leverage the knowledge during profile for the efficient placement

of PCs in the invariant block and TI cache replacement policy. By

placing the most frequently accessed PCs first in the invariant

block, the hit rate of TI cache block increases. In addition, TI cache

selects a victim block that is the least frequently accessed among

cache blocks for replacement.

6.8.2 Indirect Tag for TI Cache Access

Conventionally, a cache tag is part of the address for the cache line.

Global, stack, and heap objects are associated with their unique

invariant pointer addresses. Instead of using the conventional tag,

L1D Cache TI Cache

Memory Controller

INVRACK

Load

CHKINVR

GIBA IBA INVRACK CHKINVR

GIBA GIB IB IBA

hit? Y
N

GTIB TIB

GTIB TIB

1 2 3

Shared
Cache

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 8
TI cache uses the invariant pointer address as the tag as shown in

Figure 9. Note that since stack and heap objects are associated

with CCID and offset (see Figure 6), both Base + CCID and Offset

are used for tagging. Also, TI cache adds one extra metadata to

store address of invariant block (InvrBlkAddr).

Fig. 9: Tag matching mechanism between invariant pointers and
offsets, and invariant checking mechanism inside TI cache. #CB: the
number of conventional cache blocks for the entire invariant sets. In
this work, TI cache installs 256 bytes of them (four 64 bytes
conventional cache blocks).

6.8.3 Message Flows of Invariant Check

Figure 8 demonstrates the interaction in the memory hierarchy

involved in invariant checks. Several messages are introduced to

handle invariant check. Upon a memory access to a protected data

in L1 cache, a CHKINVR message carrying the instruction PC and

the invariant pointer address is sent to TI cache. The invariant

pointer address is calculated with CCIDs. If it is a miss, TI cache

initiates a sequence of steps to load top invariant block as follows:

1 A GIBA request with the invariant pointer address is issued to get

the actual address of the invariant block. The address of global

invariant block is retrieved with one request but the addresses of

stack and heap invariant blocks are be retrieved with at least two

requests. 2 Then the returned invariant block address is

encapsulated in the GTIB messages to fetch the Top Invariant

Block (TIB) from the shared cache. Note that size of TIB could be

bigger than conventional cache line size (i.e., 64 bytes) depending

on the configuration. In that case, TI cache loads multiple cache

lines to install the entire TIB. If it hits in the shared cache, the TIB

is returned and installed in the TI cache. In case of a miss, the

request is forwarded to the memory controller to load it from

memory. After TIB is installed in TI cache, a check is done to

inspect if the accessed PC is in the block. If it is in the block, a

INVRACK is sent back to L1 cache to acknowledge the safety of the

access. If it is not in the block, further inspection is initiated. 3

When the PC is not in TIB, a CHKINVR request is forwarded to the

shared cache to scrutinize the remaining invariant blocks. If they

miss in the shared cache, a GIB request is generated to load them

to the shared cache to finish the check. After inspection, an

INVRACK or INVRNACK is replied to the TI cache depending on the

success of the check. If a violation happens, the INVRNACK triggers

a security exception. If the type of CHKINVR is synchronous, the

data supply to CPU from L1 is delayed until INVRACK. Otherwise,

the data is supplied to CPU immediately and CHKINVR inspects in

parallel.

7 SECURITY EVALUATION

We implement the hardware supported invariant profile and

check using the gem5 simulator [18]. Table 2 summarizes the

baseline configuration and additional structure in

microarchitecture. WHISTLE uses TI and Heap ID cache structure

to hold the invariants and CCID of heap creation on the core side.

Also, WHISTLE extends branch target buffer (BTB) and return stack

buffer (RSB) to store CCW and CCID. All the invariants are profiled

based on cache line granularity. To profile invariants of each

benchmark until no more invariants are found, we use all

Core 2.0 GHz, Out-of-Order, no SMT, 32 Load Queue, 32 Store

Queue entries, 192 ROB entries, Tournament branch

predictor, 4096 BTB entries, 16 RSB entries.

L1-I $ Private, 64B line, 4-way, 32KB, 1 cycle access lat.

L1-D $ Private, 64B line, 8-way, 64KB for Baseline, 32KB for

WHISTLE 1 cycle access lat.

HeapID $ 8 B line, 1024 entries, 1 cycle access lat. Fully associative.

TI $ 256B line, 256 blocks, 32KB or 64KB, 1 cycle access lat.

Least Frequently Used (LFU) replacement policy, fully

associative.

L2 $ Shared, inclusive, 64B line, 2 cycles access lat. 2MB,

16way.

DRAM Built-in memory model in gem5.
TABLE 2: Parameters of the simulated architecture. HeapID Cache and
TI Cache are not included in baseline system. 64KB size of TI cache
used for the fully synchronous check and 32KB size of that used for
the fully asynchronous check.

the inputs given by SPEC2017 [22], downloaded extra input data

from online source [31], and changed the input parameters until

no more invariants are found.

To emulate invariant embedding, we modify the source code

of target benchmarks to allocate additional global memory to hold

the invariant section. We extract information from the binaries

(ELF format) such as regions of data segments (.data, .rodata,

and .bss section) and code segment (.text) as well as addresses of

malloc and free functions. Then, these binary layout information

is referred by gem5 during simulation. This enables us to simply

reflect extensions to compiler and operating systems.

We evaluate WHISTLE for both HW and SW violations. We

write four programs of Spectre variants (SpectrePHT/BTB/RSB/STL)

[19] with eviction based cache side-channel to evaluate HW

violations and use BugBench [20] and test cases from NIST [21] for

SW violations. After profiling with bug-free inputs, the test

programs are executed again with bug-triggering inputs. We also

run SPEC CPU2017 [22] for both security and overhead evaluation.

We use the reference input size and simulate for 1 billion

instructions after warming up microarchitecture states with 1

billion instructions in system-call emulation mode3.

7.1 SW and HW Violations

Table 3 lists the applications and validation results. BugBench

provides simplified real-world applications (gzip, man, ncompress,

and polymorph) with buffer overflow bugs in the stack and global

objects, and NIST provides test cases to evaluate the Use-After-

Free bugs in heap objects. Buffer overflow bugs are detected by
WHISTLE and it also detects the Use-After-Free bugs because

Offset Invariant
Ptr Addr Data Tag V Frequency #CB PC - 0 PC - 29

=

=
=

Invariant Violation

…

PC Found Tag matched

Top Invariant Block (TIB)
Invariant

Block Addr

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 9
WHISTLE keeps track of allocation/deallocation of heap objects

using Heap ID cache. We do not observe false positives.

WHISTLE can fully detect three out of four Spectre variants.

First, in Spectre-PHT [3], transient instructions are exploited to

access a secret using an array out-of-bound access. Since this

access was not observed during profiling, WHISTLE raises an

exception and the program stopped. Second, Spectre-RSB exploits

3. System call emulation has one-to-one page mapping and requires no TLB
translation. Also, invariants are stored continuously in virtual and physical
spaces, and invariant address are directly translated using offsets and CCIDs.
We envision that both the program data and invariant addresses should be
translated with page tables managed by OS, and CPU will perform TLB lookup
for both. The existing TLB and Page Miss Handler can be reused for invariant
addresses, with potentially larger buffer to reduce the overhead. Due to
simulation limitations and significant workload for implementing OS-level
handler, we leave this experiment for future work.

 BugBench [20]

gzip1.2.4 ✓ ✗ ✓
ncompress ✓ ✗ ✓
man1.5h1 ✓ ✗ ✓

polymorph-0.4.0 ✓ ✗ ✓

NIST [21]

ID 102226 ✓ ✗ ✓
ID 102247 ✓ ✗ ✓
ID 102618 ✓ ✗ ✓

ID 2151 ✓ ✗ ✓

 Spectre [19]

Spectre-PHT ✗ ✓ ✓
Spectre-BTB ✗ ✓

Spectre-RSB ✗ ✓ G#✓
Spectre-STL ✗ ✓ ✓

TABLE 3: Evaluation results with spatial, temporal, and transient

memory violations in BOGO [5], InvisiSpec(IS) [16], and WHISTLE

validation. ✓ means that the violation is detected. ✗ means that the

detected, since WHISTLE only detects Spectre-BTB when there is aG#

violation is not detected. means that the violation is circumstantially

preceding memory corruption to mistrain the BTB.

Return Stack Buffer to hijack return flow. PoC program mimics the

attacker’s behavior using a gadget function and malicious code

resides after the gadget function call. Gadget function is invoked

only during the attack and WHISTLE detects the violation from the

malicious code. Three, Spectre-STL exploits memory

disambiguator. PoC program inserts malicious load instruction

after naive store instruction clearing secret data so that the load

instruction reads the secret before clearing it. Again, this

malicious load did not appear in the profile and WHISTLE detects

this variant as well.

The only exception is Spectre-BTB, which WHISTLE can only

detect under specific circumstances. Spectre-BTB, unlike other

Spectre variants, exploits control flow violations instead of data

access violations. Since WHISTLE does not check instruction

fetching, it cannot detect control flow violations. However, to

cause Spectre-BTB, the attacker needs to mistrain the BTB in order

to change the control flow. The attacker may use a buffer overflow

to corrupt a code pointer or return address, which can be detected

by WHISTLE. WHISTLE cannot detect Spectre-BTB if the attacker

uses other mistraining methods, such as mistraining from another

thread. Potentially, WHISTLE can extend the invariant profiling

and checking to instruction cache. That way, WHISTLE will be able

to detect control flow violations that cause invariant violations in

the instruction cache. We leave this extension for future work.

7.2 Comparison against with BOGO and InvisiSpec

We run PoC programs for both BOGO [5] and InvisiSpec [16] that

are SW and HW memory violation detection techniques

respectively. As shown in Table 3, neither BOGO nor InvisiSpec

detect all the violations. BOGO provides full memory safety on top

of MPX-enabled [15] processors, but it is limited to committed

load or store instructions resulting in failure to detect the

transient attacks. InvisiSpec defends against the transient attacks

by blocking cache side channels. However, InvisiSpec is not

designed to defend SW violations. We discuss more related works

in §9.

7.3 Coverage of HW vs. SW Profiler

We implement both HW and SW profilers, and evaluate the

coverage of using gem5 simulator with out-of-order core. HW

profiler records every memory access, either transient or

nontransient. We profile the first billion instructions for collecting

the

calling contexts, and the second billion instructions for collecting

both the calling contexts and the invariants. On the other hand,

SW profiler records only committed memory accesses, which can

miss hardware vulnerabilities that rely on transient executions,

such as recent speculation-based attacks, Spectre and Meltdown.

Figure 10 shows the coverage of HW profiler in terms of number

of invariant sets compared to SW profiler. HW profiler covers 60%

more invariant sets. perlbench s and mcf s have higher coverage

than other benchmarks. The number of squashed memory

instruction is dependent on program characteristics, such as

number of branches, indirect jumps, and/or HW components

associated with speculative execution, such as branch predictor.

Parameter Value Source Application BOGO IS WHISTLE

 -

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0
SW Invrsets HW Invrsets

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 10
7.4 Attack Surface Reduction

We also measure the reduction of attack surface in terms of

software and hardware memory safety violation, based on how

many rogue memory accesses in a program will be accepted by

the system. Here, we define the memory-specific attack surface

as the number of PCs allowed to access a specific memory location

under a specific calling context. In TABLE 4, we show that for each

invariant set, there are 2.60–20.01 PCs in average allowed to

access the memory. However, without WHISTLE, a SpectreBTB

attack can change the control flow speculatively to allow any

memory accessing PC to read/write any memory location.

Considering that for each program in CPU2017, there are at least

1,220–25,405 unique PCs during the profile that access memory,

the attack surface reduction by WHISTLE is 99.80–99.99%.

 # Unique # Invariant Avg. # PCs Attack Surface

Benchmarks PCs Sets / Inv. Set Reduction

perlbench s 18,482 6,685 14.83 99.98%
gcc s 16,975 2,671 20.01 99.96%
mcf s 1,258 1,234 5.27 99.91%
cactuBSSN s 25,405 298,649 6.54 99.99%

lbm s 1220 517 4.76 99.80%
omnetpp s 7,934 21,605 5.00 99.99%
xalancbmk s 4,326 16,139 4.23 99.99%
x264 s 3,827 4,200 3.32 99.97%

imagick s 2,865 7,819 2.60 99.98%
leela s 2,678 5,755 2.79 99.98%
nab s 2,515 5,118 4.93 99.98%
xz s 1,305 897 3.81 99.88%

TABLE 4: Assessment of attack surface reduction in SPEC CPU2017
using WHISTLE, based on the number of PCs allowed to access each
memory location.

7.5 Exception Latency Reduction

We measure how fast security exception is raised before

instructions are committed. We collect the number of cycles

elapsed

between memory request, invariant check and instruction

retirement, and calculate how much earlier the proposed

exception is raised, compared to the number of cycles elapsed

between memory request and instruction retirement with the

assumption that the exceptions in the baseline without any

mitigation for memory safety violations occur at retirement of the

corresponding instruction. In Figure 11, a light red bar represents

the cycle difference between memory request and invariant check,

which is the exception latency with asynchronous check. The

entire bar with light and dark red bar represents the cycle

difference between memory request and the retirement, which is

the exception latency with baseline. On an average, the security

exception requires 15% less time than that of the baseline system.

Since, in asynchronous check, data could be supplied to the core

before invariant check is finished, there may exist a small window

of exploitation. Note that for applications with strong security

requirement, we can enable synchronous checking.

8 OVERHEAD EVALUATION

We first show the performance overhead of the proposed

microarchitecture with invariant check over the baseline, analyze

the source of the overhead, and discuss how to overcome. Then,

we describe the trade-off between different invariant check

policies. Last, we evaluate overhead of area and energy. We

observe that cactuBSSN s and lbm s allocate the large number of

heap objects and few heap objects with large size respectively. We

limit the number of heap objects and the maximum heap size to

500 objects and 100MB respectively. The reason is that the heap

size can be up to gigabytes and causes the invariant size to explode.

We believe that it can be improved by applying compression or

deduplication techniques. We leave this work for future work.

After adjustment, benchmarks generate invariant set with

maximum size 251MB and 27MB on an average.

8.1 Performance Overhead

Figure 12 shows the normalized execution time of CPU2017 over

baseline. For each program, we check the invariants based on

cache line granularity and simulated for 1 billion instructions after

warming up microarchitecture states with 1 billion instructions in

system-call emulation mode. Average performance overheads of

synchronous and asynchronous invariant check are 53% and 15%

respectively. We use 64KB size of the TI cache for synchronous

checking and 32KB of that for asynchronous checking to efficiently

use the cache capacity. The main sources of performance

degradation are round-trip latency and the number of invariant

 -

 30

 60

 90

 120

 150
LD Issue - INVRACK INVRACK - RERIEMENT

Fig. 11: Reduction of security exception latency in asynchronous

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 11

Fig. 13: Average Roundtrip Latency (Left Y Axis) and Total Number of
Invariant Check (Right Y Axis).

checks out of total L1D cache accesses, which are shown in Figure

134. Benchmarks with greater latency and more number of

invariant check have higher performance overhead compared to

other benchmarks. For instance, we observe the overhead of

cactuBSSN s as an outlier, which can be attributed to extremely

large number of invariant sets (298,649) resulting in high average

round trip latency shown in Figure 13. Note that the number of

Top Invariant Cache Blocks (TIB) are 128 that is not sufficient size

for cactuBSSN s. On the other hand, x264 s and xz s have negligible

overheads (3%) due to small number of invariant sets and good

locality making small TI cache miss rate as shown in Table 4 and

Figure 14 respectively. Because the number of invariant checks

are the property of benchmarks, we cannot reduce them. Instead,

we focus on latency of invariant check which depends on the

performance of TI cache. As shown in Figure 14, benchmarks with

high overhead have high miss rate in TI cache. We consider a hit

in TI cache if PC is found in the TI cache block. In other words, even

if the TI cache block is installed, if the PC is not found, it is miss

because TI cache should forward CHKINVR message to lower level

cache. For example, cactuBSSN s and imagick s suffer from in low

performance because of the high miss rate in TI cache with 38%

and 27% respectively.

8.2 Sensitivity of TI Cache

We study the sensitivity of TI cache size to understand the

performance impact with different size of TI cache and its

configuration. Figure 15 shows the miss rate of TI cache with

different number of blocks (128 and 256 blocks for every

benchmark except perlbench s) and wider blocks (512 byte that

can store 64 most frequently used PCs for perlbench s). We

observe that

4. We observe that there are many memory accesses to sections of the ELF
binary during libc library functions calls. That is the reason why the number of
checks are not mostly full even if WHISTLE checks all the memory access to
global, stack, and heap objects.

configures with 256B block size. perlbench s is configured differently
with 512 block size and 128 cache blocks for 64KB size TI cache.

miss rates are reduced with more number of TI cache blocks but

not perlbench s. This is because perlbench s has 10% of invariant

sets with more than 32 PCs as shown in Figure 7 and we observe

that accesses from 10% is still significant. Therefore, we doubled

the block size for perlbench s instead increasing the number of

blocks and the miss rate decreased. Doubling the cache size incurs

negligible area overhead(∼ 5%) as discussed in §8.5 so we can

improve the performance with even larger than 64KB TI cache. On

the other hand, asynchronous is not much sensitive than

synchronous check as shown in Figure 12. This shows the high

performance performance overhead with 32KB TI cache but not

huge reduction of the performance with asynchronous check.

Another optimization can further improve the round trip latency

for invariant check. For example, becuase WHISTLE uses indirect

Tag for TI cache block access (§6.8.2), it requires extra memory

access that increases the miss penalty. We could use hash function

with tags (invariant pointer address and offset) for getting

addresses of invariant blocks. We leave this work for future work.

8.3 Performance Impact of Invariant section

We evaluate size of invariant section and its impact on

performance. Figure 16 shows the increment of binary sizes of

each benchmark after the invariants are embedded. Size of

invariant section is mainly determined by the number of CCID and

the number of invariant blocks for global, stack, and heap as

described in Figure 6. For example, cactuBSSN s is profiled with

251MB size of invariant section due to greater number of invariant

blocks compared to other benchmarks. We observed 27MB size of

invariant section on an average.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 12
8.4 Comparison of Invariant Check Policies

We conduct an experiment to evaluate the performance overhead

of WHISTLE with mixture of synchronous and asynchronous

invariant checks. In order to see the performance trade-off

between

and asynchronous. TI Cache with 32KB size used. There are spectrum
of synchronous-asynchronous checks - 100%-0% (Sync), 70%-30%
(Syn7-Async3), 50%-50% (Syn5-Async5), 30%-70% (Syn3-Async7), and
0%-100% (Async).

them, all the targeted memory accesses are randomly marked

whether it is either synchronously or asynchronously checked

based on a given ratio. We configure the ratios as 70%-30%, 50%-

50%, and 30%-70% for synchronous-asynchronous checks,

respectively, and have one run for each configuration. Figure 17

shows the performance overhead decreases as the portion of

asynchronous check increases. Depending on the security level,

WHISTLE can adjust the ratio of synchronous-asynchronous check

for better performance.

8.5 Area and Energy Overhead

We estimate hardware budget using CACTI-7 [32] at 22nm.

WHISTLE uses TI Cache to hold invariant and it has two tags– data

and invariant pointer and extra 8 bytes metadata to store address

of invariant block and its block size is 256 bytes. Heap ID cache

uses both start and end address of corresponding heap object for

tag matching to find CID of heap creation on the core side. Also,

WHISTLE extends branch target buffer (BTB) and return stack

buffer (RSB) to store 8 byte CCW and CCID. TI cache with 32KB size

takes 3.19561 mm2 of area and 1.077067 nJ of energy and 64KB

size of TI cache incurs 5% more area and 1% more energy. Heap

ID cache takes 0.323398 mm2 of area and 0.0991182 nJ of energy.

Extended BTB increase 0.197777129 mm2 of area and 0.517251 nJ

of energy. We consider that parallel tag matching logic in TI cache

is being implemented using Content Addressable Memory (CAM),

which has very low area, energy, latency implication.

9 RELATED WORK

In this section, we discuss hardware defenses for memory safety.

We summarize the prior works in Table 6.

 Area (mm2) Energy/Access (nJ)

TI Cache (32KB/64KB) 3.19561/3.36907 1.077067/1.090471

HeapID Cache 0.323398 0.0991182

BTB & RAS 0.1977129 0.0517251
TABLE 5: Area and energy overhead of each component added by
WHISTLE.

 Title SP TP TR SE FS AB

DataSafe [33] ✓ ✓ ✗ ✗ ✓

DIFT [34] ✓ ✓ ✗ ✗ ✗ #
Rakhsa [35] ✓ ✓ ✗ ✓ ✓* #
LIFT [36] ✓ ✓ ✗ ✗ ✗ #

HardBound [23] ✓ ✗ ✗ ✓ ✗

Intel MPX [15] ✓ ✓ ✗ ✓ ✗ #
BOGO [5] ✓ ✓ ✗ ✓ ✗ #
CHERIvoke [24] ✓ ✓ ✗ ✓ ✗ #
REST [14] ✓ ✓ ✗ ✓ ✗ #⊘
Caliform [9] ✓ ✓ ✓* ✓ ✗ ⊘
CHEx86 [10] ✓ ✓ ✓* ✗ ✗

AOS [4] ✓ ✓ ✗ ✓ ✗ #
HeapCheck [13] ✓ ✓ ✓ ✓ ✗ #
No-FAT [12] ✓ ✓ ✓ ✓ ✗ #

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 13

TABLE 6: Summary of Prior Works. SP: Spatial memory safety,#TP:
Temporal memory safety, TR: Transient memory safety, SE: Security
exception, FS: Flexible Security, AB: Allowlisting or Blocklisting
approach (✓: Fully Supported, ✗: Not Supported, ✓*: Partially
Supported, #: Allowlisting, ⊘: Blocklisting.).

Dynamic Information Flow Tracking (DIFT): One of the

challenges of DIFT is the runtime overhead. To reduce this

overhead, LIFT [36] eliminates unnecessary checks by dynamic

binary inspection. Later, FPGAs are used for low overhead

information tracking. Compared to DIFT, WHISTLE focuses on

detecting the every instruction which accesses the sensitive

variables, rather than tracking the information flow beforehand or

afterwards.

Bounds Checking: Bounds checking [2] detects memory access

that exceeds the expected lower or upper bound. Architectural

stupports are proposed for bound checking in recent works [5],

[15], [23], [24]. Several other works apply coloring to implement

allowlisting policies [25], which fail to support intraobject memory

protection. Recently, REST [14] and Caliform [9] employ

blocklisting policies to detect memory safety violation. CHEx86

proposes a speculative pointer tracking mechanism to track

pointers and support bounds checking by intercepting malloc

function [10] while AOS instruments malloc function to propagate

pointer information to hardware for heap object bounds checking

[4]. HeapCheck [13] enforces bounds checking on memory

requests from the CPUs, based on object bounds provided from

hooked allocation and deallocation routines. No-FAT [12] uses

statically transformed instructions to enforce bounds checking on

heap objects, with object bounds determined from memory

locations. Compared to bounds checking, WHISTLE provides a

more general approach to check memory safety rules, including

rules that are within objects.

Monitoring Based Solutions: Other works focus on monitoring

memory violations at runtime based on given policy [6].

Nile [43] and PHMon [44] are recent works which provide

hardware assisted frameworks for general monitoring. Flexible

support for different security levels can be realized through

different policies and extensions, or allocating various security

budgets [37], [38]. However, none of aforementioned works

considers transient execution memory safety threats as hardware

vulnerabilities exploited by Spectre and Meltdown (except

CHEx86, which defends against Spectre-v1). Recently, hardware

defenses are proposed to isolate the impact of speculative

execution before the changes become permanent in cache

hierarchy [8], [16]. The design of WHISTLE is meant to detect the

violating instruction, instead of mitigating the consequence (e.g.,

side channel) of violation in cache, TLB, or other components.

Similar to this work, SpecCFI [7] takes allowlisting approach

and uses in-architecture checks for jump, call and return targets

within transient execution, to prevent Speculative control-flow

attacks [3]. SpecCFI generates the CFI rules using the existing

compiler support. WHISTLE focuses on data access but can be

extended for CFI.

Cryptographic Capability Computing (C3) [11] encrypts both

the values and the corresponding pointers using encryption keys

generated from the sizes, the size-aligned base addresses, and

versions of the pointers. C3 can prevent both spatial and temporal

memory safety violations, since any of these violations will lead to

wrong encryption keys and garbled plaintexts. WHISTLE also offers

uniform protection against spatial, temporal, and speculative

memory violations, but does not require memory encryption.

A

dj

us

ta

bl

e

M

on

it

or

in

g

[3

7]

✓ ✓ ✗ ✗ ✓ ⊘

FA

D

E

[3

8]

✓ ✓ ✗ ✗ ✓ ⊘

Fl

ex

C

or

e

[3

9]

✓ ✓ ✗ ✗ ✓ ⊘

H

ar

m

on

i [

H

D

FI

[

P

H

M

on

[4

4]

 #

W

at

ch

do

g

[6

]

✓ ✓ ✗ ✗ ✗

CFI SpecCFI [7] ✓ ✗ ✓ ✓ ✗ #

 C3 [11] ✓ ✓ ✓ ✓ ✗

 WHISTLE ✓ ✓ ✓ ✓ ✓

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 14

10 CONCLUSIONS

We proposed WHISTLE, a program invariant-based technique to

detect HW and SW memory violations. Our proposed hardware

profiler can construct memory invariants from both transient and

non-transient instructions. The proposed TI cache enables fast

checking of invariants when loading data. TI cache works with the

memory hierarchy to store invariants at different levels based on

access frequency. WHISTLE provides both synchronous and

asynchronous checking of invariants; the latter includes a fast

security exception to alert the OS about an attempted access that

violates the invariants. We believe WHISTLE to be a stepping stone

towards a systematic solution to prevent both HW and SW

memory safety violations.

ACKNOWLEDGMENTS

This work was supported by the startup package provided by

Texas A&M University and NSF under Grant No. 1652655 and

CCF2135995.

REFERENCES

[1] C. W. Enumeration, “2020 cwe top 25 most dangerous software
weaknesses.” https://cwe.mitre.org/top25/archive/2020/2020 cwe
top25.html.

[2] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for c,” SIGPLAN
Not., vol. 44, p. 245–258, June 2009.

[3] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S.
Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203, 2018.

[4] Y. Kim, J. Lee, and H. Kim, “Hardware-based always-on heap memory
safety,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1153–1166, IEEE, 2020.

[5] T. Zhang, D. Lee, and C. Jung, “BOGO: buy spatial memory safety, get
temporal memory safety (almost) free,” in Proceedings of the
TwentyFourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 631–644, 2019.

[6] S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Watchdog: Hardware
for safe and secure manual memory management and full memory
safety,” in 2012 39th Annual International Symposium on Computer
Architecture (ISCA), pp. 189–200, IEEE, 2012.

[7] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and N.
AbuGhazaleh, “SpecCFI: Mitigating spectre attacks using cfi informed
speculation,” in 2020 IEEE Symposium on Security and Privacy (SP), pp.
39– 53, IEEE, 2020.

[8] S. Kim, F. Mahmud, J. Huang, P. Majumder, N. Christou, A. Muzahid, C.-
C. Tsai, and E. J. Kim, “ReViCe: Reusing Victim Cache to
PreventSpeculative Cache Leakage,” in 2020 IEEE Secure Development
Conference (SecDev), September 2020.

[9] H. Sasaki, M. A. Arroyo, M. T. I. Ziad, K. Bhat, K. Sinha, and
S. Sethumadhavan, “Practical byte-granular memory blacklisting using
califorms,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 558–571, 2019.

[10] R. Sharifi and A. Venkat, “CHEx86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
pp. 762–775, IEEE, 2020.

[11] M. LeMay, J. Rakshit, S. Deutsch, D. M. Durham, S. Ghosh, A. Nori, J. Gaur,
A. Weiler, S. Sultana, K. Grewal, and S. Subramoney, “Cryptographic
capability computing,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’21, (New York,
NY, USA), p. 253–267, Association for Computing Machinery, 2021.

[12] M. T. I. Ziad, M. A. Arroyo, E. Manzhosov, R. Piersma, and S.
Sethumadhavan, “No-fat: Architectural support for low overhead
memory safety checks,” in Proceedings of the 48th Annual International
Symposium on Computer Architecture, ISCA ’21, p. 916–929, IEEE Press,
2021.

[13] G. Saileshwar, R. Boivie, T. Chen, B. Segal, and A. Buyuktosunoglu,
“Heapcheck: Low-cost hardware support for memory safety,” ACM Trans.
Archit. Code Optim., vol. 19, jan 2022.

[14] K. Sinha and S. Sethumadhavan, “Practical memory safety with REST,” in
Proceedings of the 45th Annual International Symposium on Computer
Architecture, ISCA ’18, (Piscataway, NJ, USA), pp. 600–611, IEEE Press,
2018.

[15] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
MPX explained: A cross-layer analysis of the intel mpx system stack,”
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 2, no. 2, pp. 1–30, 2018.

[16] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas,
“Invisispec: Making speculative execution invisible in the cache
hierarchy,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 428–441, IEEE, 2018.

[17] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S.
Mangard, P. Kocher, D. Genkin, et al., “Meltdown: Reading kernel
memory from user space,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 973–990, 2018.

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,M.
Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simulator,”
SIGARCH Comput. Archit. News, vol. 39, pp. 1–7, 2011.

[19] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F.
Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in 28th USENIX Security
Symposium (USENIX Security 19), (Santa Clara, CA), pp. 249–266, USENIX
Association, Aug. 2019.

[20] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench: Benchmarks
for evaluating bug detection tools,” in Workshop on the evaluation of
software defect detection tools, vol. 5, 2005.

[21] NIST, “Software Assurance Reference Dataset (SARD) project.” https:
//samate.nist.gov/SARD, 2017. Last accessed 10 Mar 2022.

[22] “SPEC releases major new CPU benchmark suite.”
https://www.spec.org/ cpu2017/press/release.html, 2017.

[23] J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic, “Hardbound:
architectural support for spatial safety of the c programming language,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 2, pp. 103–114, 2008.

[24] H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe, A. Richardson, P.
Rugg, P. G. Neumann, S. W. Moore, R. N. Watson, et al., “CHERIvoke:
Characterising pointer revocation using cheri capabilities for temporal
memory safety,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 545–557, 2019.

[25] “Hardware-assisted checking using silicon secured memory (ssm).” https:
//docs.oracle.com/cd/E37069 01/html/E37085/gphwb.html, 2015.

[26] A. Muzahid, N. Otsuki, and J. Torrellas, “Atomtracker: A comprehensive
approach to atomic region inference and violation detection,” in
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, December 2010.

[27] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “Securecore: A
multicore-based intrusion detection architecture for real-time
embedded systems,” in 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 21–32, IEEE, 2013.

[28] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. L. Traon, “Validity
fuzzing and parametric generators for effective random testing,” in
Proceedings of the 41st International Conference on Software
Engineering: Companion Proceedings, ICSE 2019, Montreal, QC, Canada,
May 2531, 2019 (J. M. Atlee, T. Bultan, and J. Whittle, eds.), pp. 266–267,
2019.

[29] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and
J. Torrellas, “Accmon: Automatically detecting memory-related bugs
viaprogram counter-based invariants,” in 37th International Symposium
on Microarchitecture (MICRO-37’04), pp. 269–280, IEEE, 2004.

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://samate.nist.gov/SARD
https://samate.nist.gov/SARD
https://samate.nist.gov/SARD
https://www.spec.org/cpu2017/press/release.html
https://www.spec.org/cpu2017/press/release.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XX 2021 15
[30] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang, “Precise calling

context encoding,” IEEE Transactions on Software Engineering, vol. 38,
no. 5, pp. 1160–1177, 2011.

[31] “Sensei’s libray.” https://senseis.xmp.net/?GoDatabases, 203.
[32] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V.

Srinivas, “Cacti 7: New tools for interconnect exploration in innovative
off-chip memories,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 14, no. 2, pp. 1–25, 2017.

[33] Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee, “A software-hardware
architecture for self-protecting data,” in Proceedings of the 2012 ACM
conference on Computer and communications security, pp. 14–27, 2012.

[34] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program execution
via dynamic information flow tracking,” ACM Sigplan Notices, vol. 39, no.
11, pp. 85–96, 2004.

[35] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible information
flow architecture for software security,” ACM SIGARCH Computer
Architecture News, vol. 35, no. 2, pp. 482–493, 2007.

[36] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “Lift: A lowoverhead
practical information flow tracking system for detecting security attacks,”
in 2006 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06), pp. 135–148, IEEE, 2006.

[37] D. Lo, T. Chen, M. Ismail, and G. E. Suh, “Run-time monitoring with
adjustable overhead using dataflow-guided filtering,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), pp. 662–674, IEEE, 2015.

[38] S. Fytraki, E. Vlachos, O. Kocberber, B. Falsafi, and B. Grot, “Fade: A
programmable filtering accelerator for instruction-grain monitoring,” in
2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pp. 108–119, IEEE, 2014.

[39] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh, “Flexible and
efficient instruction-grained run-time monitoring using on-chip
reconfigurable fabric,” in 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 137–148, IEEE, 2010.

[40] D. Y. Deng and G. E. Suh, “High-performance parallel accelerator for
flexible and efficient run-time monitoring,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), pp. 1– 12,
IEEE, 2012.

[41] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in 2016 IEEE
Symposium on Security and Privacy (SP), pp. 1–17, IEEE, 2016.

[42] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Memtracker:
Efficient and programmable support for memory access monitoring and
debugging,” in 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, pp. 273–284, IEEE, 2007.

[43] L. Delshadtehrani, S. Eldridge, S. Canakci, M. Egele, and A. Joshi, “Nile: a
programmable monitoring coprocessor,” IEEE Computer Architecture
Letters, vol. 17, no. 1, pp. 92–95, 2017.

[44] L. Delshadtehrani, S. Canakci, B. Zhou, S. Eldridge, A. Joshi, and M. Egele,
“PHMon: A programmable hardware monitor and its security use cases,”
in 29th USENIX Security Symposium (USENIX Security 20), pp. 807–824,
USENIX Association, Aug. 2020.

Sungkeun Kim received the B.Eng degree in
Computer Science and Engineering from Kyungpook
National University, Republic of Korea, in 2011. He is
a Ph.D. student in the Department of Computer
Science and Engineering, Texas A&M University. His
research interests are the fields of computer
architecture and systems, especially on networks-on-
chip, memory systems and near-data processing, and
hardware security. Before starting a Ph.D., he worked
as a software engineer at Samsung Electronics,

Suwon, Republic of Korea.

Farabi Mahmud received the BSc degree in Computer
Science and Engineering from Bangladesh University of
Engineering & Technology in 2017. He is a PhD student
in the Department of Computer Science and
Engineering, Texas A&M University. His research
interests are the fields of computer architecture and
systems, especially on networks-on-chip and hardware
security. Before starting a PhD, he worked as a lecturer
at United International University, Dhaka.

Jiayi Huang (Member, IEEE)
received the BEng degree in information and

communication engineering
from Zhejiang University, China, in 2014, and
the PhD degree in computer engineering
from Texas A&M University, in 2020. He is
currently a postdoctoral researcher with
the Department of Electrical and
Computer Engineering, UC Santa Barbara.
His research interests include computer
architecture, computer systems, and security. He is a member of the ACM
and the IEEE Computer Society.

Pritam Majumder received the B.Tech degree in
Computer Science and Engineering from WBUT,
India, in 2011. He received his MS degree in
Computer Science and Engineering from Indian
Institute of Technology, Madras, in 2015. He is a Ph.D.
student in the Department of Computer Science and
Engineering, Texas A&M University. His research
interests lie in the fields of computer architecture and
systems, and machine learning. He is a student
member of the ACM.

Chia-Che Tsai received the BS degree in computer
science and information engineering from National
Taiwan University, Taiwan, the MS degree in
computer science from Columbia University, and the
PhD degree in computer science from Stony Brook
University. He is an assistant professor in the
Department of Computer Science and Engineering at
Texas A&M University. His research interests include
operating systems, software and hardware security,
and cloud computing.

Abdullah Muzahid received his BS in Computer
Science from Bangladesh University of Engineering
and Technology. He received his MS and PhD in
Computer Sceince from University of Illinois at
Urbana-Champaign. He is an assistant professor at
the Department of Computer Science and
Engineering of Texas A&M University. His research
broadly focuses on various aspects of computer
architecture and systems. More specifically, he is
interested in multiprocessor architecture, parallel

programming, program-
ming models, debugging, program analysis and synthesis. Recently, he is
interested in applying machine learning to solve various systemrelated issues.

Eun Jung Kim received the BS degree in Computer
Science and Engineering from KAIST, Korea, the MS
degree in computer science from Pohang University
of Science and Technology, Korea, and the PhD
degree from the Department of Computer Science
and Engineering, Pennsylvania State University. She
is an associate professor in the Department of
Computer Science and Engineering, Texas A&M
University. Her research interests include computer
architecture, power efficient systems,

parallel/distributed sys-
tems, cluster computing, and hardware security. She is a member of the IEEE
Computer Society. More information about her research is available at
http://faculty.cse.tamu.edu/ejkim.

https://senseis.xmp.net/?GoDatabases

