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Abstract—Memory safety invariants extracted from a program can help defend and detect against both software and hardware memory violations. 
For instance, by allowing only specific instructions to access certain memory locations, system can detect out-of-bound or illegal pointer 
dereferences that lead to correctness and security issues. In this paper, we propose CPU abstractions, called WHISTLE, to specify and check program 
invariants to provide defense mechanism against both software and hardware memory violations at runtime. WHISTLE ensures that the invariants 
must be satisfied at every memory accesses. We present a fast invariant address translation and retrieval scheme using a specialized cache. It stores 
and checks invariants related to global, stack and heap objects. The invariant checks can be performed synchronously or asynchronously. WHISTLE 
uses synchronous checking for high security-critical programs, while others are protected by asynchronous checking. A fast exception is proposed 
to alert any violations as soon as possible in order to close the gap for transient attacks. Our evaluation shows that WHISTLE can detect both software 
and hardware, spatial and temporal memory violations. WHISTLE incurs 53% overhead when checking synchronously, or 15% overhead when 
checking asynchronously. 
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1 INTRODUCTION 

Emory safety violation is considered one of the most critical 

software vulnerabilities leading to both correctness and 

security problems. In 2020, the Common Weakness Enumeration 

(CWE) community listed three types of memory safety violation 

among the five most impactful and serious software issues [1]. A 

memory safety violation can manifest from software or hardware 

behavior. For illustration purpose, let us consider the examples in 

Figure 1. It shows how a memory safety violation (buffer overflow) 

can be the result of a vulnerability in software or in hardware. A 

software (or software-induced) memory safety violation can be 

prevented by software defenses such as boundschecking [2]. 

However, a hardware (or hardware-induced) memory safety 

violation can bypass such defenses in software within the CPU 

pipeline as a result of misprediction or out-of-order optimizations. 

For example, a Spectre-PHT attack [3] will mistrain the branch 

predictors to temporarily bypass the bounds-checking in software 

within speculative execution, and then leak the out-ofbound data 

through a side channel. Many works either in software or 

hardware have addressed memory safety violations. However, 

existing works suffer from the following major shortcomings: 

• Most existing works have focused on defense against only 

software memory safety violations [4], [5], [6], or defense 

against only hardware memory safety violations [7], [8], or 

defense against software violations with partial defense 

against hardware violations [9], [10]. Cryptographic Capa- 
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Fig. 1: A comparison of hardware and software memory safety 
violations. Due to a branch misprediction or lack of bounds check, 
respectively, a malicious input (int offset) can cause memory safety 
violations in hardware or in software. 

bility Computing (C3) [11] provides uniform defense against 

both software and hardware memory safety violations, yet it 

requires memory encryption which may not be necessary in 

some scenarios. Both No-FAT [12] and HeapCheck [13] 

performs bounds checking on both non-speculative and 

speculative memory access and raise exceptions on 

violations. An uniform, general hardware defense against 

both software and hardware violations not only incurs lower 

access overheads but also provides economy of mechanisms 

and wide coverage of defense. 

• Existing works have addressed software memory safety 

violations based on either blocking the malicious behaviors 

(i.e., blocklisting) [9], [14] or allowing the benign behaviors 

(i.e., allowlisting) [5], [15]. However, for hardware memory 

safety violations, most existing defense works only focus on 

detecting or preventing specific malicious behaviors [9] or 

their consequences [16]. These defenses for hardware 

violations are specific to the exploits and can be considered 

ad-hoc solutions. If any future exploit exhibits different 
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behaviors, the attacker can circumvent the defense 

mechanism. 

To address the limitations, we propose WHISTLE, a set of CPU 

abstractions for memory safety violation detection inside the 

microarchitecture. It is capable of handling both software and 

hardware violations and allows program-specific policies to check 

synchronously or asynchronously. WHISTLE provides schemes to 

detect violations in stacks, heaps, and global objects of a program, 

and can prevent spatial attacks as well as temporal attacks such as 

Use-After-Free. WHISTLE is based on programspecific invariants 

stemming from a common pattern that most of the memory 

locations of a program are accessed (transiently or not) by only a 

handful of instructions during normal executions. These “good” 

instructions can be formulated for the corresponding memory 

locations as invariants of the program. By allowing only memory 

accesses within the invariants, WHISTLE can defend against future, 

unknown software or hardware vulnerabilities as exploiting these 

vulnerabilities will trigger the alarms by accessing disallowed 

memory locations. We propose a hardware implementation of 

WHISTLE, with the following contributions: 

• Uniform Defense: We develop an effective defense 

mechanism against both software and hardware memory 

violations using invariants. As a proof-of-concept (PoC), we 

demonstrate how to generate invariants using profiling in 

hardware and store them in program binaries. 

• Invariant Cache with Flexible Checks: We propose a small 

dedicated cache, namely Top Invariant (TI) cache, to make 

the invariant accesses faster. TI cache works alongside the L1 

cache with the rest of the memory hierarchy. During a load 

memory request, WHISTLE checks if it is accessing a location 

protected by the invariants. If so, WHISTLE accesses the TI 

cache to check whether the invariants are satisfied. Memory 

accesses to invariants are distributed along the memory 

hierarchy based on the access frequency. Thus, the most 

frequently accessed invariants reside in the TI cache, while 

others reside in the L2, memory, or disk. TI cache along with 

the rest of the memory hierarchy provides the functionality 

to check if the invariants are satisfied. WHISTLE provides two 

modes of invariant checking — synchronous and 

asynchronous. WHISTLE uses synchronous checking for high 

security-critical programs, while others are protected by 

asynchronous checking. 

• A Fast Exception: When a memory location is accessed by any 

instruction outside the invariants, WHISTLE raises the 

security exception immediately (i.e., without waiting for the 

offending instruction to reach the head of the reorder buffer) 

to prevent Meltdown-type [17] attacks. The OS handles the 

exception by immediately terminating the process. 

We implement WHISTLE in gem5 [18] and evaluate it with SW 

and HW violations by using four programs of Spectre variants 

Spectre (PHT/BTB/RSB/STL) [19], BugBench [20] and NIST [21]. We 

also evaluate overheads of WHISTLE using SPEC CPU2017 [22]. A 

thorough security and performance analysis shows that WHISTLE 

can detect both HW and SW memory safety violations with 15%-

53% performance overhead across a mix of synchronous and 

asynchronous checks. 

The rest of the paper is organized as follows: §2 provides a 

background, §3 describes the threat model; §4 discusses security 

analysis; §5 presents the main ideas of WHISTLE; §6 shows the 

detailed implementation; §7 and §8 evaluate WHISTLE’s security 

and overhead; §9 provides some related work, and finally, §10 

concludes the work. 

2 BACKGROUND & MOTIVATION 

In this section, we introduce the basic concept of allowlisting and 

blocklisting as the strategy of defense and our approach toward 

hardware-based solution. 

2.1 Allowlisting or Blocklisting? 

All access control mechanisms can be categorized as either 

allowlisting and blocklisting. Allowlisting defines the policies 

based on the “known good” behaviors of the target, and block 

everything else by considering them potentially harmful. On the 

other hand, blocklisting defines the policies based on the “known 

bad” behaviors of the target and explicitly blocks them in the 

system. Take memory safety for an example. An allowlisting 

approach adds disjoint [5], [15], [23], [24] or co-joint metadata [25] 

to keep track of the memory locations which can be safely 

accessed. A blocklisting approach may trigger alarm from 

generated token or tripwire [9], [14], or detect memory content 

corruption. Both approaches have pros and cons. Allowlisting 

systematically defends against a class of attacks, even if the attack 

factors are unknown. Blocklisting blocks a known threat until the 

threat is removed systematically, and thus can’t mitigate 

unknown threats. 

2.2 Why Allowlisting in WHISTLE? 

A lesson from the recent discoveries of hardware and software 

vulnerabilities is that anything that can go wrong will go wrong. 

We cannot assume even the hardware to be immune from the 

classes of vulnerabilities previously found inside software. In 

2018–2019, numerous variants of the Spectre and Meltdown 

attacks were discovered. In 2020, CWE reported more than 2000 

memory safety violations in various popular software [1]. Despite 

individual patches in software or hardware, no systematic solution 

has been proposed so far to prevent software and hardware 

memory safety violations as a class of vulnerabilities. Therefore, 

we choose to adopt allowlisting policy in WHISTLE as a stepping 

stone towards mitigating all of these attacks. 

2.3 Invariant Generation 

WHISTLE uses invariants to distinguish malicious and benign 

behaviors. Just like all access control mechanisms, the 

composition and enforcement of security rules are both 

sophisticated topics. Fortunately, WHISTLE’s mechanism for 

invariant enforcement is not tied to any method of composition, 

and thus allows us to focus on the former and leave the latter for 

future work. 

For now, WHISTLE uses profiling (i.e., dynamic analysis) for 

early, unintervened invariant generation, but profiling is not 

inherent to our solution. Nevertheless, using profiling can cause 

false positives and false negatives. For example, some cases of 

misspeculation can be potentially benign, especially for the buffer 

overrun that commonly happens after a program loops through 
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the elements. Using hardware profiling can prevent the false 

positives by including these accesses as part of the invariants. The 

caveats of doing so is that any protected “secret” cannot be near 

the bounds of any buffer. These cases are not violation in regards 

to any of the invariants collected, but do pose a risk of being 

exploited by the attackers. In all of our program samples, we have 

not observed this scenario. We consider this a reasonable caveat, 

as a compiler can straightforwardly distance buffers from other 

variables with padding1. Other false positives can occur if profiling 

is not done sufficiently (e.g., until convergence). In that case, new 

accesses might appear as false violations. A programmer can 

analyze and confirm the false violations and subsequently update 

the invariant section by releasing some type of invariant patch. 

A careful reader might wonder what happens if the profiling 

runs are buggy or under attack. In order to prevent 

buggy/attacked profiling runs from corrupting the invariants, the 

standard practice in debugging community is to use some well-

known bug detection tools with each profiling run to make sure 

that the execution is bugfree [26]. On top of that, an isolated 

machine is used to prevent any attack during profiling. 

Other potential alternative methods to profiling include 

synthesization (i.e., static analysis) and human composition. 

Synthesization can guarantee invariant coverage. However, it may 

require sophisticated algorithm, and is less scalable. Human 

composition requires significant efforts and is subject to human 

error. In practice, profiling can be useful for the initial collection 

of raw policies, which can be further refined with synthesization 

or human intervention. In software security, profiling has been 

used by other papers [26], [27] especially when the work is 

focused on expression and enforcement. There is a long line of 

research on improving dynamic analysis, such as symbolic 

execution, fuzzing [28], and AI-based collection, which we 

consider complementary to our work and out of scope. 

3 THREAT MODEL 

In-scope Attacks: WHISTLE prevents violations to memory safety 

rules defined by the invariants. The violations can be the results 

of exploiting either software or hardware vulnerabilities, including 

the existing Spectre attacks [3]. Besides the known attacks, 

WHISTLE is also designed as a defense for future, unknown attacks, 

including future Spectre-type attacks that exploits speculative 

optimizations to violate memory safety rules, as well as future 

Meltdown-type attacks which violates hardware protections but 

can still be temporarily executed in the pipeline. WHISTLE 

prevents memory safety violations to variables in stacks, heaps, 

and global regions, and prevents spatial as well as temporal 

violations such as Use-After-Free. 

Trusted Components: WHISTLE assumes that the software is 

trustworthy but may contain vulnerabilities to be exploited by the 

attackers; both the protected program and the OS will not contain 

malicious code that deliberately violates the memory safety rules. 

WHISTLE also trusts the integrity of invariants stored in the 

program binaries, which can be protected by page tables or other 

hardware protections. The OS is also trusted to handle exceptions 

raised by the hardware during invariant violations. 

Out-of-scope Attacks: WHISTLE only prevents violations for 

memory safety rules, and does not protect other data structures 

such as registers. WHISTLE does not enforce control flow integrity 

but can detect memory safety violations (such as buffer overflows) 

that are either prerequisites or outcomes of control flow 

violations. WHISTLE also cannot prevent attacks from 

attackerforged code such as Javascript or eBPF gadgets, WHISTLE 

does not protect the correctness and integrity of memory 

contents and cannot prevent or detect semantics-based attacks 

that do not violate memory safety rules. In addition, WHISTLE 

does 

1. The padding is good enough as long as other variables and the padding is 
not in the same cache block because the profile granularity is cache line. 

Memory Type Effective Period Invariants Invrs = {Key → PCs} 

Global Load →Unload 
(CallContext,Addr−BinaryBase) → 

{PC1,PC2,··· ,PCn} 

Stacks Call → Return 
(CallContext,Addr−FrameBase) → 

{PC1,PC2,··· ,PCn} 

Heaps Malloc → Free 
(CallContextMalloc,Addr−ObjectBase) → 

{PC1,PC2,··· ,PCn} 

 

TABLE 1: The memory types, effective periods, and invariants 
definitions in WHISTLE. 

not prevent data leakage through side channels, including side 

channels through structures added by WHISTLE (e.g., TI Cache), 

but rather prevents illegal access to data before leaking through 

side channels. Although WHISTLE may introduce new side 

channels through its structures, the side channels do not reveal 

more information than what L1 or L2 cache already reveals (i.e., 

which memory blocks are recently accessed). Synchronous vs. 

Asynchronous Checking: WHISTLE allows flexible security policies, 

for each program to choose between (1) blocking the memory 

operations until the check is finished (synchronous checking); and 

(2) letting the memory operations finish but raising an exception 

immediately after the violation is detected (asynchronous 

checking). A similar design choice has been adopted by REST [14], 

to delay STORE commits (Debug mode) until acknowledgement or 

to proceed and issue imprecise exceptions (Secure mode). 

Synchronous checking provides stronger security guarantee 

because there is no transient window where the CPU pipeline has 

access to the data and is able to leak through consequential cache 

operations. Synchronous checking is necessary if the attacker can 

retrieve the secret with one attempt, such as fetching a single bit 

from an encryption key. In other cases where the attacker needs 

several attempts or iterations, the program can be prompted by 

the exception as soon as the first violation is detected by WHISTLE. 

One example where asynchronous checking is appropriate is 

when the attacker is using 

Spectre to dump the kernel memory, which will be stopped by 

WHISTLE immediately. 

4 DEFINITION AND SECURITY ARGUMENTS 

In this section, we describe the invariants used in WHISTLE and our 

security arguments. 
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4.1 Memory Safety Invariants 

WHISTLE detects memory safety violations based on program 

invariants. We define invariants as Program Counters (PCs) 

allowed to read or write a memory location in a program, either 

as global, stack, or heap objects. Table 1 defines the invariants of 

three different memory types as well as their effective periods: 

1) A global object resides inside the program’s data segment. 

The invariant would include all the PCs that can access the 

virtual address of that object, relative to the base of the 

binary. Even if the global objects have a static life time, we 

define the invariant of the global objects with the calling 

context for the finer grained protection. 

2) A stack (local) object resides inside the stack of each thread. 

The invariant would include all the PCs that can access the 

offset of that current stack frame. The offset is distinguished 

by the calling context of the current frame; The calling 

context changes when entering a function and gets restored 

when returning. This is to differentiate the local objects in 

two functions that share the same offset. 

(b) Hardware Violation 

 (a) Software Violation 1 
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Fig. 2: Examples of memory safety violations. 

3) A heap object resides inside the heap and is created by 

routines such as malloc. Since the heap can be reused, the 

invariants of a heap object is related to the timing of 

allocation and deallocation. We identify the invariant by the 

calling context when malloc is called, and unload the 

invariant when the object is freed. 

4.2 Security Arguments 

Here we describe the security argument for the defense of 

WHISTLE against software and hardware violations. 

Detecting Software Violations: We use a buffer overflow as an 

example (Figure 2(a)) for software violations. At line 8, the value 

of each element in input is not checked to be within the bounds 

of dict. A malicious input may contain values that can load beyond 

the bounds of dict and read secret. To detect this attack, WHISTLE 

must check the invariant that line 8 should never load data beyond 

the bounds of dict. When this invariant is generated, WHISTLE will 

see that the PC(s) of line 8 only access memory up to the bound of 

dict during normal and attack-free executions. Therefore, the PC(s) 

of line 8 will only be included in the invariants for dict and input, 

and will not be permitted to read secret. 

Detecting Hardware Violations: We use Spectre (Bounds Check 

Bypass) as an example for hardware violations as a result of 

speculative execution (Figure 2(b)). The attack speculatively 

accesses beyond the bound of dict at line 10, even reaching secret 

with specific x. Based on the return value of dict[x], specific 

elements of hex are loaded and create a side channel that can leak 

the secret. To detect this attack, WHISTLE must check the 

invariant that line 10 should never speculatively load secret, even 

though it might still speculatively load beyond the bounds of dict. 

5 INVARIANT-BASED MONITORING 

This section presents the details of different components of 

WHISTLE and its end-to-end workflow. 

Invariant Generation: As a proof-of-concept system for 

invariant-based detection, we choose to use profiling for invariant 

generation. This choice is influenced by numerous prior works [26], 

[27] that show that profiling can be an effective technique to 

collect various types of invariants. WHISTLE extends the hardware 

to support in-microarchitecture event tracing for both speculative 

and non-speculative executions. During profiling, the PCs of all the 

memory instructions are recorded irrespective of their execution 

status (transient or not). These recorded memory locations and 

PCs are then processed by a software tool to generate 

 

Fig. 3: Invariant-based monitoring system workflow. 

the invariants. Each invariant is associated with a protected 

memory object and contains the PCs of the memory instructions 

that access the corresponding the memory object. WHISTLE 

extends the program binary with a special invariant section, to 

store the invariants for global, heap, and stack objects. 

Invariant Cache: We propose a fast address translation 

mechanism to obtain the invariant addresses. Invariant 

information is stored in a fully associative shadow cache structure, 

named Top Invariant (TI) cache, alongside the L1 data cache. It is 

introduced to avoid any interference with the demand data. The 

TI cache stores PCs of the most frequent instructions of the 

invariant sets, while other less frequent PCs of the invariant sets 

reside in L2 cache or memory. Frequency of accesses is collected 

during profiling. We provide both synchronous and asynchronous 

modes for invariant checking operations. The synchronous 

operation checks invariants before the memory content is 

accessed, thereby providing the highest security level. Thus, 

synchronous checking is suitable for preventing attacks that can 

cause leakage/damage in a single attempt. On the other hand, the 
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asynchronous mode can carry out invariant checking lazily off the 

critical path without blocking the load instruction execution. Thus, 

asynchronous checking is suitable for applications with less 

stringent security requirements (e.g., less sensitive data or cases 

where multiple attacks are needed for practical purposes). The 

detailed implementation of these designs is presented in §6. 

Fast Security Exceptions: To handle security violations 

appropriately, we introduce a faster exception mechanism. 

WHISTLE raises this exception when a memory location is 

accessed by any instruction outside the invariant set. We argue 

that having a specialized and fast exception is crucial for security. 

This exception should be raised as soon as possible in the CPU 

pipeline. In other words, the pipeline should deliver the exception 

even before the offending instruction becomes the head of the 

reorder buffer. Thus, the window for launching a meltdown-type 

attack will become smaller. Finally, the OS should immediately 

terminate the program and report the violating PC and the 

accessed memory location (even though the instruction may or 

may not be squashed by the CPU). Thanks to the invariant 

information, programmer can easily reason about the violation 

and take appropriate remedy. 

End-to-end: Figure 3 shows the end-to-end workflow for 

WHISTLE. A program is compiled and executed with trusted inputs 

and environments for hardware-based profiling. Once profiling 

finishes, the collected microarchitecture events are further 

processed in software to generate the invariant sets. The program 

binary is augmented with an invariant section that stores the 

invariant sets. During subsequent executions, the operating 

system loads the binary, reads the binary header, and initializes 

global invariant registers with range information. When a memory 

location is accessed by a load instruction, WHISTLE compares the 

virtual address of the location with the invariant registers to 

 

Fig. 4: Out of order core with additional hardware for profiling, 
maintaining calling contexts, and heap information. CCID= Calling 
Contex ID and CCW = Calling Context Weight. 

determine whether an invariant check is needed. If the check is 

not needed, the data is accessed as normal. Otherwise, WHISTLE 

feeds the memory address to the fast invariant address translator 

to generate the invariant pointer address. WHISTLE uses this 

pointer address to access the TI cache and check the invariants. In 

cases of TI cache misses, the check request is sent to the next level 

in the memory hierarchy for further checks. Note that the 

invariant check can be either synchronous or asynchronous with 

the data access depending on the application security level. In 

synchronous check, data is not returned back to core until the 

check is completed. When asynchronous check is applied, data 

can be returned right away to minimize the performance 

overhead. An exception is raised if there is any violation. The 

exception is raised right away (without waiting for the instruction 

to be at the head of the reorder buffer) and returns the control to 

the operating system. The exception handler terminates the 

process immediately and reports the instruction and memory 

address. 

6 IMPLEMENTATION 

6.1 Overview of the Design 

WHISTLE adds extra hardware to enable hardware-based profiling. 

Figure 4 shows a typical out-of-order core with the extra hardware. 

§6.2 explains the tracing support for profiling. WHISTLE profiles 

three major memory areas used in a program - global, stack, and 

heap. Owing to different characteristics of distinct memory 

allocations, it is imperative to profile and record them separately. 

To profile data objects, we leverage the calling contexts to 

differentiate accesses to the same address (§6.3). Unlike stack, a 

conventional CPU is not aware of heap object. We extend CPU and 

OS to keep track of heap allocations and deallocations (§6.4). 

Once profiling is finished, invariants are generated and embedded 

into the executable binary offline (§6.6). To implement invariant 

checks efficiently, we use a specialized cache like structure, 

namely, TI Cache (§6.8). 

6.2 Profiling Support 

We augment the out-of-order core with a tracing unit (Figure 4). 

Special memory regions are allocated in each core to record the 

traces. These accesses can bypass the caches and there is no need 

to check its coherence and consistency during profiling as each 

core has its private profiler. For multithreaded programs, all the 

per-core profiles are merged (offline) into one profile. To be more 

specific, the timings of allocating and deallocating a heap object 

will be recorded to be associated with the accesses to the virtual 

address of the object during this period of time. 

As explained in §5, WHISTLE uses multiple bug/attack-free 

inputs to collect invariants. WHISTLE collects invariants until no 

new invariants are found by profiling more. As profiling can be 

 

Fig. 5: Convergence of invariants. Invariants are saturated as more 
profiles are collected. 

part of Continuous Integration (CI) during development and fully 

automated, we believe it will be not a big burden for developers. 

Figure 5 shows the convergence of invariants over profiling runs. 

In this figure, we profile with different inputs given by SPEC 

CPU2017 [22] and randomly generated for real applications 

respectively. As profiling more, increment of total invariants are 

saturated. This clearly demonstrates the convergence of 

invariants. Of course, there is still no guarantee that all possible 

invariants are captured. Therefore, as suggested in prior works 
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[26], coverage enhancing techniques [28] need to be applied 

during profiling runs. 

6.3 Calling Context Encoding 

Memory addresses in stack/heap are reused by many objects as 

program runs. To differentiate these objects, we use a calling 

context that is a sequence of call sites. Previous works [29] use 

xor-folding of the last few call-sites, but PCCE [30] proposed to 

efficiently encode/decode precise calling context. PCCE calculates 

weights (CCW) of edges on a call-graph. Then, ”CCID += CCW” 

and ”CCID -= CCW” instructions where CCID is a calling context ID 

initialized with zero are inserted before/after every call instruction. 

WHISTLE adopts this idea to maintain CCID at runtime. Instead of 

inserting two extra instructions, we extend call/return 

instructions of Intel x86 ISA to deliver CCW to the processor and 

extend the processor to update CCID with very simple logic 

(add/subtract). Updating CCID is not dependent on existing design 

in the processor pipeline stages. Branch Target Buffer (BTB) and 

Return Address Stack (RAS) are extended to store CCW or CCID (64 

bits each) associated with a predicted call (Figure 4). 

6.4 Hardware Support for Heap Objects 

We extend the compiler, instruction set architecture, and the 

processor to trace heap object’s creation and deletion. Compiler 

inserts the extended instruction - add heapobj/remove heapobj - 

to malloc and free function so that the processor updates the 

Heap ID cache as shown in Figure 4. Heap ID cache is Content 

Addressable Memory (CAM) and uses two tags–begin and end 

address of heap objects. The data portion of the cache stores the 

allocation CCID of heap objects. During an access to a heap object, 

tag matching is done by checking if the heap address lies in 

between the two tags. If so, the CCID of the matched line is 

returned as data. In case the cache does not have available space, 

requests are issued to extended memory controller that manages 

designated memory to keep information of additional heap 

objects 2. Energy and space overheads are evaluated in § 8. 

2. In the evaluation, we limit the area of heap profile to store every heap 
information in Heap ID cache. 

The current Heap ID cache is shared among all the cores to 

ensure coherence. This is crucial since temporal memory 

violations can occur across multiple cores. For example, core 1 can 

deallocate an object while core 2 continues to access the object. 

Therefore, as soon as a heap ID is unloaded in the Heap ID cache, 

the object is considered invalidated by all the cores. 

6.5 Binary Compatibility 

The extension of WHISTLE for the compiler, the ISA, and the 

processor does not break existing applications that do not provide 

their program invariants. For programs that are augmented for 

memory safety violation detection, no other instruction needs to 

be modified besides only two four special instructions added— 

call cc/ret cc for delivering weights for updating the CCID, and add 

heapobj/remove heapobj for updating the heap ID for tracking 

heap objects at malloc and free. The extension to malloc and free 

should only impact the system library that implements these 

functions (e.g., libc), unless the application binary is statically 

linked against the library. Although WHISTLE does require 

recompilation of the program binary, the recompilation is mostly 

only for the purpose of embedding the weights for CCIDs. The 

program sections for storing the invariant sets are injected directly 

into the program binary without the need of recompilation and 

can even be populated into a separated binary if necessary. 

Portability to Other Platforms: Our extension for the compiler 

and the ISA is general enough to be ported to other CPU and 

microarchitecture with minor adjustments. For an ISA with 

fixedlength instructions (such as ARM), we can add a new 

instruction for embedding the weights for CCIDs instead of 

extending call/return. The extension is also neutral to 

microarchitectural design since it only requires CPU changes. For 

other compilation frameworks, such as a runtime for an 

interpreted language or a runtime with just-in-time compilation, 

invariant collection with profiling may not be possible, so we will 

have to rely on static analysis or programming APIs. 

6.6 Invariant Section and Memory Hierarchy 

WHISTLE extends the binary with a new section for invariants 

(.invr) as shown in Figure 6. Invariant section has two 

subsections—one for invariant blocks (GInvrBlks, SInvrBlks, 

HInvrBlks) and one for invariant pointers (GInvrPtrs, 

SInvrPtrs, HInvrPtrs). 

Invariant Blocks store sets of PCs that access to the same 

memory address in the same context. These PCs will be used to 

check if a requested memory access by a PC is legitimate. First two 

8 bytes in an invariant block are reserved to store access 

frequency of the memory address and the number of cache blocks 

to store the entire invariant block. Access frequency is used for 

replacement policy of TI cache and the number of cache blocks are 

used to multicast requests from TI cache. PCs in each invariant 

block are ordered by access frequency of each PC so that the most 

frequently used PCs are installed in TI cache. TI cache is a shadow 

cache structure used to reduce performance impact of invariant 

checks. It stores the most frequently used PCs in an invariant block 

as a 

Top Invariant Block as described in §6.8. 

Invariant Pointers store addresses of the corresponding 

invariant blocks. WHISTLE uses indirect addressing to reduce 

fragmentation of invariant section. Note that size of an invariant 

block is not fixed and dependent on the number of PCs that access 

to the same memory address. To access an invariant block directly, 
Invariant  

 Invariant Pointers Blocks 
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Fig. 6: Memory layout of invariant section (.invr) in executable. F=the 
access frequency of invariant block, #CB=the number of cache blocks, 
OSET=offset of stack or heap object, SBA=Stack Invariant Address, 
HBA=Heap Invariant Address. 

the size of the invariant blocks should be uniform resulting in an 

internal fragmentation. 

6.7 Invariant Access 

We store invariant blocks in the separated section of the binary. 

One of the challenges of invariant memory management is to 

determine the address of an invariant block for a particular 

memory location. We propose efficient indirect invariant access 

mechanism for global, heap, and stack objects. 

We describe the indirect invariant access mechanism with 

stack invariants for example. Stack invariants are grouped 

according to CCIDs. During the access of a stack object, WHISTLE 

uses CCID of the corresponding function as an offset from Stack 

Ptr Base to find Offset Block Address as shown in Figure 6. Offset 

Block Address points to a region that contains SInvrBlk 

Addrs for all offsets associated with the particular CCID. WHIS- 

TLE reads the first block of this region to determine the number of 

cache blocks. TI cache issues read request to all of those blocks. 

Each cache block contains a number of < of fset,SBA >. As each 

cache blocks arrives to the TI cache, it finds the block with an 

offset that matches the offset of the stack object. The SInvrBlk 

Addr associated with this offset is used to find the invariant block 

of the stack object. Invariants of global and heap objects are 

identified in a similar fashion except that the CCIDs used for heap 

objects will be the allocation CCIDs. Note that only for Heap 

objects, the Heap ID cache is used to find the allocation CCIDs, 

whose hardware design presented in §6.4. 

6.8 Top Invariant Cache 

The major challenge of invariant based approach is the volume of 

the profiled invariants. It not only causes huge storage overhead, 

but also incurs performance overhead. Since caching invariants in 

the conventional data cache may pollute by evicting actual 

demand data, we introduce a special cache with a separate cache 

controller, Top Invariant (TI) Cache, for caching and checking the 

invariants. 

 

Fig. 7: Cumulative distribution of Invariant set size. 

 

Fig. 8: Message flow of Invariant check across the memory hierarchy. 
GIBA/IBA, GTIB/TIB/TIB/IB, and CHKINVR/INVR(N)ACK are 
request/response messages for invariant block address, top invariant 
blocks, remaining invariant blocks, and invariant checks, respectively. 

6.8.1 Top Invariant Block and Least Frequently Accessed 

Replacement Policy 

The numbers of PCs in each invariant sets are different and the 

sets have different access frequency. We first survey the range of 

invariant set sizes and decide size of TI cache block. Figure 7 shows 

cumulative distribution of invariant set size. We observe that 90% 

of invariant sets have less than 32 PCs which can be stored in four 

conventional cache block size (64 bytes). Therefore, we configure 

TI block size as 256 bytes. To read all 256 bytes effectively, the 

invariant section is generated with invariant blocks that are at 

least 256 byte long and aligned to conventional cache block size. 

Upon an invariant check, TI cache loads the first four conventional 

cache blocks in the invariant block. Then, it merges and installs 

them in one TI cache block. Remaining part of the invariant block 

will be installed in a shared cache and checked by CHKINVR and 

GIB messages described in the following Section. Second, we 

leverage the knowledge during profile for the efficient placement 

of PCs in the invariant block and TI cache replacement policy. By 

placing the most frequently accessed PCs first in the invariant 

block, the hit rate of TI cache block increases. In addition, TI cache 

selects a victim block that is the least frequently accessed among 

cache blocks for replacement. 

6.8.2 Indirect Tag for TI Cache Access 

Conventionally, a cache tag is part of the address for the cache line. 

Global, stack, and heap objects are associated with their unique 

invariant pointer addresses. Instead of using the conventional tag, 
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TI cache uses the invariant pointer address as the tag as shown in 

Figure 9. Note that since stack and heap objects are associated 

with CCID and offset (see Figure 6), both Base + CCID and Offset 

are used for tagging. Also, TI cache adds one extra metadata to 

store address of invariant block (InvrBlkAddr). 

 

Fig. 9: Tag matching mechanism between invariant pointers and 
offsets, and invariant checking mechanism inside TI cache. #CB: the 
number of conventional cache blocks for the entire invariant sets. In 
this work, TI cache installs 256 bytes of them (four 64 bytes 
conventional cache blocks). 

6.8.3 Message Flows of Invariant Check 

Figure 8 demonstrates the interaction in the memory hierarchy 

involved in invariant checks. Several messages are introduced to 

handle invariant check. Upon a memory access to a protected data 

in L1 cache, a CHKINVR message carrying the instruction PC and 

the invariant pointer address is sent to TI cache. The invariant 

pointer address is calculated with CCIDs. If it is a miss, TI cache 

initiates a sequence of steps to load top invariant block as follows: 

1 A GIBA request with the invariant pointer address is issued to get 

the actual address of the invariant block. The address of global 

invariant block is retrieved with one request but the addresses of 

stack and heap invariant blocks are be retrieved with at least two 

requests. 2 Then the returned invariant block address is 

encapsulated in the GTIB messages to fetch the Top Invariant 

Block (TIB) from the shared cache. Note that size of TIB could be 

bigger than conventional cache line size (i.e., 64 bytes) depending 

on the configuration. In that case, TI cache loads multiple cache 

lines to install the entire TIB. If it hits in the shared cache, the TIB 

is returned and installed in the TI cache. In case of a miss, the 

request is forwarded to the memory controller to load it from 

memory. After TIB is installed in TI cache, a check is done to 

inspect if the accessed PC is in the block. If it is in the block, a 

INVRACK is sent back to L1 cache to acknowledge the safety of the 

access. If it is not in the block, further inspection is initiated. 3 

When the PC is not in TIB, a CHKINVR request is forwarded to the 

shared cache to scrutinize the remaining invariant blocks. If they 

miss in the shared cache, a GIB request is generated to load them 

to the shared cache to finish the check. After inspection, an 

INVRACK or INVRNACK is replied to the TI cache depending on the 

success of the check. If a violation happens, the INVRNACK triggers 

a security exception. If the type of CHKINVR is synchronous, the 

data supply to CPU from L1 is delayed until INVRACK. Otherwise, 

the data is supplied to CPU immediately and CHKINVR inspects in 

parallel. 

7 SECURITY EVALUATION 

We implement the hardware supported invariant profile and 

check using the gem5 simulator [18]. Table 2 summarizes the 

baseline configuration and additional structure in 

microarchitecture. WHISTLE uses TI and Heap ID cache structure 

to hold the invariants and CCID of heap creation on the core side. 

Also, WHISTLE extends branch target buffer (BTB) and return stack 

buffer (RSB) to store CCW and CCID. All the invariants are profiled 

based on cache line granularity. To profile invariants of each 

benchmark until no more invariants are found, we use all 

Core 2.0 GHz, Out-of-Order, no SMT, 32 Load Queue, 32 Store 

Queue entries, 192 ROB entries, Tournament branch 

predictor, 4096 BTB entries, 16 RSB entries. 

L1-I $ Private, 64B line, 4-way, 32KB, 1 cycle access lat. 

L1-D $ Private, 64B line, 8-way, 64KB for Baseline, 32KB for 

WHISTLE 1 cycle access lat. 

HeapID $ 8 B line, 1024 entries, 1 cycle access lat. Fully associative. 

TI $ 256B line, 256 blocks, 32KB or 64KB, 1 cycle access lat. 

Least Frequently Used (LFU) replacement policy, fully 

associative. 

L2 $ Shared, inclusive, 64B line, 2 cycles access lat. 2MB, 

16way. 

DRAM Built-in memory model in gem5. 
TABLE 2: Parameters of the simulated architecture. HeapID Cache and 
TI Cache are not included in baseline system. 64KB size of TI cache 
used for the fully synchronous check and 32KB size of that used for 
the fully asynchronous check. 

the inputs given by SPEC2017 [22], downloaded extra input data 

from online source [31], and changed the input parameters until 

no more invariants are found. 

To emulate invariant embedding, we modify the source code 

of target benchmarks to allocate additional global memory to hold 

the invariant section. We extract information from the binaries 

(ELF format) such as regions of data segments (.data, .rodata, 

and .bss section) and code segment (.text) as well as addresses of 

malloc and free functions. Then, these binary layout information 

is referred by gem5 during simulation. This enables us to simply 

reflect extensions to compiler and operating systems. 

We evaluate WHISTLE for both HW and SW violations. We 

write four programs of Spectre variants (SpectrePHT/BTB/RSB/STL) 

[19] with eviction based cache side-channel to evaluate HW 

violations and use BugBench [20] and test cases from NIST [21] for 

SW violations. After profiling with bug-free inputs, the test 

programs are executed again with bug-triggering inputs. We also 

run SPEC CPU2017 [22] for both security and overhead evaluation. 

We use the reference input size and simulate for 1 billion 

instructions after warming up microarchitecture states with 1 

billion instructions in system-call emulation mode3. 

7.1 SW and HW Violations 

Table 3 lists the applications and validation results. BugBench 

provides simplified real-world applications (gzip, man, ncompress, 

and polymorph) with buffer overflow bugs in the stack and global 

objects, and NIST provides test cases to evaluate the Use-After- 

Free bugs in heap objects. Buffer overflow bugs are detected by 
WHISTLE and it also detects the Use-After-Free bugs because 

Offset Invariant  
Ptr Addr Data Tag V Frequency #CB PC - 0 PC - 29 

= 

= 
= 

Invariant Violation 

… 

PC Found Tag matched 

Top Invariant Block (TIB) 
Invariant  

Block Addr 
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WHISTLE keeps track of allocation/deallocation of heap objects 

using Heap ID cache. We do not observe false positives. 

WHISTLE can fully detect three out of four Spectre variants. 

First, in Spectre-PHT [3], transient instructions are exploited to 

access a secret using an array out-of-bound access. Since this 

access was not observed during profiling, WHISTLE raises an 

exception and the program stopped. Second, Spectre-RSB exploits 

3. System call emulation has one-to-one page mapping and requires no TLB 
translation. Also, invariants are stored continuously in virtual and physical 
spaces, and invariant address are directly translated using offsets and CCIDs. 
We envision that both the program data and invariant addresses should be 
translated with page tables managed by OS, and CPU will perform TLB lookup 
for both. The existing TLB and Page Miss Handler can be reused for invariant 
addresses, with potentially larger buffer to reduce the overhead. Due to 
simulation limitations and significant workload for implementing OS-level 
handler, we leave this experiment for future work. 

 BugBench [20] 

gzip1.2.4 ✓ ✗ ✓ 
ncompress ✓ ✗ ✓ 
man1.5h1 ✓ ✗ ✓ 

polymorph-0.4.0 ✓ ✗ ✓ 

 
NIST [21] 

ID 102226 ✓ ✗ ✓ 
ID 102247 ✓ ✗ ✓ 
ID 102618 ✓ ✗ ✓ 

ID 2151 ✓ ✗ ✓ 

 Spectre [19] 

Spectre-PHT ✗ ✓ ✓ 
Spectre-BTB ✗ ✓  

Spectre-RSB ✗ ✓ G#✓ 
Spectre-STL ✗ ✓ ✓ 

TABLE 3: Evaluation results with spatial, temporal, and transient 

memory violations in BOGO [5], InvisiSpec(IS) [16], and WHISTLE 

validation. ✓ means that the violation is detected. ✗ means that the 

detected, since WHISTLE only detects Spectre-BTB when there is aG# 

violation is not detected. means that the violation is circumstantially 

preceding memory corruption to mistrain the BTB. 

Return Stack Buffer to hijack return flow. PoC program mimics the 

attacker’s behavior using a gadget function and malicious code 

resides after the gadget function call. Gadget function is invoked 

only during the attack and WHISTLE detects the violation from the 

malicious code. Three, Spectre-STL exploits memory 

disambiguator. PoC program inserts malicious load instruction 

after naive store instruction clearing secret data so that the load 

instruction reads the secret before clearing it. Again, this 

malicious load did not appear in the profile and WHISTLE detects 

this variant as well. 

The only exception is Spectre-BTB, which WHISTLE can only 

detect under specific circumstances. Spectre-BTB, unlike other 

Spectre variants, exploits control flow violations instead of data 

access violations. Since WHISTLE does not check instruction 

fetching, it cannot detect control flow violations. However, to 

cause Spectre-BTB, the attacker needs to mistrain the BTB in order 

to change the control flow. The attacker may use a buffer overflow 

to corrupt a code pointer or return address, which can be detected 

by WHISTLE. WHISTLE cannot detect Spectre-BTB if the attacker 

uses other mistraining methods, such as mistraining from another 

thread. Potentially, WHISTLE can extend the invariant profiling 

and checking to instruction cache. That way, WHISTLE will be able 

to detect control flow violations that cause invariant violations in 

the instruction cache. We leave this extension for future work. 

7.2 Comparison against with BOGO and InvisiSpec 

We run PoC programs for both BOGO [5] and InvisiSpec [16] that 

are SW and HW memory violation detection techniques 

respectively. As shown in Table 3, neither BOGO nor InvisiSpec 

detect all the violations. BOGO provides full memory safety on top 

of MPX-enabled [15] processors, but it is limited to committed 

load or store instructions resulting in failure to detect the 

transient attacks. InvisiSpec defends against the transient attacks 

by blocking cache side channels. However, InvisiSpec is not 

designed to defend SW violations. We discuss more related works 

in §9. 

7.3 Coverage of HW vs. SW Profiler 

We implement both HW and SW profilers, and evaluate the 

coverage of using gem5 simulator with out-of-order core. HW 

profiler records every memory access, either transient or 

nontransient. We profile the first billion instructions for collecting 

the 

 

calling contexts, and the second billion instructions for collecting 

both the calling contexts and the invariants. On the other hand, 

SW profiler records only committed memory accesses, which can 

miss hardware vulnerabilities that rely on transient executions, 

such as recent speculation-based attacks, Spectre and Meltdown. 

Figure 10 shows the coverage of HW profiler in terms of number 

of invariant sets compared to SW profiler. HW profiler covers 60% 

more invariant sets. perlbench s and mcf s have higher coverage 

than other benchmarks. The number of squashed memory 

instruction is dependent on program characteristics, such as 

number of branches, indirect jumps, and/or HW components 

associated with speculative execution, such as branch predictor. 

Parameter Value   Source Application BOGO IS WHISTLE 

 - 

 0.5 

 1.0 

 1.5 

 2.0 

 2.5 

 3.0 
SW Invrsets HW Invrsets 
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7.4 Attack Surface Reduction 

We also measure the reduction of attack surface in terms of 

software and hardware memory safety violation, based on how 

many rogue memory accesses in a program will be accepted by 

the system. Here, we define the memory-specific attack surface 

as the number of PCs allowed to access a specific memory location 

under a specific calling context. In TABLE 4, we show that for each 

invariant set, there are 2.60–20.01 PCs in average allowed to 

access the memory. However, without WHISTLE, a SpectreBTB 

attack can change the control flow speculatively to allow any 

memory accessing PC to read/write any memory location. 

Considering that for each program in CPU2017, there are at least 

1,220–25,405 unique PCs during the profile that access memory, 

the attack surface reduction by WHISTLE is 99.80–99.99%. 

 # Unique # Invariant Avg. # PCs Attack Surface 

Benchmarks PCs Sets / Inv. Set Reduction 

perlbench s 18,482 6,685 14.83 99.98% 
gcc s 16,975 2,671 20.01 99.96% 
mcf s 1,258 1,234 5.27 99.91% 
cactuBSSN s 25,405 298,649 6.54 99.99% 

lbm s 1220 517 4.76 99.80% 
omnetpp s 7,934 21,605 5.00 99.99% 
xalancbmk s 4,326 16,139 4.23 99.99% 
x264 s 3,827 4,200 3.32 99.97% 

imagick s 2,865 7,819 2.60 99.98% 
leela s 2,678 5,755 2.79 99.98% 
nab s 2,515 5,118 4.93 99.98% 
xz s 1,305 897 3.81 99.88% 

TABLE 4: Assessment of attack surface reduction in SPEC CPU2017 
using WHISTLE, based on the number of PCs allowed to access each 
memory location. 

7.5 Exception Latency Reduction 

We measure how fast security exception is raised before 

instructions are committed. We collect the number of cycles 

elapsed 

 

between memory request, invariant check and instruction 

retirement, and calculate how much earlier the proposed 

exception is raised, compared to the number of cycles elapsed 

between memory request and instruction retirement with the 

assumption that the exceptions in the baseline without any 

mitigation for memory safety violations occur at retirement of the 

corresponding instruction. In Figure 11, a light red bar represents 

the cycle difference between memory request and invariant check, 

which is the exception latency with asynchronous check. The 

entire bar with light and dark red bar represents the cycle 

difference between memory request and the retirement, which is 

the exception latency with baseline. On an average, the security 

exception requires 15% less time than that of the baseline system. 

Since, in asynchronous check, data could be supplied to the core 

before invariant check is finished, there may exist a small window 

of exploitation. Note that for applications with strong security 

requirement, we can enable synchronous checking. 

8 OVERHEAD EVALUATION 

We first show the performance overhead of the proposed 

microarchitecture with invariant check over the baseline, analyze 

the source of the overhead, and discuss how to overcome. Then, 

we describe the trade-off between different invariant check 

policies. Last, we evaluate overhead of area and energy. We 

observe that cactuBSSN s and lbm s allocate the large number of 

heap objects and few heap objects with large size respectively. We 

limit the number of heap objects and the maximum heap size to 

500 objects and 100MB respectively. The reason is that the heap 

size can be up to gigabytes and causes the invariant size to explode. 

We believe that it can be improved by applying compression or 

deduplication techniques. We leave this work for future work. 

After adjustment, benchmarks generate invariant set with 

maximum size 251MB and 27MB on an average. 

8.1 Performance Overhead 

Figure 12 shows the normalized execution time of CPU2017 over 

baseline. For each program, we check the invariants based on 

cache line granularity and simulated for 1 billion instructions after 

warming up microarchitecture states with 1 billion instructions in 

system-call emulation mode. Average performance overheads of 

synchronous and asynchronous invariant check are 53% and 15% 

respectively. We use 64KB size of the TI cache for synchronous 

checking and 32KB of that for asynchronous checking to efficiently 

use the cache capacity. The main sources of performance 

degradation are round-trip latency and the number of invariant 
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Fig. 11: Reduction of security exception latency in asynchronous 
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Fig. 13: Average Roundtrip Latency (Left Y Axis) and Total Number of 
Invariant Check (Right Y Axis). 

checks out of total L1D cache accesses, which are shown in Figure 

134. Benchmarks with greater latency and more number of 

invariant check have higher performance overhead compared to 

other benchmarks. For instance, we observe the overhead of 

cactuBSSN s as an outlier, which can be attributed to extremely 

large number of invariant sets (298,649) resulting in high average 

round trip latency shown in Figure 13. Note that the number of 

Top Invariant Cache Blocks (TIB) are 128 that is not sufficient size 

for cactuBSSN s. On the other hand, x264 s and xz s have negligible 

overheads (3%) due to small number of invariant sets and good 

locality making small TI cache miss rate as shown in Table 4 and 

Figure 14 respectively. Because the number of invariant checks 

are the property of benchmarks, we cannot reduce them. Instead, 

we focus on latency of invariant check which depends on the 

performance of TI cache. As shown in Figure 14, benchmarks with 

high overhead have high miss rate in TI cache. We consider a hit 

in TI cache if PC is found in the TI cache block. In other words, even 

if the TI cache block is installed, if the PC is not found, it is miss 

because TI cache should forward CHKINVR message to lower level 

cache. For example, cactuBSSN s and imagick s suffer from in low 

performance because of the high miss rate in TI cache with 38% 

and 27% respectively. 

8.2 Sensitivity of TI Cache 

We study the sensitivity of TI cache size to understand the 

performance impact with different size of TI cache and its 

configuration. Figure 15 shows the miss rate of TI cache with 

different number of blocks (128 and 256 blocks for every 

benchmark except perlbench s) and wider blocks (512 byte that 

can store 64 most frequently used PCs for perlbench s). We 

observe that 

4. We observe that there are many memory accesses to sections of the ELF 
binary during libc library functions calls. That is the reason why the number of 
checks are not mostly full even if WHISTLE checks all the memory access to 
global, stack, and heap objects. 

 
configures with 256B block size. perlbench s is configured differently 
with 512 block size and 128 cache blocks for 64KB size TI cache. 

miss rates are reduced with more number of TI cache blocks but 

not perlbench s. This is because perlbench s has 10% of invariant 

sets with more than 32 PCs as shown in Figure 7 and we observe 

that accesses from 10% is still significant. Therefore, we doubled 

the block size for perlbench s instead increasing the number of 

blocks and the miss rate decreased. Doubling the cache size incurs 

negligible area overhead(∼ 5%) as discussed in §8.5 so we can 

improve the performance with even larger than 64KB TI cache. On 

the other hand, asynchronous is not much sensitive than 

synchronous check as shown in Figure 12. This shows the high 

performance performance overhead with 32KB TI cache but not 

huge reduction of the performance with asynchronous check. 

Another optimization can further improve the round trip latency 

for invariant check. For example, becuase WHISTLE uses indirect 

Tag for TI cache block access (§6.8.2), it requires extra memory 

access that increases the miss penalty. We could use hash function 

with tags (invariant pointer address and offset) for getting 

addresses of invariant blocks. We leave this work for future work. 

8.3 Performance Impact of Invariant section 

We evaluate size of invariant section and its impact on 

performance. Figure 16 shows the increment of binary sizes of 

each benchmark after the invariants are embedded. Size of 

invariant section is mainly determined by the number of CCID and 

the number of invariant blocks for global, stack, and heap as 

described in Figure 6. For example, cactuBSSN s is profiled with 

251MB size of invariant section due to greater number of invariant 

blocks compared to other benchmarks. We observed 27MB size of 

invariant section on an average. 
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8.4 Comparison of Invariant Check Policies 

We conduct an experiment to evaluate the performance overhead 

of WHISTLE with mixture of synchronous and asynchronous 

invariant checks. In order to see the performance trade-off 

between 

 
and asynchronous. TI Cache with 32KB size used. There are spectrum 
of synchronous-asynchronous checks - 100%-0% (Sync), 70%-30% 
(Syn7-Async3), 50%-50% (Syn5-Async5), 30%-70% (Syn3-Async7), and 
0%-100% (Async). 

them, all the targeted memory accesses are randomly marked 

whether it is either synchronously or asynchronously checked 

based on a given ratio. We configure the ratios as 70%-30%, 50%-

50%, and 30%-70% for synchronous-asynchronous checks, 

respectively, and have one run for each configuration. Figure 17 

shows the performance overhead decreases as the portion of 

asynchronous check increases. Depending on the security level, 

WHISTLE can adjust the ratio of synchronous-asynchronous check 

for better performance. 

8.5 Area and Energy Overhead 

We estimate hardware budget using CACTI-7 [32] at 22nm. 

WHISTLE uses TI Cache to hold invariant and it has two tags– data 

and invariant pointer and extra 8 bytes metadata to store address 

of invariant block and its block size is 256 bytes. Heap ID cache 

uses both start and end address of corresponding heap object for 

tag matching to find CID of heap creation on the core side. Also, 

WHISTLE extends branch target buffer (BTB) and return stack 

buffer (RSB) to store 8 byte CCW and CCID. TI cache with 32KB size 

takes 3.19561 mm2 of area and 1.077067 nJ of energy and 64KB 

size of TI cache incurs 5% more area and 1% more energy. Heap 

ID cache takes 0.323398 mm2 of area and 0.0991182 nJ of energy. 

Extended BTB increase 0.197777129 mm2 of area and 0.517251 nJ 

of energy. We consider that parallel tag matching logic in TI cache 

is being implemented using Content Addressable Memory (CAM), 

which has very low area, energy, latency implication. 

9 RELATED WORK 

In this section, we discuss hardware defenses for memory safety. 

We summarize the prior works in Table 6. 

 Area (mm2) Energy/Access (nJ) 

TI Cache (32KB/64KB) 3.19561/3.36907 1.077067/1.090471 

HeapID Cache 0.323398 0.0991182 

BTB & RAS 0.1977129 0.0517251 
TABLE 5: Area and energy overhead of each component added by 
WHISTLE. 

 

# 

 Title SP TP TR SE FS AB 

 

DataSafe [33] ✓ ✓ ✗ ✗ ✓  

DIFT [34] ✓ ✓ ✗ ✗ ✗ # 
Rakhsa [35] ✓ ✓ ✗ ✓ ✓* # 
LIFT [36] ✓ ✓ ✗ ✗ ✗ # 

 

HardBound [23] ✓ ✗ ✗ ✓ ✗  

Intel MPX [15] ✓ ✓ ✗ ✓ ✗ # 
BOGO [5] ✓ ✓ ✗ ✓ ✗ # 
CHERIvoke [24] ✓ ✓ ✗ ✓ ✗ # 
REST [14] ✓ ✓ ✗ ✓ ✗ #⊘ 
Caliform [9] ✓ ✓ ✓* ✓ ✗ ⊘ 
CHEx86 [10] ✓ ✓ ✓* ✗ ✗  

AOS [4] ✓ ✓ ✗ ✓ ✗ # 
HeapCheck [13] ✓ ✓ ✓ ✓ ✗ # 
No-FAT [12] ✓ ✓ ✓ ✓ ✗ # 
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# 

# 

TABLE 6: Summary of Prior Works. SP: Spatial memory safety,#TP: 
Temporal memory safety, TR: Transient memory safety, SE: Security 
exception, FS: Flexible Security, AB: Allowlisting or Blocklisting 
approach (✓: Fully Supported, ✗: Not Supported, ✓*: Partially 
Supported, #: Allowlisting, ⊘: Blocklisting.). 

Dynamic Information Flow Tracking (DIFT): One of the 

challenges of DIFT is the runtime overhead. To reduce this 

overhead, LIFT [36] eliminates unnecessary checks by dynamic 

binary inspection. Later, FPGAs are used for low overhead 

information tracking. Compared to DIFT, WHISTLE focuses on 

detecting the every instruction which accesses the sensitive 

variables, rather than tracking the information flow beforehand or 

afterwards. 

Bounds Checking: Bounds checking [2] detects memory access 

that exceeds the expected lower or upper bound. Architectural 

stupports are proposed for bound checking in recent works [5], 

[15], [23], [24]. Several other works apply coloring to implement 

allowlisting policies [25], which fail to support intraobject memory 

protection. Recently, REST [14] and Caliform [9] employ 

blocklisting policies to detect memory safety violation. CHEx86 

proposes a speculative pointer tracking mechanism to track 

pointers and support bounds checking by intercepting malloc 

function [10] while AOS instruments malloc function to propagate 

pointer information to hardware for heap object bounds checking 

[4]. HeapCheck [13] enforces bounds checking on memory 

requests from the CPUs, based on object bounds provided from 

hooked allocation and deallocation routines. No-FAT [12] uses 

statically transformed instructions to enforce bounds checking on 

heap objects, with object bounds determined from memory 

locations. Compared to bounds checking, WHISTLE provides a 

more general approach to check memory safety rules, including 

rules that are within objects. 

Monitoring Based Solutions: Other works focus on monitoring 

memory violations at runtime based on given policy [6]. 

Nile [43] and PHMon [44] are recent works which provide 

hardware assisted frameworks for general monitoring. Flexible 

support for different security levels can be realized through 

different policies and extensions, or allocating various security 

budgets [37], [38]. However, none of aforementioned works 

considers transient execution memory safety threats as hardware 

vulnerabilities exploited by Spectre and Meltdown (except 

CHEx86, which defends against Spectre-v1). Recently, hardware 

defenses are proposed to isolate the impact of speculative 

execution before the changes become permanent in cache 

hierarchy [8], [16]. The design of WHISTLE is meant to detect the 

violating instruction, instead of mitigating the consequence (e.g., 

side channel) of violation in cache, TLB, or other components. 

Similar to this work, SpecCFI [7] takes allowlisting approach 

and uses in-architecture checks for jump, call and return targets 

within transient execution, to prevent Speculative control-flow 

attacks [3]. SpecCFI generates the CFI rules using the existing 

compiler support. WHISTLE focuses on data access but can be 

extended for CFI. 

Cryptographic Capability Computing (C3) [11] encrypts both 

the values and the corresponding pointers using encryption keys 

generated from the sizes, the size-aligned base addresses, and 

versions of the pointers. C3 can prevent both spatial and temporal 

memory safety violations, since any of these violations will lead to 

wrong encryption keys and garbled plaintexts. WHISTLE also offers 

uniform protection against spatial, temporal, and speculative 

memory violations, but does not require memory encryption. 
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CFI SpecCFI [7] ✓ ✗ ✓ ✓ ✗ # 

 C3 [11] ✓ ✓ ✓ ✓ ✗ 
# 

 WHISTLE ✓ ✓ ✓ ✓ ✓  
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10 CONCLUSIONS 

We proposed WHISTLE, a program invariant-based technique to 

detect HW and SW memory violations. Our proposed hardware 

profiler can construct memory invariants from both transient and 

non-transient instructions. The proposed TI cache enables fast 

checking of invariants when loading data. TI cache works with the 

memory hierarchy to store invariants at different levels based on 

access frequency. WHISTLE provides both synchronous and 

asynchronous checking of invariants; the latter includes a fast 

security exception to alert the OS about an attempted access that 

violates the invariants. We believe WHISTLE to be a stepping stone 

towards a systematic solution to prevent both HW and SW 

memory safety violations. 
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