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ABSTRACT
Multinomial Logit (MNL) is one of the most popular discrete choice
models and has been widely used to model ranking data. How-
ever, there is a long-standing technical challenge of learning MNL
from many real-world ranking data: exact calculation of the MNL
likelihood of partial rankings is generally intractable. In this work,
we develop a scalable method for approximating the MNL likeli-
hood of general partial rankings in polynomial time complexity.
We also extend the proposed method to learn mixture of MNL. We
demonstrate that the proposed methods are particularly helpful for
applications to choice-based network formation modeling, where
the formation of new edges in a network is viewed as individuals
making choices of their friends over a candidate set. The problem
of learning mixture of MNL models from partial rankings naturally
arises in such applications. And the proposed methods can be used
to learnMNLmodels from network data without the strong assump-
tion that temporal orders of all the edge formation are available.
We conduct experiments on both synthetic and real-world network
data to demonstrate that the proposed methods achieve more accu-
rate parameter estimation and better �tness of data compared to
conventional methods1.
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1 INTRODUCTION
Discrete choice models [49] concern how individuals make choices
from a candidate set of alternatives, and have wide applications in
many areas, such as recommendation [35], information retrieval [25],
economics [31], etc. With the increasing availability of abundant
real-world data, more and more often we not only have the record
of people’s single choice over the candidate set, but also relative
rankings of multiple items. Learning discrete choice models from
ranking data has thus attracted much research attention [15, 24, 25].
In this paper, we focus on the problem of learning Multinomial logit
(MNL) model, which is one of the most popular discrete choice mod-
els and also known as Plackett-Luce model [27, 42].

One long-standing technical challenge for learning MNL model
from real-world ranking data is that the exact calculation of the
MNL likelihood of partial rankings is generally intractable when
the number of candidate choices is large. This computational chal-
lenge has limited the application of MNL model to some special
types of ranking data, such as Top- ranking, where the exact order
of the top  candidates is required to be known. There are two
lines of research that aim to approximate the MNL likelihood of
general partial rankings. The �rst direction is to use rank break-
ing [20, 21, 46], which usually extracts pairwise comparisons from
the general partial rankings and treats the pairs as independent
observations. To mitigate the information loss in the extraction
of pairwise comparisons, Khetan and Oh [21] further proposed
generalized rank breaking, which extracts maximal ordered par-
titions from the general partial rankings to preserve more order
information. The second direction is to approximate the likelihood
by Markov Chain Monte Carlo (MCMC) sampling [24]. However,
both generalized rank breaking and sampling-based methods suf-
fer from an exponential time complexity in terms of the number
of candidate choices, which are not suitable for large-scale social
network modeling. Recently, Ma et al. [28] demonstrated that the
likelihood of Partitioned-Preference rankings, which is a special type
of partial rankings but is more general than Top- rankings, can
be e�ciently approximated through a numerical integral approach.

In this paper, our �rst contribution is the development of a scal-
able method for learning MNL from general partial rankings, by
combining the idea of generalized rank breaking [21] and the nume-
rial integral approach [28]. We also extend the method to learn the
mixture of MNLmodels by proposing an Expectation-Maximization
(EM) algorithmwith a novel initialization method to facilitate better
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convergence. Through simulation study, we demonstrate that the
proposed methods are able to achieve signi�cantly lower computa-
tional cost while having similar estimation accuracy compared to
state-of-the-art sampling-based baseline methods.

We further demonstrate that the proposed methods are partic-
ularly useful on applications to choice-based network formation
modeling, which is a new and exciting application domain of the
MNL model recently introduced by Overgoor et al. [39]. Concretely,
we can view the social network formation process as people making
choices of their friends. The formation of each new edge in the
network can be viewed as a node choosing to connect another node,
over all the candidate nodes available. Most prior choice-based net-
work modeling methods assume the temporal orders of all the edge
formation are available and interpret the sequentially established
edges as top- rankings [39, 40]. However, such assumptions may
be unrealistic in practice. On one hand, there are a lot of network
data where the temporal formation information is partially missing
or even totally unavailable. On the other hand, the temporal infor-
mation does not necessarily imply the level of preference in the
friend choices. Our proposed methods, instead, do not rely on such
strong assumptions when being used to learn the MNL models.

We apply the proposedmethods to large-scale network formation
modeling on both synthetic and real-world networks. We generate
synthetic network through mixture of preferential attachment and
uniform attachment models. Our empirical results demonstrate
that the proposed methods are able to faithfully recover the ground
truth parameters of the generative models, while prior choice-based
network formation modeling methods fail when the temporal infor-
mation is missing. Experiments on two real-world networks show
that the proposed methods are able to achieve better link predica-
tion accuracy than prior baselines, suggesting that the proposed
methods are able to achieve a better �tness of the data.

2 RELATEDWORK
2.1 Learning MNL from Partial Rankings
Many algorithms have been proposed to learn MNL model from
ranking data [1, 5, 15, 21, 28, 30, 36] and its mixture [10, 24, 34,
37, 54]. However, few of them is able to learn mixture of MNL
models from general partial rankings in a tractable time. Among
the existing methods to learn MNL models, some are designed for
full rankings [1, 54]; some are designed for special cases of partial
rankings [15, 21, 28, 30, 34, 36], e.g., Top- rankings or Partitioned-
Preference rankings. But only a few algorithms are proposed to
learn MNL models from the most general partial rankings. More-
over, existing methods that can process general partial rankings all
su�er from the intractable time complexity. Liu et al. [24] proposed
an algorithm that samples full rankings from partial rankings to
learn the MNL model, but this method is not scalable for large
dataset due to its exponential time complexity with respect to the
number of items. The algorithm by Khetan and Oh [21] breaks
the general partial rankings into maximal-ordered partitions but
has to discard a part of hard-to-evaluate data to con�ne the time
complexity. Though the method proposed by Ma et al. [28] is able
to learn MNL models in polynomial time, it can handle partitioned
preferences at best, which is still not the most general case. Our
proposed method combines the algorithms of Khetan and Oh [21]

andMa et al. [28] to tackle this problem using an e�cient numerical
integral estimation that can be evaluated in polynomial time.

2.2 Network Formation Modeling with Discrete
Choice Models

Modeling the formation and growth of network is essential to
explore the structure of networks [8, 13, 16]. Overgoor et al. [39]
recently proposed a framework to model the growth of network
as discrete choice of incoming and existing nodes. This framework
is general enough to include many existing growth patterns, e.g.
preferential attachment. Inspired by this framework, a vast number
of researches utilize the temporal information of social networks to
better understand the dynamics of the networks [23, 43, 48, 51, 53].
Many researchers apply this framework in various domains related
to networks such as sociology, physics, medical science and etc [9,
14, 18, 19, 23, 29, 38, 44, 50]. Moreover, many extensions have been
made from this framework [3, 11, 40, 48].

In complement of the existing studies, this work applies our
proposed MNL learning methods to handle the situations where
temporal information of the edge formation is not fully available
or where the temporal information does not directly translate to
the preference of nodes. In such situations, learning from partial
rankings naturally arises.

3 FAST LEARNING OF MNL FROM GENERAL
PARTIAL RANKINGS

In this section, we investigate how to e�ciently learn an MNL
model from general partial rankings. We develop a scalable method
by combining the ideas from two recent studies [21, 28]. We also
extend the proposed method to e�ciently learn a mixture of MNL
model with an EM algorithm.

3.1 Problem Formulation and Notations
We start by introducing the formal de�nition of the MNL model,
and the intractability problem of estimating the MNL likelihood of
general partial rankings.
The MNL model. An MNL model is a popular discrete choice
model that characterizes how one makes choices from a group of
items. In particular, we assume each individual has an underlying
utility score for each of the item, and the observed rankings of the
items given by the individuals are noisy version of the utility score
order. Now suppose there are # di�erent items and denote the
set of items, {1, . . . ,# }, by b# c. Also denote the set of all possible
permutations of b# c as 2 b# c . The MNL model is de�ned below.

D��������� 1 (M���������� ����� (MNL) �����). For an indi-
vidual withw = [F1, . . . ,F# ]) as the underlying utility scores of the
# items, under an MNL model, the probability of observing a certain
ranking of these items, (81, 82, . . . , 8# ) 2 2 b# c , is de�ned as

? ((81, 82, . . . , 8# ) ;w) =
#÷
9=1

exp
⇣
F8 9

⌘
Õ#
;=9 exp

�
F8;

� . (1)

Partial rankings. In practice, we often do not observe clear full
rankings of the # items. For example, we may know someone’s
favorite top 5movies or friends, but rarely their full preferences over
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Figure 1: An illustrative example of the conversion from
a poset to a DAG, and the extraction of the Partitioned-
Preference rankings from a DAG.

all the movies or all the friends. Mathematically, we can represent
such partially observed rankings as partially ordered sets (posets).
For example, a poset, {(3 � 2), (3 � 5), (4 � 1)}, which is de�ned
on the set of items {1, 2, 3, 4, 5} and indicates that the item 3 is
preferred over the item 2 and the item 5; the item 4 is ranked higher
than the item 1; but the relative ranking between, e.g., the item 3
and the item 1 is unknown.

There are two well-known properties of posets, which we will
utilize in this paper. First, assuming that there is no tied ranking,
each poset corresponds to a directed acyclic graph (DAG). See Fig-
ure 1 as an example. Second, we can de�ne extensions and linear
extensions of a poset, where the latter can be used to characterize
the full rankings that are consistent with a partial ranking.

D��������� 2 (E�������� �� �����). A poset G2 is an extension
of another poset G1 if both posets are de�ned on the same set of items
- , and for all elements G,~ 2 - , if (G � ~) 2 G1, then (G � ~) 2 G2.
Moreover, we call G2 a linear extension of G1 if G2 is additionally a
full order of - . And we denote the set of all linear extensions of G1 on
- as ⌦(G1;- ).

Intractability of the MNL likelihood on partial rankings. Un-
der anMNLmodel parameterized by utility scoresw , the probability
of observing a partial ranking G is the total probability of full rank-
ings that are consistent with the observed G, which is given by

% (G;w) =
’

(81,· · · ,8# )2⌦ (G; b# c)

#÷
;=1

exp
�
F8;

�
Õ#
A=; exp

�
F8A

� . (2)

For general partial rankings, the number of linear extensions
usually grows exponentially with the number of items# . Therefore,
the summation over ⌦(G; b# c) in Eq. (2) makes the likelihood
intractable to calculate. Furthermore, except for a few special types
of partial rankings, there is no easy way to simplify Eq. (2) into a
tractable closed-form formula.
Partitioned-Preference rankings. In Section 3.3, we propose a
polynomial-time algorithm that is able to e�ciently approximate
the MNL likelihood of partial rankings for large # . The proposed
method is built on top of Ma et al. [28], which proposed a numerical
approach for fast calculation of the MNL likelihood of a special

type of partial rankings, Partitioned-Preference rankings [22, 26, 28],
as formally de�ned below.

D��������� 3 (P�����������P��������� ��������). Given a
subset ( ⇢ b# c, an ordered list of" disjoint partitions of ( ,
((1, (2, . . . , (" ) is called a Partitioned-Preference ranking on ( if (a)
["<=1 = ( and (<\(<0 = ; for any< <<0; (b) (1 � (2 � · · · � (" ,
where (< � (<0 indicates that any item in the partition (< has a
higher rank than items in the partition (<0 ; (c) the relative ranking
of items within the same partition is unknown.

It is easy to verify that Partitioned-Preference rankings are a
strict subset of partial rankings through a counter example below.

L���� 1. The partial ranking {(3 � 2), (3 � 5), (4 � 1)} is not a
Partitioned-Preference ranking on {1, 2, 3, 4, 5}.

P����. See Appendix A.1. ⇤

3.2 Preliminary: A Numerical Approach for
Partitioned-Preference Rankings

As a preliminary, we brie�y review the numerical approach pro-
posed by Ma et al. [28]. At the core of this approach is an alternative
formulation of the MNL likelihood of a Partitioned-Preference rank-
ing. It is shown that when the partial ranking takes the form of
(1 � · · · (" , the likelihood in Eq. (2) can be rewritten as

% ((1 � · · · � (" ;w) =
"�1÷
<=1

π 1

D=0

÷
82(<

⇣
1 � Dexp(F8�F'<+1 )

⌘
3D,

(3)
where '<+1 = [";=<+1(; andF'<+1 = log

Õ
9 2'<+1 exp

�
F 9

�
.

Compared to Eq. (2), Eq. (3) does not involve the intractable sum-
mation over all the linear extensions. While the exact calculation
of Eq. (3) is still not tractable due to the integrals involved in the
formula, these integrals are one-dimensional and can be e�ciently
approximated by numerical integration. Furthermore, the gradi-
ents of the likelihood with respect to the utility score w can also
be approximated by numerical integration. It is also shown that,
to achieve any given numerical precision Y for the likelihood and
the gradients, the time complexity of the numerical approach is at
most $ (# + 1

Y

��["�1<=1(<
��3), which is much more e�cient than the

exponential complexity if using Eq. (2).

3.3 A Polynomial-Time Algorithm for MNL
Likelihood of General Partial Rankings

As we have seen at the end of Section 3.1, Partitioned-Preference
rankings are a strict subset of partial rankings. Therefore, the nu-
merical approach using Eq. (3) cannot be directly applied to ap-
proximate the MNL likelihood of more general partial rankings.
However, inspired by Ma et al. [28], we can utilize the idea of Gener-
alized Rank Breaking (GRB) [21] to extend the numerical approach
to derive a polynomial-time algorithm approximating the MNL
likelihood of general partial rankings.

Speci�cally, Khetan and Oh [21] demonstrate that, for each gen-
eral partial ranking, extracting maximal-ordered partitions (which
correspond to Partitioned-Pereference rankings) of the correspond-
ing DAG and calculating likelihood of the extracted Partitioned-
Preference rankings can be a good proxy of the original likelihood.
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Therefore, a natural idea extending the numerical approach [28]
to general partial rankings is to �rst extract (multiple) Partitioned-
Preference rankings from the corresponding DAG, and then use the
numerical approach to estimate the likelihood of each Partitioned-
Preference ranking.

However, a remaining question is how to calculate the joint like-
lihood of multiple Partitioned-Preference rankings. Fortunately, we
show in the following Proposition 1 that the joint likelihood of mul-
tiple Partitioned-Preference rankings can be simply decomposed
as the product of individual Partitioned-Preference ranking’s.

P���������� 1. For two sets of Partitioned-Preference rankings
(1 � · · · � (" and )1 � · · · � )"0 , where ["<=1(< = ( and
["0<=1 = ) , and (,) ✓ b# c. To ease the notation, we use G( to
denote the partial ranking (1 � · · · � (" and similarly de�ne G) . If
( \) = ;, then

% (G( ,G) ;w) = % (G( ;w)% (G) ;w). (4)

P����. See Appendix A.2. ⇤

We summarize the proposed method for e�ciently approximat-
ing the MNL likelihood of a general partial ranking G in Algo-
rithm 1, which we call it Numerical GRB (NumGRB for short).

Algorithm 1: Numerical GRB (NumGRB)
input :A partial ranking G.
Output :Approximate log-likelihood ; (G) for G.

1 ; (G)  0;
2 C  Strongly connected components of G;
3 for G0 2 C do
4 (  [ ];
5 while |+4AC824B (G0) | > 0 do
6 !  Lowest common ancestors of all sink nodes of

G0;
7 (  [+4AC824B (G0)\! , ] + ( ;
8 G0  subgraph of G0 induced by !;
9 ; (G)  ; (G) + % (( ;w) where % (( ;w) is computed by

Eq. (3);
10 return ; (G)

Model learning. For any model parameterizing the utility scores
w , the model parameters can be learned by minimizing the negative
log-likelihood through gradient descent methods. The gradients of
the likelihood for each Partitioned-Preference ranking can also be
e�ciently calculated through numerical integral. In the rest of this
paper, we also call this model learning method as NumGRB.
Time complexity of Algorithm 1. The major sub-procedures
of Algorithm 1 are (1) �nding the strongly connected components
(SCCs) of the DAG, (2) extracting the maximal-ordered partition for
each SCC by recursively �nding the common ancestor algorithm,
and (3) calculating the log-likelihood (and its gradients) of each
Partitioned-Preference ranking through the numerical approach.
Speci�cally, �nding the SCCs have time complexity$ (# +⇢), where
⇢ is the number of edges of the DAG. Extracting the Partitioned-
Preference rankings overall takes a time complexity of$ (# 3.6) [21]

(as common ancestors of all the sink nodes of a DAG can be found in
time complexity$ (# 2.6) [5]). Finally, calculating the log-likelihood
(and the gradients) using the numerical approach for each SCC
has time complexity at most $ (# 3). Therefore, the overall time
complexity for Algorithm 1 is polynomial-time2.

3.4 Learning Mixture of MNL with EM
We further extend the proposed method to learn mixture of MNL
models, which often leads to better �tness of data [55] and is of
particular interest for the application to network formation model-
ing [39, 40]. Formally, a mixture of MNL model is de�ned below.

D��������� 4 (M������ ��MNL). Given an integer : � 1, a mix-
ture ofMNLmodel contains two parts of parameters:0 = (c1, . . . , c: ),
where cA � 0 for 1  A  : , and Õ

1A : cA = 1; (w (1) , . . . ,w (:) ),
wherew (A ) 2 R# is the parameter of the A -th MNL component. The
probability of observing a partial ranking G is de�ned as

%
⇣
G;0 , (w (1) , . . . ,w (:) )

⌘
=

’
1A :

cA% (G;w (A ) ) . (5)

We propose to learn the mixture of MNL with an expectation-
maximization (EM) algorithm, where the likelihood of each MNL
component is estimated by Algorithm 1. In practice, however, stan-
dard EM algorithm with random initialization often converges to
bad local optima, which is also observed in the learning of other
types of mixture models [17]. As a remedy, we further propose a
clustering-based initialization method that greatly stabilizes the
convergence of EM.
Clustering-based initialization. It is common to initialize an EM
algorithm with clustering methods such as K-means [32]. In our
case, however, applying K-means requires us to measure the dis-
tance between partial rankings, which is rarely studied. Following
the idea that the same item is likely to have similar relative ranks
in two di�erent rankings if the two ranking are generated from
the same MNL component, we propose a novel ranking distance
to assist the clustering of ranking data. Formally, we de�ne the
relative rank of an item in a Partitioned-Preference ranking below.

D��������� 5 (R������� ����). Consider a Partitioned-Preference
ranking G( = ((1 � · · · � (" ), we de�ne the relative rank AG( (8) as

AG( (8) =
<(8) � 1
" � 1 (6)

where 1  <(8)  " and the<(8)-th partition (< (8) contains item 8 .

Intuitively, AG( (8) measures the relative rank of an item by the
rank of its partition. Then we can de�ne the ranking distance.

D��������� 6 (R������ ��������). Consider two Partitioned-
Preference rankings G( = ((1 � · · · � (" ) with ( = ["<=1(< , and
G) = ()1 � · · · � )"0) with ) = ["0<0=1)<0 , we de�ne the ranking
distance 3 between G( and G) as

3 (G( ,G) ) =

sÕ
82(\)

�
AG( (8) � AG) (8)

�2
|( \) | .

2In practice, we �nd it is usually signi�cantly faster than this worst-case bound.
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With the ranking distance de�ned in Eq. (7), we can now use
K-means to cluster all the observed partial rankings based on the
extracted Partitioned-Preference rankings. To initialize the EM al-
gorithm, we learn a single MNL model on each cluster and then
initialize an MNL component with the learned parameters. The
full EM algorithm (named NumGRB-EM) is summarized in Algo-
rithm 2.

Algorithm 2: NumGRB-EM
input :A list of = observed partial rankings

⌧ = (G1, . . . ,G=), number of components : ,
number of iterations ⌫.

Output :Parameters of the mixture of MNL:
0 , (w (1) , . . . ,w (:) ).

1 Apply clustering-based initialization tow (1) , . . . ,w (:) ;
2 Initialize c1 = · · · = c: = 1/: ;
3 for 1 = 1, . . . ,⌫ do
4 81  9  =, 1  A  : , compute % (G9 ;w (A ) ) by

Algorithm 1;
5 81  9  =, 1  A  : , compute W 9A by

W 9A  
% (G9 ;w (A ) )cAÕ:
B=1 % (G9 ;w (B) )cB

81  A  : , update cA by

cA  
Õ
9 W 9A

=

Updatew (A ) for each A , weighing each data point G9
with its class responsibility W 9A , i.e.,

w (A )  argmax
w

=’
9=1

W 9A log % (G9 ;w)

6 return 0 ,w (1) , . . . ,w (:) .

4 SIMULATION STUDY
In this section, we empirically verify the estimation accuracy and
computation cost of the proposed methods through simulation.

4.1 Experiment Setup
We compare the proposed methods, NumGRB for single MNL and
NumGRB-EM for mixture of MNL, with a state-of-the-art baseline
ELSR-Gibbs [24], which is a sampling-based method that can be
applied to learn both single and mixture of MNL.

We closely follow the simulation setup by Liu et al. [24] for our
experiments. We conduct experiments on synthetic data generated
by both single and mixture of MNL.

We treat the the utility scores w of the (mixture of) MNL as
free parameters, and respectively apply the proposed methods and
ELSR-Gibbs to learnw . We implement the proposed methods with
PyTorch [41] and use AdaGrad optimizer [6] with an initial learn-
ing rate of 0.5. For the baseline ELSR-Gibbs, we use the o�cial
implementation3 released by the authors of Liu et al. [24]. We run
3https://github.com/zhaozb08/MixPL-SPO

our experiments on a GeForce RTX 2080 Ti GPU and an Intel(R)
Xeon(R) Gold 6230 CPU @ 2.10GHz CPU.

We evaluate the estimation accuracy of each method by the mean
squared error (MSE) between the learned parameters and ground
truth parameters, both normalized with a softmax function. For the
mixture of MNL, the average MSE on all components is reported.
We also report the running time of each method to evaluate the
computation cost.

4.2 Experiments on Single MNL
Synthetic data generated by single MNL. Given the number
of items # , we �rst generate the ground truth utility scores w =
(F1, . . . ,F# ) uniformly on [�2, 2]. Then we draw = samples of
full rankings from an MNL model parameterized by w following
Eq. (1). To obtain partial rankings, we sample from all the # (#�1)

2
pairwise comparisons determined by the full rankings, and keep
each pairwise comparison with probability ? independently.

Figure 2: MSE and running time of NumGRB and ELSR-Gibbs
with varying number of items # . The sample size = is �xed
as 5,000. The sample rate ? is �xed as 0.25. Both axes of the
plots are in the logarithmic scale with base 10. The results
are averaged over 50 di�erent random seeds and error bars
(barely visible) indicate the standard error of the mean.

Results with varying number of items # . Figure 2 shows the
MSE and running time of the proposed NumGRB and the baseline
ELSR-Gibbs with # varying from 10 to 100.

In terms of MSE, the proposed NumGRB achieves similar esti-
mation accuracy on most con�gurations of # . The trend that MSE
is decreasing with # is due to the artifact that the softmax scores
of parameters sum to 1 and larger # implies smaller normalized
scores.

In terms of running time, while the proposed NumGRB has
a heavier overhead when # is small, the computational cost of
ELSR-Gibbs quickly increases and surpasses NumGRB when #
becomes larger. It is worth noting that the �gure is a log-log plot.
The linear curve of NumGRB indicates that it has a polynomial-
time complexity, while the curve of ELSR-Gibbs apparently grows
faster than linear, as ELSR-Gibbs does not have a polynomial-time
guarantee. We are not able to provide experiment comparison for
# signi�cantly larger than 100 because the baseline ELSR-Gibbs
su�ers from numerical errors for large # . In contrast, the proposed
NumGRB is still numerically stable for at least # = 1000.
Results with varying number of samples =. Figure 3 shows the
MSE and running time of the proposed NumGRB and the baseline
ELSR-Gibbs with = varying from 1,000 to 10,000. In terms of MSE,
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Figure 3: MSE and running time of NumGRB and ELSR-Gibbs
with varying number of samples =. The number of items # is
�xed as 60. The sample rate ? is �xed as 0.5. Note both axes of
the plots are in linear scale. The results are averaged over 10
di�erent random seeds and error bars indicate the standard
error of the mean.

Figure 4: MSE (averaged over three MNL components) and
running time of NumGRB-EM and ELSR-Gibbs with varying
number of items # . The sample size = is �xed as 5,000. The
sample rate ? is �xed as 0.5. Both axes are in the logarithmic
scale with base 10. The results are averaged over 50 di�erent
random seeds with the the worst 10 results discarded.

while ELSR-Gibbs appears to have better sample e�ciency, the
di�erence is not very large (note the y-axis is now in linear scale
to show the di�erence). In terms of running time, both methods
appear to increase linearly with =, but the computation cost of
ELSR-Gibbs increases faster than the proposed NumGRB.

4.3 Experiments on Mixture of MNL
Synthetic data generated by mixture of MNL. Following Liu
et al. [24], we generate synthetic data from a 3-mixture of MNL
model. We assign equal weights to the 3 mixture components, i.e.,
cA = 1/3 for A = 1, 2, 3. The con�guration for each MNL component
is the same as the single MNL described in Section 4.2. When draw-
ing each of the = samples of full rankings, we �rst randomly select
a mixture component according to c , then draw a full ranking from
this MNL component. After we get the = full rankings, we sample
partial rankings similarly as for the single MNL.
Results. Figure 4 shows the MSE and running time of the proposed
NumGRB-EM and the baseline ELSR-Gibbs with # varying from
10 to 100. We �rst note that, as the negative log-likelihood of the
mixture model is non-convex, both the proposed NumGRB-EM and
the baseline ELSR-Gibbs occasionally converge to bad local optima
where some of the mixture components are completely missed by
the model. In such a case, the performance is of orders of magnitude
worse compared to the performance when all 3 MNL components

are recovered. Such bad local optima dominate the average MSE
over di�erent random trials, making the comparison of average
MSEmeaningless. For a fair andmeaningful comparison, we discard
the worst 10 trials among the 50 random trials for each method
with each # , in order to make sure trials that do not recover all
three components are removed. We also summarize the number of
trials that converge to bad local optima for each method. For the
baseline ELSR-Gibbs, 82 out of the 500 training (50 random trials
on 10 di�erent setting of # ) fail to recover all three components.
For the proposed NumGRB-EM, only 46 out of the 500 training fail
to recover all three components.

In terms of the average MSE, we again observe that the proposed
NumGRB-EM achieves similar estimation accuracy as the baseline
ELSR-Gibbs on most con�gurations of # . In terms of the running
time, the proposed NumGRB-EM obtains even larger advantage
over ELSR-Gibbs, compared to the experiments on single MNL.

5 APPLICATION TO NETWORK FORMATION
MODELING

We further apply the proposed methods to network formation mod-
eling on both synthetic and real network data.

5.1 Network Formation as Discrete Choice
We �rst review the basic discrete-choice-based network formation
modeling framework proposed by Overgoor et al. [39]. The central
idea is to view the formation of a directed edge from node 8 to node
9 as the process that 8 chooses 9 over a set of alternative nodes,
which can then be modeled by a single MNL or a mixture of MNL.
One merit of this framework is that it elegantly uni�es many exist-
ing network formation models, such as preferential attachment [2],
uniform attachment [4], and latent space model [12]. More impor-
tantly, this framework allows one to combine node features with
di�erent network formation mechanisms into a single model and
estimate their relative importance.

Next, we review two concrete examples, preferential attachment
model and uniform attachment model.

D��������� 7 (P����������� ����������). If the formation of
new edges in a directed graph follows preferential attachment, the
new arriving node connects to an existing node 9 with a probability
proportional to a power of their degree 3 9 , i.e.,

% ( 9 ;+ ) =
3U9Õ
; 2+ 3U;

=
exp

�
U log3 9

�
Õ
; 2+ exp(U log3; )

, (7)

where + denotes the candidate set.

D��������� 8 (U������ A���������). If the formation of new
edges in a directed graph follows uniform attachment, the new arriving
node connects to any existing node 9 in the candidate set + with the
same probability, i.e.,

% ( 9 ;+ ) = 1
|+ | =

exp(1)Õ
; 2+ exp(1) . (8)

As can be seen in their de�nitions, the preferential attachment
and uniform attachment models can be viewed as MNL models
with utility score for 9 being U log3 9 and 1 respectively.
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More generally, under the preferential attachment model, the
probability for a node sequentially choosing ( 91, 92, . . . , 9 ) to con-
nect can be written as

% (( 91, 92, . . . , 9 );+ ) =
 ÷
:=1

exp
�
U log3 9:

�
Õ
; 2+ \{ 91,..., 9:�1 } exp(U log3; )

.

However, one limitation of most existing methods under this
framework [39, 40] is that learning the model from an observed
network requires the knowledge of full rankings for everyone’s all
existing edges, which is unrealistic in many real-world scenarios.
The proposed methods in this work, NumGRB and NumGRB-EM,
can be applied to learn from more general partial rankings of exist-
ing edges in a network.

5.2 Experiments on Synthetic Network Data
We �rst apply the proposed NumGRB-EM on synthetic network
data generated by mixture of 4 variants of network formation mod-
els. Through our experiments, we demonstrate that (1) the proposed
principled method for learning from partial rankings outperforms
naive approximation methods; (2) correctly specifying the mixture
components not only a�ects the learning of mixture weights but
also improves the model parameter estimation of each mixture
component.
Synthetic network data generation. We simulate the growth of
a directed network with a synthetic (A , ?)-model following Over-
goor et al. [39]. When a new edge is formed, with probability ? , it
is formed by uniform attachment, and with probability 1 � ? , it is
formed by preferential attachment with U = 1. After choosing the
attachment pattern, we choose the candidate set + to fully deter-
mine the mixture component: with probability A , the candidate set is
all nodes in the network that have not been connected by the source
node, while with probability 1 � A , the candidate set is restricted
to the friends-of-friends (FoF) of the source node. Therefore, the
synthetic data is generated by a mixture of 4 edge-choice distribu-
tions, which we denote as UA (uniform attachment, mixture weight
?A ), PA (preferential attachment, mixture weight (1 � ?)A ), UA-FoF
(uniform attachment restricted to FoF, mixture weight ? (1 � A )),
PA-FoF (preferential attachment restricted to FoF, mixture weight
(1 � ?) (1 � A )).

We generate synthetic network data with varying values of (A , ?)
pairs. Due to the space limit, the detailed data generation procedure
is provided in Appendix A.3.
Experiment setup. The learning task of this experiment is to
learn 5 parameters of the mixture model: the mixture weights for
the 4 components as well as a shared model parameter U for PA
and PA-FoF. And we apply the proposed NumGRB-EM method to
learn the parameters from the data.

For the baseline, we note that ELSR-Gibbs is not scalable enough
for this experiment setup. We instead implement a naive baseline
method (named asNaive) that treats each new edge formation as an
independent top-one ranking, such that the calculation of likelihood
becomes feasible (but with information lost). For both NumGRB-
EM and Naive, we further apply them to learn a 2-mixture (PA and
PA-FoF) and a single model (PA only), in order to investigate their
performance under mis-speci�ed settings.

Para. (True Val.) NumGRB-EM Naive
4-Mix 2-Mix Single 4-Mix 2-Mix Single

r=0.2
p=0.2

UA (0.04) 0.055 0.127
(0.004) (0.018)

UA-FoF (0.16) 0.179 0.317
(0.024) (0.018)

PA (0.16) 0.174 0.239 1.000 0.091 0.213 1.000
(0.007) (0.009) (0.000) (0.013) (0.002) (0.000)

PA-FoF (0.64) 0.593 0.761 0.466 0.787
(0.025) (0.009) (0.023) (0.002)

U (1) 0.989 0.877 0.814 1.518 0.945 0.829
(0.019) (0.008) (0.006) (0.098) (0.021) (0.006)

r=0.5
p=0.5

UA (0.25) 0.262 0.256
(0.008) (0.013)

UA-FoF (0.25) 0.249 0.252
(0.013) (0.010)

PA (0.25) 0.249 0.502 1.000 0.247 0.516 1.000
(0.008) (0.004) (0.000) (0.015) (0.014) (0.000)

PA-FoF (0.25) 0.240 0.498 0.246 0.484
(0.017) (0.004) (0.005) (0.014)

U (1) 0.949 0.557 0.632 1.199 0.589 0.644
(0.028) (0.033) (0.011) (0.042) (0.021) (0.009)

r=0.8
p=0.8

UA (0.64) 0.521 0.476
(0.052) (0.037)

UA-FoF (0.16) 0.128 0.106
(0.002) (0.009)

PA (0.16) 0.308 0.817 1.000 0.344 0.792 1.000
(0.052) (0.005) (0.000) (0.039) (0.005) (0.000)

PA-FoF (0.04) 0.043 0.183 0.074 0.208
(0.008) (0.005) (0.006) (0.005)

U (1) 0.742 0.234 0.353 0.773 0.275 0.323
(0.124) (0.023) (0.006) (0.099) (0.014) (0.005)

r=1
p=0

UA (0) 0.020 0.050
(0.010) (0.009)

UA-FoF (0) 0.000 0.000
(0.000) (0.000)

PA (1) 0.980 1.000 1.000 0.950 1.000 1.000
(0.010) (0.000) (0.000) (0.009) (0.000) (0.000)

PA-FoF (0) 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

U (1) 0.994 0.993 0.998 1.045 0.996 0.989
(0.016) (0.014) (0.012) (0.008) (0.013) (0.006)

Table 1: Estimated model parameters by NumGRB-EM and
Naive on the synthetic network data. The results are averaged
over 5 random trials and the numbers in brackets indicate the
standard error of the mean. The synthetic network data are
always generated by 4-mixtures of UA, UA-FoF, PA, and PA-
FoF with ground truth U = 1. We generate data with 4 settings
for di�erent values of A and ?. The columns with heads “4-
Mix”, “2-Mix”, and “Single” refer to the learned models being
speci�ed with 4-mixtures, 2-mixtures (PA and PA-FoF), and
a single model (PA), respectively. The estimated parameters
include themixture weights for the four components, as well
as the parameter U shared by PA and PA-FoF. There are blank
entries for “2-Mix” and “Single” as they are not speci�ed.

Results. The experiment results are summarized in Table 1. Com-
paring NumGRB-EM and Naive, the proposed NumGRB signi�-
cantly outperforms Naive in terms of both the estimation of mixture
weights and the distribution parameter U in most cases. This veri�es
that a principled method for calculating the likelihood of partial
rankings is critical for the model parameter estimation accuracy.

Regarding the speci�cation of the mixture models, we start with
the setting A = 1 and ? = 0, which is a special case where the
ground truth model is actually a single model following PA. It is
not surprising that all models �t well in this case because they
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all contain the PA component. It is worth noting that applying
NumGRB-EM to learn 4-mixtures or 2-mixtures is able to faithfully
recover the single model case. In more general settings where 0 <
A , ? < 1, we can see that, the 4-mixture models trained by the
proposed NumGRB-EM method outperform their mis-speci�ed
counterparts not only in terms of the mixture weights, but also in
terms of the distribution parameter U .

Together, the experiments suggest that both the proposed partial
ranking likelihood estimation and the extension to mixture models
are helpful for learning choice-based network formation models.

5.3 Experiments on Real-World Network Data
We further apply the proposed method on two real-world network
datasets, Flickr [33] and Microsoft Academic Graph4, and compare
with the method by Overgoor et al. [39]. For both datasets, we
closely follow most of the data processing steps by Overgoor et al.
[39]. The key di�erence between our method for �tting the data
and Overgoor et al. [39]’s lies in how we interpret the ranking of
target nodes given the observed network.

For Flickr, Overgoor et al. [39] use the temporal order of the
edge formation in the network to construct the full ranking of
the target nodes connected by the source node, with the under-
lying assumption that earlier formed edges correspond to more
preferred target nodes. We think, however, this assumption might
be too strong, as it might be hard to tell the relative ranking of two
target nodes with edges formed within a small time window. We
instead use the temporal window of the edge formation to construct
Partitioned-Preference rankings.

For Microsoft Academic Graph, there is even no temporal order
available for the edge formation, as the citation links from a source
node (a new paper) are almost always formed simultaneously (at its
publication), and therefore the ranking of target nodes (exiting pa-
pers) is naturally a Partitioned-Preference ranking with 2 partitions
(cited or not cited). Overgoor et al. [39] �t the data with the naive
method as we described in Section 5.2, which treats each edge as
an independent top-one ranking.

For the experiments, we parameterize the utility scores with lin-
ear models on node features used by Overgoor et al. [39]. We report
both the learned linear coe�cients and the precision@k metrics
for link prediction. Due to space limit, more detailed experiment
setups are provided in Appendix A.4.
Results. The experiment results on Flickr and Microsoft Academic
Graph are provided in Table 2 and Table 3 respectively.

In terms of the precision@k metrics for link prediction, we ob-
serve that treating the rankings of target nodes as Partitioned-
Preference rankings and train the models with the proposed Num-
GRB outperforms the method by Overgoor et al. [39] when there
are more features included in the model. The di�erence is smaller
when there are very few features, which is not surprising as the
model is not able to learn sophisticated patterns in these cases.

In terms of the estimated linear coe�cients, qualitatively the
explanations by models trained with both methods have similar
trend. Quantitatively, however, some of the estimated coe�cients
by the two methods di�er by a large amount. For example, com-
paring Model #3 and #3* in Table 2, the relative strengths of the
4The AMiner project [45, 47]: https://aminer.org/open-academic-graph.

Overgoor et al. [39] NumGRB
#1 #2 #3 #4 #1* #2* #3* #4*

log Followers 1.149 0.7150 0.536 0.806 0.4810 0.3470
Has Degree �0.580 �0.631 �1.745 �3.556 �3.527 �3.335
Reciprocal 8.419 8.347 8.197 7.903 5.854 4.491 5.614 5.171
Is FoF 6.120 3.955 3.918 2.888
2 Hops 6.290 3.778
3 Hops 2.851 1.348
4 Hops 0.583 �0.877
5 Hops �0.585 �1.92
� 6 Hops �1.122 �2.264

Precision@1 0.7606 0.7898 0.8238 0.8262 0.7622 0.7898 0.8414 0.8448
Precision@3 0.6215 0.6385 0.6737 0.6756 0.6227 0.6398 0.6796 0.6846
Precision@5 0.5444 0.5573 0.5880 0.5895 0.5464 0.5592 0.5926 0.5948

Table 2: Estimated model parameters and precision@k for
link prediction on Flickr. Model #1-4 are trained by the base-
line method by Overgoor et al. [39]. Model #1-4* are trained
by the proposed NumGRB. For the precision@k metrics, the
bold markers denote the best performance and the underline
markers denote the better performance between the corre-
sponding baseline and proposed methods.

Overgoor et al. [39] NumGRB
#1 #2 #3 #4 #1* #2* #3* #4*

log Citations 0.717 0.794 1.052 1.044 0.649 0.611 0.932 0.922
Has Degree 1.684 1.677 1.862 1.830 0.280 0.250 1.495 1.462

Has Same Author 6.523 5.928 5.913 4.870 4.430 4.424
log Age �1.096 �1.069 �1.458 �1.443

log Max Papers 0.029 0.030by Authors
Precision@1 0.2495 0.4745 0.4960 0.4970 0.2490 0.4835 0.4960 0.5020
Precision@3 0.1955 0.4128 0.4213 0.4235 0.1957 0.4132 0.4293 0.4295
Precision@5 0.1628 0.3558 0.3654 0.3664 0.1629 0.3545 0.3735 0.3731
Precision@10 0.1238 0.2609 0.2683 0.2690 0.1238 0.2587 0.2756 0.2758

Table 3: Estimated model parameters and precision@k for
link prediction on Microsoft Academic Graph. The markers
are the same as in Table 2.

coe�cients between “Has Degree” and “Reciprocal” are very di�er-
ent. Researchers facing the results given by Model #3 may interpret
that the impact of having zero followers is marginal. However, the
results by Model #3* tell a largely di�erent story. And the latter is
probably a better �t of the data (as suggested by the link prediction
accuracy).

6 CONCLUSION
In this paper, we propose novel methods for fast learning of the
MNL model and its mixture from general partial rankings. We ver-
ify both the e�ectiveness and e�ciency of the proposed methods
through simulation studies. We also demonstrate that the proposed
methods can be very useful on applications to choice-based net-
work formation modeling, where the formation of edges is viewed
as discrete choices from (mixture of) MNL models. Through exper-
iments on both synthetic networks and real-world networks, we
show that e�cient learning (mixture of) MNL models from partial
rankings is necessary for proper estimation of the model parame-
ters, which are critical for downstream network analysis tasks in
scienti�c research.
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A APPENDIX
A.1 Proof of Lemma 1

P���� �� L���� 1. For the sake of contradiction, assume {(3 �
2), (3 � 5), (4 � 1)} is a Partitioned-Preference ranking on {1, 2, 3, 4, 5}.

As we do not know the relative ranking between 3 and 4, so
according to (a) and (b) in De�nition 3, 3 and 4 must be in the same
partition. Similarly, 3 and 1 must be in the same partition. However,
we also know 4 � 1, which contradicts with (c) in De�nition 3. ⇤

A.2 Proof of Proposition 1
We �rst introduce a well-known connection between the MNL
model and Gumbel distribution [52]. For an MNL model parame-
terized byw , let 6w1 ,6w2 , . . . ,6w# denote # independent Gumbel
random variables following

Gumbel(w1),Gumbel(w2), . . . ,Gumbel(w# ),
where Gumbel(F) refers to the Gumbel distribution with loca-
tion parameterF . Then the probability of observing a full ranking
(81, . . . , 8# ) 2 2 b# c under the MNLmodel is equal to the probability
that 6w81

> 6w82
> · · · > 6w8#

, i.e.,

% ((81, . . . , 8# );w) = % (6w81
> 6w82

> · · · > 6w8#
) .

So there is a bijective mapping between the full rankings and the
orders of the Gumbel variables.

P���� �� P���������� 1. Given a set of Gumbel variables,

6w1 ,6w2 , . . . ,6w# ,

for any � ✓ b# c, de�ne
<̄(�) , max

82�
6F8 , ¯

<(�) , min
82�

6F8 .

Further denote (̃< = [";=<(; and )̃< = ["0;=<); .
Based on the bijective mapping between the full rankings and

the orderes of Gumbel variables, it is easy to verify that the event of
⌦(G( ; b# c) corresponds to the event of Gumbel variables satisfying

¯
<((1) > <̄((̃2), ¯<((2) > <̄((̃3), . . . , ¯<(("�1) > <̄((̃" ).

While the event of ⌦(G) ; b# c) corresponds to the event of Gumbel
variables satisfying

¯
<()1) > <̄()̃2), ¯<()2) > <̄()̃3), . . . , ¯<()"0�1) > <̄()̃"0).

Then we have

% (G( ,G) ;w)
=% (

¯
<((1) > <̄((̃2), . . . , ¯<(("�1) > <̄((̃" ),

¯
<()1) > <̄()̃2), . . . , ¯<()"0�1) > <̄()̃"0)) .

Further, since ( \ ) = ;, and the Gumbel variables are mutually
independent, we have

% (
¯
<((1) > <̄((̃2), . . . , ¯<(("�1) > <̄((̃" ),

¯
<()1) > <̄()̃2), . . . , ¯<()"0�1) > <̄()̃"0))

=%
⇣
¯
<((1) > <̄((̃2), . . . , ¯<(("�1) > <̄((̃" )

⌘

·%
⇣
¯
<()1) > <̄()̃2), . . . , ¯<()"0�1) > <̄()̃"0)

⌘
=% (G( ;w)% (G) ;w) .

⇤

A.3 Detailed Synthetic Network Generation
Procedure

Given a pair of (A , ?), we generate the network with the following
procedure. We �rst generate an initial network using Erdős-Rényi
random graph [7] with 1000 nodes and probability 0.005, and we
also randomly choose 20 nodes and increase their edges by 50 to 80
to increase the variety of node degrees. We then randomly select
half of the nodes in the network as source nodes to form new edges.
For each source node, we sample 1 out of the 4 mixture components,
UA, PA, UA-FoF, and PA-FoF as its edge-choice distribution, and
make each node form 5 new edges5. Throughout the new edge
formation process, we use the node degrees in the initial network
when calculating the choice distribution. We treat the new edge
formation for each source node as a Partitioned-Preference ranking
with 2 partitions: the target nodes pointed by the new edges are
in the �rst partition while the nodes that are not connected by the
source node are in the second partition. We vary the values of A
and ? to get multiple settings of synthetic data. For each setting,
we repeat the data generation with 5 random seeds.

A.4 Detailed Experiment Setup for Experiments
on Real-World Networks

Experiment setup for Flickr. We follow the data processing steps
of Overgoor et al. [39] to extract the network data. In this network,
we consider 4 types features: the log of number of the followers,
whether the following edge is reciprocal, whether the follower and
the followed user is friends-of-friends, and the path length (hop)
from the new follower to the followed user before the new edge
is made. It is possible that a user, has never been followed before.
Thus, we use the censored log function, i.e., de�ne log(0) = 0, and
add another feature “has degree” to distinguish the zero case. We
sample 50000 users in a period (20 days) that have following events,
and record all the new edges formed by them. Edges formed in the
same 10 days are considered in one partition. Edges formed earlier
are assumed to be more preferable than later ones. We then sample
100 edges uniformly at random from the dataset as the negative
samples for each user. The testing set is sampled in the same way,
with the sampling period later for 20 days. We train 4 linear models
shown in Table. 2 with the proposed NumGRBmethod and evaluate
them using precision@[1, 3, 5] on testing set.
Experiment setup for Microsoft Academic Graph. Microsoft
Academic Graph contains the events of citations between publi-
cations. Our task is to predict the references of a new publication
among a large candidate set. We continue to follow the steps of
Overgoor et al. [39] to extract the citation data in the domain of
climatology. We include 4 features of the candidate references: the
log of number of citations at the time of citation, whether the pa-
per shares authors with the candidate reference, the log age of the
paper in years at the time of citation, and the maximum number
of publications ever by any one of the authors at the time of publi-
cation. We still use the censored log function to avoid log of zero.
Additionally, we introduce another feature, whether the candidate
reference has degree, to distinguish if the number of citation is 0 or

5A few nodes may form less than 5 edges when their candidate set is FoF and the size
of the candidate set is less than 5.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

724



1. We sample 12,000 papers after 2010 as source nodes and record
references for each paper. We sample 5000 negative samples for
each sampled paper uniformly at random. The data is then split

into training set and testing set by time. We train 4 linear models
shown in Table. 3 using the proposed NumGRB method and report
precision@[1, 3, 5, 10] on testing set.
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