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ABSTRACT
The wireless signal propagates via multipath arising from di�erent
re�ections and penetration between a transmitter and receiver. Ex-
tracting multipath pro�les (e.g., delay and Doppler along each path)
from received signals enables many important applications, such as
channel prediction and crossband channel estimation (i.e., estimat-
ing the channel on a di�erent frequency). The bene�t of multipath
estimation further increases with mobility since the channel in
that case is less stable and more important to track. Yet high-speed
mobility poses signi�cant challenges to multipath estimation. In
this paper, instead of using time-frequency domain channel repre-
sentation, we leverage the delay-Doppler domain representation
to accurately extract and predict multipath properties. Speci�cally,
we use impulses in the delay-Doppler domain as pilots to estimate
the multipath parameters and apply the multipath information to
predicting wireless channels as an example application. Our de-
sign rationale is that mobility is more predictable than the wireless
channel since mobility has inertial while the wireless channel is
the outcome of a complicated interaction between mobility, multi-
path, and noise. We evaluate our approach via both acoustic and RF
experiments, including vehicular experiments using USRP. Our re-
sults show that the estimated multipath matches the ground truth,
and the resulting channel prediction is more accurate than the
traditional channel prediction schemes.
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1 INTRODUCTION
Wireless signals from the transmitter traverse multiple paths (e.g.,
direct, re�ected, refracted paths) and combine at the receiver. The
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multipath pro�les contain important information about the phys-
ical propagation paths (e.g., delay and velocity), enabling many
applications, such as motion tracking, environment sensing, chan-
nel prediction, crossband channel estimation, and beamforming.
Hence, there have been several works on estimating multipath
pro�les based on wireless signals (e.g., [16, 19, 39]). However, the
existing works focus on low or no mobility scenarios. Estimating
multipath pro�les under high mobility arising from vehicles, high-
speed rails, drones, or satellites, poses signi�cant challenges.

Yet getting multipath parameters under high mobility is espe-
cially useful. For example, it allows a cellular base station to track
vehicular motion and its environment without feedback. It can
also apply the sensed information to select a data rate or optimize
beamforming. [2] shows that multipath information helps improve
beamforming performance. Moreover, it can also use the multipath
information to estimate the channel on another frequency (e.g., use
the uplink channel to estimate the downlink channel) since the
underlying propagation paths are the same [39].

In addition, by extracting the current multipath information, we
can predict the multipath in the future and then map them to the
wireless channel. It is promising since delay and doppler correspond
to physical movement and are likely to be more predictable than the
wireless channel, which is the outcome of complicated interactions
between mobility, multipath, interference, and noise.

Hence, we develop a novel algorithm to estimate and predict the
multipath pro�les and apply it to channel prediction as an example
application. Instead of using the common time-frequency domain
channel representation, we leverage the delay-Doppler domain rep-
resentation for multipath estimation since it can e�ectively separate
paths with di�erent delay or Doppler. Below we �rst overview the
background and existing work, then introduce our approach.
Delay-Doppler channel representation: Wireless channels can
be represented in three interchangeable domains: time, frequency,
or delay-Doppler. The delay-Doppler channel representation is:

⌘(g,a) =
%’
8=1

08X (g � g8 )X (a � a8 ), (1)

where ⌘(g,a) is the channel parameterized by the delay g and
Doppler a , % is the number of propagation paths, X () is the Dirac
delta function, and 08 , g8 and E8 are the gain, delay, and Doppler
shift associated with the 8-th path, respectively [7]. Fig. 1 shows an
example of a delay-Doppler channel of two propagation paths: a
static path (Doppler=0) and a moving path (Doppler< 0).
Rationale for delay-Doppler representation: Multipath signals
may experience di�erent delays and Doppler shifts and interfere
with each other at the receiver. In the widely used time domain or
frequency domain, all paths are mixed, and the resulting phase and
amplitude change with the delay, Doppler, and relative magnitude
of these paths. While one can formulate a non-convex optimization
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Figure 1: An example delay-Doppler pro�le. The two peaks
in (a) correspond to two re�ectors: one is static and one is
moving. (b) shows the pro�le in 2D, where the cross patterns
are delay and Doppler spreads.

problem to �nd the multipath parameters that best �t the mea-
sured channel, due to the strong inter-path dependency and the
non-convex objective, the problem is fundamentally challenging.
While there have been a few works studying this problem, they
mostly assume no or low-mobility scenarios and ignore Doppler
shift (e.g., [16, 19, 39]) and �nd the remaining path parameters to
best match the measured channel. It is challenging to achieve high
accuracy, especially when estimating all multipath parameters (not
just the �rst path). mD-Track [45] uses beamforming to separate
the paths spatially and reduce the number of interfering paths. But
the beamforming resolution is coarse due to a small number of
antennas and large wavelength in sub-6GHz, which signi�cantly
limits the e�ectiveness of spatial separation. When di�erent multi-
path is not well separated spatially, the estimation error is high, as
shown in Section 3.

In comparison, as shown in Fig. 1, the delay-Doppler representa-
tion projects signals onto the 2D delay-Doppler plane to separate
out paths di�erent in either delay or Doppler. Therefore, only the
paths that have similar delay and similar Doppler can interfere,
which is much fewer in number. Then instead of solving an op-
timization problem involving all paths, we only need to solve a
much smaller problem involving the interfering paths whose delay
and Doppler are both similar, which is more tractable. Moreover,
delay and Doppler correspond to physical movement and are more
predictable due to inertial, which can help predict channel on a
di�erent frequency or at a di�erent time.
Our approach: In this paper, we leverage the delay-Doppler rep-
resentation to estimate and predict multipath pro�les, and demon-
strate its utility for channel prediction as an example application.

We �rst consider estimating multipath pro�les based on the
measured channel. At �rst glance, the problem appears simple
when paths with di�erent delay or Doppler are fully separated in
the delay-Doppler domain, and we can use their positions in the
2D pro�le to determine their path properties. This method works
when we have high SNR and enough separation between the delay
or Doppler across di�erent paths. To handle general scenarios, we
need to address the following challenges: (i) paths with similar
delay and Doppler interfere with each other, and we do not know
how many paths interfere; (ii) we may not have enough constraints
to uniquely determine each path property; (iii) there is a non-linear
relationship between the path properties and the resulting channel,
making it hard to �nd an optimal solution; and (iv) noise can further
complicate the issue by introducing false peaks.

To address these challenges, we leverage the sparsity of the
multipath and the structure of the channel pro�le to design an
inference algorithm. In particular, we develop a classi�er to �lter
out the false peaks introduced by noise. Then we group nearby
peaks into a cluster and infer the multipath pro�le to match the
channel measurement in each cluster. To improve the accuracy and
speed, we develop an e�ective initialization algorithm and iterative
method to match the channel measurement.

Then we predict future delay-Doppler based on the current mul-
tipath estimates. We match the propagation paths from one time
window to the next, and then leverage the temporal relationship
between the delay-Doppler of the paths in adjacent time windows.
Finally, we map the predicted multipath to the channel estimate.

Our work is partially inspired by the recent orthogonal time-
frequency space modulation (OTFS) but di�ers from it in that we
(i) extract multipath properties from the channel estimate, and (ii)
predict the future multipath properties and resulting channel. To
ease the deployment, unlike OTFS, our approach does not modify
the data modulation. Instead, we introduce our own pilot symbols
(e.g., 1.5% overhead in our evaluation, lower than LTE pilot over-
head) to extract the delay-Doppler of the wireless channel to help
channel prediction. In this way, we can support di�erent data modu-
lations, including OFDM, OFDMA, and OTFS, to preserve backward
compatibility and maximize �exibility.

We experimentally validate our multipath estimation and chan-
nel prediction.We use acoustic signals to complement our RF experi-
ments since acoustic signals propagate slower and induce noticeable
Doppler shift at a lower speed, making it easy for experiments. Our
results show that it can estimate the multipath delay and Doppler
under line-of-sight (LoS) and non-line-of-sight (NLoS).

We further evaluate RF signals using Wireless Insite [14], a com-
mercial 3D ray-tracer widely used by the community [15, 18, 41],
and vehicular experiments. Our method yields accurate estima-
tion of both delay and Doppler. Using the estimated multipath, our
approach achieves a <7% channel prediction error, whereas the
traditional method incurs 60% error. Moreover, our USRP imple-
mentation shows our improved channel prediction signi�cantly
reduces the BER. Compared to the default channel prediction, our
scheme improves BER by up to 10x for SNR of 5 dB. For higher mod-
ulation, the improvement is 100x for SNR of 10 dB and up to 1000x
for an SNR of 15 dB. We further conduct vehicular experiments to
validate the accuracy of our delay-Doppler estimation.

To summarize, our major contributions are as follows:
1. We extract multipath properties based on the delay-Doppler

representation of wireless channel (Section 2.2).
2. We leverage the estimated multipath properties to predict the

future multipath and resulting channel (Section 2.3).
3. We use acoustic experiments, Wireless Insite simulation, USRP

emulation, and vehicular experiments to demonstrate the po-
tential of our approach (Section 3).

2 CHANNEL PREDICTION
Instead of predicting the channel in the classical time-frequency
domain, we estimate the multipath properties based on the delay-
Doppler representation of wireless channel, predict these path prop-
erties, and use the path prediction to forecast the channel. Our key
insight is that the client’s mobility trajectory is much easier to
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Figure 2: Transmitted/received symbols in the delay-Doppler
domain, where G are TX data symbols, ? are pilot symbols,
> are guard symbols, ~ are RX data symbols, @ are RX pilot
symbols for channel estimation.
predict (due to inertia) than the time-frequency channel. Therefore,
we decompose the complicated channel prediction into four sub-
problems: (i) measure channel (§2.1), (ii) extract delay-Doppler of
the current paths (§2.2), (iii) predict delay-Doppler of the future
paths (§2.3), and (iv) map the future delay-Doppler to the future
channel estimation. Among them, (iv) can be achieved by applying
Equation 1. So we focus on the �rst three steps.
2.1 Delay-Doppler Channel Measurement
We consider a classical time-frequency plane (e.g., OFDM and
OFDMA) with # ⇥" grids, where each grid spans ) seconds in
time and �5 Hz in frequency. A frame is transmitted over #)
seconds and "�5 Hz. Following [12], the corresponding delay-
Doppler plane is divided into # ⇥" grids where grid (:, ;) denotes
(:/(#) ), ;/("X5 )) and each grid spans 1/("X5 ) and 1/(#) ) along
the delay and Doppler axes, respectively.

To ease deployment, we keep the existing preamble for syn-
chronization as usual, and introduce our own pilot symbols to
estimate the channel in the delay-Doppler domain. The pilot has
only 1.5% overhead in our evaluation, which is lower than LTE on
20 MHz and even lower on a wider band. We use the reference
signal described in [31] as our pilot. It places a single pilot symbol
in the delay-Doppler grid at the :? -th Doppler tap and the ;? -th
delay tap and no symbols at the other taps as guard symbols as
shown in Fig. 2. Essentially, the reference signal G is de�ned as

G (:, ;) =
(
1, : = :? , ; = ;?
0, Otherwise

The received symbol is shifted accord-

ing to the delay and Doppler of the paths that the signal traverses.
The amount of the shifts in the delay and Doppler axes re�ect the
delay and Doppler of the paths the signal has traversed, respectively.

Such pilots can be transmitted on either a data channel or con-
trol channel. Sending on the control channel may make it easier
to deploy incrementally. Since we estimate the physical path prop-
erties, they are invariant to the data modulation scheme and the
frequency used for transmission. Therefore, our approach can be
applied to predict the channel for OFDM, OFDMA, and OTFS. It
can also be used to estimate channel in other frequencies, which
has been studied in [6, 21, 39], but these works do not study the
channel prediction problem.
2.2 Extracting Multipath Parameters
To extract the delay-Doppler pro�le from the channel measurement,
we �rst make a few observations about the channel in the delay-
Doppler domain. Then we elaborate our solution based on them.
2.2.1 Observations. We have the following observations.
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Figure 3: Noise introduces numerous false peaks.

Spread in measured Delay-Doppler channel: Suppose the refer-
ence signal G goes through a channel with a single path with delay
(g), Doppler (h), and attenuation (⌘). If g

"�5 and h
#) are integers,

the received signal ~ should have the pilot symbol shifted by g
"�5

along the delay axis and h
#) along the Doppler axis.

~ (:, ;) =
(
⌘, : = :? + h

#) , ; = ;? + g
"�5

0, Otherwise
(2)

However, the situation gets complicated when g and h are not
exactly integer multiples of tap resolutions such that

g = (U + 0) 1
"�5

, U 2 Z, �1/2 < 0 < 1/2,

h = (V + 1) 1
#)

, V 2 Z, �1/2 < 1 < 1/2.

In this case, [34] shows that the received signal~ can be expressed
as follow

~ [:, ;] =
"�1’
@=0

#�1’
A=1

 
4 92c (�@�0) � 1

"4 9
2c
" (�@�0) �"

!  
4� 92c (�A�1 ) � 1

"4� 9 2c# (�A�1 ) � #

!

⌘4� 92cghG [(: � V + A )# , (; � U + @)" ] (3)

where G is the transmitted signal, �# is � mod # , U and V are
integer parts of the delay and Doppler shift, respectively, @ and A
denote the delay and Doppler spread, respectively. It has G [(: � V +
A )# , (; � U + @)" ] since the received signals in the delay-Doppler
domain is a 2D periodic convolution of the transmit signal with the
delay-Doppler channel.

Hence, in the case of fractional delay or Doppler, the received
pilot symbol will spread across multiple taps. It allows us to es-
timate the fractional part based on the spread in each direction.
This works well under a single path and high SNR. However, noise
and multipath make it challenging to extract the precise delay and
Doppler based on the channel measurement.
Multipath: Multipath propagation is common in real-world wire-
less communication. If multiple paths have large enough separation
in either delay or Doppler, these paths result in separate peaks
in the received frame. We can determine the delay and Doppler
associated with each peak independently. When the multiple paths
are close to each other in both delay and Doppler, they interfere and
change the resulting peak position and spread. We need to jointly
estimate all paths contributing to the peak in such cases.
Noise: So far, we assume the peaks are due to signals arriving from
one or more propagation paths. In practice, the wireless channel
can be noisy, complicating the estimation. Fig. 3 plots an example
delay Doppler pro�le. There are four real peaks and many noisy
peaks. Some noisy peaks are higher than one of the real peaks.
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2.2.2 Problem Formulation. Suppose there are % paths de�ned
as P = {(g1,h1,01), ..., (g% ,h% ,0% )}, where (g8 ,h8 ,08 ) denotes the
delay, Doppler, and attenuation of path 8 . Here g8 = (U8 + 08 ) 1

"�5

and h8 = (V8 + 18 ) 1
#) where U and V are integers and 0 and 1 are

fractions. The resulting channel can be derived as follow:

~ [:, ;] =
%’
8=1

"�1’
@=0

#�1’
A=1

 
4 92c (�@�08 ) � 1

"4 9
2c
" (�@�08 ) �"

!  
4� 92c (�A�18 ) � 1

"4� 9 2c# (�A�18 ) � #

!

⌘84
� 92cg8h8G [(: � V8 + A )# , (; � U8 + @)" ] (4)

Our goal is to estimate the multipath parameters such that they
can match with the measured channel. That is, we solve the follow-
ing optimization problem to minimize the di�erence between the
measured and estimated channel.

argmin
(g8 ,h8 ,⌘8 )2P

:max’
:=:min

;max’
;=;min

|~meas [:, ;] � ~ [:, ;] | (5)

There are several challenges in the path estimation: (i) The func-
tion is non-convex. There can be lots of sub-optimal solutions. It
is expensive to achieve global optimal. (ii) The problem may be
under-constrained and do not have a unique solution. There are
3 unknowns associated with each path: delay, Doppler, amplitude.
So 3 unknowns for  paths. The number of constraints is the
number of a�ected taps, which can be smaller than the number
of unknowns. (iii) The number of underlying paths is unknown,
which means we do not know the number of unknowns. (iv) Noise
complicates the path estimation by introducing noisy peaks.
2.2.3 Our Approach. We develop a novel path estimation approach.
It leverages both domain knowledge and machine learning to max-
imize accuracy. From the above observations, multipath would
interfere if they have similar delay and Doppler. The paths with
large separation in the delay and Doppler will result in separate
peaks and can be estimated independently. Therefore, we �rst detect
the grid locations that have some signal energy and separate them
from the grid locations that have only noise. Our signal detection
should be robust against noise. Then we cluster the grid locations
with signal based on their positions in the delay-Doppler pro�le.
A major bene�t of estimating the multipath in the delay-Doppler
domain is the ability to separate paths with either di�erent delay
or Doppler to only solve an optimization problem for each cluster,
which involves fewer variables, thereby improving accuracy and
speed. We further leverage our domain knowledge in initialization
to enhance the performance. Below we elaborate each step.

To improve the signal detection, we observe that taps with the
actual signal tend to have both high magnitude and spatial locality
since both fractional delay and fractional Doppler result in multiple
nearby taps having the signal energy. This observation motivates
us to develop a neural network (NN)-based classi�er to determine
whether a tap has a peak due to the real signal.

Our classi�er takes the concatenated amplitude and phase of
the complex signal in the delay-Doppler domain as the input and
outputs whether the tap contains real signal. Intuitively, it uses the
training data generated using simulation based on Equation (3) and
model the spread of signal due to fractional delay and fractional
Doppler. We vary the SNR from -5 dB to 10 dB. It is easy to generate
the label since we can inject multipath and know which taps each

path should a�ect. The original delay-Doppler pro�le is a # ⇥"
matrix. To make the classi�er easy to train, we limit the input and
output size by taking only a portion of this matrix as the input
and outputting whether the center tap in the grid has energy from
the real signal. This is reasonable since each cluster spans only
a small number of taps. We can apply the classi�er to each tap
by taking a sub-matrix centered at the corresponding tap. For a
tap on the boundary of the matrix, we can construct its matrix
by wrapping around. We generate the training data by simulating
di�erent overlapping multipath patterns and varying the SNR from
-5 dB to 10 dB. The label for each data point is determined based on
the injected multipath.

Our neural network consists of one hidden layer with 50 neurons
followed by ReLu non-linearity and one output layer with Softmax
activation function. The output is a one-hot encoded vector of size
2, whose elements denote the probabilities that the center of the
grid contains only the noise or signal. We determine whether the
center grid has signal based on which probability is higher during
inference. Since there are many more taps with only noise than
with the signal, to avoid bias, we ensure the numbers of taps with
and without a peak due to the signal are similar in the training data.
During testing, we apply the neural network to each tap in the grid
using a 5x5 grid centered at that tap to determine if it has signal.
Cluster peaks: Once grid locations with peaks due to the signal
are detected, we cluster them spatially and infer the multipath prop-
erties for each cluster. Clustering is motivated by the observation
that well-separated peaks are caused by the paths with di�erent
delay or Doppler and do not interfere with each other. Therefore,
the peaks belonging to di�erent clusters are independent. We group
peaks within 2 taps together into the same cluster and infer mul-
tipath properties to match the measured channel in each cluster.
Clustering reduces the number of the multipath parameters, and
improves both e�ciency and accuracy.
Estimate the delay-Doppler:Next, we estimate the delay-Doppler
for each cluster. Our goal is to determine the multipath parameters
so that the resulting channel best matches with the measured one.

This is a non-convex optimization problem. We use the well
known interior-point method to solve this problem. However, since
the optimization function is non-convex, the optimization can con-
verge to a non-optimal local minimum. Therefore, a good initializa-
tion is important for both the speed and quality of the solution.

We initialize the solution for every cluster in the following way.
Due to temporal locality, the multipath parameters corresponding
to a cluster remain stable for a while. Therefore, we �rst compute
the channel in the cluster using the previous multipath parameters
and Equation 4. Suppose the resulting delay-Doppler channel for the
cluster is similar to the current channel (i.e., the di�erence is within
15% of the current channel, where the delay-Doppler channel is rep-
resented as a matrix for the cluster and the di�erence between the
two channels⇠1 and⇠2 is quanti�ed as =>A<(⇠1 �⇠2)/=>A<(⇠2)).
In that case, we use the previous multipath parameters as the initial
solution for that cluster. Otherwise, we derive the initial solution
based on the current peaks’ positions in the delay-Doppler grid
since the peaks are usually close to the actual delay and Doppler.
We detect the peaks in the measured channel and use the peak po-
sition for initialization. This is important especially in cases where
multipath changes signi�cantly between two measurements. We
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use the number of detected peaks to initialize the number of paths
in a cluster and use the peak positions to initialize the paths’ param-
eters; we then iteratively add more paths to improve the �t with
the measurement. This is a reasonable approach since the num-
ber of peaks provides a lower bound on the number of multipath
due to peak merging. In this way, we can handle large changes in
multipath parameters and avoid error propagation.

Initializing using the previous multipath parameters or the cur-
rent peak positions is likely to yield a close-to-optimal solution,
speed up the convergence, and improve the solution quality. How-
ever, they are not optimal. Therefore we feed the initial solution to
the optimization algorithm (e.g., interior-point method in Matlab).
If the �tting error is less than 2x the noise estimate, we use the
solution as the �nal estimate (The noise is estimated as the average
power in the grid locations where no peak is detected). Otherwise,
we add a new path. In the latter case, we initialize the multipath
properties to the solution from the previous iteration. We initialize
the new path by canceling the existing path and detecting the peak
in the remaining signal. We then feed the new initialization to the
optimizer and iterate until the �tting error is small enough (e.g.,
less than 2x of the noise estimate). Alg. 1 shows our pseudo code.

Note that our goal is to predict the channel in the future accu-
rately. Therefore it is robust to occasionally miss or add a small
number of paths if their magnitude is small. These paths do not
signi�cantly a�ect the channel estimation and prediction. This
will likely hold since we try to minimize the �tting error with the
measured channel.
Algorithm 1: Delay-Doppler estimation pseudocode
1 P = Pprev;
2 compute channel ~ based on P
3 if |~ � ~meas | > C⌘A4B⌘>;3~ then
4 # Initialize based on peaks’ positions;
5 P = { (g1,h1,⌘1 ), (g2,h2,⌘2 ), ..., (g% ,h% ,⌘? ) };
6 end
7 [P,⇢AA ] = >?C8<8I4 (P) ;
8 while ⇢AA > C⌘A4B⌘>;3% do
9 computed (gnew,hnew,⌘new ) using the peak in residual cluster (~meas � ~P )

10 P = P [ (gnew,hnew,⌘new ) ;
11 [P,⇢AA ] = >?C8<8I4 (P) ;
12 end

Computation time: Initializing using the multipath parameters
from the previous interval takes within 4 ms, which is fast enough
to support real-time decoding since a single frame lasts 10 msec in
LTE. We use the previous estimation for initialization when no new
path is outside the previous clusters. Initializing using the previous
estimates works for at least 92% of time and during this time the
prediction error is within 6%. Our algorithm automatically detects
initializing using a previous estimate yields a large di�erence from
the measured channel and then initializes from scratch. To support
real-time data decoding, we initialize using the previous estimates
(since it is much faster) and in parallel also initialize from scratch
so that we can later obtain more accurate initialization to improve
the channel prediction. We call this phase as catch up phase. In
both cases, we use optimization to further improve the solution.
We �nd the error during this catch up phase is 25% on average, still
much lower than the baseline: 40% error. The duration of the catch
up phase varies depending on the number of multipath that merge
into a single peak: 9 , 18, and 32 ms for 2, 3, 4 paths, respectively.
These numbers show that our approach is practical and can support
real-time decoding.

2.3 Predict Future Paths in Mobility
The next step is to predict how the channel changes before the next
channel measurement is taken. While channel prediction has been
widely studied, the existing works directly use the previous chan-
nel as the input for prediction. It is hard for this type of prediction
schemes to achieve high accuracy due to multipath. Instead of pre-
dicting the channel directly, we predict the delay Doppler and map
them to the channel. This problem is related to mobility prediction
but di�ers from the existing mobility prediction in that our work
predicts the delay-Doppler of all multipath whereas the existing
mobility work focuses on predicting the mobility of a single target.
Therefore, we design a new algorithm for this purpose.
Matching paths over time: We apply our algorithm to get the
delay-Doppler of paths over time. We expect the delay and Doppler
of the same propagation path to be strongly correlated. Therefore
we should pair the delay-Doppler of the paths between two consec-
utive intervals (e.g., determine which path in the current interval
corresponds to a given path in the previous interval). We leverage
the temporal locality to determine the mapping.

This problem can be formulated as a matching problem. We de-
�ne a bipartite graph where the vertices on the left denote the paths
in the previous interval and the vertices on the right denote the
paths in the next interval and the weights of their edges re�ect the
di�erence between the delay-Doppler properties of the correspond-
ing paths. We use Euclidean distance in the delay-Doppler pro�le as
theweight between two paths. Namely,

q
(3C18 � 3C29 )2 + (EC18 � EC29 )2,

where 3C18 and EC18 denote the delay and Doppler of path 8 at C1, re-
spectively, and similarly de�ne 3C29 and EC29 . Our goal is to �nd a
minimum weighted matching that minimizes the di�erence be-
tween the paths in two consecutive intervals. We use Munkres
algorithm [26] to solve the matching problem. Its complexity is
$ (=3). This is a�ordable since the number of paths = is usually
small (e.g., within 8).

Matching helps facilitate the path prediction. The above match-
ing works well when the same set of paths are present in both
intervals. Now we consider the set of paths changes between the
two intervals. There are three cases: (i) old paths disappear, (ii) new
paths emerge, (iii) old paths disappear and new paths appear at the
same time. In (i), we no longer need to predict the old paths and use
the delay and Doppler of the remaining paths to compute the new
channel. In (ii), the new paths are unlikely to be matched with any
of the old paths and we just use the current delay Doppler of the
new paths to predict their future delay Doppler. In (iii), the main
concern is that new paths may match with old paths and pollute
the prediction process. To prevent that, we consider the matching
is good only if the di�erence between the matched path is small
enough. If so, the path is most likely to be the same across the two
intervals and we can use the path properties in both intervals for
prediction. Otherwise, it means the current path is likely to be new
and we can only use the latest path properties for prediction.
Predicting Path Properties: Once we match the paths across
two intervals, we will make path prediction for the next interval.
We try both exponential weighted moving average (EWMA) and
Holt-Winters (HW) [1]. EWMA predicts the future quantity as
G4BC = UG4BC + (1 � U)G , where G is the current sample and G4BC is
the predicted value, and U is the weight for G4BC and between 0 and
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1. Holt Winter improves over EWMA by decomposing the predicted
value into two components: �uctuation0(8) and trend1 (8):~ (8+1) =
0(8) +1 (8) where 0(8) = U ⇥~ (8) + (1�U) ⇥ (0(8 � 1) +1 (8 � 1)) and
1 (8) = V ⇥ (0(8)�0(8�1)) + (1�V)⇥1 (8�1). Our evaluation shows
that both work pretty well and Holt Winter slightly out-performs
EWMA since it can predict the trend in the data. So we use Holt
Winter in our evaluation and set U = V = 0.7.
3 EVALUATION
We �rst evaluate using acoustic signals since its Doppler shift is
large even at a lower speed due to its slower propagation speed,
making it easier for experiments and getting the ground truth. Next,
we use a combination of Wireless Insite and vehicular experiments
using USRP to evaluate our approach for RF signals.
3.1 Acoustic Micro-benchmark
Acoustic signals are attractive to use for validation since it has better
distance and Doppler resolution. We use 14 – 22 KHz acoustic
channel, 8KHz bandwidth, 250 ms pilot spanning 64 ⇥ 32 grid.
Therefore, each distance tap is 2

⌫ = 4.25 cm and Doppler tap is
⌫

"# = 3.91 Hz corresponding to 7.44 cm/s, where 2 is the speed of
sound and ⌫ is bandwidth. It allows us to di�erentiate between slow
movement, which is easy for conducting controlled experiments.

We �rst evaluate how accurately our approach estimates the
delay-Doppler pro�le by comparing the ground truth distance and
velocity. We run our tests in an anechoic chamber using the setup
shown in Fig.4. For validation, we generate acoustic signals with
a preamble followed by multiple pilots similar to Fig.2. We play
signals through a speaker. We use a smartphone as a receiver to
record the received signals. The receiver �rst runs correlation with
the preamble to detect the start of the transmission and then esti-
mates the delay and Doppler using the approach described in Sec.2.
After synchronization, the delay estimated using the subsequent
pilots re�ects the delay change since the preamble.
Delay-Doppler pro�le: Fig. 5 plots an example delay-Doppler
pro�le after processing the received acoustic signals. After syn-
chronization, the shortest path is shifted to the tap 0. The tap at
the largest delay also corresponds to the direct path due to wrap
around. The re�ection path has slightly larger delay and weaker
signal strength. The di�erence between the delay of the direct path
and re�ection path matches with the ground truth in our setup.
Distance estimation: We add a re�ector as shown in Fig. 4(a).
We �x the positions of the transmitter and receiver, and move the
re�ector around. Our analysis of received signal shows two distinct
peaks corresponding to the direct path and re�ected path. Fig. 6(a)
plots the delay estimation error of the re�ected path as we move
the re�ector from 12 taps to 29 taps. The error is within 0.4 tap,
which is quite small. Then we add another re�ector as shown in
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Figure 6: Delay estimation error in LoS acoustic experiments:
(a) single re�ector and (b) two re�ectors.
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Fig. 4(b). Our path estimation automatically determines there are 3
paths and derives their corresponding delay and Doppler. Fig. 6(b)
shows the distance estimation error of the two re�ection paths.
They remain small – within 0.5 tap.

We further evaluate under NLoS scenarios. We place a phone
and speaker with LoS and add a re�ector. After synchronization,
the receiver shifts the LoS path to tap 0 and accurately estimates
the distance di�erence between the re�ected and direct paths. As
shown in Fig. 7(a), the estimation error is within 0.5 delay tap in blue.
Then we block the LoS path. The receiver continues to accurately
estimate the delay of the NLoS path within an error of 0.5 delay
tap as shown in red in Fig. 7(a). Next we add a second re�ector.
Fig. 7(b) shows our estimated delay of both re�ection paths have
low errors: within 0.5 and 0.35 taps for the two re�ectors. These
results demonstrate the feasibility of our delay estimation in NLoS.
Doppler estimation:Next, we evaluate the performance of Doppler
estimation. We put our transmitter on a moving track and put the
receiver on a table as shown in Fig. 8(a). We control the speed of
the moving track from 20 cm/s to 40 cm/s so that we know the
ground truth velocity. As shown in Fig. 8(b), our Doppler estima-
tion error is also small, ranging between 0 - 0.75 tap. Note that the
acoustic signals occupy 14-22 kHz, which means the Doppler shift
in the 8 kHz band varies with the frequency. This is already visible
in the movement speed we use and contributes to our estimation
error. Further increasing the moving speed will introduce more
peaks in the Doppler axis due to the frequency-dependent Doppler
shift, making it hard to visualize the results. Therefore, we limit our
speed to 40 cm/s. This is a unique problem in acoustic signals due
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to their low frequency. For RF signals, the entire 20 MHz channel
sees almost the same Doppler shift due to its higher frequency (e.g.,
above 2 GHz), and hence has even lower estimation errors.
3.2 Wireless Insite Based Evaluation
Next we evaluate our approach using Wireless Insite.
3.2.1 Evaluation Methodology. Transmission signals: RF signals
propagate much faster than acoustic signals, which leads to more
coarse resolutions. Our default con�guration uses 20 MHz band-
width and sampling frequency, 512 ⇥ 256 grid for a frame, and a
32⇥64 sub-grid for a pilot. This yields a delay resolution of 2

⌫ = 15<,
and Doppler resolution of ⌫

"# = 152.5 Hz. This Doppler resolu-
tion corresponds to a speed of 21.5 m/s for 2.125 GHz, 1.6 m/s for
28 GHz, and 0.76 m/s for 60 GHz. We use USPS for our vehicular
experiments. Meanwhile, we also conduct an extensive evaluation
using Wireless Insite. Our pilot overhead is 32⇥64

512⇥256 = 1.56%, which
is lower than LTE pilot overhead of 4.7%. Moreover, since we es-
timate the physical path properties and no longer need to send
pilots for di�erent frequencies, our pilot overhead is even lower
than wideband LTE.
Multipath in 3D environment: To generate realistic traces, we
recreate 3D real-world models of our test �elds and feed them to
Wireless Insite, which ray-traces RF signal re�ection, penetration,
and di�raction under the LTE frequency band. We use the parame-
ters from our driving traces to make our evaluation as realistic as
possible. We pick a 2.6⇥ 1.8 km2 satellite city for our measurement
and simulation, which includes campus, downtown urban canyon,
suburban, and pure highway. The measurements cover diverse road
types, including highway, railway, primary, secondary, tertiary
roads, and parking lots. The reconstruction of 3D model follows a
Geographic Information System (GIS) based pipeline [41]. We use
bounding longitude and latitude of these areas in blender-osm [10]
to fetch the terrain and building information from OpenStreetMap
[9]. Then the Blender [11] graphics software renders the 3D models,
colors and splits them based on material texture. Finally, we put all
3D elements together inWireless Insite and assign dielectric param-
eters to each surface according to the segmentation. The detailed
material settings are from ITU [37, 38] and online material property
database [35, 36].
Mobility Trace: We record driving trajectories by logging GPS
locations and inertial measurement unit (IMU) readings. Our drives
last for 15-30 minutes. We runWireless Insite by setting measured
GPS coordinates as the receiver locations and overlaying them onto
the 3D models as shown in Fig. 9 (c). In addition, we collect the cell
tower IDs using MobileInsight [22] during our drives. We obtain
the GPS coordinates, transmission power, operational frequency of
LTE cell towers from OpenCelliD database [20].
Validation:We measure the received signal strength (RSS) from
the cell towers roughly every 100 msec usingMobile Insight. We use
these measurements to validate the multipath traces from Wireless
Insite. Since we do not know the directionality of eNB antennas,
we use the omnidirectional antenna and assign the transmit power
of every base station such that the RSS in Wireless Insite is equal
to the �rst measured RSS from that base station. For every TX
and RX location, we generate multipath by ray tracing in the 3D
environment and get the ToF, Doppler, AoA/AoD, and received
power of every path.We only use the paths whose received power is

within 20 dB of the maximum for our multipath trace. It also outputs
the signal strength of the received signal at every RX location. We
compare the RSS fromWireless Insite with the RSS measurements
from Mobile Insight. As shown in Fig. 9, they match quite well,
indicating that our methodology generates realistic traces.
3.2.2 Performance Results. We evaluate each component in our
approach, which includes peak detection, multipath estimation,
channel prediction, and data decoding.
Peak Detection:We compare the accuracy of our peak classi�er
and threshold based peak detection under varying SNRs (-5⇠0dB).
We use recall and precision to quantify the accuracy. Recall is the
ratio between the number of detected real peaks and the number
of real peaks, while precision de�nes the ratio between the number
of detected real peaks and the number of detected peaks.

As shown in Fig. 10, our ML-based classi�er can achieve both
high recall and precision: 0.95 and 0.86, respectively. It achieves
higher accuracy because it uses both peak magnitude in the current
tap and shape of nearby taps for peak detection. In comparison,
the threshold based scheme has either low recall or low precision.
When the threshold is low (e.g., 0.1), the threshold based scheme has
high recall: 0.96 but low precision: 0.56. Increasing the threshold to
0.3 increases the precision to 0.95 while reducing the recall to 0.45.
A low threshold incurs low precision because it considers many
noisy peaks as real peaks. A high threshold results in low recall
because it misses many real peaks. It is di�cult to �nd a threshold
to achieve both high recall and high precision.
3.2.3 Multipath Estimation. Next we evaluate how accurate our
algorithm estimates di�erent multipath parameters and how the
estimation a�ects the channel prediction.
Attenuation estimation: Fig. 11(a) shows the estimation error of
the attenuation coe�cient for each path relative to the coe�cient
of direct path in multipath environments as described above. Our
results show the normalized error for the attenuation is around 20%
for 0dB SNR and within 15% for 10 dB SNR and above.
Delay estimation: As shown in Fig. 11(b), even for a low SNR of
0dB, our delay estimation error is within 3.5m. For a higher SNR,
our error is within 2.5m, which is 2% of average path length in our
traces. In contrast, the mD-Track using 4 antennas yields a large
delay estimation error. Only when the SNR is above 20 dB, the
average path length estimation error is lower than 10m. In general,
the delay estimation error in mD-Track is 5⇥ to 10⇥ higher than
our error. This is not surprising since the delay-Doppler channel
representation allows us to reduce the number of interfering paths
and make the optimization problem smaller and easier to solve
while mD-track cannot spatially separate out the multipath based
on angle of arrival (AoA) due to a small number of antennas.
Doppler estimation: Fig. 11(c) compares our Doppler estimation
with mD-Track for the LoS and NLoS paths. Our approach has
Doppler estimation error around 12 Hz for a low SNR of 0dB and
within 10Hz for SNR � 5 dB, which is within 2% of average Doppler
shift in our traces. Moreover, our estimation error is small for both
direct and re�ection paths. mD-Track yields a high Doppler estima-
tion error: its Doppler error is 8⇥ to 11⇥ higher than our estimation
error since spatially separating the multipath is harder in this case.
Path prediction: Next we use the estimated path parameters to
predict the future parameters for each path. We use Holt-winter
algorithm to predict the future parameters based on the current
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Figure 14: BER of di�erent schemes for di�erent modulation schemes (a) BPSK, (b) 4-QAM, (c) 8-QAM, (d) 16-QAM

estimates. Fig. 12 shows that the prediction is accurate even for low
SNRs – within 5 m and 15 Hz.
OFDM channel prediction: We predict the OFDM channel based
on the predicted multipath parameters. We compare our prediction
with the existing work that predicts the channel by interpolating be-
tween the two reference blocks on a given subcarrier. The reference
blocks are separated by 7 slots as they are in an LTE frame. Fig. 13
shows the average normalized error across all slots in the same
subframe and subcarrier where the reference blocks are transmitted.
The average error is computed as |⌘4BC � ⌘A40; |, where ⌘4BC and
⌘A40; denote the estimated and real channel, respectively. Fig. 13
shows that predicting based on interpolation incurs a very high
error: 70%, while predicting using multipath parameters is much
more accurate. Our scheme reduces the error by up to 10x for a
range of SNRs. The speeds in Fig. 13 correspond to 2.125 GHz. If
higher frequencies are used, similar bene�ts will be observed at
much lower speeds. For example, 25 m/s, 60 m/s, 100 m/s in 2.125
GHz correspond to 1.9 m/s, 4.6 m/s, 7.6 m/s in 28 GHz, respectively,
and correspond to 0.9 m/s, 2.125 m/s, 3.5 m/s in 60 GHz, respec-
tively. Therefore, our approach can bene�t transmissions at higher
frequencies even more.

We further show how the channel prediction error varies over
time as the velocity of the client changes. Fig. 14(d) shows the nor-
malized OFDM channel prediction error using interpolation versus
using the predicted multipath parameters. During the intervals
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Figure 15: (a) BER vs speed. (b) BER over time
with a low speed, the errors of both schemes are similarly low. In
comparison, under high mobility cases (> 70</B), the prediction
error of the existing scheme is sometimes over 100%. In comparison,
our scheme signi�cantly reduces the prediction error. There are
some spikes in our prediction error. This happens when our channel
estimation misses some path due to noise. This generally happens
when new paths appear in the channel. However, these cases are
rare and the error reduces quickly afterwards.
OFDMData Decoding:We conduct USRP experiments to evaluate
our system in high mobility. We use Wireless Insite to generate
realistic channel under high mobility as mentioned above. We then
feed the reference signals similar to the one in Fig. 2 along with the
data signals to the generated channel and let a USRP node transmit
the resulting RF signals over the air. A USRP receiver processes
the received signal to extract the delay and Doppler. We expect
the received signal should have similar multipath properties as the
synthetic channel since re�ectors in the lab environment are not
far enough (i.e., > 15 m) to show up in di�erent delay taps. The
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Figure 16: Distance and velocity estimation in vehicular experiments. (a) Static experiment A (65m between Tx and Rx). (b)
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experiments. (e) Doppler estimation in vehicular experiments.

USRP receiver essentially sees the multipath from the generated
channel along with additional noise and interference (if any) from
the lab where we run the experiment.

We compare data decoding by predicting the channel using our
approach versus interpolation. We compensate the received signal
based on the predicted channel before data demodulation.

Fig. 14 compares the BER after applying 1/2 FEC across three
schemes: (i) ideal where the channel remains the same, (ii) baseline
that uses interpolation and extrapolation to directly estimate the
channel, and (iii) our approach that estimates and predicts the multi-
path properties. We make several observations. First, our approach
signi�cantly out-performs the baseline. It is close to the ideal case
under low modulation schemes (e.g., BPSK and 4-QAM). Under a
high modulation scheme, our approach continues to signi�cantly
out-perform the baseline but deviates from the ideal case. This is
expected since higher modulations are more sensitive to channel
estimation errors. A close look reveals that most channel estimation
error arises when we under-estimate or over-estimate the number
of multipath. As part of our future work, we will further improve
the estimation accuracy. Fig. 15 (a) shows how the BER varies across
speeds for a �xed modulation scheme and �xed SNR. It shows that
our multipath pro�le based prediction can achieve much lower BER
than the baseline under a high speed.

We further show how the BER varies over time as the velocity of
the client changes. Fig. 15 (b) plots the BER of BPSK modulation for
baseline and our approach. It shows that the baseline has a very low
BER, roughly similar to our scheme, during the intervals with a low
speed. This is because the channel is not very dynamic under low
mobility and the data symbols see a similar channel as the reference
signal. It can be further validated using the results in Fig. 14(d),
where it shows that the baseline has a very low prediction error.
However, the baseline scheme fails to decode most data under high
mobility as the BER is close to 0.5 due to large Doppler shifts. In
comparison, our method yields much lower BER at high speed.

3.3 Testbed Experiments
We further conduct testbed experiments. We build our testbed on
two Ettus USRP N210, each equipped with a single dipole antenna,
serving as TX and RX, respectively. Their clocks are driven by GPS
disciplined oscillator (GPSDo). Before experiments, we measure
the hardware phase o�set on RF chains of USRPs using a cable
connection between the TX and RX antenna port. Although the
clocks are synchronized, a 0.15⇠3Hz carrier frequency o�set (CFO)
still exists.We follow themethod in [45] to estimate and compensate
CFO in post-processing. Then, the sampling frequency o�set (SFO)
and symbol timing o�set (STO) are calibrated according to [19, 45].

First, we perform static experiments. We separate two USRPs
90 m and 65 m apart. The TX transmit OTFS signal of 16384 ⇥ 32
grids at 1.71 GHz with a 20 MHz bandwidth. This yields 15m delay
resolution. The preamble occupies 8192⇥ 1 sub-grids. Fig. 16(a) and
(b) show the delay-Doppler pro�les containing 3 peaks for 65m
and 90m Tx-Rx separation, respectively. Since the experiment is
in LoS, the �rst peak is the direct path and the synchronization
moves the peak to tap 0. To verify the distance estimation, we
feed the 3D model of the test �eld to the Wireless Insite to get the
ground-truth multipath in the environment. We bin the ground
truth multipath based on their path-length, where each bin is 15m.
Fig. 16(c) shows the top few bins. Not all paths in Wireless Insite
are visible in real measurements due to noise and interference. But
the top three bins from Wireless Insite correspond to the peaks in
our delay-Doppler pro�le in Fig. 16(a) and (b). The delay di�erence
between our estimation and ground truth are 0m for the 2nd and
3rd peaks in the 65m case. The errors are 0m for 2nd peak and 15m
for 3rd peak in 90m case due to lower SNR.

Next, we conduct vehicular experiment. We �xed the TX along-
side the road and mounted the RX on the vehicle’s top. Limited
by the transmit power, we set the trace duration to 12s or 320m.
The car travels at 26.67 m/s on cruise control, �rst towards the TX,
then passes it and moves away. TX transmits signal at 2.2 GHz. To
obtain the ground-truth path length and doppler, we also record
the GPS location and trajectory of the TX and RX, respectively.
Fig. 16(d) and (e) compare the estimated, predicted, and ground
truth delay and Doppler. Our method yields a 6.93% and 4.91% delay
and Doppler estimation errors, respectively, and 8.35% and 5.60%
delay and Doppler prediction errors, respectively. These results
demonstrate the feasibility of our approach in a real environment.

4 RELATEDWORK
Channel prediction: Existing works predict the channel in the
time-frequency domain (e.g., OFDM). They enhance the prediction
accuracy using spatial-temporal correlation [24, 27, 32, 44], machine
learning [23], compressive sensing [5, 8], subspace algorithm [3],
and external sensor/GPS assistance [13, 30]. Highmobility increases
the estimation error due to a large Doppler shift.
Cross-band channel estimation:

[39] studies the problem of using OFDM measurement from one
frequency to estimate the OFDM channel on another frequency.
Since all paths are mixed together in OFDM, the non-linear opti-
mization is much harder to solve. The quality of the solution is
sensitive to the initial estimates. Our simulation shows that the
path length estimation in [39] has �15 m error even under a high
SNR (15 dB). The error increases to 30 m when the SNR reduces
to 0 dB. To improve the initial estimation in [39], [6] develops a
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machine learning (ML) based algorithm. However, the ML model
should be retrained for each frequency. More importantly, [39] and
[6] operate in the time-frequency domain, and implicitly assume
static environments and ignore the Doppler shift. We estimate mul-
tipath properties using the delay-Doppler representation for high
mobility.

[21] applies singular value decomposition to cross-band channel
estimation without extracting multipath parameters. By extracting
multipath parameters, we can support applications beyond cross-
band estimation, including channel prediction, motion tracking,
and environment sensing.
Motion sensing: Various motion sensing algorithms and systems
have been developed using WiFi [4, 16, 17, 29, 33], mmWave [43,
48], RFID [25, 40], and acoustic signals [28, 42, 46, 47]. Di�erent
from motion tracking, which focuses on estimating the �rst path,
we estimate the multipath pro�le, which is necessary for sensing
environments and optimizing wireless communication.

5 CONCLUSION
This paper presents a novel approach that leverages the delay-
Doppler representation to estimate and predict themultipath pro�le.
Our results show this approach is promising – its delay estimation
error is within 1% under SNR above 10dB and 4% under SNR of -4
dB and the corresponding Doppler estimation error is 0.4% and 2%,
respectively. We also show it helps channel prediction. The con-
tribution of our work is beyond a speci�c algorithm for multipath
estimation and prediction, but shows an example application of
using the delay-Doppler channel representation in high mobility
scenarios. We hope other researchers can develop more applications
to bene�t from this channel representation.
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