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The leptonic and inclusive hadronic decay branching fractions of the W boson are measured using
proton-proton collision data collected at

ffiffiffi
s

p
¼ 13 TeV by the CMS experiment at the CERN LHC,

corresponding to an integrated luminosity of 35.9 fb−1. Events characterized by the production of one or
twoW bosons are selected and categorized based on the multiplicity and flavor of reconstructed leptons, the
number of jets, and the number of jets identified as originating from the hadronization of b quarks. A
binned maximum likelihood estimate of the W boson branching fractions is performed simultaneously in
each event category. The measured branching fractions of the W boson decaying into electron, muon, and
tau lepton final states are ð10.83# 0.10Þ%, ð10.94# 0.08Þ%, and ð10.77# 0.21Þ%, respectively,
consistent with lepton flavor universality for the weak interaction. The average leptonic and inclusive
hadronic decay branching fractions are estimated to be ð10.89# 0.08Þ% and ð67.32# 0.23Þ%, respec-
tively. Based on the hadronic branching fraction, three standard model quantities are subsequently derived:
the sum of squared elements in the first two rows of the Cabibbo–Kobayashi–Maskawa (CKM) matrixP

ij jVijj2 ¼ 1.984# 0.021, the CKM element jVcsj ¼ 0.967# 0.011, and the strong coupling constant at
the W boson mass scale, αSðm2

WÞ ¼ 0.095# 0.033.

DOI: 10.1103/PhysRevD.105.072008

I. INTRODUCTION

Measurements of the leptonic and hadronic widths of the
W boson, ΓðW → lν̄Þ with l ¼ e, μ, τ and ΓðW → qq̄0Þ,
respectively, or their corresponding decay branching frac-
tions derived from their ratio to the total W width,
BðW → lν̄; qq̄0Þ ¼ ΓðW → lν̄; qq̄0Þ=ΓW;total, provide a
compelling testing ground to investigate fundamental
aspects of the standard model (SM). Primarily, all electro-
weak (EW) bosons are assumed to couple equally to all
three lepton generations, a property known as lepton flavor
universality (LFU), and experimental evidence of a depar-
ture from this assumption would be a sign of new physics.
In recent years, hints of potential LFU violation have been
reported, e.g., in semileptonic decays of B mesons where
the bottom quark converts into a strange quark through an
intermediate W boson [1–5]. In addition, other hints of
LFU failure have been seen in rarer (electroweak, loop-
induced) B-meson decays [6,7]. A complementary test of
LFU can be carried out by comparing the three branching
fractions of the W boson in the electron, muon, and tau

lepton decay channels. The most precise values of the
BðW → lν̄lÞ fractions have been obtained from combina-
tions of measurements performed by each of the four LEP
experiments at CERN [8,9]. Based on these results, a ratio
between branching fractions has been obtained,

Rτ=ðeþμÞ ¼
2BðW → τν̄τÞ

BðW → eν̄eÞ þ BðW → μν̄μÞ
¼ 1.066# 0.025; ð1Þ

which shows a 2.6 standard-deviations departure from the
SM expectation of Rτ=l ¼ 0.9996 [10–12]. Confirmation of
this hint of LFU violation requires more precise measure-
ments of the W boson branching fractions than available at
LEP. In proton-proton (pp) collisions at the LHC, the large
cross section for the production of top quark-antiquark pairs
(tt̄), each decaying into a W boson and a bottom (b) quark,
offers a sizable high-purity sample of W boson pairs useful
for a high-precision study of their decays. A recent meas-
urement by the ATLAS Collaboration took advantage of the
large tt̄ production at the LHC to measure the ratio Rτ=μ by
fitting the transverse impact parameter distribution of theW-
decay muons [13]. The resulting value of Rτ=μ ¼ 0.992#
0.013 is in tension with the LEP result, and favors the LFU
hypothesis. Measurements of the ratio of the electronic to
muonic branching fractions of the W boson have also been
performed by D0 [14], CDF [15], ATLAS [16], and LHCb
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[17], where each experiment observed values consistent
with LFU.
A second motivation to study W boson decays arises

from the fact that within the SM the W hadronic width
depends on various free parameters of the theory—such as
the strong coupling constant at the W mass, αSðm2

WÞ, and
the quark flavor mixing elements of the first two rows of the
Cabibbo–Kobayashi–Maskawa (CKM) matrix—that can
thereby be indirectly determined. Theoretically, the decay
width of theW boson into (massless) quarks is provided by
the expression,

ΓðW→qq̄0Þ¼
ffiffiffi
2

p
GFNc

12π
m3

W

X

i;j

jVijj2
"
1þ

X4

k¼1

cðiÞQCD

#
αS
π

$
k

þδEWðαÞþδmixðααSÞ
%
; ð2Þ

where the factor before the parentheses is the Born width,
which depends on the number of colors Nc ¼ 3, the Fermi
constant GF, mW , and the sum of squared CKM matrix
elements Vij (excluding terms involving the top quark that
are not kinematically accessible). The terms in parenthesis
of Eq. (2) include the higher-order perturbative quantum
chromodynamics (QCD) corrections, given by an expan-
sion in αkS coefficients known up to order k ¼ 4 [18], the
EW corrections δEW known to order OðαÞ [10] (where α is
the electromagnetic coupling), and the mixed EW plus
QCD corrections δmix known to order OðααSÞ [19]. Based
on Eq. (2) and the ratio of hadronic to leptonic branching
fractions of the W boson, the unitarity of the first two rows
of the CKM matrix can be tested by searching for a
deviation from

P
u;c;d;s;b jVijj2 ≡ 2. Additionally, it is

possible to indirectly determine the value of jVcsj [8,20],
which currently has the largest absolute uncertainty among
the elements of the first two rows of the CKM matrix.
Based on the current world-average values of the CKM
elements [9], the quadratic sum of the elements in the first
two CKM matrix rows can be derived,

P
u;c;d;s;b jVijj2 ¼

2.002# 0.027, with a 1.3% precision dominated by the
uncertainty of the jVcsj element. Consequently, a meas-
urement of the inclusive W hadronic branching fraction
with subpercent uncertainties provides a more precise,
albeit indirect, determination of the value of the jVijj2
sum as well as of jVcsj. Assuming CKM unitarity, it is also
possible to determine the value of αSðmW

2Þ via Eq. (2),
although not with a precision competitive with other
extractions to date [9,12].
This paper describes a measurement of the three leptonic

branching fractions, as well as of the inclusive hadronic
branching fraction, of W boson decays. The analysis is
based on pp collision data at a center-of-mass energy of
13 TeV corresponding to an integrated luminosity of
35.9 fb−1 [21] collected by the CMS experiment at the

CERN LHC in 2016. Selected events are required to
contain at least one electron or muon with large transverse
momentum, pT. The events are grouped into final-state
categories that primarily target decays of two W bosons
originating from tt̄ production. The values of the W boson
branching fractions are estimated from a binned maximum
likelihood fit to data in final states selected based on the
number and the flavor of leptons, the number of jets, the
number of those jets identified as originating from b
quarks, and a category-dependent kinematic variable.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a super-
conducting solenoid, 13 m in length and 6 m in diameter,
which provides an axial magnetic field of 3.8 T. Within the
field volume there are several particle detection systems.
Charged particle trajectories are measured by silicon pixel
and strip trackers, covering 0 < ϕ < 2π in azimuth and
jηj < 2.5 in pseudorapidity, where η is defined as
− log½tanðθ=2Þ' and θ is the polar angle of the trajectory
of the particle with respect to the counterclockwise proton
beam direction. A lead tungstate crystal electromagnetic
calorimeter (ECAL) and a brass and scintillator hadron
calorimeter (HCAL) surround the tracking volume and
cover the region jηj < 3. The calorimeters provide energy
measurements of photons, electrons, and jets of hadrons. A
lead and silicon strip preshower detector is located in front
of the ECAL end cap. Muons are identified and measured
in gas-ionization detectors embedded in the steel flux return
yoke outside of the solenoid. The detector is nearly
hermetic, allowing energy balance measurements in the
plane transverse to the beam direction. A more detailed
description of the CMS detector is reported in Ref. [22].

III. SIMULATED EVENT SAMPLES

Simulated Monte Carlo (MC) event samples are gen-
erated for the processes defined as signal (tt̄, tW,WW, and
W þ jets) and backgrounds (Z þ jets, γ þ jets, WZ, and
ZZ). The contribution to the background originating from
QCD multijet production is estimated using control sam-
ples in data. The POWHEG v2 [23–27] MC event generator is
used at next-to-leading order (NLO) QCD accuracy to
produce samples of tt̄, single top quark produced in
association with a W boson (tW), and most of the relevant
diboson processes (WW, WZ, and ZZ → 2l2ν). The W þ
jets MC samples are generated at leading-order (LO)
QCD accuracy using the MADGRAPH event generator
[28]. Drell–Yan, γ þ jets, WZ, and semileptonic ZZ
decay modes are generated at NLO QCD accuracy with
MADGRAPH5_aMC@NLO [29,30]. In all cases, the MC
samples are obtained with the NNPDF3.0 parton distribu-
tion functions (PDFs), and are interfaced with PYTHIA8.212
[31,32] for parton showering and hadronization. The
underlying event (UE) PYTHIA8.212 tune used for most
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samples is CUETP8M1 [33] with the exception of the tt̄
case which uses the dedicated CUETP8M2T4 tune [34].
The CMS detector response is simulated with a GEANT4-
based model [35], and the events are reconstructed and
analyzed using the same software employed to process
collision data.
The impact of pileup pp collisions on the event

reconstruction [36] is accounted for in simulation by
superimposing simulated minimum bias pp events on
top of each process of interest. Because the distribution
of the number of pileup events in the original simulation is
not the same as in data, the former is reweighted to match
the latter. Scale factors are also applied to account for
differences between data and simulation with respect to
modeling of the trigger efficiencies, as well as lepton
reconstruction, identification, and isolation efficiencies.
Additional corrections are applied to account for the energy
scale and pT resolution of charged leptons. The jet energy
scale (JES), resolution (JER), and b tagging efficiency and
multivariate discriminator distributions measured in data
are used to correct the simulated events.
LFU is assumed by default in the simulated event

samples, taking BðW → lν̄Þ ¼ 10.86% for each leptonic
decay mode [9]. For the τ decays, its hadronic and leptonic
branching fractions are taken from their current world-
average values [9].

IV. EVENT SELECTION AND RECONSTRUCTION

A two-tier trigger system [37,38] selects pp collision
events of interest for physics analysis. The triggers used to
collect data require the detection of a single muon (elec-
tron) with pT > 24ð27Þ GeV and jηj < 2.4ð2.5Þ.
Though the selection is designed mainly to collect events

originating from tt̄ production, the chosen criteria also
accept contributions from tW, WW and W þ jets produc-
tion, which are thereby also considered as signal processes
in this analysis. The background processes include the
production of multiple QCD jets, Z boson plus jets, and
WZ and ZZ dibosons. The WZ production is not consid-
ered as part of the signal processes because of its negligible
contribution. The selection of events consistent with the
signal processes requires reconstructing electrons, muons,
hadronically decaying τ leptons (τh), and hadronic jets.
Additionally, to suppress backgrounds it is useful to
determine whether reconstructed jets originate from the
fragmentation of b quarks.
A global particle-flow (PF) event reconstruction [39] is

used to reconstruct and identify each individual particle in a
pp collision, with an optimized combination of all sub-
detector information. Photons are identified as ECAL
energy clusters not linked to the extrapolation from any
charged particle trajectory reconstructed in the tracker.
Electrons are identified as a primary charged particle track
plus, potentially, any ECAL energy clusters matched to the
track as well as to any bremsstrahlung photons emitted

along the way through the tracker material. Muons are
identified as tracks in the central tracker that are consistent
with either a track or several hits in the muon system, and
associated with calorimeter deposits compatible with the
muon hypothesis. Charged hadrons are identified as
charged particle tracks neither identified as electrons, nor
as muons. Finally, neutral hadrons are identified as HCAL
energy clusters not linked to any charged hadron trajectory,
or as ECAL and HCAL signals with energies above those
expected to be deposited by a charged hadron.
The candidate vertex with the largest value of summed

physics-object p2
T is the primary pp interaction vertex

(PV). The physics objects are the jets, clustered using the
anti-kT jet finding algorithm [40,41] with the tracks
assigned to candidate vertices as inputs, and the associated
missing transverse momentum, pmiss

T , taken as the negative
vector pT sum of all jets. Quality requirements are applied
to reconstructed PVs to guarantee that they come from a
hard scattering event [42].
Electrons are reconstructed by combining information

from the ECAL and the tracking system using a Gaussian-
sum filter method [43]. Electrons are required to have
pT > 10 GeV, and lie within the geometrical acceptance of
jηj < 2.5. Corrections are applied to account for mismea-
surements of the electron momentum scale and resolution.
To select electrons that have originated from the prompt
decay of an EW boson, an isolation variable is constructed
by summing the pT of charged hadrons (Ich), neutral
hadrons (Ineu), and photons (Iγ) within a cone of radius
ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
¼ 0.4 around the electron candi-

date direction, and subtracting the contribution from pileup.
The combined PF isolation for electron candidates is
defined as,

IPF ¼ Ich þmax ð0; Ineu þ Iγ − ρAeffðηeÞÞ; ð3Þ

where the pileup correction ρAeff depends on the median
transverse energy density per unit area in the event ρ, and
on the area of the isolation region AeffðηeÞ weighted by a
factor that accounts for the η dependence of the pileup
transverse energy density around the electron [44].
Electrons reconstructed in the barrel (jηj < 1.479) or end-
cap (jηj > 1.479), are required to have IPF=pe

T < 0.0588
and 0.0571, respectively.
Muon candidates are reconstructed using both the muon

and tracker detector subsystems. The coverage of these two
detector systems allows reconstruction of muons within
jηj < 2.4 and with pT as low as 5 GeV [45]. Muons are
required to be reconstructed by both the global and tracker
reconstruction algorithms. These algorithms are distinct in
that the tracker μ# reconstruction begins with tracker
information and extrapolates the trajectory to find consis-
tency with hits in the muon system, whereas the global
muon algorithm inverts the reconstruction steps starting
from the muon system and finding trajectories in the tracker
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that are consistent with them. The combination of these two
algorithms results in a muon reconstruction that is efficient
in detecting muons within the detector acceptance as well
as accurate in predicting their momenta.
For the purpose of selecting muons promptly produced

from weak boson decays, additional identification and
isolation requirements are applied [46]. The muon identi-
fication requirements are designed to have a high selection
efficiency and a low probability of misidentification against
nonprompt muons. The isolation of muons is defined as the
scalar pT sum of all charged-hadron, neutral-hadron, and
photon PF candidates in a cone of radius ΔR ¼ 0.4 around
the μ direction. The isolation includes a term (Ipileup)
accounting for neutral particles produced by overlapping
pp collisions by subtracting half the average energy
deposited by pileup,

IPF ¼ Ich þmax ð0; Ineu þ Iγ − 0.5IpileupÞ: ð4Þ

All muons are required to have IPF=p
μ
T < 0.15, except when

an isolation sideband is used to estimate backgrounds.
Hadronically decaying τ leptons (τh) are reconstructed

using the hadron-plus-strips algorithm [47]. This algorithm
reconstructs τh candidates seeded by a PF jet that is
consistent with either a single or a triple charged-pion
decay of the τ lepton. In the single charged-pion decay
mode, additional neutral pions are reconstructed using their
diphoton decays. Any τh that overlaps with reconstructed
muons or electrons is rejected. Jets not originating from τ
lepton decays are rejected by a multivariate discriminator
that takes into account the pileup contribution to the neutral
component of the τ lepton decay [47]. The reconstructed τh
are required to have pT > 20 GeV and jηj < 2.3. A work-
ing point with an identification efficiency of ≈50% and a
misidentification efficiency of ≈0.2% is used in selecting τh
candidates. Scale factors are derived to account for
differences between τh identification efficiencies in simu-
lation compared with data [47] in two control regions
enriched in Z and tt̄ production. The differences of the
reconstructed τh energy between data and simulation are
also corrected in simulation using scale factors determined
in a Z → ττ region.
Jets are reconstructed from PF candidates [39] clustered

using the anti-kT algorithm with a distance parameter of
0.4, and are required to have pT > 30 GeV and jηj < 2.4.
Jets are corrected to account for pileup contamination,
differences in absolute response of jet pT between data and
simulation, and relative response in η [48]. To reduce
contamination from photons and prompt leptons, additional
identification requirements are applied to the jets. Jets are
vetoed if they overlap, within a cone of radius ΔR ¼ 0.4
around the jet direction, with any reconstructed muon,
electron, or τh lepton passing the identification require-
ments described above.

Jets originating from the hadronization of b quarks are
identified using the combined secondary vertex b tagging
algorithm [49] that uses secondary, displaced vertices and
track lifetime information. The b-tagged jets are selected
such that their detection efficiency is 63% for a 1%
misidentification rate. To account for the difference in b
tagging efficiency between data and simulation, pT-
dependent scale factors are used to modify the b-tag status
of individual jets in simulation depending on whether the
jet originates from a b quark, a c quark, or a light quark
or gluon.

V. EVENT CATEGORIZATION

Requirements are applied offline to categorize events
based on the multiplicity of reconstructed leptons, jets, and
b-tagged jets passing a minimum pT threshold, as sum-
marized in Table I. In categories with two leptons in the
final state, the leptons are required to have opposite-sign
electric charges. Events in the ee and μμ categories are
rejected if the lepton pair invariant mass is between 75 and
105 GeV in order to reduce the contamination from Z
boson events. The various categories are dominated by W
decays originating from tt̄ production (90%) with minor
contributions from tW (4.4%), WW (1.4%), and W þ jets
(4.2%) processes, whereas the background consists mainly
of Drell–Yan and multijet QCD production, with almost
negligible contributions from WZ and ZZ diboson
processes.
Each of the categories is designed to target particular

combinations of W decay modes, but will include events
attributable to different decays. The selection categories
mostly contain events collected using only one of the
triggers with the exception of the eμ and μe categories
where overlap is accounted for by rejecting any duplicated
events. Because τ leptons are not detected directly, but
through their decay products, all categories contain a
mixture of events with final states that include electrons,
muons, or jets originating either directly from W boson
decays or through intermediate τ decays. This ambiguity in
reconstruction is maximal in the eτh and μτh categories
with two or more jets, because of the higher probability of a
jet originating from aW boson decay being misidentified as
originating from a τ lepton decay. The categories denoted
by eh and μh are intended to target decay modes where one
of the W bosons has decayed to quarks.
To further improve the sensitivity to specific branching

fractions and constrain some of the systematic uncertainties,
events are further categorized based on the jet and b tag
multiplicities as shown in Table II. Events with Nj ≥ 1 and
Nb ≥ 1 comprise the bulk of the signal with most of the
events originating from tt̄ production. These events also
contain some contribution from tW production and, in the
case of the eτh, μτh, eh, and μh categories, Wþ jets
production. Events in the eτh and μτh categories with at
least one jet that is notb-tagged are used in control regions for

A. TUMASYAN et al. PHYS. REV. D 105, 072008 (2022)

072008-4



the τh identification, and include additional requirements to
enhance the presence of Drell–Yan events: 40 < mlτh <
100 GeV,Δϕðl; τhÞ > 2.5, andml

T < 60 GeV,whereml
T is

the transverse mass of the electron or muon defined as
ml

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl

Tp
miss
T ½1 − cosΔϕðpl

T; p
miss
T Þ'

p
, where Δϕðpl

T;
pmiss
T Þ is the angle between the electron or muon pT and

the pmiss
T . In general, events with lower jet and b tag

multiplicities have larger contributions from background
processes and are mainly useful in constraining systematic
uncertainties associated with those processes. The exception
is in categories with low jet multiplicity and no b tags in eμ
final states where there is significant contribution fromWW
production in addition to background processes. Categories
with eτh and μτh and at least one b tag are also further
subdivided depending on whether there are exactly two jets
or more than two jets in the event. The reasoning for this
choice is based on the fact that eventswith exactly two jets are
more likely to come from events where one W boson has

decayed to a τ lepton and the two jets originated from the b
quarks resulting from the top quark decays, whereas events
with a third jet are likely to have arisen from a hadronic W
decay where one jet has been incorrectly reconstructed as
a τh.
In several of the analysis categories, there is a non-

negligible contamination of nonprompt leptons originating
from QCD multijet production. This contamination mainly
affects the eh and μh decay channels, as well as decays with
τh candidates in the final state. Two different methods are
used for estimating nonprompt-lepton contamination
directly from data as explained next.
To estimate the nonprompt-lepton background originat-

ing from multijets in the eh and μh categories, a multijet-
dominated control region is selected by inverting the lepton
isolation requirement. To map the anti-isolated control
region into the signal region, transfer factors are determined
in a second, orthogonal, control region enriched inW þ jets
or Z þ jets production. These events are tagged by the
leptonic decay products of the W or Z boson, and the
additional jets are used to extract the transfer factors from
the ratio of the number of leptons passing the nominal
isolation requirements to the number passing a looser
criterion but failing the nominal, tighter criterion. The
transfer factors are determined as a function of the pT and η
of the nonprompt lepton, and simulation is used to account
for the contamination from processes that produce prompt
leptons. The transfer factors are applied as weights to
events with the same selection as the signal region but
where the leptons pass a loose isolation requirement and
fail the tighter requirement used to select signal events.
For event categories with a τh candidate, the multijet

contribution is estimated from control regions selected by
inverting the requirement that the leptons have opposite-
sign electric charge. This method relies on the fact that
there are few SM processes that give rise to same-sign
lepton pair final states, and the events instead originate
primarily from misidentification of a hadronic jet or non-
prompt lepton as being a prompt lepton. Events gathered in

TABLE I. Categorization of events based on the triggering lepton, the number of reconstructed and selected leptons (Ne, Nμ, Nτh ),
number of jets (Nj), and number of b-tagged jets (Nb). Kinematic requirements of the leptons and jets are listed in the fourth column.
Categories with two leptons in the final state require the selected leptons to have opposite signs. The second-to-last column lists the
targeted W boson branching fractions, and the last column provides the approximate number of W decays collected in each category.

Trigger Label Ne Nμ Nτh Nj Nb Kinematic requirements
Target W boson

branching fractions
Approximate number

of W decays

e ee 2 0 0 ≥2 ≥1 pe
T>30;20GeV, jmee−mZj>15GeV W → eν̄e; τν̄τ 1.1 × 105

eμ 1 1 0 ≥0 ≥0 pe
T > 30 GeV, pμ

T > 10 GeV W → eν̄e; μν̄μ; τν̄τ 4 × 105

eτh 1 0 1 ≥0 ≥0 pe
T > 30 GeV, pτh

T > 20 GeV W → eν̄e; τν̄τ 8 × 104

eh 1 0 0 ≥4 ≥1 pe
T > 30 GeV, pj

T > 30 GeV W → eν̄e; qq̄0 1.4 × 106

μ μe 1 1 0 ≥0 ≥0 pμ
T > 25 GeV, pe

T > 20 GeV W → eν̄e; μν̄μ; τν̄τ 2 × 105

μμ 0 2 0 ≥2 ≥1 pμ
T>25;10GeV, jmμμ−mZj>15GeV W → μν̄μ; τν̄τ 3 × 105

μτh 0 1 1 ≥0 ≥0 pμ
T > 25 GeV, pτh

T > 20 GeV W → μν̄μ; τν̄τ 1.3 × 105

μh 0 1 0 ≥4 ≥1 pμ
T > 25 GeV, pj

T > 30 GeV W → μν̄μ; qq̄0 2.1 × 106

TABLE II. Categorization of events with electrons, muons, and
τh passing the reconstruction criteria, based on their jet and b-
tagged jet multiplicities, used to define signal-enriched and control
regions. Events in the eτh and μτh categories with at least one jet
that is not b-tagged are additionally required to satisfy
40 ≤ mlτh ≤ 100 GeV, Δϕðl; τhÞ > 2.5, and ml

T < 60 GeV.

Nj ¼ 0 Nj ¼ 1 Nj ¼ 2 Nj ¼ 3 Nj ≥ 4

Nb ¼ 0 eτh, μτh, eμ eτh, μτh, eμ eτh, μτh, eμ

Nb ¼ 1 eτh; μτh, eμ eτh, μτh eτh, μτh

ee; μμ; eμ

eh, μh

Nb ≥ 2 eτh, μτh eτh, μτh

ee; μμ; eμ

eh, μh
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the same-sign control region are scaled by a set of transfer
factors determined separately in another, orthogonal, multi-
jet-enriched control region selected by inverting the iso-
lation requirements of the triggering electron or muon.
Simulated processes are used to account for contamination
from prompt lepton production in all control regions, and
mainly include Z → ττ (where the τh charge is mismeas-
ured) and W þ jets. The method is validated in a control
region that is enriched in multijets, W þ jets, and Z → ττ
processes selected by requiring no hadronic jets.

VI. EXTRACTION OF BRANCHING FRACTIONS

The determination of theW branching fractions is carried
out using amaximum likelihood estimation (MLE) approach
that fits histogram templates, derived from the signal and
background estimates, to the data. To explain themethod, it is
useful to encode the branching fractions into a vector,

β ¼ fβe; βμ; βτ; βhg; ð5Þ

where the subscript indicates the decaymode of theW boson
(all hadronic decay modes, h, are grouped together).
Further taking into account the fraction of τ decay modes,
t ¼ fte; tμ; thg, the branching fraction vector can be
rewritten,

β0 ¼ fβe; βμ; βτte; βτtμ; βτth; βhg: ð6Þ

This parametrization is sufficient for singleW processes, but
because final states with two W bosons are of primary
interest, it is necessary to consider all possibleW pair decay
combinations. This can be represented by the outer product
of β0 with itself,

B ¼ β0 ⊗ β0; ð7Þ

that is a 36-element symmetric matrix with 21 unique
elements.
The signal samples mainly consist of events resulting

from the decay of two W bosons, which are split into 21
categories based on inspecting generator-level event infor-
mation. The selection and identification efficiencies for the
signal samples can be written in a matrix form, with
elements corresponding to those in Eq. (7),

E ¼

0

BBBBBBBB@

ϵee ϵeμ ϵeτe ϵeτμ ϵeτh ϵeh
ϵeμ ϵμμ ϵμτe ϵμτμ ϵμτh ϵμh
ϵeτe ϵμτe ϵτeτe ϵτeτμ ϵτeτh ϵτeh
ϵeτμ ϵμτμ ϵτeτμ ϵτμτμ ϵτμτh ϵτμh
ϵeτh ϵμτh ϵτeτh ϵτμτh ϵτhτh ϵτhh
ϵeh ϵμh ϵτeh ϵτμh ϵτhh ϵhh

1

CCCCCCCCA

; ð8Þ

where the subscript on the τ indicates it decays to an
electron, a muon, or hadrons. This matrix is constructed for
each of the categories described in Tables I and II, and it is
further parameterized as a function of category-dependent
observables, such as the subleading lepton pT. Each
individual efficiency in Eq. (8) is given by the ratio,

ϵ ¼
P

iwi

Ngen
; ð9Þ

where wi is a weight for each selected event including all
scale-factor corrections discussed in Sec. IV, andNgen is the
total number of events generated for the process under
consideration including generator-level and scale-factor
corrections.
The estimated number of events for a given final state

(corresponding to the binned kinematic observable “i” and
category “j,” see below) is then given by,

Nij ¼
X

k∈sig
σkLEk

ijBij þ
X

l∈bkg
Nl; ð10Þ

where σk is the cross section of each signal process k that
contributes to a given W boson decay with branching
fraction Bij and efficiency Ek

ij, L is the integrated lumi-
nosity, and Nl is the predicted number of events for the
background process l. For W þ jets events, the vector
defined in Eq. (6) is used with the corresponding vector
of efficiencies for each decay mode. In practical terms, the
actual encoded parametrization of Eq. (8) includes a free
parameter representing the ratio of the branching fraction to
the nominal branching fractions used in simulation multi-
plied by the yield determined from the simulation with the
nominal values.
For each category, events are further binned based on a

single kinematic observable in each category. The observ-
able is selected to enhance the discrimination between
decay products that come directly from the W boson decay
from those with an intermediate τ lepton decay. The
variables that are selected for each lepton flavor category
are as follows:

(i) ee: the subleading electron pT,
(ii) μμ: the subleading muon pT,
(iii) eμ: the subleading lepton pT,
(iv) eτh and μτh: the hadronic tau pT,
(v) eh and μh: the lepton pT.

The largest benefit of including this kinematic information
comes in the ee, eμ, and μμ categories where the light
leptons originating from the decay of a τ lepton tend to have
lower momenta than those originating directly from a
W boson.
Templates are generated by binning the data of each

category into histograms using the Bayesian block algorithm
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[50]. The binning is calculated independently for each
category based on 104 simulated tt̄ events. Effectively, this
procedure parametrizes the efficiency matrix in Eq. (8) as a

function of the extra variables listed above. The predicted
yield in eachpT bin i and category j is a linear combination of
the signal, s, and background, b, templates given by

FIG. 1. Subleading electron and muon pT distributions used as inputs for the binned likelihood fits for the ee (upper) and μμ (lower)
categories, respectively, with the requirement of one (left) or more than one (right) b-tagged jets. The lower subpanels show the ratio of
data over pre-fit (dotted line) and post-fit (black circles) expectations, with associated MC statistical uncertainties (hatched area) and
post-fit systematic uncertainties (shaded gray). Vertical bars on the data markers indicate statistical uncertainties.

PRECISION MEASUREMENT OF THE W BOSON DECAY … PHYS. REV. D 105, 072008 (2022)

072008-7



FIG. 2. Subleading lepton, electron or muon, pT distributions used as inputs for the binned likelihood fits for the eμ categories. The
different panels are obtained with the listed selection criteria on the number of jets (Nj) and of b-tagged jets (Nb) required. The lower
subpanels show the ratio of data over prefit expectations, with the gray histograms (hatched area) indicating MC statistical (postfit
systematic) uncertainties. Vertical bars on the data markers indicate statistical uncertainties.
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FIG. 3. Distributions of τh pT used as inputs for the binned likelihood fits for the eτ categories. The different panels list the varying
selections on the number of jets (Nj) and of b-tagged jets (Nb) required in each case. The lower subpanels show the ratio of data over
prefit expectations, with the gray band (hatched area) indicating MC statistical (postfit systematic) uncertainties. Vertical bars on the data
markers indicate statistical uncertainties.
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fijðβ; θÞ ¼
X

k∈sig
sij;kðβ; θÞ þ

X

l∈bkg
bij;lðθÞ; ð11Þ

where the effects of systematic uncertainties are accounted
for by incorporating nuisance parameters (NPs) θ into the
model [51], as described in Sec. VII. Having constructed the

FIG. 4. Distributions of τh pT used as inputs for the binned likelihood fits for the μτ categories. The different panels list the varying
selections on the number of jets (Nj) and of b-tagged jets (Nb) required in each case. The lower subpanels show the ratio of data over pre-
fit expectations, with the gray histograms (hatched area) indicating MC statistical (post-fit systematic) uncertainties. Vertical bars on the
data markers indicate statistical uncertainties.
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FIG. 5. Distributions of electron or muon pT used as inputs for the binned likelihood fits for the eh (upper) and μh (lower) categories,
respectively, with the requirement of one (left) or more than one (right) b-tagged jets. The lower subpanels show the ratio of data over
prefit expectations, with the gray histograms (hatched area) indicating MC statistical (postfit systematic) uncertainties. Vertical bars on
the data markers indicate statistical uncertainties.
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model for the data, the negative log likelihood can then be
formulated and minimized for values of the W boson
branching fractions. Including terms for the NPs, and their
prior uncertainty, πðθÞ, the negative log likelihood is
expressed as,

Lðβ; θÞ ¼
X

j∈category

X

i∈pTbins

½−yij ln fijðβ; θÞ

þ fijðβ; θÞ' þ
X

θ∈θ
πðθÞ; ð12Þ

where yij is the measured data yield in pT bin i of category j,
and fij are the templates defined in Eq. (11). The NPs are
treated either as affecting the overall normalization of a
process in a given channel, or affecting some mixture of the
shape of the kinematic distribution being fit and its normali-
zation. For the latter case, morphing templates are generated
with the NPs shifted up and down by one standard deviation.
The constraints on NPs are assumed to be Gaussian. To
reduce the impact of some of the more consequential NPs
(e.g., the τh candidate reconstruction efficiency), additional
control regions in the eτh and μτh categories enriched in
Z → ττ events are included in the fit.
The branching fractions (both for the W and τ decays)

are estimated by minimizing Eq. (12) with respect to all
parameters over all categories simultaneously. Because the
values of theW and τ branching fractions are present in the
simulation and therefore propagated into the efficiencies,
the parametrization of the branching fractions in the like-
lihood model uses the ratio of fitted branching fractions to
their nominal values [9]. Also, because the τ branching
fractions are known to very high precision and are therefore
tightly constrained a priori, the fit is insensitive to their
values. The distributions for all considered event categories
are shown in Figs. 1–5. The blueish histograms indicate the
simulated contributions expected from signal processes,
whereas the red, orange, and yellow ones correspond to
different backgrounds. By adding extra requirements on the
number of b-tagged jets, as can be seen by scanning from
left to right, and upper to lower, the panels of each figure,
the data distributions are correspondingly more enriched in
signal events characterized by increasing production of jets
and b jets. In total, there are 30 categories defined by the
number and type of reconstructed leptons, the number of
jets, and the number of b-tagged jets.
To cross-check the results derived from the MLE

approach, a separate count-based analysis was conducted
in parallel. This count-based method did not make use of
kinematic information, and included only a subset of event
categories that had a high concentration of tt̄ events. For
categories that use the same trigger, ratios of the channel
yields are constructed that are then analytically solved for
the three leptonic branching fractions from a set of
quadratic equations. The resulting branching fraction esti-
mates are consistent in both approaches. However, the

precision of the count-based method is significantly limited
by the τh identification systematic uncertainty, and ulti-
mately is less sensitive than the default MLE approach.

VII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties in the MLE fit are accounted for
through NPs, denoted with the θ symbol in Eqs. (11) and
(12). The propagation of each individual source of uncer-
tainty is described next.
The uncertainty of the measured value of the CMS

integrated luminosity is estimated to be 2.5% [21]. This
uncertainty affects the overall normalization of all channels
and all simulated processes in a fully correlated manner.
Each simulated event is weighted by a scale factor to

account for differences in the pileup spectrum between data
and simulation. The uncertainty in the event weights is
mainly due to the uncertainty in the total inelastic pp cross
section at 13 TeV [52], taken as σinel ¼ 69.2# 3.2 mb.
The effect of this uncertainty is propagated through the
analysis by calculating the distribution of pileup in data
when varying the σinel value up and down by one standard
deviation.
The uncertainties associated with the normalization of

the simulated processes with the largest overall contribution
to the signal region (tt̄, Drell–Yan, WW, and W þ jets) are
accounted for by varying the renormalization and factori-
zation scales by a factor of two up and down with respect to
their nominal values, and generating the corresponding
morphing templates. The NPs are assigned independently
for different jet multiplicities such that they are uncorre-
lated before fitting. The remaining processes (tW [53], γ þ
jets [54], and non-WW diboson production [55,56]) are
assigned a single NP each, with a 10% uncertainty in their
overall normalization.
The uncertainty in the QCD multijet background esti-

mate from data is included by assigning a channel-depen-
dent (eμ, eτh, μτh, eh, and μh) NP. For the eτh and μτh
channels, the uncertainty is estimated based on comparing
the transfer factors between same-sign and opposite-sign
events in a region where the light lepton is either isolated or
not. For the eh and μh categories, the normalization is
allowed to vary freely, and consequently is constrained by
the data. In all channels, an NP is assigned for each jet and
b tag multiplicity category.
The uncertainties in the efficiency associated with the

reconstruction, triggering, identification, and isolation of
electrons and muons are accounted for using pT-dependent
NPs that include the statistical as well as the systematic
uncertainties from the “tag-and-probe” procedure [57] used
to calculate the scale factors. Additional uncertainty in the
trigger efficiency is included for events with electrons in the
end cap sections of the detector due to a radiation-induced
shift in the ECAL timing in the 2016 data-taking period
(referred to as prefiring). To account for the electron and
muon energy scales, the lepton pT that is included in the
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fitted distribution is varied up and down by one standard
deviation and the effect is propagated to the morphing
templates.
The τh identification and isolation efficiency is

accounted for by pT-dependent NPs, and a 5% uncertainty
[47] is used as a constraint to each bin. The jet → τh
misidentification rate scale factors and uncertainties are
derived based on a dilepton plus τh candidate control
region. An NP is assigned to each pT bin used to determine
the scale factor, and an overall normalization NP is
assigned to account for any difference in rate between
light- and heavy-quark jets. The case where an electron is
misreconstructed as a τh candidate, is accounted for by a
single normalization NP. The τh energy scale is corrected,
and an uncertainty of 1.2% is assigned to it.
The systematic uncertainties associated with the jet

energy scale and resolution impact the analysis by modi-
fying the acceptance of events in the various jet multiplicity
categories. Their associated uncertainty is derived by
varying the jet pT up and down by one standard deviation
for each source of uncertainty associated with the jet energy
scale, and assessing the resulting effect on the jet and b-
tagged jet multiplicities. The jet energy scale is varied
based on a number of contributing uncertainty sources [58],
and incorporated via several shape NPs. The jet energy
scale resolution, on the other hand, is treated as a single
source of uncertainty based on the associated correction
factor.
The b tagging modeling in simulation is corrected with

scale factors to better describe the data. The uncertainty in
the correction is assessed based on up and down variations
of the b tagging and mistag scale factors determined in the
multijet enriched control region. The b tagging uncertain-
ties are factorized in the calculation of the scale factors
based on their various underlying sources considered. The
variation is propagated into the final result through the
inclusion of shape NPs for both b tagging and mistag
uncertainties.
The uncertainties in the cross sections associated with the

PDFs used in the simulation is assessed based on the
distribution of weights derived from the 100 NNPDF3.0
replicas. The impact of uncertainty in the value of αS is
included by considering the effect of its variation within
αSðm2

WÞ ¼ 0.1202# 0.0010 [9] on both the cross section for
each process and, in the case of tt̄, on the parton showering
model via the initial- and final-state radiation (ISR and FSR).
The matching of the matrix element calculation to the parton
shower is regulated by the hdamp ¼ 1.38þ0.93

−0.51 [59] param-
eter at the generator level. This parameter is varied from its
nominal value in dedicated tt̄ MC samples to estimate its
effects on the normalization and on the fitted distributions.
Uncertainties related to the modeling of the underlying event
are derived from dedicated PYTHIA CUETP8M2T4 tune
analyses [34]. Several differential measurements of the tt̄
cross section have observed apT distribution of the top quark

that is softer than predicted by the POWHEG simulation [60–
62]. To account for any top pT distribution mismodeling, an
uncertainty is assigned based on reweighting simulation to
data and deriving a one-sided prior distribution from the
difference with respect to the nominal simulation. The pT
spectrum of WW events generated with POWHEG is

TABLE III. Summary of the impacts of each source of
uncertainty (quoted as a percent of the total systematic uncer-
tainty) for each W branching fraction. Whenever multiple NPs
impact a common source of systematic uncertainty, each com-
ponent is varied independently and the range of impacts is given.

W → eν̄e W → μν̄μ W → τν̄τ W → qq̄0

Pileup 20 6 11 14
Luminosity 5 14 5 7
JES=JER 3–17 5–21 4–11 4–21
b tagging <1–19 <1–25 <1–5 <1–17
tW normalization 35 43 27 46
WW normalization 8 9 5 9
WW pT 1–2 1–2 <1–5 <1–4
W þ jets normalization <1–6 <1–7 <1–13 <1–10
γ þ jets normalization 1 2 5 4
WZ;ZZ normalization <1 1 <1 <1
tt̄ production:
QCD scale 32 47 25 45
top quark pT 16 24 7 18
ISR 10 16 37 37
FSR 3 4 9 5
PDF 4 5 3 4
αS 5 5 3 6
PYTHIA8 UE tune 1 5 7 7
hdamp parameter 3 3 2 4
Drell–Yan background:
QCD scale 2–24 10–27 5–20 8–30
PDF 3 5 2 4
QCD multijet background:
eμ 5 12 12 6
eh 3–4 11–17 6–7 6–10
μh 10–11 10–13 5–13 2–3
eτh <1–5 <1–8 <1–9 <1–7
μτh <1–12 <1–10 <1–9 <1–10
e measurement:
Reconstruction efficiency 50 13 3 15
Identification efficiency <1–14 1–8 <1–10 <1–5
Trigger (prefiring) 29 2 1 9
Trigger <1–27 <1–4 <1–13 <1–9
Energy scale 7 6 <1 4
μ measurement:
Reconstruction efficiency <1–2 <1–5 <1–6 <1–6
Trigger 8 26 3 7
Energy scale 1 <1 3 2
τh measurement:
Reconstruction efficiency 2–14 7–17 21–46 14–24
Energy scale 9 5 14 6
Jet misidentification 1–14 <1–10 1–24 <1–10
e misidentification <1 <1 2 1
τ → e; μ; h <1 <1 <1–2 <1–1
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reweighted to match the analytical prediction obtained using
pT-resummation at next-to-next-to-leading logarithmic
accuracy [63], and the associated uncertainties are assessed
by varying the resummation, factorization, and renormaliza-
tion scales in the analytical calculation [64].
The impacts on the measured values of the branching

fractions from each uncertainty source are estimated by
individually varying each NP both up and down by one
standard deviation based on their postfit uncertainties,
carrying out the fit with the NP under consideration fixed
to the varied value, and then evaluating the corresponding
change in each of the branching fractions with respect to
their central MLE values. These impacts are summarized in
Table III where the values reported indicate the magnitude
of the change in each measured branching fraction nor-
malized by the total uncertainty of each branching fraction.
A range of values is quoted in cases where multiple NPs are
assigned to a systematic uncertainty source, and the scale of
the impact changes depending on the NP being varied. The
quoted impacts do not need to add up to 100% of the
branching fraction uncertainty given the correlations
among them (the individual uncertainties represented by
the impacts would need to be summed in quadrature to
equal the total variance). The most important sources of
uncertainties are the tt̄, tW, and Drell–Yan normalizations,
as well as the top-quark ISR and pT modeling—common to
all W branching fraction extractions—and the electron
reconstruction efficiency, the μ triggering, and the τh
reconstruction efficiency, for the electron, muon, and τ
branching fraction determinations, respectively.

VIII. RESULTS

The values of the branching fractions obtained as
described in the previous sections are shown in Table IV
for the scenario where each leptonic branching fraction in
the MLE fit can vary independently, and where they are all
fixed to the same value according to LFU. The results are

also plotted in Fig. 6, together with the corresponding
values determined from a combination of the LEP mea-
surements [8,9]. The green (yellow) bands in this plot, and
in all figures hereafter, indicate the 68% (95%) confidence
level (CL) results for the extracted branching fractions.
Whereas the systematic uncertainties of the CMS and LEP
measurements are similar, the extractions reported here are
3–10 times more precise statistically than those from LEP.
The final electron and muon branching fractions are thereby
measured about 1.5 times more precisely than at LEP,
whereas the τ lepton extractions have similar total uncer-
tainty butmostly of systematic (statistical) origin in the CMS
(LEP) case. Under the LFU assumption, an average leptonic
decay branching fraction of BðW → lν̄Þ ¼ ð10.89#
0.01# 0.08Þ% is derived, where the first and second
uncertainties correspond to the statistical and systematic
sources, respectively. This result is consistent with, but much
more statistically precise than, the value of ð10.86# 0.06#
0.09Þ% obtained from the LEP data. The inclusive hadronic
W bosondecay branching fraction,BðW → qq̄0Þ ¼ ð67.32#
0.02# 0.23Þ%, is obtained by imposing the constraint
BðW → qq̄0Þ ¼ 1–3BðW → lν̄Þ in the likelihood. The
resulting uncertainty is approximately 15% smaller than
at LEP.
The individually extracted branching fractions are

strongly correlated because of the composition of the
selected data samples, and because of the constraint that
the sum of leptonic and hadronic branching fractions is

FIG. 6. Summary of the measured values of the W leptonic
branching fractions compared with the corresponding LEP results
[8,9]. The vertical green-yellow band shows the extracted W
leptonic branching fraction assuming LFU (the hatched band
shows the corresponding LEP result). The horizontal error bars
on the data points indicate their total uncertainty.

TABLE IV. Values of the W boson decay branching fractions
measured here compared with the corresponding LEP measure-
ments [8,9]. The lower rows list the average leptonic and
inclusive hadronic W branching fractions derived assuming
LFU. The first and second uncertainties quoted for each branch-
ing fraction correspond to statistical and systematic sources,
respectively.

CMS LEP

BðW → eν̄eÞ ð10.83# 0.01# 0.10Þ% ð10.71# 0.14# 0.07Þ%
BðW → μν̄μÞ ð10.94# 0.01# 0.08Þ% ð10.63# 0.13# 0.07Þ%
BðW → τν̄τÞ ð10.77# 0.05# 0.21Þ% ð11.38# 0.17# 0.11Þ%
BðW → qq̄0Þ ð67.46# 0.04# 0.28Þ% ( ( (

Assuming LFU
BðW → lν̄Þ ð10.89# 0.01# 0.08Þ% ð10.86# 0.06# 0.09Þ%
BðW → qq̄0Þ ð67.32# 0.02# 0.23Þ% ð67.41# 0.18# 0.20Þ%
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unity. To demonstrate the pairwise correlations between
leptonic branching fractions, two-dimensional contours are
shown in Fig. 7. For each pair shown in the panels, the third
branching fraction that is not plotted has been integrated
out. Additionally, the correlation matrix associated to
the branching fraction measurements is shown in Fig. 8.
The BðW → qq̄0Þ and BðW → τν̄τÞ branching fractions
have the largest (anti)correlation (−0.83), whereas
BðW → eν̄eÞ and BðW → τν̄τÞ appear to be the least
correlated quantities (0.09 correlation factor).
Having measured the branching fractions, it is of interest

to calculate the ratios among them with their associated
probability distribution functions (pdfs) to compare those
with similar results from other experiments where only

such ratios have been measured. To transform the like-
lihood of the branching fractions, Bl ≡ BðW → lν̄Þ, to the
likelihood of their ratios, Rl0=l, the following integral
transformation is evaluated [65]

fðRl0=lÞ ¼
Z

∞

−∞
jBljgðRl0=lBl;BlÞdBl; ð13Þ

where the pdf of the branching fractions gðBl0 ;BlÞ is a
bivariate normal distribution with parameters determined
from the likelihood fit. It is also possible to carry out the
transformation above in the two-dimensional case, so that
ratios of τ lepton over muon and electron decays can be
compared between each other as well as with the SM
expectation, as shown in Fig. 9. Table V lists the ratios
obtained as described above, compared with those mea-
sured at LEP, LHC, and Tevatron. The ATLAS Rτ=μ

extraction [13] has a smaller uncertainty than that of
CMS because it benefits, in part, from a four times larger
pp data sample analyzed. Within the current uncertainties,
all CMS ratios are consistent with the LFU hypothesis
given by Rl=l0 ≈ 1.
From the determined values of the average leptonic and

inclusive hadronic W branching fractions, and following
Eq. (2), other interesting SM quantities can be derived such
as the QCD coupling constant at the W boson mass scale,
αSðm2

WÞ, or the jVcsj CKM element. One can similarly
check the unitarity of the first two rows of the CKMmatrix,
given by the squared sum in the prefactor of Eq. (2). To
extract those SM parameters, one compares the measured
ratio of hadronic-to-leptonic branching fractions to the
corresponding theoretical expression, parametrized at next-
to-next-to-next-to-leading-order QCD plus LO EW and
mixed EWþ QCD accuracy [12], leaving either αSðm2

WÞ or
the (sum of) CKM matrix element(s) free, using the
following expression:

FIG. 7. Two-dimensional distributions of pairs ofW leptonic branching fractions derived here compared with the corresponding LEP
results [8,9] and to the SM expectation. The green (darker) and yellow (lighter) bands (dashed lines for the LEP results) correspond to
the 68% and 95% CL, respectively, for the resulting two-dimensional Gaussian distribution.

FIG. 8. Correlation matrix between the four W boson decay
branching fraction components extracted in this work.
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BðW → qq̄0Þ
1 − BðW → qq̄0Þ

¼
X
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"
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X4

i¼1

ci

#
αS
π

$
i
þ cEWðαÞ þ cmixðααSÞ

%
;

ð14Þ

where the numerical value of the ratio derived from the
experimental result presented here is 2.060# 0.021. The
theoretical uncertainties of Eq. (VIII), from parametric
dependencies and missing higher-order corrections [12,20],
are much smaller than the experimental uncertainty of this
ratio. If CKM unitarity is imposed, then the sum in
Eq. (VIII) is

P
ij jVijj2 ¼ 2 and a value of αSðm2

WÞ ¼
0.095# 0.033 can be inferred. This value is much less

precise than the current world-average QCD coupling
constant, which amounts to αSðm2

WÞ ¼ 0.1202# 0.0010
at the W boson mass scale [9], but confirms the usefulness
of W boson hadronic decays to extract this fundamental
parameter at future eþ e- colliders where the W boson
branching fractions can be measured much more precisely
[66]. If, instead, the current world average of αSðm2

WÞ is
used in Eq. (VIII), and the sum in Eq. (VIII) is left free, a
value of

P
ij jVijj2 ¼ 1.984# 0.021 is obtained that pro-

vides a precise test of CKM unitarity. Further solving
Eq. (VIII) for jVcsj, and using the more precisely measured
values of the other CKM matrix elements [9] in the sum,
yields a value of jVcsj ¼ 0.967# 0.011 that is as precise as
the value jVcsj ¼ 0.987# 0.011 directly measured from
semileptonic D or leptonic Ds decays, using lattice QCD
calculations of the semileptonic D form factor or the Ds
decay constant [9]. The precision extracting the αSðm2

WÞ
and jVcsj parameters, as well as the CKM unitarity test, is
virtually entirely determined by the systematic uncertainty
of the average leptonic branching fraction measurement
assuming LFU. A summary of the values calculated here
are presented in Table VI. The full tabulated results are
provided in HEPData [67].

IX. SUMMARY

A precise measurement of the three leptonic decay
branching fractions of the W boson has been presented,
as well as the average leptonic and inclusive hadronic
branching fractions assuming lepton flavor universality
(LFU). The analysis is based on a data sample of pp
collisions at a center-of-mass energy of 13 TeV corre-
sponding to an integrated luminosity of 35.9 fb−1 recorded
by the CMS experiment. Events with one or twoW bosons
produced are collected using single-charged-lepton triggers
that require at least one prompt electron or muon with large

FIG. 9. Two-dimensional distribution of the ratio Rτ=e versus
Rτ=μ, compared with the corresponding LEP [8,9] and ATLAS
[13] results and with the SM expectation. The green and yellow
bands (dashed lines for the LEP results) correspond to the 68%
and 95% CL, respectively, for the resulting two-dimensional
Gaussian distribution. The corresponding 68% CL one-dimen-
sional projections (black error bars) are also overlaid for a better
visual comparison with the ATLAS Rτ=μ result.

TABLE V. Ratios of different leptonic branching fractions, Rμ=e ¼ BðW → μν̄μÞ=BðW → eν̄eÞ, Rτ=e ¼
BðW → τν̄τÞ=BðW → eν̄eÞ, and Rτ=μ ¼ BðW → τν̄τÞ=BðW → μν̄μÞ, measured here compared with the values
obtained by other LEP [8], LHC [13,16,17], and Tevatron [14,15] experiments.

CMS LEP ATLAS LHCb CDF D0

Rμ=e 1.009# 0.009 0.993# 0.019 1.003# 0.010 0.980# 0.012 0.991# 0.012 0.886# 0.121
Rτ=e 0.994# 0.021 1.063# 0.027 ( ( ( ( ( ( ( ( ( ( ( (
Rτ=μ 0.985# 0.020 1.070# 0.026 0.992# 0.013 ( ( ( ( ( ( ( ( (
Rτ=l 1.002# 0.019 1.066# 0.025 ( ( ( ( ( ( ( ( ( ( ( (

TABLE VI. Values of the QCD coupling constant at the W
mass, the charm-strange CKM mixing element, and the squared
sum of the first two rows of the CKM matrix, derived in this
work.

αSðmW
2Þ jVcsj

P
ij jVijj2

0.095# 0.033 0.967# 0.011 1.984# 0.021
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transverse momentum. The extraction of the W boson
leptonic branching fractions is performed through a binned
maximum likelihood fit of events split into multiple catego-
ries defined based on the multiplicity and flavor of recon-
structed leptons, the number of jets, and the number of jets
identified as originating from the hadronization of b quarks.
The measured branching fractions for the decay of the W
boson into electrons, muons, tau leptons, and hadrons are
ð10.83# 0.10Þ%, ð10.94# 0.08Þ%, ð10.77# 0.21Þ%, and
ð67.46# 0.28Þ%, respectively. These results are consistent
with the LFU hypothesis for the weak interaction, and are
more precise than previous measurements based on data
collected by the LEP experiments.
Fitting the data assuming LFU provides values of

ð10.89# 0.08Þ% and ð67.32# 0.23Þ%, respectively, for
the average leptonic and inclusive hadronic branching
fractions of the W boson. The comparison of the ratio of
hadronic-to-leptonic branching fractions to the theoretical
prediction is used to derive other standard model quantities.
A value of the strong coupling constant at the W boson
mass scale of αSðm2

WÞ ¼ 0.095# 0.033 is obtained which,
although not competitive compared with the current world
average, confirms the usefulness of the W boson decays to
constrain this fundamental standard model parameter at
future colliders. Using the world average value of αSðm2

WÞ,
the sum of the square of the elements in the first two rows
of the Cabibbo–Kobayashi–Maskawa (CKM) matrix isP

ij jVijj2 ¼ 1.984# 0.021, providing a precise check of
CKM unitarity. From this sum and using the world-average
values of the other relevant CKM matrix elements, a value
of jVcsj ¼ 0.967# 0.011 is determined, which is as precise
as the current jVcsj ¼ 0.987# 0.011 result obtained from
direct D meson decay data.
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J. Puerta Pelayo,123 I. Redondo,123 L. Romero,123 S. Sánchez Navas,123 L. Urda Gómez,123 C. Willmott,123

J. F. de Trocóniz,124 R. Reyes-Almanza,124 B. Alvarez Gonzalez,125 J. Cuevas,125 C. Erice,125 J. Fernandez Menendez,125

S. Folgueras,125 I. Gonzalez Caballero,125 J. R. González Fernández,125 E. Palencia Cortezon,125 C. Ramón Álvarez,125

J. Ripoll Sau,125 V. Rodríguez Bouza,125 A. Trapote,125 N. Trevisani,125 J. A. Brochero Cifuentes,126 I. J. Cabrillo,126

A. Calderon,126 J. Duarte Campderros,126 M. Fernandez,126 C. Fernandez Madrazo,126 P. J. Fernández Manteca,126

A. García Alonso,126 G. Gomez,126 C. Martinez Rivero,126 P. Martinez Ruiz del Arbol,126 F. Matorras,126

P. Matorras Cuevas,126 J. Piedra Gomez,126 C. Prieels,126 T. Rodrigo,126 A. Ruiz-Jimeno,126 L. Scodellaro,126 I. Vila,126

J. M. Vizan Garcia,126 M. K. Jayananda,127 B. Kailasapathy,127,iii D. U. J. Sonnadara,127 D. D. C. Wickramarathna,127

W. G. D. Dharmaratna,128 K. Liyanage,128 N. Perera,128 N. Wickramage,128 T. K. Aarrestad,129 D. Abbaneo,129

J. Alimena,129 E. Auffray,129 G. Auzinger,129 J. Baechler,129 P. Baillon,129,a D. Barney,129 J. Bendavid,129 M. Bianco,129

A. Bocci,129 T. Camporesi,129 M. Capeans Garrido,129 G. Cerminara,129 S. S. Chhibra,129 M. Cipriani,129 L. Cristella,129

D. d’Enterria,129 A. Dabrowski,129 N. Daci,129 A. David,129 A. De Roeck,129 M. M. Defranchis,129 M. Deile,129

M. Dobson,129 M. Dünser,129 N. Dupont,129 A. Elliott-Peisert,129 N. Emriskova,129 F. Fallavollita,129,jjj D. Fasanella,129

A. Florent,129 G. Franzoni,129 W. Funk,129 S. Giani,129 D. Gigi,129 K. Gill,129 F. Glege,129 L. Gouskos,129 M. Haranko,129

J. Hegeman,129 Y. Iiyama,129 V. Innocente,129 T. James,129 P. Janot,129 J. Kaspar,129 J. Kieseler,129 M. Komm,129

N. Kratochwil,129 C. Lange,129 S. Laurila,129 P. Lecoq,129 K. Long,129 C. Lourenço,129 L. Malgeri,129 S. Mallios,129

M. Mannelli,129 A. C. Marini,129 F. Meijers,129 S. Mersi,129 E. Meschi,129 F. Moortgat,129 M. Mulders,129 S. Orfanelli,129

L. Orsini,129 F. Pantaleo,129 L. Pape,129 E. Perez,129 M. Peruzzi,129 A. Petrilli,129 G. Petrucciani,129 A. Pfeiffer,129

M. Pierini,129 D. Piparo,129 M. Pitt,129 H. Qu,129 T. Quast,129 D. Rabady,129 A. Racz,129 G. Reales Gutiérrez,129 M. Rieger,129

M. Rovere,129 H. Sakulin,129 J. Salfeld-Nebgen,129 S. Scarfi,129 C. Schäfer,129 C. Schwick,129 M. Selvaggi,129 A. Sharma,129

P. Silva,129 W. Snoeys,129 P. Sphicas,129,kkk S. Summers,129 K. Tatar,129 V. R. Tavolaro,129 D. Treille,129 A. Tsirou,129

G. P. Van Onsem,129 M. Verzetti,129 J. Wanczyk,129,lll K. A. Wozniak,129 W. D. Zeuner,129 L. Caminada,130,mmm

A. Ebrahimi,130 W. Erdmann,130 R. Horisberger,130 Q. Ingram,130 H. C. Kaestli,130 D. Kotlinski,130 U. Langenegger,130

M. Missiroli,130 T. Rohe,130 K. Androsov,131,lll M. Backhaus,131 P. Berger,131 A. Calandri,131 N. Chernyavskaya,131
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77bUniversità di Padova, Padova, Italy
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