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We study discrete panel data methods where unobserved heterogeneity is revealed in
a first step, in environments where population heterogeneity is not discrete. We focus
on two-step grouped fixed-effects (GFE) estimators, where individuals are first classi-
fied into groups using kmeans clustering, and the model is then estimated allowing for
group-specific heterogeneity. Our framework relies on two key properties: heterogene-
ity is a function—possibly nonlinear and time-varying—of a low-dimensional continu-
ous latent type, and informative moments are available for classification. We illustrate
the method in a model of wages and labor market participation, and in a probit model
with time-varying heterogeneity. We derive asymptotic expansions of two-step GFE
estimators as the number of groups grows with the two dimensions of the panel. We
propose a data-driven rule for the number of groups, and discuss bias reduction and
inference.

KEYWORDS: Unobserved heterogeneity, panel data, kmeans clustering, dimension
reduction.

1. INTRODUCTION

IN BOTH REDUCED-FORM AND STRUCTURAL WORK IN ECONOMICS, it is common to
model unobserved heterogeneity as a small number of discrete types. Various estimation
strategies are available, including discrete-type random-effects (as in Keane and Wolpin
(1997) and many other applications) and grouped fixed-effects (as recently studied by
Hahn and Moon (2010) and Bonhomme and Manresa (2015)). These methods require
the researcher to jointly estimate individual heterogeneity and model parameters.1 In ad-
dition, little is known about their properties when individual heterogeneity is not discrete
in the population. In this paper, we study two-step discrete estimators for panel data, and
provide conditions for their validity when heterogeneity is continuous.

We focus on two-step grouped fixed-effects (GFE) estimators. In a first step, we classify
individuals based on a set of individual-specific moments, using the kmeans clustering al-
gorithm. The aim of the kmeans classification is to group together individuals whose latent
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1Also related, nonparametric maximum likelihood methods (e.g., Heckman and Singer (1984)) rely on joint
estimation of the distribution of heterogeneity and the parameters.
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626 S. BONHOMME, T. LAMADON, AND E. MANRESA

types are most similar.2 In a second step, we estimate the model by allowing for group-
specific heterogeneity. This second step is similar to fixed-effects (FE) estimation, albeit
it involves a smaller number of parameters that are group-specific instead of individual-
specific. We analyze the properties of these two-step estimators in panel data models
where heterogeneity is continuous. Hence, in contrast with existing theoretical justifica-
tions for discrete-type methods, here we use discrete heterogeneity as a dimension reduc-
tion device rather than as a substantive assumption about population unobservables.

Our approach is targeted to environments with two key properties. First, unobserved
heterogeneity is a function of a low-dimensional latent variable. We do not restrict this
latent type to be discrete. In many economic models, agents’ heterogeneity in preferences
or technology is driven by a low-dimensional type, which enters the model nonlinearly and
may affect multiple outcomes. As an example, we study a model of participation in the
labor market where the worker’s utility is a function of her productivity type, which in turn
determines her wage. GFE provides a tool to exploit such nonlinear factor structures.

Second, the first-step moments satisfy an injectivity condition, which requires any two
individuals with the same population moments to have the same type. The choice of mo-
ments is important to ensure good performance. In examples, we show how suitable mo-
ments arise naturally. In models with exogenous covariates, we propose and analyze the
use of conditional moments to recover latent types.

Our setup also covers models where heterogeneity varies over time. Unlike additive FE
methods and interactive FE methods based on linear factor structures (Bai (2009)), GFE
does not require heterogeneity to take an additive or interactive form. As an illustration,
we compare GFE and FE estimators in a probit model where heterogeneity is a nonlinear
function of a time-invariant factor loading and a time-specific factor.

Our main results are large-N , T asymptotic expansions of two-step GFE estimators
under time-invariant and time-varying continuous heterogeneity. In both settings, GFE
is consistent as the number of groups grows with the sample size, under conditions that
we provide. We find that, when the population heterogeneity is not discrete, estimating
group membership induces an incidental parameter bias, similar to FE methods. More-
over, since discreteness is an approximation in our setting, GFE is affected by approxima-
tion error.3 We propose a simple data-driven rule for the number of groups that controls
the approximation error, and discuss how to reduce incidental parameter bias for infer-
ence.

The outline of the paper is as follows. We introduce the setup and two-step GFE es-
timators in Section 2, study their asymptotic properties in Section 3, and outline several
extensions in Section 4. The main proofs may be found in the Appendix, and the Online
Supplemental Material contains additional results. Codes to implement the method are
available in the Online Supplementary Material (Bonhomme, Lamadon, and Manresa
(2022)).

2. TWO-STEP GROUPED FIXED-EFFECTS (GFE)

We consider a panel data setup, where we denote outcome variables and exogenous
covariates as Yi = (Y ′

i1� � � � �Y
′
iT )′ and Xi = (X ′

i1� � � � �X
′
iT )′, respectively, for i = 1� � � � �N .

2Buchinsky, Hahn, and Hotz (2005) also propose to group individuals in a first step using kmeans.
3In a network context, Gao, Lu, and Zhou (2015) provide related results for stochastic block models under

continuous heterogeneity.

 14680262, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/EC

TA
15238 by N

ew
 Y

ork U
niversity, W

iley O
nline Library on [13/10/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



DISCRETIZING UNOBSERVED HETEROGENEITY 627

In our theory, we cover two models. In the first one, unobserved heterogeneity is time-
invariant. In this case, the conditional log-density of Yi given Xi is given by4

ln fi(αi0� θ0) =
T∑
t=1

ln f (Yit | Yi�t−1�Xit�αi0� θ0)� (1)

and the log-density of exogenous covariates Xi takes the form

lngi(μi0) =
T∑
t=1

lng(Xit | Xi�t−1�μi0)�

where θ0 is a vector of common parameters, and αi0 and μi0 are individual-specific pa-
rameters. We leave the form of g unrestricted, and in estimation we will use a conditional
likelihood approach based on fi alone. In other words, in applications the researcher only
needs to specify the parametric form of fi(αi0� θ0) in (1). However, the heterogeneity μi0

in covariates plays an important role in our theory.
In the second model, unobserved heterogeneity varies over time. Such variation in un-

observables over calendar time (e.g., business cycle), age (e.g., life cycle), counties, or
markets is of interest in many applications. In the time-varying case, log-densities take
the form

ln fi(αi0� θ0) =
T∑
t=1

ln f (Yit | Yi�t−1�Xit�αit0� θ0)�

lngi(μi0) =
T∑
t=1

lng(Xit | Xi�t−1�μit0)�

where αi0 = (α′
i10� � � � �α

′
iT0)′ and μi0 = (μ′

i10� � � � �μ
′
iT0)′. In both models, we are interested

in estimating θ0, as well as average effects depending on α10� � � � �αN0.

2.1. Main Assumptions

GFE relies on two key assumptions that we now present. We defer the presentation of
regularity conditions until Section 3. First, we assume that unobserved heterogeneity is a
function of a low-dimensional vector ξi0.

ASSUMPTION 1—Heterogeneity: (a) Time-invariant heterogeneity: There exist ξi0 of
fixed dimension d, and two Lipschitz-continuous functions α and μ, such that αi0 =
α(ξi0) and μi0 = μ(ξi0).

(b) Time-varying heterogeneity: There exist ξi0 of fixed dimension d, λt0 of dimension dλ,
and two functions α and μ that are Lipschitz-continuous in their first argument, such
that αit0 = α(ξi0�λt0) and μit0 = μ(ξi0�λt0).

4In models with first-order dependence, we assume that Yi0 is observed and we condition on it. Higher-
order dependence can be accommodated similarly. In dynamic settings, Yit may contain sequentially exogenous
covariates in addition to outcome variables.
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628 S. BONHOMME, T. LAMADON, AND E. MANRESA

We will refer to ξi0 as an individual type, and to d as the dimension of heterogeneity. The
researcher does not need to know d, α, or μ in applications. In models with time-varying
unobserved heterogeneity, Assumption 1 requires unobservables to follow a factor struc-
ture. The link between αit0, ξi0, and λt0 may be nonlinear, the linear structure αit0 = ξ′

i0λt0

(Bai (2009)) being covered as a special case. Moreover, the dimension of λt0 is unre-
stricted. Our theory will show that the performance of two-step GFE crucially relies on
ξi0 being low dimensional, a leading case being d = 1. We provide examples in the next
subsection.

Second, we rely on individual-specific moment vectors hi that are informative about the
types ξi0. The moments hi can be functions of Yi, Xi, or additional data on the individual,
and their dimension is kept fixed as the sample size grows. Formally, we now state our
second main assumption, where ‖ · ‖ denotes an Euclidean norm.

ASSUMPTION 2—Injective Moments: There exist vectors hi of fixed dimension, and
a Lipschitz-continuous function ϕ, such that plimT→∞ hi = ϕ(ξi0), and 1

N

∑N

i=1 ‖hi −
ϕ(ξi0)‖2 = Op(1/T ) as N , T tend to infinity. Moreover, there exists a Lipschitz-continuous
function ψ such that ξi0 = ψ(ϕ(ξi0)).

Assumption 2 requires the individual moment vector hi to be informative about ξi0,
in the sense that, for large T , ξi0 can be uniquely recovered from hi. Neither ϕ nor ψ
(which may depend on θ0) need to be known to the econometrician. Intuitively, injectivity
guarantees that one can separate the types of two individuals ξi0 and ξi′0 by comparing
their moments hi and hi′ . Formally, if hi and hi′ have the same large-T limit, then ξi0 =
ξi′0. Note that an average hi = 1

T

∑T

t=1 h(Yit�Xit) will, under Assumption 1 and suitable
regularity conditions, converge as T tends to infinity to a function ϕ(ξi0) of the type ξi0.

The convergence rate in Assumption 2 requires appropriate conditions on the serial
dependence of Yit and Xit . In models with time-varying heterogeneity, ϕ will also depend
on the λt0 process. In such models, Assumption 2 requires the moments to be informa-
tive about ξi0, and not λt0. Injectivity is a key requirement for consistency of two-step
GFE estimators. More generally, the choice of moments hi is important for finite-sample
performance.

2.2. Examples

To illustrate the framework, we now describe two examples, for which we will provide
illustrative simulations in Section 2.4. First, consider a dynamic model of wages W ∗

it and
labor force participation Yit :⎧⎪⎨⎪⎩

Yit = 1
{
u(αi0) ≥ c(Yi�t−1;θ0) +Uit

}
�

W ∗
it = αi0 + Vit�

Wit = YitW
∗
it �

(2)

where the wage W ∗
it is only observed when i works, Uit are i.i.d. standard normal, inde-

pendent of the past Yit ’s and αi0, and Vit are i.i.d. independent of all Uit ’s, Yi0, and αi0.
Here, the same scalar expected payoff αi0 = ξi0, unobserved to the econometrician, drives
the wage and the decision to work. Individuals have common preferences denoted by the
utility function u, the cost function c is state-dependent, and both u and c are unknown
to the econometrician.
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DISCRETIZING UNOBSERVED HETEROGENEITY 629

In this setting, GFE provides a natural approach to exploit the functional link be-
tween αi0 and u(αi0), and to learn about the type αi0 using both wages and participation.
For instance, when hi = (W i�Y i)′, where Zi = 1

T

∑T

t=1 Zit denotes the individual mean
of Zit , injectivity is satisfied under mild conditions, provided W i = αi0Y i + op(1) and
plimT→∞ Y i > 0.

Fixed-effects (FE) is a possible approach to estimate θ0 in (2). However, a conventional
FE estimator would treat αi0 and ui0 = u(αi0) as unrelated parameters, so the FE estimate
of θ0 would be solely based on the binary participation decisions. Another strategy would
be to rely on discrete-type random-effects methods, which are typically based on joint
estimation. In contrast, we implement GFE in two steps with no need for iterative esti-
mation, and we justify the estimator in environments where heterogeneity is not restricted
to be discrete.

As a second example, consider the following probit model with time-varying hetero-
geneity: {

Yit = 1
{
X ′

itθ0 + αit0 +Uit ≥ 0
}
�

Xit = μit0 + Vit�
(3)

where Uit are i.i.d. standard normal, independent of all Vit ’s, αit0’s, and μit0’s, and Vit are
i.i.d. independent of all αit0’s and μit0’s. Under Assumption 1, αit0 and μit0 depend on a
low-dimensional vector ξi0 of factor loadings, so αit0 = α(ξi0�λt0) and μit0 = μ(ξi0�λt0).
Here, d is the dimension of the type ξi0 governing both αit0 and μit0.

To motivate why, in static models with covariates such as (3), αit0 and μit0 may depend
on a common low-dimensional type ξi0, suppose that, in every period, agent i chooses Xit

based on expected utility or profit maximization. She observes ξi0 and λt0—which enter
outcomes through αit0—and takes her decision before the i.i.d. shock Uit is realized. In
such a case, Xit will be a function of ξi0 and λt0, as well as idiosyncratic factors Vit in the
agent’s information set. Here, we assume that the agent’s information set, and primitives
such as preferences or costs, do not include other i-specific elements beyond ξi0.5

When α(·� ·) is additive or multiplicative in its arguments, model (3) can be estimated
using two-way FE (Fernández-Val and Weidner (2016)) or interactive FE (Bai (2009),
Chen, Fernández-Val, and Weidner (2021)), respectively. However, when α(·� ·) is un-
known, these fixed-effects estimators are inconsistent in general. In contrast, GFE will
remain consistent when unobservables are unknown nonlinear functions of factor load-
ings ξi0 and factors λt0, and injectivity holds. Taking hi = (Y i�X

′
i)

′ as moments in model
(3), injectivity is satisfied when types have monotone effects on the heterogeneity com-
ponents.6 More generally, in Assumption 2 we require that the latent type ξi0 can be
asymptotically recovered from a moment vector whose dimension is not growing with the
sample size.

2.3. Estimator

Two-step GFE consists of a classification step and an estimation step.

5This example is reminiscent of Mundlak’s (1961) classic analysis of farm production functions, where soil
quality ξi0 is observed to the farmer but latent to the analyst.

6To see this, consider the case where αit0 is the only component of heterogeneity (i.e., μit0 = 0 in (3)), and
take hi = Y i . Letting G denote the cdf of −(V ′

itθ0 +Uit), injectivity will hold when α(·� ·) is strictly increasing
in its first argument and G is strictly increasing, since then ϕ(ξ) = plimT→∞

1
T

∑T
t=1 G(α(ξ�λt0)) is strictly

increasing.
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630 S. BONHOMME, T. LAMADON, AND E. MANRESA

First Step: Classification. We rely on the individual-specific moments hi to learn about
the individual types ξi0. Specifically, we partition individuals into K groups, corresponding
to group indicators k̂i ∈{1� � � � �K}, by computing

(
ĥ(1)� � � � � ĥ(K)� k̂1� � � � � k̂N

) = argmin
(h̃(1)�����h̃(K)�k1�����kN )

N∑
i=1

∥∥hi − h̃(ki)
∥∥2
� (4)

where {ki} are partitions of {1� � � � �N} into K groups, and h̃(k) is a vector. Note that ĥ(k)
is simply the mean of hi in group k̂i = k.

In the kmeans optimization problem (4), the minimum is taken with respect to all pos-
sible partitions {ki}. Fast and stable optimization methods such as Lloyd’s algorithm are
available, although computing a global minimum may be challenging; see Bonhomme and
Manresa (2015) for references. Following the literature, we will focus on the asymptotic
properties of the global minimum and abstract from optimization error. Lastly, note that
the quadratic loss function in (4) can accommodate weights on different components of
hi, although here for simplicity we present the unweighted case.

Second Step: Estimation. We maximize the log-likelihood function with respect to
common parameters θ and group-specific effects α, where the groups are given by the
k̂i estimated in the first step. We define the two-step GFE estimator as

(
θ̂� α̂(1)� � � � � α̂(K)

) = argmax
(θ�α(1)�����α(K))

N∑
i=1

ln fi
(
α(k̂i)� θ

)
� (5)

Note that, in contrast to fixed-effects (FE) maximum likelihood, this second step involves
a maximization with respect to K group-specific parameters instead of N individual-
specific ones. In models with time-varying heterogeneity, α(k) will simply be a vector
(α1(k)′� � � � �αT (k)′)′.

Choice of K. Two-step GFE estimation requires setting a number of groups K. We
propose a simple data-driven selection rule based on the first step. The convergence rate
of the kmeans estimator (and the rate of the GFE estimator) will be governed by two
quantities: the kmeans objective function Q̂(K) = 1

N

∑N

i=1 ‖hi − ĥ(k̂i)‖2, which decreases
as K gets larger and the group approximation becomes more accurate, and the variability
Vh = E[‖hi −ϕ(ξi0)‖2] of the moment hi, which does not depend on K. Given our goal to
approximate the heterogeneity while limiting the number of groups, we take the smallest
K that guarantees that Q̂(K) is of the same or lower order as Vh. That is, letting V̂h =
Vh + op(1/T ), we suggest setting

K̂ = min
K≥1

{
K : Q̂(K) ≤ γV̂h

}
� (6)

where γ ∈ (0�1] is a user-specified parameter.7 In the simulations in the next subsection,
we will set γ = 1, although smaller γ values corresponding to larger K’s will also be sup-
ported by our theory.

7When hi = 1
T

∑T
t=1 h(Yit�Xit) and observations are independent over time, one may take V̂h =

1
NT 2

∑N
i=1

∑T
t=1 ‖h(Yit�Xit) − hi‖2. With dependent data, one can use trimming or the bootstrap to estimate

Vh (Hahn and Kuersteiner (2011), Arellano and Hahn (2007)).
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DISCRETIZING UNOBSERVED HETEROGENEITY 631

2.4. Illustrative Simulations

To illustrate the performance of GFE in models where heterogeneity follows a non-
linear factor structure, we present the results of a small-scale simulation study based on
our two examples (2) and (3). In both cases, we assume that the type ξi0 governing hetero-
geneity is scalar. We compare the bias of GFE to that of FE and interactive FE estimators.
In the Online Supplemental Material, we provide details on the simulations and report
additional results.8

In Figure 1, we compare GFE and FE in model (2), using a CRRA functional form:
u(α) = eα (1−η)−1

1−η
, with a risk aversion parameter η ∈ {1�2}. We focus on the difference in

costs c(0;θ0) − c(1;θ0), which measures the degree of state dependence in participation
decisions. We take hi = (W i�Y i)′ as moments for GFE, and report average parameter
estimates over 1000 simulations. We set N = 1000 and show results for T between 5 and
30. The data generating process implies a participation rate of approximately 85% (resp.,
20%) for those who participated (resp., did not participate) last period, and a mean gap
between log-wages of participants and log-potential wages equal to one-third of the stan-
dard deviation of log-potential wages. We find that FE is more biased than GFE for both
values of risk aversion. This is consistent with wages and participation providing informa-
tive moments about the latent type in this setting.

In Figure 2, we compare GFE, FE, and interactive FE in model (3) with Xit scalar,
using a CES specification: αit0 = (aξσ

i0 + (1 − a)λσ
t0)

1
σ , for σ∈{−10�0�1�10} and a = 0�5,

and μit0 = αit0. The factors λt0 and the individual loadings ξi0 enter heterogeneity in a
nonlinear way. We show estimates of θ0 for various estimators: GFE, FE with additive
individual and time effects, and interactive FE with a single multiplicative factor. We use
(Y i�Xi)′ as moments for GFE. Note that both Y i and Xi are informative about ξi0 in
this data generating process. We report parameter averages over 1000 simulations, for
N = 1000. We find that, while GFE, FE, and interactive FE are all biased, the bias of
GFE is smaller across all σ values.9

FIGURE 1.—Model (2) of wages and participation.
Notes: Means of c(0; θ̂) − c(1; θ̂) over 1000 simulations. GFE is indicated in solid, FE is in dashed, and the
truth c(0;θ0) − c(1;θ0) = 1 is in dotted. N = 1000, and T is indicated on the x-axis. η is the risk aversion
parameter in u(·). See the Online Supplemental Material for details.

8In Bonhomme, Lamadon, and Manresa (2017), we report simulations calibrated to two empirical settings.
9Large-N , T theory implies that additive and interactive FE are consistent when σ = 1 and σ = 0, respec-

tively. Figure 2 shows that, despite being large-N , T consistent in these specifications, in our simulations,
additive and interactive FE have larger biases than GFE for the N and T values we consider.
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632 S. BONHOMME, T. LAMADON, AND E. MANRESA

FIGURE 2.—Probit model (3) with time-varying heterogeneity.
Notes: Means of θ̂ over 1000 simulations. GFE is indicated in solid, FE is in dashed, interactive FE is in
dash-dotted, and the truth θ0 = 1 is in dotted. N = 1000, and T is indicated on the x-axis. σ is the substitution
parameter in α(·� ·). See the Online Supplemental Material for details.

3. ASYMPTOTIC PROPERTIES

In this section, we provide asymptotic expansions for two-step GFE estimators. Our
first result is a rate of convergence for kmeans. Let us define the approximation error one
would make if one were to discretize the latent types ξi0 directly, as

Bξ(K) = min
(̃ξ(1)�����̃ξ(K)�k1�����kN )

1
N

N∑
i=1

∥∥ξi0 − ξ̃(ki)
∥∥2
� (7)

where, similar to (4), the minimum is taken with respect to all partitions {ki} and vectors
ξ̃(k). In the following result, we let T = TN and K = KN tend to infinity jointly with N .

LEMMA 1: Let Assumption 2 hold. Let ĥ(1)� � � � � ĥ(K) and k̂1� � � � � k̂N given by (4). Then,
as N , T , K tend to infinity, we have

1
N

N∑
i=1

∥∥ĥ(k̂i) −ϕ(ξi0)
∥∥2 =Op

(
1
T

)
+Op

(
Bξ(K)

)
�

The bound in Lemma 1 has two terms: an Op(1/T ) term that depends on the number
of periods used to construct the moments hi, and an Op(Bξ(K)) term that reflects the
presence of an approximation error. The rate at which Bξ(K) tends to zero depends on
the dimension of ξi0. Graf and Luschgy (2002, Theorem 5.3) provide explicit character-
izations in the case where ξi0 has compact support.10 For example, the following lemma
implies that Bξ(K) =Op(K−2) when ξi0 is one- dimensional, and Bξ(K) = Op(K−1) when
ξi0 is two-dimensional.

LEMMA 2—Graf and Luschgy (2002): Let ξi0 be random vectors with compact support
in R

d . Then, as N , K tend to infinity we have Bξ(K) =Op(K− 2
d ).

We now use these results to study the properties of GFE in models with time-invariant
and time-varying heterogeneity, in turn. We use the shorthand notation EZ(W ) and
EZ=z(W ) for the conditional expectations of W given Z and Z = z, respectively. In the

10See Graf and Luschgy (2002, p. 875) for a discussion of the compact support assumption.
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DISCRETIZING UNOBSERVED HETEROGENEITY 633

time-varying case, we denote as λ0 the process of λt0’s, and as Eλ0=λ(W ) the conditional
expectation of W given λ0 = λ. We use a similar notation for variances. Finally, when M
is a matrix ‖M‖ denotes its spectral norm, and we use M > 0 to denote that M is positive
definite.

3.1. Time-Invariant Heterogeneity

To state our first main theorem, where heterogeneity is time-invariant, we make
the following assumptions, where 
it (αi�θ) = ln f (Yit | Yi�t−1�Xit�αi� θ), 
i(αi�θ) =
1
T

∑T

t=1 
it (αi�θ), and α(θ�ξ) = argmaxαEξi0=ξ(
i(α�θ)) for all θ, ξ.

ASSUMPTION 3—Regularity, Time-Invariant Heterogeneity:
(i) (Y ′

i �X
′
i � ξ

′
i0�h

′
i)

′ are i.i.d.; (Y ′
it �X

′
it)

′ are stationary for all i; 
it (α�θ) is three times
differentiable in (α�θ) for all i, t;11 and the parameter space � for θ0 is compact, the
supports of ξi0 and αi0 are compact, and θ0 belongs to the interior of �.

(ii) N , T tend jointly to infinity; supξ�α�θ|Eξi0=ξ(
it (α�θ))|= O(1), and similarly for the

first three derivatives of 
it ; infξ�α�θEξi0=ξ(− ∂2
it (α�θ)
∂α∂α′ ) > 0; and maxi supα�θ |
i(α�θ) −

Eξi0 (
i(α�θ))| = op(1), and similarly for the first three derivatives of 
i.
(iii) infξ�θEξi0=ξ(− ∂2
it (α(θ�ξ)�θ)

∂α∂α′ ) > 0; E[ 1
T

∑T

t=1 
it (α(θ�ξi0)� θ)] has a unique maximum
at θ0 on �, and its matrix of second derivatives is −H < 0; and supθ

1
NT

×∑N

i=1

∑T

t=1 ‖ ∂2
it (α(θ�ξi0)�θ)
∂θ∂α′ ‖2 = Op(1).

(iv) supξ̃�α ‖ ∂
∂ξ′|ξ=ξ̃Eξi0=ξ(vec ∂2
it (α�θ0)

∂θ∂α′ )‖, supξ̃�α ‖ ∂
∂ξ′|ξ=ξ̃Eξi0=ξ(vec ∂2
it (α�θ0)

∂α∂α′ )‖, and

supξ̃�θ ‖ ∂
∂ξ′|ξ=ξ̃Eξi0=ξ( ∂
it (α(θ�̃ξ)�θ)

∂α
)‖ are O(1).

In part (i) in Assumption 3, we treat heterogeneity as random in order to use Lemma 2,
which requires ξi0 to be i.i.d. draws from a distribution. However, note we do not restrict
how αi0 and μi0 depend on each other. Moreover, while our results require asymptotic
stationarity of the time-series processes, the theorem could be extended to allow for non-
stationary initial conditions.

In part (ii), we require strict concavity of the log-likelihood as a function of α. Con-
cavity holds in a number of nonlinear panel data models such as probit and logit models,
tobit, Poisson, or multinomial logit; see Fernández-Val and Weidner (2016) and Chen,
Fernández-Val, and Weidner (2021). One can show that Theorem 1 continues to hold
without concavity, under an identification condition and an assumption bounding the
derivatives of the empirical GFE objective function. Importantly, note that H−1 is the
asymptotic variance of the FE estimator. As a result, H being positive definite rules out
models that are not identified under FE, such as a linear model with a time-invariant
covariate and a heterogeneous intercept.

In part (iii), we introduce the target log-likelihood 1
NT

∑N

i=1

∑T

t=1 
it (α(θ�ξi0)� θ) (Arel-
lano and Hahn (2007)), which we will show approximates the GFE log-likelihood in large
samples under our assumptions (note that α(θ0� ξi0) = αi0). In part (iv), we require some
moments to be bounded asymptotically.

11That is, ln f (yit | yi�t−1�xit �α�θ) is three times differentiable in (α�θ), for almost all (yit � yit−1�xit).
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634 S. BONHOMME, T. LAMADON, AND E. MANRESA

We now state our first main result, where we denote, evaluating all quantities at true
values (θ0�αi0) and omitting the dependence from the notation:

si = 1
T

T∑
t=1

(
∂
it

∂θ
+Eξi0

(
∂2
it

∂θ∂α′

)[
Eξi0

(
− ∂2
it

∂α∂α′

)]−1
∂
it

∂α

)
� (8)

H = plim
N�T→∞

1
NT

N∑
i=1

T∑
t=1

(
Eξi0

(
− ∂2
it

∂θ∂θ′

)

−Eξi0

(
∂2
it

∂θ∂α′

)[
Eξi0

(
− ∂2
it

∂α∂α′

)]−1

Eξi0

(
∂2
it

∂α∂θ′

))
� (9)

THEOREM 1: Let Assumptions 1, 2, and 3 hold. Then, as N , T , K tend to infinity we have

θ̂ = θ0 +H−1 1
N

N∑
i=1

si +Op

(
1
T

)
+Op

(
K− 2

d
) + op

(
1√
NT

)
� (10)

The first three terms in (10) also appear in large-N , T expansions of FE estimators
(e.g., Hahn and Newey (2004)).12 Similar to FE, GFE is subject to incidental parameter
Op(1/T ) bias. This contrasts with the properties of GFE estimators under discrete het-
erogeneity (e.g., Hahn and Moon (2010), Bonhomme and Manresa (2015)). Indeed, when
heterogeneity is not restricted to have a small number of points of support, classification
noise affects the properties of second-step estimators in general. This motivates using bias
reduction techniques for inference analogous to those used in FE, as we will discuss in the
next section.

The Op(K− 2
d ) term in (10) reflects the approximation error, which depends on the num-

ber of groups. Setting K = K̂ according to (6) guarantees that the approximation error is
Op(1/T ). Formally, we have the following result.

COROLLARY 1: Let the conditions in Theorem 1 hold. Let K = K̂ given by (6), with γ =
O(1). Then, as N , T tend to infinity we have

θ̂ = θ0 +H−1 1
N

N∑
i=1

si +Op

(
1
T

)
+ op

(
1√
NT

)
� (11)

Under Corollary 1, the biases of FE and GFE have the same order of magnitude. How-
ever, the required value of K depends on the dimension d of individual heterogeneity.
Specifically, when ξi0 follows a continuous distribution of dimension d, setting K propor-
tional to or greater than min(T

d
2 �N) will ensure that the approximation error is Op(1/T ).

For small d (e.g., when d = 1) this will typically require a small number of groups (of the
order of

√
T ).

GFE can have advantages compared to FE, for two reasons. First, the two-step method
can allow researchers to select moments that are particularly informative about the unob-
served heterogeneity. To provide intuition, consider a setting where the number of groups

12In the Online Supplemental Material, we provide a similar expansion for GFE estimators of average
effects M0 = 1

NT

∑N
i=1

∑T
t=1 m(Xit�αi0� θ0), which are functions of both common parameters and individual

heterogeneity.
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DISCRETIZING UNOBSERVED HETEROGENEITY 635

is sufficiently large for the approximation error to be of smaller order compared to 1/T ,
yet K/N tends to zero. We have the following.

COROLLARY 2: Let the conditions in Theorem 1 hold. Let K = K̂ given by (6), with γ =
o(1). Suppose that K/N tends to zero, and that Assumption A1 in the appendix holds. Then
the Op(1/T ) term in (11) takes the explicit form C/T + op(1/T ), where

C

T
=H−1 ∂

∂θ

∣∣∣∣
θ0

E

[
1
2

∥∥α̂i(θ) −Eξi0

(̂
αi(θ)

)∥∥2

�i(θ)
− 1

2

∥∥α̂i(θ) −Ehi

(̂
αi(θ)

)∥∥2

�i (θ)

]
� (12)

with α̂i(θ) = argmaxα 
i(θ�α), �i(θ) = Eξi0 (− ∂2
it (α(θ�ξi0)�θ)
∂α∂α′ ), and ‖V ‖2

� = V ′�V .

Corollary 2 shows that, in this case, the first-order asymptotic bias of GFE is the differ-
ence between two terms. The bias is zero when hi is an injective function of ξi0; that is,
when εi = hi − ϕ(ξi0) = 0. More generally, the bias can be expanded in εi, and it is small
when moments provide accurate estimates of the latent types. Moreover, the first term
on the right-hand side of (12) coincides with the bias of FE (e.g., Arellano and Hahn
(2007)). The form of (12) implies that the biases of FE and GFE are equal when the
moments are the FE estimates hi = α̂i(θ0); however, other moment choices can lead to
smaller biases. From this perspective, GFE provides flexibility to use well-suited proxies
of the latent types. As an example, our simulations of the labor force participation model
(2) show that, by jointly exploiting wages and participation to construct moments that are
informative about the latent type, GFE can have smaller bias than FE (and smaller mean
squared error as well, as shown in the Online Supplemental Material).

A second advantage of GFE comes from the use of grouping, and from the result-
ing regularization. Indeed, individual FE estimates can be highly variable whenever the
number of parameters per individual is large. In such cases, reducing the number of pa-
rameters through grouping can improve performance. For instance, the ability to handle
multiple components of heterogeneity is central to the performance of GFE in models
with time-varying unobserved heterogeneity. This is the case we focus on next.

3.2. Time-Varying Heterogeneity

To state our second main theorem, where heterogeneity is time-varying, we make
the following assumptions, where 
it (αit� θ) = ln f (Yit | Yi�t−1�Xit�αit� θ), 
i(αi�θ) =
1
T

∑T

t=1 
it (αit� θ), and αt (θ�ξ) = argmaxαEξi0=ξ�λ0=λ(
it (α�θ)).13

ASSUMPTION 4—Regularity, Time-Varying Heterogeneity:
(i) (Y ′

i �X
′
i � ξ

′
i0�h

′
i)

′ are i.i.d. across i conditional on λ0; (Y ′
it �X

′
it � λ

′
t0)′ are stationary for

all i; 
it (αit� θ) is three times differentiable, for all i, t; and � and the supports of ξi0

and αit0 are compact, and θ0 belongs to the interior of �.
(ii) N , T tend jointly to infinity; maxt supξ�λ�α�θ|Eξi0=ξ�λ0=λ(
it (α�θ))|= O(1), and simi-

larly for the first three derivatives of 
it ; the minimum (resp., maximum) eigenvalue of
(− ∂2
it (α�θ)

∂α∂α′ ) is bounded away from zero (resp., infinity) with probability one, uniformly
in i, t, α, θ; the third derivatives of 
it (α�θ) are Op(1), uniformly in i, t, α, θ; and

13Note that αt (θ�ξi0) depends on the process λ0 in addition to the type ξi0, although we leave the depen-
dence on λ0 implicit in the notation. In a static model, αt (θ�ξi0) is a function of ξi0 and λt0, while in a dynamic
model it also depends on the history of the time effects (λt0�λt−1�0� � � �).
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636 S. BONHOMME, T. LAMADON, AND E. MANRESA

1
NT

∑N

i=1

∑T

t=1[
it(αit0� θ0) − Eξi0�λ0 (
it (αit0� θ0))]2 = Op(1), and similarly for the first
three derivatives.

(iii) mint infξ�λ�θEξi0=ξ�λ0=λ(− ∂2
it (αt (θ�ξ)�θ)
∂α∂α′ ) > 0; E[ 1

T

∑T

t=1 
it (α
t (θ�ξi0)� θ)] has a unique

maximum at θ0 on �, and its matrix of second derivatives is −H < 0; and
supθ

1
NT

∑N

i=1

∑T

t=1 ‖ ∂2
it (αt (θ�ξi0)�θ)
∂θ∂α′ ‖2 = Op(1).

(iv) ‖ ∂
∂ξ′|ξ=ξ̃Eξi0=ξ�λ0=λ(vec ∂2
it (α�θ0)

∂θ∂α′ )‖, ‖ ∂
∂ξ′|ξ=ξ̃Eξi0=ξ�λ0=λ(vec ∂2
it (α�θ0)

∂α∂α′ )‖, and

‖ ∂
∂ξ′|ξ=ξ̃Eξi0=ξ�λ0=λ( ∂
it (αt (θ�̃ξ)�θ)

∂α
)‖ are O(1), uniformly in t, ξ̃, λ, α, and θ.

(v) Ehi=h�ξi0=ξ�λ0=λ( ∂
it (αt (θ�ξ)�θ)
∂α

) and Ehi=h�ξi0=ξ�λ0=λ(vec ∂
∂θ′|θ0

∂
it (αt (θ�ξ)�θ)
∂α

) are twice dif-
ferentiable with respect to h, with first and second derivatives that are uniformly
bounded in t, ξ, λ, h in the support of hi given λ0 = λ, and θ ∈ �; and
‖Varhi=h�ξi0=ξ�λ0=λ( ∂
it (αt (θ�ξ)�θ)

∂α
)‖ and ‖Varhi=h�ξi0=ξ�λ0=λ(vec ∂

∂θ′|θ0
∂
it (αt (θ�ξ)�θ)

∂α
)‖ are

O(1), uniformly in t, ξ, λ, h, and θ.

In part (ii) in Assumption 4, we impose a stronger concavity condition than in Assump-
tion 3.14 The other parts are similar to Assumption 3, except part (v) where we require
regularity of certain conditional expectations and variances.

We next state our second main result, where, differently from Theorem 1, si in (8) and
H in (9) are now evaluated at (θ0�αit0), and expectations are conditional on (ξi0�λ0).

THEOREM 2: Let Assumptions 1, 2, and 4 hold. Then, as N , T , K tend to infinity such
that K/N tends to zero, we have

θ̂ = θ0 +H−1 1
N

N∑
i=1

si +Op

(
1
T

)
+Op

(
K

N

)
+Op

(
K− 2

d

) + op

(
1√
NT

)
� (13)

Theorem 2 shows that GFE is consistent as N , T , K tend to infinity and K/N tends to
zero. This requires no parametric assumption about how ξi0 and λt0 affect individual and
time heterogeneity, unlike additive or interactive FE methods.

To give intuition, consider the probit model (3) with time-varying unobservables. Under
Assumption 2, in the first step, GFE consistently estimates an injective function ϕi0 =
ϕ(ξi0) of the type. One can then rewrite the outcome equation in (3) as Yit = 1{X ′

itθ0 +
α(ψ(ϕi0)�λt0) +Uit ≥ 0}, where ψ is the function introduced in Assumption 2, and αit0 =
α(ψ(ϕi0)�λt0) is simply a time-varying function of ϕi0. In the second step, GFE estimates
this function by including group-time indicators in the probit regression.

As in Theorem 1, the expansion in Theorem 2 features a combination of incidental
parameter bias and approximation error. When using the rule (6) for K, in the spirit
of Corollary 1, the approximation error is of the same or lower order compared to 1/T.
However, the Op(K/N) term is a new contribution relative to the time-invariant case,
which reflects the estimation of KT group-specific parameters using NT observations.
As an example, when d = 1 and K is chosen of the order of

√
T , the Op terms in (13) are

Op(1/T + √
T/N).15 Although this rate of convergence can be fast when N is sufficiently

large relative to T , it is too slow to apply conventional bias-reduction methods for infer-
ence. In the next section, under the additional assumption that time heterogeneity λt0 is

14In particular, we use part (ii) in Assumption 4 to establish consistency. Note that this condition can be
restrictive in models with time-varying random coefficients.

15When N/T
3
2 → 0, one could obtain a faster rate in (13) by choosing another rule for K.
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DISCRETIZING UNOBSERVED HETEROGENEITY 637

low-dimensional, we describe how to obtain a faster convergence rate by grouping both
individuals and time periods.

4. COMPLEMENTS AND EXTENSIONS

4.1. Bias Reduction and Inference

In models with time-invariant heterogeneity, Corollary 1 can be used to characterize
the asymptotic distribution of GFE estimators. However, as in FE, the presence of the
Op(1/T ) term in (11) shifts the distribution of θ̂ away from θ0 whenever T is not large rel-
ative to N . A variety of methods are available to bias-correct FE estimators and construct
asymptotically valid confidence intervals; see Arellano and Hahn (2007) for a review.
Consider the setup of Corollary 1, under the additional assumption that the Op(1/T )
term in (11) is equal to C/T + op(1/T ) for some constant C. In this case, one can show
that half-panel jackknife (Dhaene and Jochmans (2015)) gives asymptotically valid infer-
ence based on GFE as N and T tend to infinity at the same rate.16 The distribution of the
bias-corrected GFE estimator is then asymptotically normal centered at the truth, and
the asymptotic variance H−1 can be consistently estimated by replacing the expectations
in (8) and (9) by group-specific means.

In settings where heterogeneity varies over time, it can be desirable to group not only in-
dividuals as in (4), but also time periods (or alternatively counties or markets, depending
on the application). We now describe such a method, and discuss its potential for perform-
ing inference in models with time-varying heterogeneity. In the two-way GFE approach,
we classify time periods based on cross-sectional moments wt = 1

N

∑N

i=1 w(Yit�Xit), and
compute

(
ŵ(1)� � � � � ŵ(L)� l̂1� � � � � l̂T

) = argmin
(w̃(1)�����w̃(L)�l1�����lT )

T∑
t=1

∥∥wt − w̃(lt)
∥∥2
� (14)

where {lt} are partitions of {1� � � � �T} into L groups. Given the group indicators k̂i and
l̂t , we then maximize

∑N

i=1

∑T

t=1 ln f (Yit | Xit�α(k̂i� l̂t)� θ), with respect to θ and the KL
group-specific parameters α(k� l).

Two-way GFE estimators can be expanded similar to Theorem 2, under two main ad-
ditional assumptions: the model is static and observations are independent across i and
t, and the dimensions dλ of time heterogeneity λt0 and d of individual heterogeneity ξi0

are both small. Then, for si and H as in Theorem 2, we show in the Online Supplemental
Material that

θ̂ = θ0 +H−1 1
N

N∑
i=1

si +Op

(
1
T

+ 1
N

+ KL

NT

)
+Op

(
K− 2

d +L
− 2

dλ

) + op

(
1√
NT

)
�

Suppose d = dλ = 1 and K is given by (6) with γ asymptotically constant, with an
analogous choice for L. Then the Op terms in this expansion can be shown to be
Op(1/T + 1/N). We leave to future work the formal study of the asymptotic validity of

16In particular, half-panel jackknife is valid under the conditions of Corollary 2, which requires taking
γ = o(1) in our rule (6) for K in order for the approximation error to be of small order. Deriving primi-
tive conditions for the validity of half-panel jackknife and other bias-reduction methods for other choices of K
is left for future work.
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638 S. BONHOMME, T. LAMADON, AND E. MANRESA

bias reduction methods for inference, such as two-way split panel jackknife (Fernández-
Val and Weidner (2016)).

4.2. GFE With Conditional Moments

Our theory shows that the dimension d of heterogeneity plays a key role in the prop-
erties of GFE. While models with scalar latent types ξi0, such as model (2) of wages and
labor force participation, are not uncommon in economics, many applications involve
conditioning covariates. Under Assumptions 1 and 2, the moments hi should, asymptoti-
cally, be injective functions of all the heterogeneity coming from both Yi and Xi. However,
when Xi depends on multiple components of heterogeneity, this might lead to a large di-
mension d.

We now show that GFE can still perform well under a weaker form of injectivity. Con-
sider the case where Assumption 1 is replaced by αi0 = α(ξi0) and μi0 = μ(ξi0� νi0), where
νi0 is another latent component that affects covariates. Moreover, instead of requiring in-
jectivity for both ξi0 and νi0, let us maintain Assumption 2, which only requires hi to be
injective for ξi0. In other words, hi needs to be directly informative about the unobserved
heterogeneity component ξi0 that appears in the conditional distribution of Yi given Xi.
We show in the Online Supplemental Material that, under regularity conditions otherwise
similar to those of Corollary 1, the convergence rate of GFE is unaffected by the dimen-
sion of νi0. Specifically, when K = K̂ is given by (6) with γ = O(1) (which adapts to the
dimension of ξi0 and not the one of νi0), we have

θ̂ = θ0 +Op

(
1
T

)
+Op

(
1√
NT

)
� (15)

To prove (15), we assume that the rate condition T 1+ d
2 = O(N) holds, where d is the

(small) dimension of ξi0.17

In models with time-varying conditioning covariates, a simple way to target moments to
ξi0 is to construct hi using the conditional distribution of Yi given Xi. To see this, consider
a static model f (Yit | Xit�αi0� θ0) where Xit has finite support. In this case, we have under
appropriate conditions:

T∑
t=1

1{Xit = x}h(Yit�Xit)

T∑
t=1

1{Xit = x}︸ ︷︷ ︸
=hi(x)

= EXit=x�ξi0

[
h(Yit�Xit)

]︸ ︷︷ ︸
=ϕ(x�ξi0)

+ op(1)�

where hi(x) is only defined when
∑T

t=1 1{Xit = x} �= 0, and, importantly, ϕ(x�ξi0) does
not depend on νi0. In the Online Supplemental Material, we discuss implementation, and
we report simulation results in a probit model with binary covariates. We find that using

17In the Online Supplemental Material, we provide an asymptotic expansion for GFE in a linear ho-
moskedastic model under a small approximation error, as in Corollary 2. The argument requires no restriction
on the relative rates of N and T . Interestingly, in this case the asymptotic variances of GFE and FE differ,
since the within-group variation in νi0 tends to decrease the variance, yet the expansion features an additional
score term compared to Theorem 1.
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DISCRETIZING UNOBSERVED HETEROGENEITY 639

conditional moments can enhance the performance of GFE in such settings. We leave the
analysis of conditional moments in the presence of continuous covariates to future work.

5. CONCLUSION

In this paper, we analyze some properties of two-step grouped fixed-effects (GFE)
methods in settings where population heterogeneity is not discrete. Our framework relies
on two main assumptions: low-dimensional individual heterogeneity and the availability
of moments to approximate the latent types. In many economic models, individual types
are low-dimensional. By taking advantage of this feature, GFE can allow for flexible forms
of heterogeneity across individuals and over time.

GFE methods are of interest in various applied settings. In a previous version of this
paper (Bonhomme, Lamadon, and Manresa (2017)), we used two-step GFE to estimate
a dynamic structural model of location choice in the spirit of Kennan and Walker (2011),
and we analyzed the performance of the discrete estimator of Bonhomme, Lamadon, and
Manresa (2019) for matched employer-employee data in the presence of continuous firm
heterogeneity. Other potential applications include nonlinear factor models, nonpara-
metric and semiparametric panel data models such as quantile regression with individual
effects, and network models.

APPENDIX

PROOF OF LEMMA 1: Define Bϕ(ξ) (K) = min(h̃�{ki})
1
N

∑N

i=1 ‖ϕ(ξi0) − h̃(ki)‖2, similar to
(7), and denote: (h�{ki}) = argmin(h̃�{ki})

∑N

i=1 ‖ϕ(ξi0) − h̃(ki)‖2. By definition of (ĥ�{̂ki}),
we have

∑N

i=1 ‖hi − ĥ(k̂i)‖2 ≤ ∑N

i=1 ‖hi −h(ki)‖2 (almost surely). Letting εi = hi −ϕ(ξi0),
we thus have, using the triangle inequality twice:

1
N

N∑
i=1

∥∥ϕ(ξi0) − ĥ(k̂i)
∥∥2 ≤ 2

N

N∑
i=1

∥∥hi − ĥ(k̂i)
∥∥2 + 2

N

N∑
i=1

∥∥hi −ϕ(ξi0)
∥∥2

≤ 2
N

N∑
i=1

∥∥hi − h(ki)
∥∥2 + 2

N

N∑
i=1

‖εi‖2

≤ 4

(
1
N

N∑
i=1

∥∥ϕ(ξi0) − h(ki)
∥∥2

)
︸ ︷︷ ︸

=Bϕ(ξ) (K)

+ 6
N

N∑
i=1

‖εi‖2�

By Assumption 2, 1
N

∑N

i=1 ‖εi‖2 = Op(1/T ). In addition, since ϕ is Lipschitz-continuous,
there exists a constant τ such that ‖ϕ(ξ′) −ϕ(ξ)‖ ≤ τ‖ξ′ − ξ‖ for all (ξ�ξ′). This implies
that Bϕ(ξ) (K) ≤ τ2Bξ(K), and Lemma 1 follows. Q.E.D.

PROOFS OF THEOREMS 1 AND 2: It is convenient to use a common notation for Theo-
rems 1 and 2. Let p denote the number of individual-specific vectors α

j
i , j ∈ {1� � � � �p}.

In the time-invariant case: p = 1, j = 1, and α
j
i = αi. In the time-varying case: p = T , j ∈

{1� � � � � T}, and α
j
i = αit . Denote 
ij = 
i in the time-invariant case and 
ij = 
it in the time-

varying case. Let vij = ∂
ij

∂α
, vαij = ∂2
ij

∂α∂α′ , vθij = ∂2
ij
∂θ∂α′ , and vααij = ∂3
ij

∂α∂α′⊗∂α′ (which is a dimα
j
i0 ×
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640 S. BONHOMME, T. LAMADON, AND E. MANRESA

(dimα
j
i0)2 matrix). Let, for all θ ∈ �, j ∈ {1� � � � �p}, and k ∈ {1� � � � �K}, α̂j(k�θ) =

argmaxα
∑N

i=1 1{̂ki = k}
ij(α�θ). Likewise, denote αj(θ�ξ) = argmaxαEξi0=ξ�λ0=λ(
ij(α�θ)).
We will index expectations by ξi0 and λ0, although the conditioning on λ0 is not needed in
the time-invariant case of Theorem 1. Finally, let δ= 1

T
+K− 2

d in the time-invariant case,
and let δ= 1

T
+ K

N
+K− 2

d in the time-varying case.

To show consistency of θ̂, we first establish the next technical lemma (see the Online
Supplemental Material for the proof).

LEMMA A1: Under the conditions of either Theorem 1 or Theorem 2, we have

1
Np

N∑
i=1

p∑
j=1

∥∥α̂j(k̂i� θ) − αj(θ�ξi0)
∥∥2 = Op(δ)� ∀θ ∈ �� (A1)

sup
θ∈�

1
Np

N∑
i=1

p∑
j=1

∥∥α̂j(k̂i� θ) − αj(θ�ξi0)
∥∥2 = op(1)� (A2)

From (A2), we then verify using a Taylor expansion that

sup
θ∈�

∣∣∣∣∣ 1
Np

N∑
i=1

p∑
j=1


ij
(̂
αj(k̂i� θ)� θ

) − 1
Np

N∑
i=1

p∑
j=1


ij
(
αj(θ�ξi0)� θ

)∣∣∣∣∣ = op(1)�

Consistency of θ̂ then follows by standard arguments.
Next, the two key steps in the proof consist in showing the following two expansions:

1
Np

N∑
i=1

p∑
j=1

∂
ij
(̂
αj(k̂i� θ0)� θ0

)
∂θ

= 1
Np

N∑
i=1

p∑
j=1

∂

∂θ

∣∣∣∣
θ0


ij
(
αj(θ�ξi0)� θ

) +Op(δ)� (A3)

1
Np

N∑
i=1

p∑
j=1

∂2

∂θ∂θ′

∣∣∣∣
θ0

(

ij

(̂
αj(k̂i� θ)� θ

) − 
ij
(
αj(θ�ξi0)� θ

)) = op(1)� (A4)

To show (A3), we show the following technical lemma, where we omit references to the
evaluation points θ0 and α

j
i0 for conciseness.

LEMMA A2: Under the conditions of either Theorem 1 or Theorem 2, we have

1
Np

N∑
i=1

p∑
j=1

Eξi0�λ0

(
vθij

)[
Eξi0�λ0

(
vαij

)]−1
vαij

(̂
αj(k̂i� θ0) − α

j
i0 + (

vαij
)−1

vij
) =Op(δ)�

1
Np

N∑
i=1

p∑
j=1

(
vθij

(
vαij

)−1 −Eξi0�λ0

(
vθij

)[
Eξi0�λ0

(
vαij

)]−1)
vαij

(̂
αj(k̂i� θ0) − α

j
i0

) =Op(δ)�
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DISCRETIZING UNOBSERVED HETEROGENEITY 641

Now, expanding vθij (̂αj(k̂i� θ0)� θ0) around αj(θ0� ξi0) = α
j
i0, and using the identity

∂αj (θ0�ξi0)
∂θ′ = [Eξi0�λ0 (−vαij)]−1

Eξi0�λ0 (vθij)
′, we obtain

1
Np

N∑
i=1

p∑
j=1

∂
ij
(̂
αj(k̂i� θ0)� θ0

)
∂θ

− 1
Np

N∑
i=1

p∑
j=1

∂

∂θ

∣∣∣∣
θ0


ij
(
αj(θ�ξi0)� θ

)

= 1
Np

N∑
i=1

p∑
j=1

{
vθij

(̂
αj(k̂i� θ0) − α

j
i0

) +Eξi0�λ0

(
vθij

)[
Eξi0�λ0

(
vαij

)]−1
vij

} +Op(δ)�

and summing the two parts in Lemma A2 shows that the last expression is Op(δ). It fol-
lows that (A3) is satisfied.

To show (A4), we show the next technical lemma.

LEMMA A3: Under the conditions of either Theorem 1 or Theorem 2, we have

1
Np

N∑
i=1

p∑
j=1

∥∥∥∥∂α̂j(k̂i� θ0)
∂θ′ − ∂αj(θ0� ξi0)

∂θ′

∥∥∥∥2

= op(1)� (A5)

Using (A1) and the identity ∂αj (θ0�ξi0)
∂θ′ = [Eξi0�λ0 (−vαij)]−1

Eξi0�λ0 (vθij)
′, we thus have, under

the conditions of either Theorems 1 or 2,

1
Np

N∑
i=1

p∑
j=1

∂2

∂θ∂θ′

∣∣∣∣
θ0


ij
(̂
αj(k̂i� θ)� θ

) − 1
Np

N∑
i=1

p∑
j=1

∂2

∂θ∂θ′

∣∣∣∣
θ0


ij
(
αj(θ�ξi0)� θ

)

= 1
Np

N∑
i=1

p∑
j=1

vθij

(
∂α̂j(k̂i� θ0)

∂θ′ − ∂αj(θ0� ξi0)
∂θ′

)
+ op(1) = op(1)�

where we have used Lemma A3 in the last equality.
Finally, to show Theorems 1 and 2 we expand the GFE score as

1
Np

N∑
i=1

p∑
j=1

∂
ij
(̂
αj(k̂i� θ0)� θ0

)
∂θ

+
(

∂

∂θ′

∣∣∣∣
θ̃

1
Np

N∑
i=1

p∑
j=1

∂
ij
(̂
αj(k̂i� θ)� θ

)
∂θ

)
(θ̂− θ0) = 0�

where θ̃ lies between θ0 and θ̂, and further expand ∂
∂θ′|̃θ 1

Np

∑N

i=1

∑p

j=1
∂
ij (̂αj (k̂i�θ)�θ)

∂θ
around

θ0 using that θ̃ is consistent. Lastly, we use (A3) and (A4), and note that, if 
i(θ) =
1
p

∑p

j=1 
ij(α
j(θ�ξi0)� θ) denotes the individual target log-likelihood, then si = ∂
i(θ0)

∂θ
and

H = plimN�T→∞
1
N

∑N

i=1 Eξi0�λ0 (− ∂2
i(θ0)
∂θ∂θ′ ). Q.E.D.

PROOF OF COROLLARY 1: By the triangle inequality, 1
N

∑N

i=1 ‖ĥ(k̂i) − ϕ(ξi0)‖2 ≤
2Q̂(K̂) + Op( 1

T
) = Op( 1

T
). The proof of Theorem 1 is then unchanged, simply redefin-

ing δ= 1/T (since heterogeneity is time-invariant here). This shows (11). Q.E.D.

PROOF OF COROLLARY 2: To prove Corollary 2, we follow a likelihood approach (see
Arellano and Hahn (2007)). Consider the difference between the GFE and FE profile
log-likelihoods: �L(θ) = 1

N

∑N

i=1 
i (̂α(k̂i� θ)� θ) − 1
N

∑N

i=1 
i (̂αi(θ)� θ).
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642 S. BONHOMME, T. LAMADON, AND E. MANRESA

ASSUMPTION A1—Regularity: Let ŵi = − ∂2
i (̂αi(θ0)�θ0)
∂α∂α′ , and ĝi = ∂2
i (̂αi(θ0)�θ0)

∂θ∂α′ ŵ−1
i .

(i) 
it (αi�θ) is four times differentiable, and its fourth derivatives satisfy similar properties
to the first three.

(ii) γ(h) = {Ehi=h(ŵi)}−1
Ehi=h(ŵiα̂i(θ0)) and λ(h) = Ehi=h(ĝiŵi){Ehi=h(ŵi)}−1 are

Lipschitz-continuous in h; and Varhi=h(ŵi (̂αi(θ0) − γ(hi))) = O( 1
T

) and
Varhi=h((ĝi − λ(hi))ŵi) =O( 1

T
), uniformly in h.

LEMMA A4: Let the conditions of Corollary 2 hold, and let νi(θ) = α̂i(θ) − Ehi (̂αi(θ)).
We have

∂

∂θ

∣∣∣∣
θ0

�L(θ) = − ∂

∂θ

∣∣∣∣
θ0

1
2N

N∑
i=1

νi(θ)′
Eξi0

[−vαi
(
α(θ�ξi0)� θ

)]
νi(θ) + op

(
1
T

)
� (A6)

Corollary 2 follows, since the bias of the FE score is ∂
∂θ

|θ0 [ 1
N

∑N

i=1 
i (̂αi(θ)� θ) −
1
N

∑N

i=1 
i(α(θ�ξi0)� θ)] = ∂
∂θ

|θ0
1

2N

∑N

i=1 ν̂i(θ)′
Eξi0 [−vαi (α(θ�ξi0)� θ)]̂νi(θ) + op( 1

T
), where

ν̂i(θ) = α̂i(θ) −Eξi0 (̂αi(θ)); see, for example, Arellano and Hahn (2007). Q.E.D.
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