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The past decades witnessed the fast and wide deployment of Internet. The Internet has bred the ubiquitous
computing environment that is spanning the cloud, edge, mobile devices, and IoT. Software running over such
a ubiquitous computing environment environment is eating the world. A recently emerging trend of Internet-
based software systems is “resource adaptive,” i.e., software systems should be robust and intelligent enough
to the changes of heterogeneous resources, both physical and logical, provided by their running environment.
To keep pace of such a trend, we argue that some considerations should be taken into account for the future
operating system design and implementation. From the structural perspective, rather than the “monolithic
OS” that manages the aggregated resources on the single machine, the OS should be dynamically composed
over the distributed resources and !exibly adapt to the resource and environment changes. Meanwhile, the
OS should leverage advanced machine/deep learning techniques to derive con"gurations and policies and
automatically learn to tune itself and schedule resources. This article envisions our recent thinking of the
new OS abstraction, namely, ServiceOS, for future resource-adaptive intelligent software systems. The idea
of ServiceOS is inspired by the delivery model of “Software-as-a-Service” that is supported by the Service-
Oriented Architecture (SOA). The key principle of ServiceOS is based on resource disaggregation, resource
provisioning as a service, and learning-based resource scheduling and allocation. The major goal of this article
is not providing an immediately deployable OS. Instead, we aim to summarize the challenges and potentially
promising opportunities and try to provide some practical implications for researchers and practitioners.
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1 INTRODUCTION
In the past decades, we have witnessed the tremendous rapid development and wide deployment
of the Internet. Beyond the ubiquitous connectivity, the Internet also brews a variety of new com-
puting paradigms, including the Web computing, cloud computing, mobile computing, Internet-
of-Things, edge computing, and so on, and leads to the burst of applications. Today, we are also
surrounded by the substantial software systems, which are “eating” the world and acting as the
infrastructure of our human society and civilization.

Compared to the software running on the single machine, software running on the Internet
computing can contain abundant heterogeneous resources that reside on zillions of distributed
devices or platforms, including cloud data center, edge server, PCs, smartphones, IoT devices, and
so on. The ever-continuous advances of information technology result in the resource updates or
changes, e.g., new hardware, devices, architectures, and evolution of libraries/APIs. When these
updates or changes happen, software developers must decide whether to re-engineer their systems
to take advantage of new or improved resources, incurring the expenses that such migration im-
poses, or remain wedded to a less up-to-date system that may operate sub-optimally. Hence, soft-
ware systems should be robust and intelligent enough to adapt to the changes of heterogeneous
resources, both physical and logical, provided by their running environment. One exceptional ex-
ample is the recently announced DARPA’s push for software systems that “remain robust and
functional in excess of 100 years” [34], far beyond the lifespan of their original system designers
and hardware/software resources.

To meet the preceding challenges, the operating systems (OSes), which act as the “control
plane” [35] to take responsibility of resource management, plays the key role. However, traditional
OSes fall in limitations in both structural and behavioral perspectives.
•Monolithic architecture limits resource adaptation. The structures of most current OSes are
substantially large and vastly complex, making them di$cult to maintain, evolve, update safely,
and run reliably. One key factor is that most popular OSes usually follow the “monolithic” archi-
tectural style where all resource components, such as CPU and memory, are packaged together to
run the application [37]. Such a monolithic style is widely adopted in modern OS kernel design,
monolithic kernel, micro-kernel, and exokernel, and establishes the foundation for a variety of
commodity OSes such as data center OS and Android. However, there have been a lot of debates
on the limitations and ine%ectiveness of monolithic architecture. First, the monolithic architecture
usually runs an OS on a single machine, assuming local resource components into shared memory,
storage, network, sensors, and so on, hence the resource management for distributed resources is
inherently absent. Second, various resource components are tightly coupled and tangled with one
another, and the resource management is too "xed and in!exible to add, remove, and change re-
source components. Last but not the least, emerging heterogeneous new resources, such as ASIC
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or new speci"c sensors, should be taken into account in the OSes. Unfortunately, adopting and
deploying new resources into existing monolithic architecture is quite painful and costly.
• Adequate OS tuning for speci!c purposes and scenarios is quite hard. OSes are tradi-
tionally built by the professional software developers and domain experts with long and recurring
engineering e%orts. When installing most popular OSes such as Linux and Windows, we usually
have to adopt general-purpose designs and leave various tuning options at or after the OSes are
installed [51]. The common practice is to install OSes with their default con"gurations, policies,
or mechanisms. Due to the various and changing user requirements, the “One-Con!guration-Fits-
All” policy is no longer adequate, and the timely and proper tuning for speci"c applications or
scenarios is required. However, in practice, these con"gurations or policies cannot be easily and
properly tuned to adapt to the application’s changing needs and behaviors, as they usually require
the domain knowledge and expertise from OS experts. For example, there are over 17K kernel con-
"gurations in Linux v 5.1, the manual tuning task is extremely ad hoc and time-consuming, and
could lead to some errors or fatal failures.

Hence, we believe that the need for building an OS for resource-adaptive and intelligent soft-
ware systems is urgent. The recent work emerging ubiquitous operating system (UOS) [33], i.e.,
the future OSes, should be designed by following the capability of “software-de"ned.” To echo such
a trend, this article envisions the design principles for the OS and shares our preliminary idea of
a high-level OS abstraction, namely, ServiceOS. From the structural perspective, inspired by the
Service-Oriented Architecture, ServiceOSproposes to break the monolithic architecture into a set
of distributed resource components in form of self-described “resource component services” that
can be accessed from external APIs and via high-speed network. These services can be dynami-
cally composed to build “customized” application-oriented OSes for speci"c application needs or
scenarios. From the behavioral perspective, rather than relying on the manual tuning, ServiceOS
aims to employ the advanced machine learning techniques to predict and generate the adequate
con"gurations or policies that are used to tune OSes dynamically with few human e%orts.

Indeed, building OSes like ServiceOS is not easy in practice, requiring careful considerations or
even radical designs in various system-wide issues, including performance, security, reliability,
and so on. We realize that the principles of ServiceOS are at dawn but some relevant techniques
have been demonstrated by various existing e%orts. It should be mentioned that the goal of this
article is not to provide an immediately actionable OS along with its design and implementations.
We focus on analyzing the bene"t of adopting ServiceOS, discussing challenges and opportunities,
and sharing some practice and experiences.

2 DESIGN PRINCIPLES AND ABSTRACTION OF SERVICEOS
In this section, we brie!y describe the design principles of ServiceOS and present its abstraction.

2.1 Design Principles
The goal of ServiceOS aims to make OSes adaptive to the underlying resource and environment
changes, both robustly and intelligently. However, compared to traditional systems software, such
as middleware or DBMS that are built as OS extensions, ServiceOS tries to rethink the OS design
principles in terms of both the structure and behavior in the proposed OS abstraction.

In our opinion, although the managed resources and supported workloads of an OS become
rather complex, the design guideline of OS should be as simple as possible. The basic guideline is
that the applications running on the OS do not have to understand the resource and environment
changes, while the OSes play as a control plane to promise that all changes do not interfere with the
normal operations of already running applications. Rather than the current OSes that usually hold
a monolithic structure, the OS should act as a control plane that can manage a set of loosely coupled
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components, each of which can be developed and evolved independently. These components can
be dynamically composed to form an OS according to the changes from either environment or
application requirements. In other words, beyond the general-purpose “core” OS functionalities
that can serve "xed and prede"ned applications requirements, the OS should be !exibly “de!ned”
by the speci"c application domains and contexts.

Following the basic idea, we argue that the OS meeting resource-adaptive requirements should
take into account the following issues:

• Loosely coupled "exible architecture over resource disaggregation. Recently, there
have been some debates on the “disaggregation” of datacenter servers [14, 37]. It is believed
that the OSes, including those running on the server, smartphones, and IoT devices, should
consider breaking the monolithic structure and organize all hardware resources, includ-
ing CPU, memory, storage, and other I/O devices, as independent, "ne-grained, distributed,
and network-attached components. In particular, rather than the hierarchical architecture
in traditional OS, we enforce that resource components should run on a loosely coupled and
!exible architecture, making it much easier for every single resource component to evolve
independently. Instead of a physical motherboard, the connections between resource com-
ponents can be made over the high-bandwidth network. In this way, the overhead of inte-
grating all hardware physically can be reduced. Meanwhile, the disaggregation can also
help the !exible scheduling of every single resource component across various parallel
applications.

• Autonomous resource provisioning as services. Rather than a pre-installed general-
purpose OS for all applications, the disaggregated and distributed resource components
should be composed dynamically into an OS for a speci"c purpose or application scenarios.
To make the whole OS robust, every single resource component should be responsible for
its own trustworthiness, including security, reliability, fault-isolation, and so on. Inspired by
the principle of Service-Oriented Architecture (SOA) and software-de"ned systems [33], we
consider that all the resource components are provided as self-described and autonomous
services, or, namely, Resource Component Service (RCS), which are accessed by external-
izable APIs. Every single RCS is required to encapsulate all the software stacks and man-
agement capabilities with runtime facilities, e.g., in form of container, which is a popular
mechanism in current SOA solutions such as microservice or serverless computing [19].

• Learning-to-adapt automation for resource allocation and tuning. Traditionally,
when installing and initializing the OSes, we can apply some default con"gurations and
policies, which can be manually and statically changed to achieve the best performance,
typically from domain experts’ knowledge in a “top-down” way. In contrast, we rethink
that OSes should be dynamically tuned, in a data-driven and learning-based fashion, which
should act as “bottom-up” way, or at least, the “meet-in-the-middle” style by synthesizing the
learning results and domain knowledge. In a sense, the OSes should provide the controller
that automates the “Monitoring-Learning-Executing” control loop: The Monitoring activity
collects the runtime information, including system logs, resource state changes, environ-
ment, and so on; the Learning activity leverages the advanced machine learning techniques
to build models that can accurately generate the adequate con"gurations for achieving the
best application-level performance and predict the resource and environment changes; the
Executing activity automatically applies the derived con"gurations and policies to tune the
OSes, without having to involve too many human engineering e%orts. In practice, the exe-
cutable con"gurations can be updating the values of parameters speci"ed in existing RCS
APIs, adding new RCS, or removing existing RCS.
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Fig. 1. Abstraction of ServiceOS.

2.2 ServiceOS Abstraction and Application Model
Based on the preceding design principles, we draw the conceptual abstraction that is visible to
ServiceOS’s principals, i.e., users and applications, as illustrated in Figure 1.

The resource plane consists of distributed resource component services that are provided by
the node, e.g., a server, a smartphone, or an IoT device. As the basic unit, a hardware resource is
decoupled out of the monolithic OS kernel installed on the node where the resource resides and
encapsulated as a resource service component. Every single RCS is exposed via a set of narrow but
well-de"ned APIs. Every published RCS is registered on a global resource directory and naming
service. As a result, in ServiceOS, there are a large amount of distributed RCSes that can be searched
and discovered, e.g., from a global repository. From the user’s or developer’s perspective, ServiceOS
exposes an RCS along with its own container that is deployed on the physical compute node. An
RCS container has a unique ID, a unique accessible address (typically as a virtual IP), a meta-
data description (e.g., the resource type and its owner), and a built-in monitor that introspects the
resource state (e.g., idle, failure, overloaded, etc.). An RCS container can run various RCSes, each of
which actually refers to an actual hardware resource type. Also, an RCS can be included in various
containers. At the system level, ServiceOS takes the responsibility of isolating and protecting the
RCS assigned to one container from others.

Over these RCSes and their containers, the control plane consists of two major components,
the Composition Engine for orchestrating some RCS containers and the Learning-based Adaptation
Engine that automates resource scheduling and OS tuning.

The composition engine takes charge of building an application-oriented OS according to user
and application requirements. We assume that all RCS containers communicate with one another
via a fast and reliable network connection. In practice, such a network can be RDMA in datacenters,
or can be high-bandwidth and low-latency 5G/Wi-Fi among distributed devices. To !atten the
RCS containers, ServiceOS supports the event-driven style, where the communication is done via
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an event bus at the OS level. Note that the RCS should be autonomous; hereby, we make the
container responsible for its hosted RCS’s security and failure. Hence, the changes of a resource is
completely transparent to user or application. Indeed, the change of one RCS can a%ect others, and
the composition engine should process the problem globally. We will discuss some design policies
in Section 3.

The learning-based adaptation engine interacts with the monitor that collects the status of RC-
Ses hosted by the container, trains the model from the collected data, performs the classi"cation or
prediction task for resource adaptation (e.g., deriving con"gurations or policies), makes the adap-
tation decision, and "nally synchronizes the decision with the composition engine to re-compose
the OS to ful"ll the new requirements caused by resource and environment changes. Note that the
adaptation engine is considered as a system-level component rather than an application-level one
and can run in the kernel space.

3 CHALLENGES AND OPPORTUNITIES
ServiceOS draws only an ideal blueprint for the OS abstraction that "ts the requirements of
resource-adaptive software. Indeed, in practice, building an OS is quite hard. This article does
not aim to provide an immediate executable and deployable solution for ServiceOS. Instead, we try
to summarize the challenges from recent related e%orts and discuss opportunities for building an
OS like ServiceOS.

3.1 Resource Disaggregation and OS Decoupling
The need for "ne-grained resource elasticity and high resource utilization has led to the birth of
resource disaggregation [18]. The key motivation of resources disaggregation is that di%erent re-
sources such as CPU, memory, storage, and network, exhibit signi"cant trends in terms of cost,
performance, and power scaling [14]. Resource disaggregation greatly improves resource utiliza-
tion, elasticity, heterogeneity, and failure isolation, since each resource component can operate
or fail on its own, and its resource allocation is independent from other components. Resource
disaggregation has been demonstrated to be an e$cient solution in terms of provisioning and
scheduling of individual resources across multiple workloads [11, 14]. Resource disaggregation is
regarded as a forthcoming shift of resource management paradigm, especially in the cloud com-
puting and datacenters. To enable disaggregation in ServiceOS, there are some key techniques to
be addressed.
Coherent co-design of memory utilization. Resource disaggregation decouples the computa-
tion and storage. Ideally, all hardware memory functionalities (e.g., page tables, TLBs) are encap-
sulated in a memory component, while only caches are kept in the computation component (e.g., a
process). Given a clean separation of computation and memory hardware units, the allocation and
management of memory can be completely transparent to the computation. In a sense, the memory
component can autonomously choose its own memory allocation technique and virtual to phys-
ical memory address mappings [37]. In addition, memory can be further decoupled according to
their types, i.e., local or remote, and physical or virtual. Memory disaggregation decouples phys-
ical memory allocated to virtual servers (e.g., VMs/containers/executors). The decoupling aims at
allowing the server under high memory pressure to use the idle memory either from other servers
hosted on the same physical node (node-level memory disaggregation) or from remote nodes in
the same cluster (cluster-level memory disaggregation) [25]. In a sense, memory disaggregation
can leverage the latency gap between network I/O and storage I/O to enable DRAM memory
to expand to the faster tier(s) in the memory hierarchy before resorting to the slower external
storage tier. In practice, we can decouple the physical memory allocated to virtual servers (e.g.,
VMs and containers) at their initialization time from the runtime management of the memory. A
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considerable solution is to explore the coherent co-design of virtual server memory and node-level
memory, and the co-design of local memory and remote memory.
High-bandwidth and low-latency networking. The high bandwidth and reliable network is
undoubtedly the most signi"cant technical foundation for adopting the resource disaggregation,
since the resource components are attached via network and may transfer a large volume of data
from one another, especially for big data analytics workloads. It is reported that, to preserve the
application-level performance for Spark, Hadoop, and GraphLab workloads deployed in datacen-
ters, the required network bandwidth should be 40 Gbps–100 Gbps, and the required latency
should be around 3 µs–5 µs [14]. In practice, ServiceOS can take into account the state-of-the-
art programmable switch, NIC, and RDMA, to promise the quality of bandwidth and latency in
datacenters. Take the RDMA as examples. To enable the connections of disaggregated memory
components, the RDMA write/read operations can help implement the connection for data trans-
fer, and the RDMA send/receive operations can help implement the connection for control tasks.
For each connection, two types of channels are established, i.e., the RDMA channel for maintaining
the network connection and data transfer, and the disaggregated component channel for interact-
ing with the remote node agent, maintaining the system status, and performing placement and
eviction algorithms [25].
Disaggregation beyond datacenters. In datacenters, resource disaggregation tries to decouple
di%erent types of resource components and allows every single type of resource component to
evolve independently. Each type of resource component is built as a standalone resource “blade”
and interconnected with one another via a high-bandwidth network fabric. Compared to existing
work, in the context of ServiceOS, the scope of resource disaggregation should not be limited to
the rack scale, but should be much wider, e.g., even on other devices such as edge. Certainly, when
performing disaggregation for resources, the network bandwidth and latency signi"cantly mat-
ters. When orchestrating distributed resource components beyond datacenters, we cannot simply
rely on the 5G or Wi-Fi connections. With respect to the principle of ServiceOS, unlike workloads
deployed in datacenters, applications built over such a wider range of disaggregation should not
exchange very large volume of data.
• Decoupling Operating System

Resource disaggregation inherently requires to break the monolithic OS into a !exible struc-
ture. Hence, it is straightforward to decouple the existing OS kernels into a set of loosely coupled
components (which are delivered as a service, as illustrated later, e.g., following the RESTful archi-
tectural style). Then, an OS is composed by selecting a set of components. Following the idea from
service composition, new components can be added, and a component can be removed, updated, or
replaced by others, so the OS can then be dynamically re-composed according to the environment
changes.

The Separation-of-Concern (SoC) is a widely adopted software engineering principle by decom-
posing a monolithic software system into a set of smaller components. Each component groups
code and data for relatively independent functionalities, and the connections between components
should be as loose as possible. However, decoupling an OS kernel is quite challenging. Applying
the SoC principle in OS needs a lot of e%orts to support fault isolation, runtime !exibility, live
update, process migration, privilege separation, and so on. We brie!y summarize three possible
solutions to e$ciently decouple the OS.
Lightweight and "exible OS kernels. To support the resource disaggregation, future OS kernels
should be more lightweight and !exible. Unikernels, known as Library OS, becomes a promis-
ing solution to this end. The key insight of Library OS is to eliminate the privilege barrier be-
tween kernel and user spaces and build a standalone image that contains both the kernel and the
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application. A major limitation of Library OS is the non-trivial developer e%orts to deal with the
applications that rely on Linux system call APIs [22]. In addition, current LibraryOS mainly runs
in a single server and the management of distributed resources is a bit weak. In contrast to mak-
ing existing kernels lightweight, we think that ServiceOS should leverage new kernels that are
also proposed to meet the resource disaggregation. One promising solution is that the splitker-
nel disseminates an OS into pieces of di%erent functionalities, each running at and managing a
resource component [37]. Over the splitkernel, resource components can be heterogeneous and
can be added, removed, and restarted dynamically without a%ecting the rest of the system. Each
splitkernel can be equipped with a monitor that operates locally for its own functionality and only
communicates with other monitors when there is a need to access resources there. At the system
level, all resource components communicate by message passing over a common network such as
RDMA, and the splitkernel globally manages resources and component failures.
Application-speci!c OS debloating. Another application-oriented OSes, rather than the
general-purpose OSes, are a bit more adequate and desired in the resource-adaptive software
systems. Application-oriented OS kernel debloating aims at reducing the kernel code that is not
needed by the target applications and is e%ective to reduce the complexity of OSes. A debloated
OS kernel includes only features for supporting the target application workloads. To this end,
ServiceOS can consider leveraging the con!guration-based approach, which can reduce the kernel
size, attack surface, and security vulnerabilities. However, to better meet the resource-adaptive
requirements, existing debloating solutions still su%er from the lack of support for fast application
deployment, coarse-grained tracing, and incomplete coverage for the kernel footprint [22]. An-
other problem is that most of existing debloating approaches usually need manual e%orts to con-
"gure the kernel options and are not very practically e%ective. Some e%orts such as KCon!g [20]
provide user interfaces for selecting kernel con"guration options, while the usability is yet quite
poor. To address the challenges, one possible solution is to leverage the lower-level tracing to track
the kernel code and automatically map the kernel code to the kernel con"gurations. For example,
COZART applies the instruction-level tracing and generates a set of con"gurations that are speci"c
to an application and its running environment o&ine and builds the kernel by composing a set of
con"gurations [22]. In addition, the con"gurations can be reused to incrementally build new ker-
nels. Indeed, such e%orts can be quite helpful to customize an OS kernel. To better accommodate
the resource-adaptive requirements, the con"gurations should be derived on-the-!y and updated
dynamically to support the online and continuous re-building of a debloated OS kernel.
Reducing state spill to achieve "exible composability. To enable the better and e$cient de-
coupling of an OS, a recent promising trend is to reduce the state spill [9], which is considered to
be a root cause of entanglement within the OS. State spill indicates that the software component’s
state undergoes a lasting change as a result of handling an interaction with another component.
For example, in the typical client/server system, when the changes to a server-side component’s in-
ternal state persist beyond the end of its interaction with the client-side component, the state spill
occurs. State spill can limit OS decoupling, as it can lead to the entanglement between components
in the OS. More speci"cally, to promise the correctness and consistency, the OS cannot release the
states until interactions between two components terminate. Eliminating the state spill requires
a signi"cant change for the OS design, because the current OS is very complex: The interactions
between components are severely entangled and thus hard to distill. In practice, one possible solu-
tion is to decouple OS with the principles of no encapsulation, stateless communication, universal
and connectionless interface, and pattern reuse, as proposed in the Theseus system [10]. Modules
in Theseus eschew traditional encapsulation in favor of decoupling a module’s state, and thus
its notion of progress with other modules, from its entity bounds. In this way, we can force the
caller component to assume the responsibility of maintaining the state of its progress with callee
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component, while eliminating the state spill. The idea of Theseus is probably adequate in building
ServiceOS, as it enables the !exible and dynamic composition of an OS. However, applying such a
“clean slate” design for existing OSes requires substantial engineering e%orts.

3.2 Resource Virtualizaiton and Service-oriented Provisioning
The “granularity” of resource provisioning can a%ect the capability and e$ciency of resource adap-
tation. Inspired by the SOA, we regard that all resources should be encapsulated and provisioned
as services. SOA was proposed in the early 2000s and has been widely adopted in web computing
and cloud computing, e.g., the RESTful architectural style. The core principle of SOA is to make
the software component as an autonomous entity that can be accessed by externalizable applica-
tion programming interfaces (API). From the software engineering perspective, SOA provides a
perfect programming paradigm that can achieve various principles such as autonomous, isolation,
loose coupling, dynamical composability, and so on. Essentially, the principle of SOA establishes
the technical foundation of software-de"ned platforms such as SDN and SDS [33], and thus can
support the development of ideal capabilities for resource-adaptive software systems.
• Secure and lightweight container model

Most SOA systems support the multitenancy. Multitenancy allows resources to be shared across
various applications. To protect the security, an application must be isolated (so one workload
cannot access, or infer, data belonging to another application) and for operational concerns (so the
noisy neighbor e%ect of one workload cannot cause other workloads to run more slowly) [3]. In
the early age of cloud computing, the virtual machine is the basic service provisioning unit that
encapsulates the resources and their states and deploys them in the form of services. However,
traditional VM like Xen imposes a rather monolithic, coarse-grained, and heavy-weight model,
which is demonstrated to be ine$cient for resource adaptation [19].

The microservices architecture and serverless such as Function-as-a-Service (FaaS) become
quite popular recently. The microservices architecture aims to decouple a monolithic application
into a set of components, each of which runs in an isolated runtime context, typically a container.
Containers have quickly become the de facto solution to manage and deploy large-scale distributed
applications, such as web servers, data processing and analytic frameworks, in-memory key-value
stores. Containers, in contrast to traditional VM, provide a way to virtualize and isolate the op-
erating system, allowing multiple applications to run in a single operating system. Essentially,
containers make the software rather than the hardware that is virtualized. With container man-
agement systems like Docker and orchestration systems like Kubernetes to control applications
and dynamically provision their resources, current cloud services can be extremely scalable, re-
liable, and reactive. FaaS, considered as the next-generation cloud computing, further promotes
the SOA principle to more extreme end [19]. FaaS is proposed as the interface to usage-driven,
stateless, or even serverless backend services and o%ers an intuitive, event-based interface for de-
veloping cloud-based applications.

To make the software systems adaptive to environment, resources should be provisioned with
new functions along with the supporting runtime environment (e.g., containers) very fast, e.g., in
milliseconds. In this way, resources can be switched between workloads quickly when environ-
ment changes. Intuitively, both microservices and FaaS are built upon containers such as those
who use Docker and LXC. These containers rely on the isolation mechanisms built into the Linux
kernel. To support multitenancy, container implementors can choose to improve security by limit-
ing syscalls, at the cost of breaking code that requires the restricted calls [3]. In practice, we realize
that the current cloud service providers need to deal with tradeo%s between the hypervisor-based
virtualization and Linux containers. Some recent e%orts provide specialized container, rather than
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general-purpose solutions. For example, to support the serverless computing, Firecracker [3] ac-
commodates KVM with a new VM monitor, device model, and API for managing and con"guring
MicroVMs, and can achieve better isolation along with high speed (about 100 ms for booting a
container) and low system overhead (5 MB per container). These e%orts have some limitations,
e.g., without the support of a BIOS and the capability of booting arbitrary kernels. In addition to
security and containers should be able to emulate legacy devices or PCI, and support VM migration
from legacy software systems.
• Ubiquitous resource virtualization for service provisioning

Resource virtualization is the system foundation for service deployment and delivery. Beyond
CPU virtualization in the cloud, we regard that the virtualization should be more ubiquitous, mak-
ing more resource types on heterogeneous devices delivered as services.
GPU virtualization. Given the increasing demand of machine learning and deep learning, virtu-
alization techniques for other hardware components such as GPU are also required. Compared to
CPU virtualization, GPU virtualization has some unique challenges. To achieve high throughput
and low latency, GPU virtualization needs to process the data !ow, including I/O operations, task
batching, and data transferring in the CPU-GPU pipeline, and promises the data isolation for se-
curity concerns. It also requires the careful parameter tuning, such as the GPU batch size and the
number of CPU and GPU threads. These parameters are highly correlated and need a lot of manual
e%orts and expertise domain knowledge. In practice, the GPU virtualization should be designed
for both temporal sharing [40] and spatial sharing [50]. However, to the best of our knowledge,
the GPU virtualization is still under low utilization.
Network virtualization. Indeed, there have been numerous e%orts for Network Function Virtu-
alization. As ServiceOS proposes the service-oriented resource provisioning in form of containers,
there are still some challenges and improvement spaces for communications among containers.
The container overlay networks provide the portability to allow a set of containers to communi-
cate with one another based on their own independent IP addresses and port numbers [13]. As
VM/container has its own network stack, the hypervisor has to send/receive raw overlay packets
without the context of network connections. As a result, each packet has to traverse the network
stack twice in both the sender and the receiver’s host OS kernel, which introduces non-trivial over-
head. Some recent e%orts have made e%orts to alleviate the problem. For example, Slim designs
a low-overhead container overlay network that provides network virtualization by manipulating
connection-level metadata [52]. By removing packet transformation from the overlay network’s
data-plane, Slim makes the packet go through the OS kernels only once.
Peripheral I/O device virtualization. In addition to the compute, storage, and network, vir-
tualizing the peripheral I/O devices and publishing them as services is also required. Nowadays,
I/O devices become more diverse and heterogeneous, especially for the mobile and IoT devices,
which are equipped with a large number of cameras, audio, accelerometer, and compass, several
network devices such as Wi-Fi, Bluetooth, and NFC. Virtualizing and publishing these I/O devices
in form of services can not only support !exible composition, i.e., I/O devices can be shared among
various applications, but also allow the new security mechanisms. Traditionally, the OS takes the
responsibility to promise security of all the I/O devices that are loaded. The OS also assumes that
the I/O devices along with their drivers are bug-free and trustworthy. As a result, the trust model
in current OS and the I/O devices are tangled. Given that each device can evolve and update in-
dependently, the security threats introduced by I/O devices become more challenging. In 2016,
it was reported that 85% kernel bugs in Android were originated from device drivers. When I/O
devices along with their software stack are virtualized and encapsulated as services, they should
be responsible for their own security, not relying on the OS [36]. In this way, the mutual trust
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between the OS and these devices is eliminated. Meanwhile, the devices along their drivers are
isolated from the OS kernel, their vulnerabilities (and even malice) do not lead to kernel exploits.
Indeed, such a design is quite radical, but it has to hold a strong assumption that employs a secure
enclave, e.g., the ARM TrustZone or SGX, to construct a secure channel.
Mobile device virtualization. The scope of virtualization should be also expanded for other
devices beyond the cloud-side resources. Virtualization support for the types of processors used
in client-side devices (such as smartphones and wearables), edge, and IoT systems is much less
common than for server/cloud side CPUs [44]. Improved remote management of virtual systems
will most likely be necessary, given the impracticality of physical access and potentially limited
bandwidth. Virtualization also needs to take into account power and bandwidth limitations. Vir-
tualization for client-side devices such as smartphones, IoT devices can bring bene"ts, allowing
multiple virtual devices to run simultaneously on the same physical device in an isolated, secure
manner and to serve various requirements. Indeed, supporting virtualization on these devices has
unique challenges. These devices are relatively resource-constrained, and running an entire addi-
tional OS and user space environment in a VM imposes high overhead and limits the number of
instances that can run [4]. Slow responsiveness is less acceptable, as it can signi"cantly compro-
mise user experiences. Another problem is that these devices incorporate a plethora of resources
that applications can use, such as GPS, cameras, and GPUs. Hence, compared to the cloud-side con-
tainer model that can run isolated operating system instances for various applications, it requires
the lightweight OS virtualization to provide virtual namespaces that can run multiple virtualized
devices on a single OS instance. In addition, the virtualization should support the "ne-grained
resource access and utilization, e.g., the data inside an app.
Web browser virtualization. Due to the advancement of JavaScript and HTML5, Web applica-
tions can provide the comparable user experiences against the native apps. Client-side virtualza-
tion for Web applications is also inspiring. Based on the idea of browser OS such as iBOS [41] and
MashupOS [42], the Embassies system moves the cloud-side vendor code down to the client [16].
On the client, apps can have the fast, reliable access to the resource, but the semantics of isola-
tion remain identical to the cloud model. Each vendor has autonomous control over its software
stack, and each vendor interacts with other vendors (remote and local) only through opt-in net-
work protocols. Essentially, such a virtualization manner consistently copies the isolation and
security mechanisms from the cloud to the client-side device while making the client act as an
pico-datacenter. In practice, however, this browser-level virtualization still has some performance
overhead when directly accessing the remote resources and requires a lot of e%orts to refactor the
browser kernel to support communications between pico-datacenters, i.e., preserving the same
origin policy and sandboxing.
• Service discovery, selection, and composition

When applying the resource disaggregation and SOA principle at an extreme level, all resources
are completely independent from one another. Hence, resource allocation and scheduling can
quickly adapt to workload requirements and environment changes, packing services (e.g., at func-
tion level) into containers, and composing these services (e.g., as a function chain) to build an
application-oriented OS.

The service composition problem has been studied for a long time in the Web service commu-
nity, and a huge body of valuable preliminary e%orts are inspiring and useful [24]. In practice,
as mentioned previously, every RCS container has a unique ID and a unique virtual IP address,
and the RCS can be developed by following the RESTful architectural style that has been widely
adopted for Web applications, mobile apps, and cloud applications. In this way, an RCS can be
exposed to ServiceOS principals, both users and applications, with universal interface semantics.
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Given that there can be a huge number of RCS as candidates, ServiceOS should be capable of
quickly selecting the most adequate service for composing the OS for application and user re-
quirements. In particular, when the resource or environment changes, the composition should be
dynamic rather than static and !xed. With the adaptation policies generated from the adaptation
engine described later, the composition requires to replace an old RCS with a substitute, add new
RCSes, or remove the RCS. To this end, the composition logic can follow the Event-Condition-Action
rules that encode the logic of composition in function of runtime events, as rules can easily be
added, modi"ed, or removed to adapt to resource or environment changes. It is worth mentioning
that the composition itself is also delivered as a service, so all the adaptations can be transparent
to the OS principals. In other words, with the support of ServiceOS, applications and users are not
aware of the underlying changes.
• Stateless and stateful policies in service composition

In practice, service composition should take into account the states. To make the composition
!exible enough for the resource adaptation goal, we have proposed two considerations for service
composition, i.e., the stateless communication, and the consistency of shared state.

First, to comply with the “reducing state spill” policy, the communications among composed
services should be as stateless as possible to make the interactions between services clean and
simple. Formally, given the message passing m for two services S1 requesting S2, m is expected to
contain all data required for S2 to process the request and make response. In other words, S2 can
access only the data passed in from S1, without involving any other state of S1 after the m occurs.
Supporting stateful communication does not mean that no state is included in m, but promises
that the composition has no assumption of prior state. In this way, the communication does not
have to maintain intermediary states that can lead to additional tangling between S1 and S2.

Second, the composition should carefully take into account the consistency of shared state
among services while preserving the performance, cost-e$ciency, and scalability. For example, a
machine learning task that is composed by some low-latency services needs to scale automatically
for the possibly emergent burst of model inference requests and dynamically manipulate the data
based on request parameters. To this end, the service composition engine needs to maintain the
necessary states, such as user sessions, intermediate data in model serving, and so on. E$ciently
supporting the shared state service composition is urgently required, especially in current FaaS
when several containers are orchestrated [15]. It was reported that latencies and costs of shared
auto-scaling storage for serverless applications are orders of magnitude worse than underlying
infrastructure such as shared memory, networking, or server-based shared storage [43]. Indeed,
it requires the tradeo% between the disaggregation and state dependency. Some recent e%orts,
such as Cloudburst [38], present the idea, namely, logical disaggregation with physical colocation
(LDPC). It deploys resources to di%erent services in close physical proximity, where a running
function’s “hot” data should be kept physically nearby for low-latency access.

3.3 Machine Learning–empowered Resource Scheduling and Tuning
Besides the structural level changes supported by resource disaggregation and service-oriented
provisioning, we believe that the behavioral level changes should be made in OS tuning. To make
the resource adaptation timely and e$cient, OSes should embrace the advanced machine learning
or deep learning techniques to automate the generation of con"gurations, policies, and scheduling
mechanisms and reduce the human e%orts.

Although ML has been used in many domains and recently more in system software like DB,
OSes have rarely adopted ML techniques, and most research proposals that date decades back
are really quite debatable. For example, there are several proposals of using ML techniques (e.g.,

ACM Transactions on Internet Technology, Vol. 21, No. 2, Article 27. Publication date: March 2021.



Operating Systems for Resource-adaptive Intelligent So!ware 27:13

C4.5 decision tree, linear regression) to improve application job average turn-around time. In this
section, we discuss some possible OS management that can be facilitated by the machine learning.
• Learning to schedule and allocate resource

The "rst and straightforward bene"t from machine learning in OS can help improve the re-
source allocation and scheduling policies with respect to the user request and system overhead.
Traditionally, the policies are made based on some heuristics or simple algorithms. For example,
in the Internet-based services such as online video serving systems, the OS needs to allocate more
storage space and bandwidth for those popular and frequently accessed "les. File systems usually
use the policy that statically allocates close-by spaces for "les under the same category. However,
given the dynamic and diverse user requests, such a policy is not always adequate. Intuitively,
OSes can leverage learning techniques to predict the forthcoming application/user requests and
more e$ciently plan the resource allocation in advance [28]. Another possible scenario is to lever-
age the ML to perform the mapping for memory/"le management, e.g., the mapping from virtual
memory addresses to physical memory addresses (which is currently performed by page table),
and the mapping from a "le name and o%set to disk logical block address (which is done by "le
system multi-level index structure) [51]. In traditional OS, these two types of mapping tasks are
crucial to the performance of all memory and storage systems. ML models can help reduce the
space costs. In addition, ML models can help derive customized management policies for di%erent
workloads. Unlike "x-sized memory pages in current OS, an ML-based mapping is expected to be
capable of inferencing any size and o%set of memory space, and can potentially be smaller and run
faster than a multi-level page table that is prede"ned in OS. In Lynx system, ML is used to better
perform prefetching from SSDs [23]. It leverages Markov Chains to detect I/O workload patterns
and compute the transition probabilities between "le pages.
• Learning to derive con!gurations

OS con"guration is known to be very time-consuming and error-prone, and requires non-trivial
manual engineering e%orts. Con"gurations usually contain a lot of parameters, e.g., cost, perfor-
mance, security, and so on. These parameters are usually highly correlated. It requires the domain
knowledge and expertise to make the tradeo%s among these parameters. Usually, OS con"guration
tasks are done with some heuristics, by trial and error, or with o&ine experiments, and the con-
"guration options usually keep "xed and unchanged after the OS is installed. Machine learning
can facilitate the OS con"guration by training the model based on the data such as code evolution,
historical traces, and user behaviors of existing applications. In addition, the model for generating
con"gurations can be updated and tuned dynamically to automatically adapt to the resource and
environment changes.

It is reported that a lot of con"gurations, both time-related ones (e.g., interruption frequency,
bu%er !ush frequency) and space-related ones (cache size) can be made by machine learning tech-
niques [51]. More speci"cally, the con"gurations can be derived by the reinforcement learning and
transfer learning, where the model made from one application can be transferred and applied onto
a new application. It can be also expected that the model can be continuously tuned and improved
when more application-speci"c con"gurations are accumulated. In practice, we can assume that
the models for application-speci"c con"gurations can be stored in a repository, and some existing
visualization tools can help make the con"gurations in an iterative and interactive fashion [27].

In practice, deriving precise con"gurations is challenging. The machine learning models need
to explore two search spaces. One is the space covering all possible policies, and other refers to the
space of all possible resource states, i.e., idle, busy, or expired. The challenge stems from the fact
that individually exploring each of the search spaces can be prohibitive [7]: A search for the true
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policies is hard, since they are a small fraction of the policy space, while a search for the violated
policies is hard, since they are often sparse.
• Learning to system diagnosis

Given that the resource-adaptive systems should support continuous and reliable serving, e.g.,
running for 100 years [34], the system diagnosis should be fast enough to locate the bugs, errors,
and failures. In this way, OSes can immediately take actions to "x them. Due to the high complexity
of OSes and applications, the diagnosis should be performed by comprehensively synthesizing a
large-scale set of information, including runtime logs, source/binary code, con"guration settings,
and so on, which can hardly be done by manual e%orts. As a result, machine learning–based sys-
tem diagnosis is a promising approach to improve the e$ciency, such as bug location and predic-
tion [6], miscon"guration detection [49], anomaly detection [28], and so on. The diagnosis results
can provide immediate insights to make decisions. In practice, the major concern is the accuracy,
as the inaccurate diagnosis can contain false positives that may lead to unexpected system failures.
• Learning as system-level facility

As discussed above, machine learning can potentially facilitate the OS management in various
aspects. However, as we make the learning capability as a core system-level component of the
ServiceOS abstraction, rather than an application-level optimization, there are some challenges
that should be carefully addressed in practice.
Overhead of deploying machine learning models in OS. To build machine learning models
for OSes, tuning requires collecting su$cient data from applications, which can inevitably intro-
duce some runtime overhead. In practice, it is more suitable to train the model o&ine rather than
online [45, 51]. The reasons are two-fold. On the one hand, to make the trained model robust and
accurate, we require an amount of "ne-grained data that can be processed only o&ine. On the
other hand, the o&ine training can have less impact on the user experiences on the application.
Similar to the training process, at the OS level, we also need to preserve some compute, storage,
and energy resources that are used to run the learning task. Along with the performance overhead,
there is also the runtime overhead to store machine learning models and some intermediate data
for inference [39]. In practice, to avoid the consumption of core OS resources, we can consider
employing easy-to-deploy resources serving for inference. For example, some recent work like
Pocket [21] employs the elastic ephemeral storage for inference tasks at very low cost, which can
provide a preliminary e%ort in this direction. In addition to the training and inference tasks, how
to quickly and accurately deploy the machine learning–generated con"gurations and policies in
the OS requires additional system-level resources.
Privacy concerns of building machine learning models. The privacy concerns of data that are
collected for building the model should not be ignored. In practice, to produce an accurate machine
learning model that can tune OSes for speci"c purposes or scenarios, it needs to rely on not only
the application state and system runtime logs, but also the user behaviors and user-generated
data. It requires the OS to transparently monitor how the users interact with their apps, extract
meaningful information about their interests, habits, and behaviors, and expose the information to
various apps in a secure, private, and uniform way [12]. Due to the recently increasing concerns of
data ownership, e.g., the recent release of GDPR [1], some sensitive user data cannot be arbitrarily
collected by the app developers. However, whether such data can be collected by OS and shared
among apps installed on the OS still remains a grey area. To alleviate such an issue, recent e%orts
such as federated learning (FL) [8] and di%erential privacy (DP) [2] can be helpful. For example, we
can make the FL and DP as OS services, where user data generated in di%erent apps can be securely
shared and trained to build a desirable machine learning model. Another possible way is the on-
device training [45], which performs the training tasks over the private data purely on the device,
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without having to upload data to the cloud or share the data with externals. It is certain that the
on-device training can promise the privacy, but the insu$cient data cannot promise the accuracy.
In practice, we can pre-train an accurate model on the cloud with public data or non-private data
and apply the reinforcement learning or transfer learning on the device.
Personalization of machine learning–generated adaptations in OS. As mentioned previ-
ously, the resource-adaptive software systems can concurrently serve various users and applica-
tions as principals, which may require di%erent variants of the machine learning model. We need
to carefully take into account the personalization of a derived model that can achieve the best user
experience. However, in practice, producing and maintaining the model per user or per application
can impose a lot of cost and overhead and may be even impractical due to the insu$cient data fed
for model training. One promising solution is to make tradeo%s between the “global” model and
“personalization” model, i.e., training the global model (typically with some public data), deploying
the model for the user/application, and tuning the model (typically with user/application-speci"c
data) for personalization purpose [45]. To improve the e$ciency, emerging model-less fashion can
be bene"cial, which maintains some model variants (similar network structures) and personalize
the model with hyperparameters tuning [48].
Reliability and performance of applying machine learning–generated adaptations in OS.
The machine learning models are expected to produce the adaption con"gurations and policies,
which are considered to be automatically and fast applied to the OSes. In practice, such adaptations
mainly target at the performance optimization. However, using machine learning to determine the
system-level functionalities adaption, such as the CPU interrupts, virtual memory mappings, and
"le systems, needs to be extremely accurate and reliable [51], as the inaccurate tuning can lead to
fatal errors and failures.

4 PRELIMINARY PRACTICE AND EXPERIENCES
The preceding section discussed the challenges and opportunities. Obviously, building an exe-
cutable system covers a wide spectrum of system research and requires a lot of research and de-
velopment e%orts. In the past a few years, we have made some e%orts towards this direction. We
brie!y enumerate some preliminary work as case studies that can be potentially useful in some
aspects to help build ServiceOS.
Machine learning–empowered resource management and scheduling. In terms of machine
learning–empowered resource adaptation and tuning, we demonstrated how ML can help predict
the CDN workloads and allocate the cache size. Compared to the "xed cache policy like LRU,
our approach can use ML to decide candidates of cache assignment or eviction. We designed the
machine learning model based on the power-law-based app download/update distributions, co-
installation patterns, diurnal patterns, and community structure detection to dynamically place
the cache for candidates that are more likely to be accessed. We conducted extensive experiments
over a large-scale Appstore service provider that serves over 30M daily active users [26, 28]. The
results evidenced that the improvement is signi"cant by reducing the cache storage volume while
increasing the cache hit ratio of frequently accessed "les. For example, with the help of ML models,
the cache ratio increases from 82% to 95%. In addition, the ML models reduce the storage spaces and
improve the storage utilization by about 40×. Furthermore, we demonstrated that more dimensions
such as implementation-level features (the code complexity of a class, the coupling degree among
classes, etc.), the description-level features (the textual descriptions, the app category, the quality
of illustrating pictures), and the user-behavioral features (download, update, and uninstall) can
be synthesized by machine learning models to predict the popularity of a mobile app [30]. The
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results can e$ciently help the release planning and resource allocation to improve the application
experience quality and have been deployed on a leading appstore service provider in China.

Similarly, for the Web cache, we synthesized the user-request patterns and the update logs of
resources on Web servers and presented a learning technique that can accurately identify which
resources can be loaded from the local storage for a considerably long period [29, 32]. We im-
plemented an in-browser adaptation engine to perform e$cient resource packaging where stable
resources are encapsulated and maintained into a package, and such a package shall be loaded
always from the local storage and updated by explicitly refreshing. ReWAP maintains resource
packages that can accurately identify which resources can be loaded from the local storage for
a considerably long period. Compared to the original Web apps with cache enabled, ReWAP can
signi"cantly reduce the data tra$c with the median saving up to 51%.
Resource provisioning for mobile/edge devices. In contrast to the server/cloud side resources
provisioning, we realize that the client-side resource provisioning is still at dawn, and the resources
of mobile and edge cannot be simply delivered as services and used by other applications. Previ-
ous e%orts like Cells [4] proposed a VM-level solution to virtualize the smartphone for enabling
app isolation, but cannot well support the "ne-grained speci"c resources such as data, sensor, or
energy. We developed the Aladdin tool to help automate the release of deep-link APIs to access the
data inside mobile apps [31]. Aladdin includes a novel cooperative framework by synthesizing the
static analysis and the dynamic analysis while minimally engaging developers’ inputs and con"g-
urations without requiring any coding e%orts or additional deployment e%orts. Aladdin provides
a lightweight virtualized layer that can be loaded as a library and translates all Android storage
API calls to the calls to our derived deep-link APIs. Compared to similar e%orts like uLink [5], the
virtulization Aladdin’s CPU usage is smaller while the memory usage is almost the same. The rea-
son is that Aladdin passes a smaller number of activities before reaching the target activity than
uLink does, requiring more CPU resources to execute the transition activity’s logic.
Reducing machine learning overhead. As mentioned previously, deploying machine learning
for system management is very challenging, and the additional overhead cannot be simply ig-
nored, especially for the resource-constrained devices. With respect to the possible overhead for
foreground applications introduced by learning tasks, our previous work [17] made preliminary
e%orts, namely, Shu"eDog to make the OS adaptive to the learning tasks without compromising
the foreground applications. The key idea is to identify all delay-critical threads that contribute
to the slow responses and build a resource manager that can e$ciently schedule various system
resources including CPU, I/O, and GPU, for optimizing the performance of these threads. Based on
Shu"eDog, our developed DeepCache [47] optimized the inference performance by 2× by synthe-
sizing reusable cache among layers in a learning model. To demonstrate how the DeepWear [46]
proposed various novel techniques such as context-aware o&oading, strategic model partition, and
pipelining support to e$ciently utilize the processing capacity from nearby paired handhelds or
edge devices, DeepWear brings up to 5.08×−23.0× execution speedup for running machine learning
tasks, as well as 53.5%–85.5% energy saving. These techniques can help mitigate the system over-
head. However, they are not speci"c to the OS management and may require additional concerns
such as security when being integrated in the OS kernel space.

5 CONCLUDING REMARKS
The ubiquitous connection leads to the era of Internet-based computing environment, where
there are abundant resource types spanning over the cloud, edge, PCs, smartphones, and IoT
devices. These resources along with their residing environment keep evolving and require the
continuous adaption support from software systems. This article envisions the new operating
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system abstraction ServiceOS for the resource-adaptive software systems. The OS abstraction
proposes three major design principles, i.e., resource disaggregation, service-oriented resource
provisioning, and machine-learning empowered resource allocation and scheduling. We discuss
the rationales behind ServiceOS, along with some challenges and opportunities.

In practice, designing and implementing an OS complying with ServiceOS is challenging: Some
techniques are under development, some still have a long way to go, while some may be unrea-
sonable or unrealistic. We do expect that the idea of ServiceOS can provide some implications for
the research community and practitioners to build the resource-adaptive, intelligent, and robust
software systems.
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