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Abstract—User mobility prediction is widely considered by the research community. Many studies have explored various algorithms to
predict where a user is likely to visit based on their contexts and trajectories. Most of existing studies focus on specific targets of predictions.
While successful cases are often reported, few discussions have been done on what happens if the prediction targets vary: whether coarser
locations are easier to be predicted, and whether predicting the immediate next location on the trajectory is easier than predicting the
destination. On the other hand, while spatiotemporal tags and content information are commonly used in current prediction tasks, few have
utilized the finer grained, on-device user behavioral data, which are supposed to be more informative and indicative of user intentions. In this
paper, we conduct a systematic study on the mobility prediction using a large-scale real-world dataset that contains plentiful contextual
information. Based on a series of learning models, including a Markov model, two recurrent neural network models, and a multi-modal
learning method, we perform extensive experiments to comprehensively investigate the predictability of different types of granularities of
targets and the effectiveness of different types of signals. The results provide insightful knowledge on what can be predicted along with how,
which sheds light on the real-world mobility prediction from a relatively general perspective.

Index Terms—Mobility prediction, user behavior analysis, multi-modal learning

1 INTRODUCTION

UMAN mobility prediction has drawn increasing atten-
tion in the past few years. Predicting the next location
of a user is widely expected to be helpful for many applica-
tions and services, including but not limited to smart trans-
portation, personalized service recommendation, public
resource management, and so on. So far, a large amount of
mobility prediction methods have been proposed, ranging
from pattern-based methods [1], [2], [3], [4], [5], to Markov
model-based methods [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], and to deep neural networks [18], [19],
[20], [21]. These methods are applied to various scenarios,
including indoor walking [9], venue recommendation [15],
urban commuting [19], or even intercontinental trips [18].
Successful stories are often reported, with improved accu-
racy numbers on particular prediction targets.
Despite these continuously advanced models and improved
results, some fundamental questions of mobility prediction
have not been well answered, or even discussed systematically.
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First, does the granularity of targets matter for the pre-
diction? In practice, the granularity of the next location that
a system can predict is critical for the feasibility of real
world applications. For example, when a tourist plans a
travel to New York in the near future, predicting whether
they will go to Manhattan or Central Park makes difference.
When recommending a restaurant for the tourist, the granu-
larity of prediction target really matters, which can probably
affect the recommendation results and user experiences.
Given the same signals (e.g., behavioral data on their smart-
phones), is it more difficult to predict Central Park com-
pared to Manhattan as the target, or vice versa? Does
predicting finer-grained location require a more complex
model? Existing studies mainly concentrate on a particular
type of targets, mostly due to their task or the data they
have access to (e.g., check-in logs), and few have taken into
account the impact of the granularity of their prediction tar-
gets (locations).

Second, does the salience (or meaningfulness) of next loca-
tion matter? Almost all existing studies are aimed to predict
the exact next location that a user is going to access [3], [4], [6],
[71,[8], [13], [171, [18], [19], [20], [22], [23]. These efforts are all
made at a fixed granularity, and do not distinguish the user
intention of the visit. For instance, the proposed prediction
models usually care about whether “the next location on the
user’s trajectory is a coffee shop”, but usually do not consider
whether the coffee shop is just a temporary stop, or the real
destination that the user plans to stay. If the user just wants to
stay at the coffee shop for a short time (e.g., waiting for their
friends), the coffee shop is a temporary stop that may be a less
meaningful location. In contrast, the next location where the
user and their friends will stay, e.g., the shopping mall or res-
taurant, should be much more meaningful for the location-
based service. If the user would like to have a talk with their
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friends in the coffee shop for a long time, the coffee shop can
be viewed as a more meaningful destination of their trip. In
practice, user's movements are continuous, and predicting
the next “meaningful” location is much more useful than pre-
dicting the “just next” location. However, how to define the
meaningfulness of a location is non-trivial. It can be figured
out only when the user’s activities at every single location are
available. Otherwise, the salience of a location could be
judged by how long the user stays. In such a context, a key
question needs to be answered, i.e., how difficult is it to pre-
dict the next sustainable location, compared to predict just the
next location?

Last but not least, how much do different behavioral sig-
nals matter in the prediction? Existing studies usually build
the prediction models based on various features that correlate
to the fixed granularity of locations, such as historical loca-
tions along with timestamps, or semantic tags of locations.
Indeed, these features are intuitively predictive for future
locations, at the same granularity. However, when predicting
the next locations at varying granularities, or locations with
different intents/duration of stay, none of existing studies
have explored whether the features are still effective. On the
one hand, in addition to the “location records,” there can be
many other more meaningful and informative signals from
the user’s behaviors to reflect the user’s intent or trajectory.
For example, different types of behaviors and system status
can be collected from the user’s smartphone, at different loca-
tion granularities, such as user’s app usage behavior and
smartphone’s sensor data. These fine-grained behavioral sig-
nals are usually not covered by existing studies, as collection
tasks are non-trivial, time-consuming, and even related to
ethic issues. Hence, so far we have no idea of whether these
behavioral signals are useful for mobility prediction. In addi-
tion, it remains unclear whether such signals contribute to tra-
jectory, especially in the context of varying prediction targets.

We take the initiative to bridge the knowledge gap by
addressing the preceding questions. We conduct a systematic
analysis of predicting the next location with the user contex-
tual information. We conduct our study based on a recently
collected large-scale dataset of contextual usage on smart-
phones, including various data such as location data, salience
data, and behavioral data including app usage data, location
sensor data, and broadcast data. Rather than attempting to
find the best model for a specific setup (as done in most exist-
ing studies), we focus on comparing and analyzing the predic-
tion problem setups under various granularities and salience
(duration of stay) of the target locations, and different types of
behavioral signals as features, with a set of prediction models.

The major contributions of our work are as follows:

e To the best of our knowledge, we make the first sys-
tematic study on how the variations of problem set-
ups (with respect to the contextual data) can affect
the performance of human mobility prediction. To
be more concrete, our paper discusses the impact of
the granularity and salience of target locations, as
well as different behavioral features on the predic-
tion accuracy.

e We carefully design an empirical experiment to ana-
lyze the impact of the preceding contextual factors.
Based on a comprehensive, multi-grained, real-world
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dataset, we conduct a series of study, qualitatively and
quantitatively, to address the preceding questions.
The results reveal many interesting patterns of user
mobility along with useful insights.

e We present design implications derived from our
study, which can guide the building of applications
of mobility prediction in practice.

The rest parts of this paper is organized as follows. We first
introduce related literature in Section 2. Then, we describe the
scope of this paper and our analysis pipeline in Section 3.
After that, we present the details of dataset in Section 4. Exper-
imental settings and results are presented in Sections 5, 6, and
7. Section 8 presents implications based on the experiment
results and discusses limitations. We end our paper with con-
cluding remarks and future outlook in Section 9.

2 RELATED WORK

Human mobility prediction has increasingly drawn attention
in the past few years. Researchers have already proposed a
variety of prediction models based on various technologies,
including pattern-based models [1], [2], [3], Markov-based
models [6], [7], [15], and neural network models [18], [19],
[20]. The goal of most existing studies is mainly to optimize
the model under a rather fixed setting, i.e., a fixed location
granularity, a particular target salience, and a specific set of
features. For example, Feng et al. [19] designed a model based
on attentional recurrent networks to improve the performance
of mobility prediction. Gao et al. [23] leveraged Bayesian tech-
niques and CNN kernel to design VANext model, which out-
performed the existing RNN-based models. Both of them
focused on optimizing the performance of mobility prediction
under only a fixed setting. In contrast, we try to figure out the
impact of location granularity, target salience, and behavioral
signals on mobility prediction tasks. We can categorize the
related literature from location granularity, target salience,
and involved features, respectively.

2.1 Location Granularity

In most cases, the location granularity is determined by the
prediction task or the data that existing studies can access.
Generally, location data have three forms. A “location” is
actually a point of interest (POI) (e.g., check-in data [5], [8], [12],
[13], [15], [18], [19], [20], [22], [24], [25]), a connected region
(e.g., a region covered by a base station [2], [10], [11]) or a sur-
veillance camera [6], [17], or a pair of coordinates (e.g., GPS
coordinates [1], [3], [4], [7], [9], [16], [21]). For the POI data, the
location granularity is fully determined by the granularity of
POlIs. For the regional data, the location granularity is mea-
sured as the average size of all regions. For real-value coordi-
nates, existing studies usually convert continuous data into
discrete regions. As a result, the granularity of locations essen-
tially refers to the size of regions. In these studies, once the
data is processed, the location granularity usually keeps the
same and never changes. For example, Liu ef al. [18], Feng
et al. [19], and Gao et al. [23] evaluated their models with real-
world check-in dataset, i.e., Gowalla Dataset [26] and Four-
square Dataset." The location in such datasets is collected at

1. https:/ /sites.google.com/site/yangdingqi/home/foursquare-
dataset
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the same granularity, which is represented by the latitude and
longitude of the location. However, our work aims to evaluate
how the varying location granularity can influence the mobil-
ity prediction. Such a task requires a dataset covering various
location granularities. To this end, existing datasets are
inadequate.

As stated previously, the granularity of the location to be
predicted is critical for real-world applications. However,
existing studies usually design models based on a fixed gran-
ularity without considering the possible impact of the granu-
larity on the performance of prediction. When different
datasets with different location granularities are used [18],
results are reported for each of the datasets, respectively.

2.2 Target Salience
In practice, not every location is meaningful and worth pre-
dicting as the intended target. User’s trajectory traces are
continuous. Before reaching the intended target, the user
can pass by many intermediate points. Predicting the user’s
real destination in the future is more practically meaningful,
rather than those which they only pass by. Hence, we
should carefully take into account each location’s salience.
Intuitively, only a location whose salience is long enough
should be considered as the meaningful prediction target.
Unfortunately, to the best of our knowledge, none of all
existing studies made in-depth considerations of the concrete
salience of each location, nor distinguished which locations
are worth predicting with respect to location salience. Conse-
quently, existing studies usually took only the “exact” next
location that the user will visit as the intended target.
Although some efforts [2] defined three different prediction
targets and compared the performance under different tar-
gets, the impact of salience is still primitive. Therefore, it is
worth exploring the impact of salience.

2.3 Involved Features

Intuitively, features that are most relevant to mobility predic-
tion are users’ historical locations and the corresponding time-
stamps. Almost all existing studies involve these two kinds of
information into their prediction models. In addition, in order
to better understand the semantic meanings of locations,
some studies also involved semantic tags of locations in the
models [1], [4], [15], [20], [21], [22]. Ying et al. [1], [4] used
some general categories of the landmarks as their semantic
tags to train their models. Zhang et al. [15] and Yao et al. [20]
used geo-tagged social media data, which include not only
spatial and temporal information, but the movement and
activities of users as well. Wu et al. [21] considered the seman-
tic tags of each road. Cheng et al. [22] involved the location’s
detailed information and social media information. Indeed,
users” historical locations, the corresponding timestamps, and
the preceding semantic tags of locations are all closely related
to user’s trajectory. Therefore, they are naturally informative
for predicting future locations. However, designing a mobility
prediction model based on only these features is far from suf-
ficient and satisfactory. In addition to these “location
records”, there can be many other signals that possibly indi-
cate user’s interests and behaviors on a specific location. These
signals, including usage logs and system status, are rather
useful, or even more indicative of the user’s intent or

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

movement. For example, Nadai et al. [27] compared human
behavior between the digital world and the physical world.
They reported many similarities between app usage and user
mobility, which implies that app usage signals can be used in
mobility prediction tasks. Plenty of efforts have been made to
analyze these signals and applied them to a variety of other
studies [28], [29], [30]. Unfortunately, due to the lack of such
type of data, existing studies of mobility predictions seldom
explored these fine-grained behavioral features. It should be
interesting to explore whether these features do contribute
value, and how their effectiveness varies against different pre-
diction targets.

3 PROBLEM STATEMENT AND ANALYSIS PIPELINE

As stated in the introduction, the scope of this paper is to
explore the impact of problem setups on prediction accu-
racy in mobility prediction scenarios. To be more specific, a
problem setup consists of three components: location granu-
larity, target salience, and input features. To better clarify
the scope of our work, in this section, we present a formal
description of the related concepts and the mobility predic-
tion task, introduce the research questions we aim to
answer, and describe the pipeline of the analysis.

3.1 Mobility Prediction Formulation

Definition 1 (Location). A location | is defined as a region of
connected area. Each location is identified by a numerical ID.

Definition 2 (Location Granularity). Location granularity
G is the average area of all locations. We indicate that the loca-
tions are fine-grained with a small average area, or coarse-
grained with a large average area. 1% denotes a location at the
location granularity G. We ignore the superscript when it does
not cause ambiguity.

Definition 3 (Location Record). A location record r is a tuple
of a timestamp t and a location identification 1, ie., ¢ =
(t,19). A location record can tell us where the user is at a spe-
cific moment. We also ignore the superscript here when it does
not cause ambiguity.

Definition 4 (Trajectory). Given a user v and a time window w,
a trajectory is a sequence of location records T = v+ ... Titk,
which illustrates the user’s movement in a period of time.

Definition 5 (Staying Time & Location Salience). A
location’s staying time is defined as the duration that the user
stays in this location. Formally, if the user enters a location ;
at time t; and leaves at time to, the staying time of l; is S;j =
ty — t1. The location salience implies the importance of a loca-
tion. In this paper, we define that the location salience is posi-
tively correlated with the staying time. The longer the staying
time is, the higher the salience is regarded. In this way, we can
use a location’s staying time to represent its salience.

Definition 6 (Target Location). The target location I, is
defined as the very first location whose salience is high enough
in the user’s future trajectory. The criterion which determines
whether a salience is high enough is denoted as C.

Definition 7 (Mobility Prediction). The goal of mobility pre-
diction is to predict I, based on the user’s historical trajectories
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Fig. 1. An example of trajectory extraction. The time intervals pointed by
red arrows are larger than 5 minutes (300 seconds), so the entire
sequence is divided into three trajectories from these two time intervals,
which are pointed by red arrows.

and contextual usage behaviors. Formally, for a specific user u,
given a historical time window wy,, a future time window wy,
and a feature set I' that corresponds to T , the goal is to pre-

dict 1, that is selected from T, (according to C) based on F.

3.2 Research Questions
The research questions that we want to answer are as
follows:

RQ1: What is the predictability of the mobility prediction task
under different location granularities? In other words, we aim
to know how the location granularity G can affect the pre-
diction accuracy.

RQ2: What is the impact of target salience on the prediction per-
formance? It refers that we aim to investigate the trends of the
prediction accuracy with the varying selection criterion C'

RQ3: What is the significance of multiple behavioral signals? On
the one hand, we want to know the predictive power of multi-
ple types of behavioral signals. On the other hand, we also
want to identify whether and how these features” effective-
ness can vary with respect to different prediction targets.

3.3 Analysis Pipeline

To answer the preceding research questions, we propose an
analysis pipeline that can systematically measure the impact
of problem setups on prediction performance. The pipeline
consists of four steps: 1) Data Pre-processing, 2) Location
Granularity Analysis, 3) Target Salience Analysis, and 4)
Involved Feature Analysis. The details of every single step
are presented as follows.

3.3.1 Step 1: Data Pre-Processing

As the first step of our pipeline, we extract user trajectories
and the related usage behavioral data from the raw dataset.
The extraction process can be done in various ways. For
example, a possible method is to consider location records
in a single day as a trajectory. In this paper, we divide dif-
ferent user trajectories by a pre-defined time interval. As is
shown in Fig. 1, if the time interval between two adjacent
locations is shorter than 5 minutes, they are considered as
one trajectory. Otherwise, they are separated into two dif-
ferent trajectories. After the trajectories are extracted, we
collect usage data that are associated with each trajectory,
such as user behaviors, smartphone’s status, and context.

3.3.2 Step 2: Location Granularity Analysis

We conduct a descriptive analysis of the processed data. In
this step, we can derive several basic statistics of the data,
such as transition probabilities between locations and average
staying time at every single location. In addition, to quantita-
tively verify the feasibility of prediction under each location
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granularity, we build a group of machine learning models
based on the historical trajectories, and then apply the models
to predict a user’s future movement and examine how the
models perform under varying location granularities.

3.3.3 Step 3: Target Salience Analysis

In this step, we define some criteria to select the target loca-
tion, and then investigate how the salience can affect predic-
tion accuracy. We also apply the preceding machine learning
models in Step 2 to perform the predictions, and compare the
prediction performance of these models under varying pre-
diction criteria.

3.3.4 Step 4: Involved Feature Analysis

At last, we explore the predictive power of multiple types of
behavioral signals. To be more specific, we try various kinds
of features combinations, to see which of them can signifi-
cantly contribute to the mobility prediction task. Since dif-
ferent kinds of features have different forms, we have to
adopt a multi-modal learning method to synthesize differ-
ent features.

4 THE DATASET

In this paper, we use the released Sherlock dataset [31],
maintained by the BGU Cyber Security Research Center.
The Sherlock dataset is a long-term and comprehensive
time-series collection of on-device contextual information of
smartphones. In this section, we briefly introduce the data-
set, and explain how we extract related data from the raw
dataset. More details of this dataset can be found on the offi-
cial website.?

4.1 Dataset Overview

The Sherlock dataset contains a multidimensional time-
series recording nearly all software signals and hardware sen-
sors that can be obtained from a Samsung Galaxy S5 smart-
phone, without root privileges. The creators of the dataset
recruited a group of 50 volunteers, each of whom were
assigned a Samsung Galaxy S5 smartphone as the major
device in regular life. Each phone was pre-installed with a
data collection agent (an Android app). With the consent of
the volunteers, their usage data were recorded by the agent.
In this paper, we adopt data spanning three months and
covering 50 participants.

The agent collects data in two ways: active collection and
passive collection. The active collection means that the agent
reads information and records it periodically. The passive
collection means that the agent makes a record when an
event is triggered (for example, when a phone call comes
in). Overall, the Sherlock dataset consists of over 600 billion
data points in over 10 billion data records, which are suffi-
cient to conduct our analysis.

4.2 Location Data

In this dataset, the exact geo-locations of the volunteers
were anonymized by the creators due to the privacy

2. More details of Sherlock dataset can be accessed via http://
bigdata.ise.bgu.ac.il/sherlock/
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preserving requirement. Instead, the creators performed a
K-Means clustering algorithm for all the volunteers’ occur-
rences. Only the cluster IDs of the users’ locations are
reported in the dataset. These IDs do not have any geo-
graphic information. They can be used only as categorical
identifiers. In this way, all the user movement range is
divided into several locations (clusters).

We have no knowledge about the actual value of the
entire region size and the area of locations at each granular-
ity. In other words, the location granularity in this dataset is
described with a relative value. A higher number of clusters
can indicate a finer granularity.

In the Sherlock dataset, there are six independent settings
of M (number of clusters) in the K-Means clustering: 5, 10,
25, 50, 75, and 100. There are no hierarchical relationships
between different A/s. For example, the location division
under M = 25 is not a subdivision of the location division
under M = 50. The location records are actively collected at
a frequency of around once per minute. Each location
record contains six IDs, each of which corresponds to the
location ID under six different Ms, respectively.

4.3 User Behavioral Data

The Sherlock dataset contains rich information of user
behaviors. However, not all of them are suitable for the
mobility prediction. Some features are not practically usable
because they are too sparse, such as SMS log, call log, and
app changing log. Other features, such as screen brightness
and speaker volume, are not considered because they are
inherently not relevant to user’s movement. In this study,
we select three groups of behavioral features:

o  App usage data. App usage data are actively collected.
We can know what apps are running (both in fore-
ground and background) at every five-seconds interval.

e  Location sensor data. Such data can include many sen-
sors that are related to smartphone’s motion and ges-
ture, such as accelerometer, gyroscope, orientation,
and barometer. They are actively recorded for every
15 seconds. Our dataset consists of 238 sensors in
total. More details of sensors can be accessed via an
external link.?

e  Broadcast data. Whenever an Android system broad-
cast is triggered, its content will be passively recorded
by the agent. There are 82 kinds of broadcasts.

App usage data can indicate the users” active usage behav-
ior and intent. The other two kinds of features can represent
the device’s system-level status. In particular, they can also
cover geo-location related system status (e.g., speed and accel-
eration of the smartphone). Therefore, we choose the above
three groups of behavioral features, and we believe these fea-
tures can provide an informative and representative descrip-
tion of users’ usage from multiple aspects.

4.4 Trajectory Extraction

We examine and construct usable trajectories from the loca-
tion records. Certainly, we can arbitrarily intercept any part
from a user’s location sequence as a trajectory record.

3. List of sensors on Sherlock can be found at https://drive.google.
com/file/d/0B_A1qX1kf7RIQOIRWpkY2pXdzg/view
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TABLE 1
The Average Staying Time (Avg.Stay, in minutes) in a Location
Under Different Location Granularities

M> 5 10 25 50 75
Avg.Stay 16122 75,62  10.02 399 276

100
242

However, it is not a practical strategy because there can be
missing records. Such a case happens either when the
device was powered off, or when the agent failed to record
data. In either case, the time interval between two consecu-
tive records could be much longer than one minute. As a
result, we do not have enough information about the user
movement during this absent time period, so that we have
to discard data. In this study, we set a threshold as five
minutes, i.e., each pair of consecutive location records that
are smaller than five minutes is put in the same trajectory.
Fig. 1 presents an example of the trajectory extraction. Since
the sampling interval is about one minute, the number of
records in a trajectory can approximately equal to the dura-
tion of the trajectory (in minute).

To make meaningful predictions, we filter out trajectories
that are too short. In this paper, this threshold is set to be
one hour, as we think that trajectories shorter than an hour
can not perform sufficient information to understand the
user’s movement. Finally, we obtained 4,785 independent
trajectories. The extracted trajectories keep the original form
of the raw data (i.e., actively sampled records).

5 LOCATION GRANULARITY ANALYSIS

We then conduct our study over the data extracted from the
Sherlock dataset. As the first part of the analysis, we discuss
the impact of location granularity on the mobility predic-
tion. We begin with a descriptive analysis on the location
granularity to check some basic characteristics of the data.
Then, we make a quantitative analysis to rigorously com-
pare the prediction performance under different location
granularities.

5.1 The Descriptive Analysis
As stated previously, the location granularity in the Sher-
lock dataset is a relative value. In other words, we do not
know the actual value of locations at each granularity. In
order to derive a further understanding of each granularity,
we characterize the location data.

We first calculate the average staying time in a location
(Definition 1) under different location granularities (listed in
Table 1). First of all, we can see that the average staying time
decreases rapidly with the increment of M (Definition 2),
which is as expected. In practice, a user is unlikely to switch
their position too sporadically or too frequently. In other
words, the average staying time should not be too short or
too long. In this sense, a “location” under M = 25 or M = 50
is more likely to be reasonable.

We then explore the transitions between different loca-
tions under varying location granularities. For each pair of
locations < [;,l; > (Definition 3), we compute the number
of transitions from /; to [;, then construct a transition matrix
with the shape M x M. After that, we discard transitions
that occurred too few (< 1,000 occurrences) and use the
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Fig. 2. The transition diagrams under three location granularities.

remained transitions to construct a directed acyclic graph
(DAG). Due to page limit, we show the DAG under M = 25,
50, and 75, respectively, in Fig. 2. When M = 25, we can
observe various separated clusters. When M = 50, all the
locations are connected, but the structure of the transitions
is still clear. When M = 75, however, the transition diagram
becomes too dense, even a little bit messy. In summary,
from the transition aspect, we can confirm the previous con-
clusion, i.e., M = 25 or M = 50 are more reasonable to judge
the user mobility in our study.

5.2 Quantitative Analysis

The preceding descriptive analysis provides some intuitive
observations about each location granularity. We then con-
duct a quantitative experiment to rigorously examine the
prediction under varying location granularities. In a nut-
shell, we simulate a group of prediction queries over the
user trajectories, train a prediction model, and analyze the
accuracy under each location granularity.

5.2.1 Query Simulation

To simulate a location prediction query, we randomly select
a time point from the trajectory (Definition 4), and then
divide the trajectory into two parts, before and after this
time point, respectively: the first part is considered as the
historical trajectory of the user (77 ), and the second part is
the future trajectory of the user (7% ) that contains the target
location /; to be predicted. Such a pair < T, T , > can
represent a query that occurs at the division point.’ In prac-
tice, suppose that there are n location records in a trajectory.
We randomly choose a positive integer m (m < n). Then
we regard the first m records as T and the rest of the
records as T . The location prediction request occurs
between T} and T, , so the last location in 77 can be seen
as the user’s current location. In order to avoid creating a
pair that is unbalanced, we restrict that both 7} and i
contain at least 20 percent of the original trajectory records.
Moreover, we perform five individual simulations on one
trajectory to augment the test. Finally, we get 23,925 simu-
lated queries from the 4,785 trajectories.

The experiment follows the standard machine learning
pipeline. We split all the 23,925 queries into three groups: a
training set, a validation set, and a testing set. To keep the
independence of these sets, we preserve that the five queries
generated from the same trajectories are placed into the

(b) M = 50

1101

same set. Then, for every single simulated query, we extract
the next successive location of the user, from query’s T,, as
the target location /,. The next successive location of the
user is determined by the first location in 7} that is not
equal to the current location (Definition 7). For example, if
the current location is A, and the location list in 7}, is
(A, A, B, B,C, A), the next successive location of this query
is B. However, such a definition may not find a next succes-
sive location in some queries, i.e., the user never changes
their location within wy. In this case, these queries should
not be predicted. We discard these queries during this
experiment. The sizes of the testing sets under varying loca-
tion granularities are listed in the first row of Table 2.

We then employ some typical time-series models to
examine the prediction.

5.2.2 The Markov Model

The first employed model is the simple first-order Markov
Model. We train the model based on all the queries” historical
trajectories, and then use the model to decide which location
has the highest possibility to be visited with respect to the cur-
rent location. Notice that the next successive location should
not be the current location, so we remove transitions that a
location directly connects to itself. In other words, the diagonal
of the transition matrix of Markov model contains only zero.

5.2.3 The RNN Model AND LSTM Model

Building a first-order Markov model is rather straightfor-
ward. However, such a model is too naive to capture the com-
plex sequential information from the historical trajectories. As

TABLE 2
Sizes of the Testing Set Under Each Location Granularity and
Each Target Selection Criterion

Target Selection # of Locations (M)

Criterion 5 10 25 50 75 100
Successive 849 1,429 2425 2968 3,078 3,182
Important@2 824 1,368 2,242 2,813 2,945 3,050
Important@5 796 1,276 1973 2,406 2476 2,551
Important@10 739 1,180 1,711 1,917 1,864 1,919
Longest@3 208 740 1,935 2,640 2,811 2,933
Longest@5 93 354 1,596 2,392 2,631 2,786
Longest@10 37 146 1,132 1,993 2,284 2,447
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Fig. 3. The trajectory pre-processing procedure and the structure of the LSTM model and vanilla RNN model.

discussed in Section 2, there have been some RNN-based
models for mobility prediction [18], [19], [20]. Following the
same principle, we employ a vanilla RNN model and an
LSTM model over the historical trajectories and predict the
next successive location. As is known, LSTM is a variant of
RNN, and can better capture long-term dependencies. Com-
pared to the vanilla RNN, LSTM uses LSTM unit that consists
of a cell, an input gate, an output gate, and a forget gate, to
mitigate the vanishing gradient problem. As the location ID is
a categorical value, we actually implement a vanilla RNN
classifier and an LSTM classifier.

We perform a two-stage processing of each trajectory to
make it more adequate for the RNN and LSTM model. As
demonstrated in Fig. 3a, for each trajectory, we merge the
repeated consecutive locations into one (the “Unique” step).
This step indicates that we consider where the user has vis-
ited. We use only the latest 100 locations (the “Truncation”
step). The structures of RNN and LSTM model are illustrated
in Fig. 3b. We take every single location record as a time step,
while each location is represented by an embedding layer
before fed into the learning model. The output of the last layer
is a logit, a M-dimensional vector, and a Softmax layer is
applied to produce the final prediction.

Weimplement a single-layer RNN model and a single-layer
LSTM model with hidden_size = 256 based on the Tensor-
Flow.* We adopt cross-entropy as the loss function and the t £ .
train.GradientDescentOptimizer as our optimizer.
When training the model, we adopt default values, i.e., we set
the learning rate as 0.05 for the RNN model, and set the forget
bias as 0.03 and the learning rate as 0.05 for the LSTM model.

5.2.4 Experiment Results

The experiment results are shown in Fig. 4. We use Accu-
racy@l to evaluate the model performance. As for the Markov
model (green bars), when M =5 or M = 10, the results are
quite close, which are 0.254 and 0.259, respectively. Besides,
the prediction accuracy decreases when M increases, from
0.210 to 0.107. Intuitively, this result is not surprising, as the
user movement is more difficult to be predicted if the location
is defined in a more fine-grained location. Through the perfor-
mance of the random guess (the yellow curve in Fig. 4), we can
observe this phenomenon quite clearly. Therefore, for the
Markov model, we can conclude that the prediction accuracy
is quite low in more fine-grained locations.

As for the RNN model (blue bars) and the LSTM model
(red bars), however, we find a different result. On the one

4. https:/ /tensorflow.org

hand, the LSTM model and the RNN model significantly out-
perform the Markov model for all location granularities. For
the LSTM model, the results under varying location granular-
ities are 0.495, 0.525, 0.546, 0.430, 0.338, and 0.295, respectively.
In contrast, for the RNN model, the results under varying
location granularities are 0.486, 0.499, 0.538, 0.400, 0.277, and
0.249, respectively. We can observe that under most location
granularities, the accuracy of the LSTM model and the RNN
model is more than twice better than that of Markov model.
This conveys that the sequential information contained in the
historical trajectories can be leveraged much better by the
LSTM model and the RNN model.

In addition, we can observe that the accuracy of the
LSTM model is a bit higher than the accuracy of the RNN
model for all location granularities. Since the LSTM model
can better utilize the long-term context compared to the
vanilla RNN model, we can infer that the long-term sequen-
tial information can be beneficial to improve mobility pre-
diction tasks. On the other hand, the prediction accuracy
does not monotonically decrease with the growth of M. The
accuracy increases when A <25, and then begins to
decrease for both models. The best performance is obtained
under M = 25, which is 0.546 for the LSTM model and 0.538
for the RNN model, respectively.

5.3 Summary

From the descriptive analysis, we can have an intuitive under-
standing of the impact of location granularity. The location
granularity does have significant impacts on the prediction
accuracy, and the prediction performance peaks when M =
25, indicating that the prediction model outputs with the best
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Fig. 4. Accuracy @1 of the next successive location under different loca-
tion granularities. The green, blue, and red bars represent the Accu-
racy@1 of the Markov model, the RNN model, and the LSTM model,
respectively. We use the random guess as the baseline under each M,
which is represented by the yellow curve (i.e., Accuracy @ 1=1).
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results when the granularity is moderate. The prediction accu-
racy of the next successive location is reduced if the locations
are too coarse-grained or too fine-grained.

6 TARGET SALIENCE ANALYSIS

In this section, we focus on investigating the impact of tar-
get salience (Definition 5) on prediction performance. We
define three different metrics to select the target location
(Definition 6) based on location salience (i.e., staying time),
and explore the prediction performance accordingly. The
detailed definitions are:

1) Successive. We have already introduced this metric in
the previous part of this paper. It takes the first location
in T); that is not equal to the current location as the
prediction target. This metric is the most common one
that is adopted by almost all the existing studies.

2)  Important@K. As mentioned above, we think that a
location with sufficient staying time is more likely to
be an important and meaningful location rather than
just a pass-by point. Following this principle, the met-
ric Important@K is defined as the first location in T that
the user stays for at least K minutes. Apparently, the
threshold K determines whether a location is regarded
to be important. Still, we also require that this location
cannot be equal to the user’s current location.

3) Longest@K. Defining an important location by manu-
ally setting a threshold may not be always reasonable,
because users usually have very various movement
patterns. Thus, a unified “one-size-fits-all” threshold
is not suitable. We define the metric Longest@K,
denoting the location with the longest staying time among
the first K locations of T} . We still require that this loca-
tion cannot be equal to the current location of the user.

We choose K = 2, 5,10 for Important@K and K = 3,5, 10

for Longest@K. Similar to the Successive, the number of
labeled queries under different target selection metrics are
varied. The testing sizes of all these combinations can be
found in Table 2. For Important@I, if there is no location
that the user stays for at least K minutes in 7}, , no label is
applied for this query. For Longest@K, if the total number
of locations in 7}, is less than K, we cannot have enough
candidates or select a valid prediction target. Similar to the
experiments in the previous section, we conduct the experi-
ments under varying target selection metrics with a Markov
model, a RNN model, and an LSTM model, respectively.

6.1 Experiment Results

The prediction accuracy of three models under M = 25 is
shown in Fig. 5. For clarity, we show the results under only
such a location granularity. The performance of the three
models present the same trend. For simplicity, we discuss
only the results of the LSTM model (red bars) in detail.

We first focus on the performance of Important@K’. The
accuracy is lower with a larger threshold K. When the thresh-
old of the important location is two minutes, the prediction
accuracy is 0.547. When the threshold is 5 minutes, the accu-
racy degrades to 0.463. When the threshold is 10 minutes, the
accuracy keeps degrading to 0.390. The performance of the
Markov model and the RNN model present the same trend.

1103
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Fig. 5. Prediction accuracy under all target selection criteria. We show
only the results for M = 25. To save the space, we use “I” to denote
Important and “L” to denote Longest.

The accuracy of Markov model degrades from 0.208 to 0.165,
while the accuracy of the RNN model degrades from 0.514 to
0.368, respectively. The results indicate that, if the standard
for an important location is higher, it is more difficult to reach
an accurate prediction. In contrast, when we consider the per-
formance of Longest@K, we can obtain an opposite result.
When the threshold of the location with the longest staying
time is 3 locations, the accuracy of the LSTM model is 0.496.
When the threshold is 5 locations, the accuracy increases to
0.520. When the threshold is 10 locations, the accuracy contin-
ues to increase to 0.553. The performance of the Markov
model and the RNN model present the same trend. The accu-
racy of the Markov model increases from 0.237 to 0.289, and
the accuracy of the RNN model increases from 0.465 to 0.519,
respectively. The results indicate that, if the standard for Lon-
gest@K is higher, it is easier to make an accurate prediction.
The above results lead us to the conclusion: when we
consider an important location as the target location, the
longer the staying time of the target location is, the more dif-
ficult the location can be accurately predicted. However,
when we consider the location with the longest staying time
among the first K locations of 7 as the target location, we
can obtain a contrary result. The longest staying time of the
first K locations in T, can always increase with K increas-

ing. Given M = 25, the average staying time of the target
location under Longest@3, Longest@5, and Longest@10, are
22.3 minutes, 36.3 minutes, and 53.1 minutes, respectively.
From Fig. 5, we can observe that the prediction accuracy of
Longest@K increases along with the growth of K. Hence,
the target location with a longer staying time is much easier
to be predicted. Hence, we can find that the predictability is
not simply correlated to the length of the staying time of the target
location. It is more likely to be affected by the form of the tar-
get selection metric.

Based on the results, we argue that, although Important@IK is
an important metric, Longest@K should also take high importance.

7 BEHAVIORAL FEATURE ANALYSIS

The preceding sections indicate the impact of location gran-
ularity and location salience by the staying time. In this sec-
tion, we study the prediction power of multiple types of
behavioral features. We describe how to extract behavioral
features, introduce how to merge usage features into the
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Fig. 6. Prediction accuracy of each single group of features under Suc-
cessive, Important@5, and Longest@5 under M=25. The red dotted
line represents the accuracy of random guess.

RNN model and the LSTM model, and finally analyze the
experiment results.

7.1 Involved Features

As stated in Section 4.3, we use the app usage data, the loca-
tion sensor data, and the broadcasts to illustrate the user’s
behavior. In addition, we use the time information of a
query to describe the temporal context of the user’s usage.
For each query, we calculate several statistics about the four
groups of features within w, (the time window that corre-
sponds to Ty ). We list the feature groups as follows:

1) App Usage. We count which apps have been used at
least once (either in foreground or background)
within wy,. Since there are 655 apps in our raw data-
set, we use a 655-dimensional binary vector to orga-
nize each data entry.

2)  Location Sensor Readings. We calculate the average
value of each sensor’s reading within wj,. There are
238 sensor readings in this group of data, so this part
of features is represented by a 238-dimensional real-
value vector.

3)  Broadcasts. We use an 82-dimensional vector to repre-
sent the broadcast information. Each dimension of
the vector records the number of times that a broad-
cast occurrs within wy,.

4)  Time. For the temporal context, we roughly use two
values: the beginning time and the ending time of
wy,. For each of the value, we infer which hour of the
day and which day of the week that it belongs to.

7.2 Performance of Every Single Feature
To examine the significance of features, we first try to pre-
dict the user’s movement purely based on each single group
of features. During this step, we adopt a Random Forest
Classifier [32] as the prediction model.” We denote the com-
bination of a location granularity G' and a target selection
metric C as a scenario. The results of three selected scenarios
(Successive, Important@5, and Longest@5) under M = 25
are shown in Fig. 6.

The relative relationships among all groups of features
are similar under all scenarios. As is shown in Fig. 6, under
all scenarios, sensor readings outperform other features

5. We use Scikit-Learn package[33] to implement the Random Forest
Classifier. All parameters are set to default values.
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with results of 0.373, 0.279, and 0.279, respectively. For the
app usage feature, the results are 0.239, 0.188, and 0.188,
respectively. For the broadcasts feature, the results are
0.227, 0.202, and 0.202, respectively. For the time feature,
the results are 0.058, 0.050, and 0.050, respectively, which
are a little bit higher than those of random guess.

In a sense, all of these three groups of features can signifi-
cantly outperform the random guess. We can observe that
models with features of sensor readings can reach the best
results, while those with the app usage and broadcasts can get
similar performance. We can also learn that location sensors’
readings are highly correlated to users” incoming movement.
A simple example is that, if we know that the user is moving
at a high speed by observing the accelerometer, we can guess
that the user may be driving to a faraway location. For the app
usage and broadcasts features, we claim that they do provide
useful information for the mobility prediction, as they can
reflect users’ previous usage behavior, which is relevant to
the user’s incoming movement. Compared to the location sen-
sors, such information does not have quite straightforward
and close correlations with the user's movement, and they
can not contribute as much as location sensors do.

Considering that users usually have a fixed daily routine, it
is a reasonable hypothesis that the features of time are impor-
tant to users” incoming movement. However, although models
with time features outperform the random guess algorithm, the
contribution of the time features is not significant in comparison
to other feature groups. Such a result indicates that the move-
ments of mobile users at a fixed time are still quite uncertain.

7.3 The Multi-Modal Learning

Although the individual behavioral features are demon-
strated to be effective, none of them can produce a better
performance compared to the trajectory-based LSTM/RNN
model. Indeed, the user’s movement should be the major
factor for the mobility prediction, while other features may
provide auxiliary information. Therefore, it implies that we
need to find a way to synthesize these behavioral features
into the LSTM model and the RNN model in order to
achieve a better result.

The most straightforward way is using the Deep Neural
Network (DNN) model to combine all these features. As dem-
onstrated in Fig. 7a, the historical trajectory is first encoded by
the LSTM model or the RNN model before it is fed into the
DNN. However, this model has similar performance com-
pared to the trajectory-based LSTM and the trajectory-based
RNN proposed previously, indicating that it cannot suffi-
ciently make use of the information in the usage features. The
reason can be that the DNN is dominated by the strongest sig-
nal (historical trajectory), and could neglect other relatively
weak features.

We then try to pre-train an LSTM model or a vanilla RNN-
based model over the historical trajectory in advance, and use
the logits of that LSTM and RNN as a new group of features
(Fig. 7b). Unfortunately, this model does not improve much.
The problem is due to the fact that DNN cannot make good
use of the information from the weak signals. Eventually, we
replace the DNN with the Random Forest Classifier (Fig. 7c).
This model finally generates results that are better than those
from the LSTM model and the RNN model.
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Fig. 7. The three ways that we tried to integrate usage features into the vanilla RNN model and the LSTM model.

7.3.1 Macro Results

We combine each group of behavioral features with the
LSTM logits and RNN logits to train the classifier, then use
all the four groups together with the LSTM logits and the
RNN logits to train a more comprehensive model.

The results of the mentioned three scenarios (Successive,
Important@5, and Longest@5) for the LSTM model are
shown in Fig. 8, and the results for the RNN model are
shown in Fig. 9. First of all, we can see that each group of
behavioral features can make contribution to the mobility
prediction for both models. The prediction accuracy can
always be enhanced by involving a group of behavioral fea-
tures. When comparing the significance from the four groups
of feature, it is interesting to notice that app usage and sensor
readings are the most effective groups when used alone for
both models. The differences of accuracy between app usage
and sensor reading are relatively low under all scenarios for
both models. Although the sensor reading is the most effec-
tive group when used alone, it is not always the best when
combined with the LSTM model and the RNN model. For
the LSTM model, the results of sensor reading are 0.626,
0.502, and 0.556, respectively, which are lower than those of
app usage under most scenarios. For the RNN model,
although the accuracy of sensor reading is the highest among
all groups of features, the difference of accuracy between
sensor reading and app usage is rather low, i.e., less than
0.03. This is because the information contained by location
sensors and the historical trajectory are highly overlapped.
The user’s movement status described by location sensors
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Fig. 8. Prediction accuracy of each combination of features under Suc-
cessive, Important@5, and Longest@5 under M=25. The dark purple
lines represent the accuracy of the trajectory-based LSTM model.

are mostly contained in the historical trajectories. Therefore,
integrating location sensors into the historical trajectories
cannot provide more valuable information.

Different from this, although the app usage contains less
information than location sensors, the knowledge that it con-
tains cannot be contained by the historical trajectories. In other
words, although the app usage provides less information, it
still has uniqueness that cannot be covered by the historical
trajectories. Therefore, leveraging the app usage into the
LSTM model and the RNN model can help fill the gap of the
accuracy or even make a better performance, compared to
synthesizing sensor readings into the same models.

If we look at the performance when using all groups of
features, the results for the LSTM model are 0.625, 0.506,
and 0.543, respectively, while the results for the RNN model
are 0.639, 0.510, and 0.567, respectively. We can observe that
the prediction accuracy is almost the same with only app usage or
sensor reading features integrated. Similarly, the contributions of
features in the broadcasts and time groups are quite limited. In
summary, we can learn that app usage is the most impor-
tant group of usage features.

7.3.2 Micro Results

In the preceding analysis, we have shown that user behavioral
features can contribute to the mobility prediction. It motivates
us to explore the significance of these features under more sce-
narios. Note that the performance of the pure LSTM model
and the pure RNN model under different scenarios can vary a
lot. Hence, to make a fair comparison, we define relative
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Fig. 9. Prediction accuracy of each combination of features under Suc-
cessive, Important@5, and Longest@5 under M=25. The black lines
represent the accuracy of the trajectory-based RNN model.
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Suc @2 1@5 @10 L@3 Le5 Le@10

111 111 1.08 1.09

111 1.09 112 1.08 106 1.06

1.08 1.04 109 1.05 106 1.04 1.02

1.04 102 108 1.03 106 103 1.02

113 1.10 - 111 1.06 1.08

Fig. 10. The average relative performance of usage features under different location granularities and different target selection criteria for LSTM

model.

# of Locations

25 50 75 100
RNN + App Usage 1.14 1.20 1.20
RNN + Location Sensor ~ 1.18 1.21 1.15
RNN + Broadcast 112 112 121 1.1
RNN + Time 1.08 1.08 1.22 1.09
RNN + All Features 1.19 1.23 . 1.28

Target Selection Criterion

Suc 1@2 @5 1@10 L@3 L@5 L@10
1.22 120 128 127 1.17 120 1.21
121 120 1.27 123 116 120 1.22
1.15 113 117 114 1.12 1.13 1.13
1.12 110 115 111 110 112 1.12
1.24

1.25-1.21 125 128

Fig. 11. The average relative performance of usage features under different location granularities and different target selection criteria for RNN

model.

performance as the ratio between the accuracy of the synthe-
sized model with the accuracy of the pure deep learning
model (pure LSTM model and pure RNN model), and use the
relative performance to indicate the significance of the behav-
ioral features under different scenarios.

Since it is hard to visualize a three-dimensional result
tensor, we illustrate the average relative performance under
each location granularity and each prediction target for the
LSTM model in Fig. 10 and that for the RNN model in
Fig. 11. Intuitively, the darker the block’s color is, the larger
the value it holds. When calculating these average values,
we do not include results under M = 5 or M = 10 since the
numbers of valid data are too small (see Table 2).

From Figs. 10 and 11, we can obtain some observations.
First, the relative relationship among different features
remains basically unchanged. The app usage is always the
most effective feature, followed by the location sensor.
Broadcast and time can make only small contribution. Sec-
ond, if we focus on the left part of the figure, we can see that
the effect of the app usage gets better as the number of

locations increases, but drops if the number of locations is
100. Therefore, we can conclude that the app usage is most
significant when the number of locations is moderate. In
contrast, the effect of other features under different number
of locations is not so different. Finally, from the right part of
Figs. 10 and 11, we can learn that the behavioral features
can make more contributions under Important@K than
Longest@K. This means the next important location is more
relevant to the user’s usage.

8 DISCUSSIONS

In this section, we first summarize the key findings pre-
sented by the above analyses, and propose related implica-
tions for future research and practice. After that, we discuss
some limitations of our study.

8.1 Summary of Findings and Implications
First of all, location granularity and salience do have impacts on
mobility prediction. Such impacts have never been reported
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by existing literature, but deserve more attention in practice.
For location granularity, when the location granularity is
moderate, a “location” is more likely to be consistent with
our common-sense knowledge, and the prediction can be
more practical. In addition, the prediction accuracy reaches
the peak when the location granularity is moderate, too.
This conveys that when designing a mobility prediction model,
the developer should carefully consider the proper location granu-
larities according to their scenario. It is less likely to generate a
usable prediction model with respect to an improper loca-
tion granularity. For location salience, we can see that the
prediction performance varies under different target selec-
tion metrics. When taking into account the location salience,
the performance decreases compared to predicting the exact
next location. Therefore, although existing models can pre-
dict the exact next location at a high accuracy, they are not
able to efficiently predict the next salient location. More-
over, from our experiments, we find that the prediction per-
formance is not simply correlated to the location salience,
but more likely to be affected by selection metrics. In our
experiments, Longest@K is potentially a better selection metric
compared to Important@K, as we can locate the real destina-
tion with a higher accuracy in prediction.

Various Behavioral Features are Contextually Helpful. We
have demonstrated that behavioral features are quite indica-
tive for the mobility prediction task. When used individu-
ally, we find that location sensors are the most predictive
behavioral features, because they are more relevant to the
user’s movement. However, if synthesized with historical
trajectories, app usage becomes the most helpful part of fea-
tures, because it can offer additional information that the
historical trajectories do not contain. Therefore, if a devel-
oper (e.g., the Location-Based Service provider) tries to
build a mobility prediction model that relies on only behav-
ioral data, they should consider location-related features (e.g.,
location sensors) as their first choice. In contrast, if the devel-
oper wants to utilize both behavioral features and historical
trajectories, they should pay more attention to features that are
more close to the user’s active usage (e.g., app usage). With the
preceding findings and other technologies [34], developers
may provide better service to users.

8.2 Limitations

Our current study relies on the Sherlock dataset, which con-
sists of 50 volunteers over a few years. Indeed, such a data-
set may be a bit “small” in terms of user scale, and the
potential affect should be discussed.

The major goal of this study is to derive some insights on
how to optimize the mobility prediction. To this end, we
need to build models over various contextual information,
including granularities, salience, and some detailed contex-
tual information like app usage, time, and so on. In practice,
collecting such data is quite challenging, which is not only
due to technical issues, but also requires ethical permis-
sions. As described in Section 4, the Sherlock creators made
a lot of efforts to collect and make available this longitudinal
and high-dimensional dataset, spanning nearly every single
kind of software and hardware sensor on the smartphone.
In addition, although only 50 volunteers are involved, the
Sherlock dataset consists of over 600 billion data points in
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over 10 billion data records. In this way, the comprehensive
granularity, salience, behavioral information, and time
length of Sherlock dataset can ensure the quality and repre-
sentativeness of the results. Hence, the “depth” of Sherlock
dataset makes it the most adequate to date for our study.

We should also mention that the methods and models
are not specific to Sherlock. We will release all the code and
dataset publicly on the Internet along with the work’s publi-
cation. Researchers who own a larger dataset containing the
similar contextual information can reproduce all the experi-
ments to check the validity and explore more insights based
on our contributions.

9 CONCLUSION AND FUTURE WORK

In this paper, we rethink the mobility prediction from a new
perspective. We have carefully examined how the problem
setup can influence the prediction performance. We have
designed a general analysis pipeline and conducted a com-
prehensive study based on a large-scale real-world dataset.
We have found some interesting results, which had not
been reported by previous studies, and finally brought up
several implications.

For future work, we plan to explore more practical sce-
narios based on the findings of this paper. For example,
how to deal with the situation where a user travels to a city
for the first time? A possible method is to find out the most
similar user (e.g., via social networking services), and lever-
age their features. Once we have collected sufficient infor-
mation, we can apply to the new user’s own features, e.g.,
by transfer learning.

Another ongoing effort is to evaluate the effects of the
temporal resolution of the data on prediction tasks. As is
shown in our experiments, a moderate location granularity
is beneficial to the prediction tasks. Similarly, we are inter-
ested in whether a moderate temporal granularity can be
beneficial to the prediction tasks.
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