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Abstract

Text simplification reduces the language com-
plexity of professional content for accessibil-
ity purposes. End-to-end neural network mod-
els have been widely adopted to directly gen-
erate the simplified version of input text, usu-
ally functioning as a blackbox. We show that
text simplification can be decomposed into a
compact pipeline of tasks to ensure the trans-
parency and explainability of the process. The
first two steps in this pipeline are often ne-
glected: 1) to predict whether a given piece
of text needs to be simplified, and 2) if yes,
to identify complex parts of the text. The
two tasks can be solved separately using either
lexical or deep learning methods, or solved
jointly. Simply applying explainable complex-
ity prediction as a preliminary step, the out-of-
sample text simplification performance of the
state-of-the-art, black-box simplification mod-
els can be improved by a large margin.

1 Introduction

Text simplification aims to reduce the language
complexity of highly specialized textual content so
that it is accessible for readers who lack adequate
literacy skills, such as children, people with low
education, people who have reading disorders or
dyslexia, and non-native speakers of the language.

Mismatch between language complexity and lit-
eracy skills is identified as a critical source of bias
and inequality in the consumers of systems built
upon processing and analyzing professional text
content. Research has found that it requires on
average 18 years of education for a reader to prop-
erly understand the clinical trial descriptions on
ClinicalTrials.gov, and this introduces a potential
self-selection bias to those trials (Wu et al., 2016).

Text simplification has considerable potential
to improve the fairness and transparency of text
information systems. Indeed, the Simple English

Wikipedia (simple .wikipedia. org) has been con-
structed to disseminate Wikipedia articles to kids
and English learners. In healthcare, consumer vo-
cabulary are used to replace professional medical
terms to better explain medical concepts to the
public (Abrahamsson et al., 2014). In education,
natural language processing and simplified text gen-
eration technologies are believed to have the poten-
tial to improve student outcomes and bring equal
opportunities for learners of all levels in teaching,
learning and assessment (Mayfield et al., 2019).

Ironically, the definition of “text simplification”
in literature has never been transparent. The term
may refer to reducing the complexity of text at var-
ious linguistic levels, ranging all the way through
replacing individual words in the text to generat-
ing a simplified document completely through a
computer agent. In particular, lexical simplification
(Devlin, 1999) is concerned with replacing com-
plex words or phrases with simpler alternatives;
syntactic simplification (Siddharthan, 2006) alters
the syntactic structure of the sentence; semantic
simplification (Kandula et al., 2010) paraphrases
portions of the text into simpler and clearer variants.
More recent approaches simplify texts in an end-to-
end fashion, employing machine translation models
in a monolingual setting regardless of the type of
simplifications (Zhang and Lapata, 2017; Guo et al.,
2018; Van den Bercken et al., 2019). Nevertheless,
these models are limited on the one hand due to the
absence of large-scale parallel (complex — simple)
monolingual training data, and on the other hand
due to the lack of interpretibility of their black-box
procedures (Alva-Manchego et al., 2017).

Given the ambiguity in problem definition, there
also lacks consensus on how to measure the good-
ness of text simplification systems, and automatic
evaluation measures are perceived ineffective and
sometimes detrimental to the specific procedure, in
particular when they favor shorter but not necessar-
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ily simpler sentences (Napoles et al., 2011). While
end-to-end simplification models demonstrate su-
perior performance on benchmark datasets, their
success is often compromised in out-of-sample,
real-world scenarios (D’ Amour et al., 2020).

Our work is motivated by the aspiration that in-
creasing the transparency and explainability of a
machine learning procedure may help its gener-
alization into unseen scenarios (Doshi-Velez and
Kim, 2018). We show that the general problem
of text simplification can be formally decomposed
into a compact and transparent pipeline of mod-
ular tasks. We present a systematic analysis of
the first two steps in this pipeline, which are com-
monly overlooked: 1) to predict whether a given
piece of text needs to be simplified at all, and 2)
to identify which part of the text needs to be sim-
plified. The second task can also be interpreted
as an explanation of the first task: why a piece of
text is considered complex. These two tasks can be
solved separately, using either lexical or deep learn-
ing methods, or they can be solved jointly through
an end-to-end, explainable predictor. Based on the
formal definitions, we propose general evaluation
metrics for both tasks and empirically compare a di-
verse portfolio of methods using multiple datasets
from different domains, including news, Wikipedia,
and scientific papers. We demonstrate that by sim-
ply applying explainable complexity prediction as a
preliminary step, the out-of-sample text simplifica-
tion performance of the state-of-the-art, black-box
models can be improved by a large margin.

Our work presents a promising direction towards
a transparent and explainable solution to text sim-
plification in various domains.

2 Related Work

2.1 Text Simplification
2.1.1 Identifying complex words

Text simplification at word level has been done
through 1) lexicon based approaches, which
match words to lexicons of complex/simple words
(Deléger and Zweigenbaum, 2009; Elhadad and
Sutaria, 2007), 2) threshold based approaches,
which apply a threshold over word lengths or
certain statistics (Leroy et al., 2013), 3) human
driven approaches, which solicit the user’s input
on which words need simplification (Rello et al.,
2013), and 4) classification methods, which train
machine learning models to distinguish complex
words from simple words (Shardlow, 2013). Com-

plex word identification is also the main topic of
SemEval 2016 Task 11 (Paetzold and Specia, 2016),
aiming to determine whether a non-native English
speaker can understand the meaning of a word in
a given sentence. Significant differences exist be-
tween simple and complex words, and the latter on
average are shorter, less ambiguous, less frequent,
and more technical in nature. Interestingly, the fre-
quency of a word is identified as a reliable indicator
of its simplicity (Leroy et al., 2013).

While the above techniques have been widely
employed for complex word identification, the re-
sults reported in the literature are rather controver-
sial and it is not clear to what extent one technique
outperforms the other in the absence of standard-
ized high quality parallel corpora for text simplifi-
cation (Paetzold, 2015). Pre-constructed lexicons
are often limited and do not generalize to different
domains. It is intriguing that classification methods
reported in the literature are not any better than a
“simplify-all” baseline (Shardlow, 2014).

2.1.2 Readability assessment

Traditionally, measuring the level of reading diffi-
culty is done through lexicon and rule-based met-
rics such as the age of acquisition lexicon (AoA)
(Kuperman et al., 2012) and the Flesch-Kincaid
Grade Level (Kincaid et al., 1975). A machine
learning based approach in (Schumacher et al.,
2016) extracts lexical, syntactic, and discourse fea-
tures and train logistic regression classifiers to pre-
dict the relative complexity of a single sentence
in a pairwise setting. The most predictive features
are simple representations based on AoA norms.
The perceived difficulty of a sentence is highly in-
fluenced by properties of the surrounding passage.
Similar methods are used for fine-grained classifi-
cation of text readability (Aluisio et al., 2010) and
complexity (Stajner and Hulpus, 2020).

2.1.3 Computer-assisted paraphrasing

Simplification rules are learnt by finding words
from a complex sentence that correspond to differ-
ent words in a simple sentence (Alva-Manchego
et al., 2017). Identifying simplification operations
such as copies, deletions, and substitutions for
words from parallel complex vs. simple corpora
helps understand how human experts simplify text
(Alva-Manchego et al., 2017). Machine translation
has been employed to learn phrase-level alignments
for sentence simplification (Wubben et al., 2012).
Lexical and phrasal paraphrase rules are extracted
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in (Pavlick and Callison-Burch, 2016). These meth-
ods are often evaluated by comparing their out-
put to gold-standard, human-generated simplifica-
tions, using standard metrics (e.g., token-level pre-
cision, recall, F1), machine translation metrics (e.g.,
BLEU (Papineni et al., 2002) ), text simplification
metrics (e.g. SARI (Xu et al., 2016) which rewards
copying words from the original sentence), and
readability metrics (among which Flesch-Kincaid
Grade Level (Kincaid et al., 1975) and Flesch Read-
ing Ease (Kincaid et al., 1975) are most commonly
used). It is desirable that the output of the compu-
tational models is ultimately validated by human
judges (Shardlow, 2014).

2.1.4 End-to-end simplification

Neural encoder-decoder models are used to learn
simplification rewrites from monolingual corpora
of complex and simple sentences (Scarton and Spe-
cia, 2018; Van den Bercken et al., 2019; Zhang
and Lapata, 2017; Guo et al., 2018). On one hand,
these models often obtain superior performance on
particular evaluation metrics, as the neural network
directly optimizes these metrics in training. On
the other hand, it is hard to interpret what exactly
are learned in the hidden layers, and without this
transparency it is difficult to adapt these models to
new data, constraints, or domains. For example,
these end-to-end simplification models tend not to
distinguish whether the input text should or should
not be simplified at all, making the whole process
less transparent. When the input is already simple,
the models tend to oversimplify it and deviate from
its original meaning (see Section 5.3).

2.2 Explanatory Machine Learning

Various approaches are proposed in the literature
to address the explainability and interpretability of
machine learning agents. The task of providing
explanations for black-box models has been tack-
led either at a local level by explaining individual
predictions of a classifier (Ribeiro et al., 2016), or
at a global level by providing explanations for the
model behavior as a whole (Letham et al., 2015).
More recently, differential explanations are pro-
posed to describe how the logic of a model varies
across different subspaces of interest (Lakkaraju
et al., 2019). Layer-wise relevance propagation
(Arras et al., 2017) is used to trace backwards text
classification decisions to individual words, which
are assigned scores to reflect their separate contri-
bution to the overall prediction.

LIME (Ribeiro et al., 2016) is a model-agnostic
explanation technique which can approximate any
machine learning model locally with another sparse
linear interpretable model. SHAP (Lundberg and
Lee, 2017) evaluates Shapley values as the average
marginal contribution of a feature value across all
possible coalitions by considering all possible com-
binations of inputs and all possible predictions for
an instance. Explainable classification can also be
solved simultaneously through a neural network,
using hard attentions to select individual words
into the “rationale” behind a classification decision
(Lei et al., 2016). Extractive adversarial networks
employs a three-player adversarial game which ad-
dresses high recall of the rationale (Carton et al.,
2018). The model consists of a generator which ex-
tracts an attention mask for each token in the input
text, a predictor that cooperates with the generator
and makes prediction from the rationale (words at-
tended to), and an adversarial predictor that makes
predictions from the remaining words in the inverse
rationale. The minimax game between the two pre-
dictors and the generator is designed to ensure all
predictive signals are included into the rationale.

No prior work has addressed the explainability
of text complexity prediction. We fill in this gap.

3 An Explainable Pipeline for Text
Simplification

We propose a unified view of text simplification
which is decomposed into several carefully de-
signed sub-problems. These sub-problems gener-
alize over many approaches, and they are logically
dependent on and integratable with one another so
that they can be organized into a compact pipeline.

! ’ Explainable Prediction of Text Complexity -

[ Complexity Prediction ]
] 3
[ Complexity Explanation ]

|

@ [ Human Validation ]

Figure 1: A text simplification pipeline. Explainable
prediction of text complexity is the preliminary of any
human-based, computer assisted, or automated system.
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The first conceptual block in the pipeline (Fig-
ure 1) is concerned with explainable prediction of
the complexity of text. It consists of two sub-tasks:
1) prediction: classifying a given piece of text into
two categories, needing simplification or not; and
2) explanation: highlighting the part of the text
that needs to be simplified. The second conceptual
block is concerned with simplification generation,
the goal of which is to generate a new, simplified
version of the text that needs to be simplified. This
step could be achieved through completely man-
ual effort, or a computer-assisted approach (e.g.,
by suggesting alternative words and expressions),
or a completely automated method (e.g., by self-
translating into a simplified version). The second
building block is piped into a step of human judg-
ment, where the generated simplification is tested,
approved, and evaluated by human practitioners.

One could argue that for an automated simplifica-
tion generation system the first block (complexity
prediction) is not necessary. We show that it is not
the case. Indeed, it is unlikely that every piece of
text needs to be simplified in reality, and instead the
system should first decide whether a sentence needs
to be simplified or not. Unfortunately such a step is
often neglected by existing end-to-end simplifiers,
thus their performance is often biased towards the
complex sentences that are selected into their train-
ing datasets at the first place and doesn’t generalize
well to simple inputs. Empirically, when these
models are applied to out-of-sample text which
shouldn’t be simplified at all, they tend to oversim-
plify the input and result in a deviation from its
original meaning (see Section 5.3).

One could also argue that an explanation com-
ponent (1B) is not mandatory in certain text sim-
plification practices, in particular in an end-to-end
neural generative model that does not explicitly
identify the complex parts of the input sentence.
In reality, however, it is often necessary to high-
light the differences between the original sentence
and the simplified sentence (which is essentially a
variation of 1B) to facilitate the validation and eval-
uation of these black-boxes. More generally, the
explainability/interpretability of a machine learn-
ing model has been widely believed to be an in-
dispensable factor to its fidelity and fairness when
applied to the real world (Lakkaraju et al., 2019).
Since the major motivation of text simplification
is to improve the fairness and transparency of text
information systems, it is critical to explain the ra-

tionale behind the simplification decisions, even if

they are made through a black-box model.
Without loss of generality, we can formally de-

fine the sub-tasks 1A, 1B, and 2- in the pipeline:

Definition 3.1. (Complexity Prediction). Let text
d € D be a sequence of tokens wyws...wy,. The
task of complexity prediction is to find a function
f D — {0,1} such that f(d) = 1 if d needs to
be simplified, and f(d) = 0 otherwise.

Definition 3.2. (Complexity Explanation). Let d
be a sequence of tokens wjws...w, and f(d) = 1.
The task of complexity explanation/highlighting is
to find a function h : D — {0,1}" s.t. h(d) =
C1C2...Cp, Where ¢; = 1 means w; will be high-
lighted as a complex portion of d and ¢; = 0 other-
wise. We denote d|h(d) as the highlighted part of
d and d|—h(d) as the unhighlighted part of d.

Definition 3.3. (Simplification Generation). Let d
be a sequence of tokens wjws...w, and f(d) = 1.
The task of simplification generation is to find a
function g : D — D' s.t. g(d, f(d),h(d)) = d,
where d' = wjw)...w), and f(d') = 0, subject to
the constraint that d’ preserves the meaning of d.

In this paper, we focus on an empirical analysis
of the first two sub-tasks of explainable predic-
tion of text complexity (1A and 1B), which are the
preliminaries of any reasonable text simplification
practice. We leave aside the detailed analysis of
simplification generation (2-) for now, as there are
many viable designs of g(-) in practice, spanning
the spectrum between completely manual and com-
pletely automated. Since this step is not the focus
of this paper, we intend to leave the definition of
simplification generation highly general.

Note that the definitions of complexity predic-
tion and complexity explanation can be naturally
extended to a continuous output, where f(-) pre-
dicts the complexity level of d and h(-) predicts the
complexity weight of w;. The continuous output
would align the problem more closely to readability
measures (Kincaid et al., 1975). In this paper, we
stick to the binary output because a binary action
(to simplify or not) is almost always necessary in
reality even if a numerical score is available.

Note that the definition of complexity explana-
tion is general enough for existing approaches. In
lexical simplification where certain words in a com-
plex vocabulary V' are identified to explain the
complexity of a sentence, it is equivalent to high-
lighting every appearance of these words in d, or
Yw; € V,¢; = 1. In automated simplification
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where there is a self-translation function g(d) = d’,
h(d) can be simply instantiated as a function that
returns a sequence alignment of d and d’. Such
reformulation helps us define unified evaluation
metrics for complexity explanation (see Section 4).

It is also important to note that the dependency
between the components, especially complexity
prediction and explanation, does not restrict them
to be done in isolation. These sub-tasks can be
done either separately, or jointly with an end-to-
end approach as long as the outputs of f, h, g are
all obtained (so that transparency and explainability
are preserved). In Section 4, we include both sepa-
rate models and end-to-end models for explanatory
complexity predication in one shot.

4 Empirical Analysis of Complexity
Prediction and Explanation

With the pipeline formulation, we are able to com-
pare a wide range of methods and metrics for the
sub-tasks of text simplification. We aim to under-
stand how difficult they are in real-world settings
and which method performs the best for which task.

4.1 Complexity Prediction
4.1.1 Candidate Models

We examine a wide portfolio of deep and shallow
binary classifiers to distinguish complex sentences
from simple ones. Among the shallow models
we use Naive Bayes (NB), Logistic Regression
(LR), Support Vector Machines (SVM) and Ran-
dom Forests (RF) classifiers trained with unigrams,
bigrams and trigrams as features. We also train the
classifiers using the lexical and syntactic features
proposed in (Schumacher et al., 2016) combined
with the n-gram features (denoted as “enriched fea-
tures”). We include neural network models such as
word and char-level Long Short-Term Memory Net-
work (LSTM) and Convolutional Neural Networks
(CNN). We also employ a set of state-of-the-art
pre-trained neural language models, fine-tuned for
complexity prediction; we introduce them below.
ULMFiT (Howard and Ruder, 2018) a language
model on a large general corpus such as WikiText-
103 and then fine-tunes it on the target task using
slanted triangular rates, and gradual unfreezing.
We use the publicly available implementation! of
the model with two fine-tuning epochs for each
dataset and the model quickly adapts to a new task.

'https://docs.fast.ai/tutorial.text.
html, retrieved on 5/31/2021.

BERT (Devlin et al., 2019) trains deep bidirec-
tional language representations and has greatly ad-
vanced the state-of-the-art for many natural lan-
guage processing tasks. The model is pre-trained
on the English Wikipedia as well as the Google
Book Corpus. Due to computational constraints,
we use the 12 layer BERT base pre-trained model
and fine-tune it on our three datasets. We select the
best hyperparameters based on each validation set.

XLNeT (Yang et al., 2019) overcomes the limi-
tations of BERT (mainly the use of masks) with a
permutation-based objective which considers bidi-
rectional contextual information from all positions
without data corruption. We use the 12 layer
XLNeT base pre-trained model on the English
Wikipedia, the Books corpus (similar to BERT),
Giga5, ClueWeb 2012-B, and Common Crawl.

4.1.2 Evaluation Metric

We evaluate the performance of complexity pre-
diction models using classification accuracy on
balanced training, validation, and testing datasets.

4.2 Complexity Explanation

4.2.1 Candidate Models

We use LIME in combination with LR and LSTM
classifiers, SHAP on top of LR, and the extractive
adversarial networks which jointly conducts com-
plexity prediction and explanation. We feed each
test complex sentence as input to these explanatory
models and compare their performance at identify-
ing tokens (words and punctuation) that need to be
removed or replaced from the input sentence.

We compare these explanatory models with three
baseline methods: 1) Random highlighting: ran-
domly draw the size and the positions of tokens to
highlight; 2) Lexicon based highlighting: highlight
words that appear in the Age-of-Acquisition (AoA)
lexicon (Kuperman et al., 2012), which contains
ratings for 30,121 English content words (nouns,
verbs, and adjectives) indicating the age at which
a word is acquired; and 3) Feature highlighting:
highlight the most important features of the best
performing LR models for complexity prediction.

4.2.2 Evaluation Metrics

Evaluation of explanatory machine learning is an
open problem. In the context of complexity expla-
nation, when the ground truth of highlighted tokens
(Ye(d) = cica...cn, ¢; € {0,1}) in each complex
sentence d is available, we can compare the output
of complexity explanation i(d) with y.(d). Such
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per-token annotations are usually not available in
scale. To overcome this, given a complex sentence
d and its simplified version d’, we assume that all
tokens w; in d which are absent in d’ are candidate
words for deletion or substitution during the text
simplification process and should therefore be high-
lighted in complexity explanation (i.e., ¢; = 1).

In particular, we use the following evaluation
metrics for complexity explanation: 1) Tokenwise
Precision (P), which measures the proportion of
highlighted tokens in d that are truly removed in
d'; 2) Tokenwise Recall (R), which measures the
proportion of tokens removed in d’ that are actually
highlighted in d; 3) Tokenwise F1, the harmonic
mean of P and R; 4) word-level Edit distance (ED)
(Levenshtein, 1966): between the unhighlighted
part of d and the simplified document d’. Intu-
itively, a more successful complexity explanation
would highlight most of the tokens that need to be
simplified, thus the remaining parts in the complex
sentences will be closer to the simplified version,
achieving a lower edit distance (we also explore ED
with a higher penalty cost for the substitution oper-
ation, namely values of 1, 1.5 and 2); and 5) Trans-
lation Edit Rate (TER) (Snover et al., 2006), which
measures the minimum number of edits needed to
change a hypothesis (the unhighlighted part of d)
so that it exactly matches the closest references
(the simplified document d’). Note these metrics
are all proxies of the real editing process from d
to d’. When token-level edit history is available
(e.g., through track changes), it is better to compare
the highlighted evaluation with these true changes
made. We compute all the metrics at sentence level
and macro-average them.

4.3 Experiment Setup

4.3.1 Datasets

We use three different datasets (Table 1) which
cover different domains and application scenarios
of text simplification. Our first dataset is Newsela
(Xu et al., 2015), a corpus of news articles simpli-
fied by professional news editors. In our experi-
ments we use the parallel Newsela corpus with the
training, validation, and test splits made available
in (Zhang and Lapata, 2017). Second, we use the
WikiLarge corpus introduced in (Zhang and Lap-
ata, 2017). The training subset of WikiLarge is
created by assembling datasets of parallel aligned
Wikipedia - Simple Wikipedia sentence pairs avail-
able in the literature (Kauchak, 2013). While this

training set is obtained through automatic align-
ment procedures which can be noisy, the validation
and test subsets of WikiLarge contain complex sen-
tences with simplifications provided by Amazon
Mechanical Turk workers (Xu et al., 2016); we in-
crease the size of validation and test on top of the
splits made available in (Zhang and Lapata, 2017).
Third, we use the dataset released by the Biendata
competition?, which asks participants to match re-
search papers from various scientific disciplines
with press releases that describe them. Arguably,
rewriting scientific papers into press releases has
mixed objectives that are not simply text simplifica-
tion. We include this task to test the generalizability
of our explainable pipeline (over various defini-
tions of simplification). We use alignments at title
level. On average, a complex sentence in Newsela,
WikiLarge, Biendata contains 23.07, 25.14, 13.43
tokens, and the corresponding simplified version is
shorter, with 12.75, 18.56, 10.10 tokens.

Table 1: Aligned complex-simple sentence pairs.

Dataset | Training | Validation [ Test
Newsela 94,208 pairs | 1,129 pairs | 1,077 pairs
WikiLarge | 208,384 pairs | 29,760 pairs | 59,546 pairs
Biendata | 29,700 pairs | 4,242 pairs | 8,486 pairs

4.3.2 Ground Truth Labels

The original datasets contain aligned complex-
simple sentence pairs instead of classification la-
bels for complexity prediction. We infer ground-
truth complexity labels for each sentence such that:
label 1 is assigned to every sentence for which there
is an aligned simpler version not identical to itself
(the sentence is complex and needs to be simpli-
fied); label 0 is assigned to all simple counterparts
of complex sentences, as well as to those sentences
that have corresponding “simple” versions identi-
cal to themselves (i.e., these sentences do not need
to be simplified). For complex sentences that have
label 1, we further identify which tokens are not
present in corresponding simple versions.

4.3.3 Model Training

For all shallow and deep classifiers we find the
best hyperparameters using random search on val-
idation, with early stopping. We use grid search
on validation to fine-tune hyperparameters of the
pre-trained models, such as maximum sequence

https://www.biendata.com/competition/
hackathon, retrieved on 5/31/2021.
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length, batch size, learning rate, and number of
epochs. For ULMFit on Newsela, we set batch size
to 128 and learning rate to le-3. For BERT on
WikiLarge, batch size is 32, learning rate is 2e-5,
and maximum sequence length is 128. For XLNeT
on Biendata, batch size is 32, learning rate is 2e-5,
and maximum sequence length is 32.

We use grid search on validation to fine-tune
the complexity explanation models, including the
extractive adversarial network. For LR and LIME
we determine the maximum number of words to
highlight based on TER score on validation (please
see Table 2); for SHAP we highlight all features
with positive assigned weights, all based on TER.

Table 2: Maximum numbers of most important LR fea-
tures and features highlighted by LIME.

Model ‘ Newsela ‘ WikiLarge ‘ Biendata
LR 200 features | 20,000 features | 200 features
LIME & LR 10 features | 50 features 10 features
LIME & LSTM | 60 features | 20 features 40 features

For extractive adversarial networks batch size
is set to 256, learning rate is le-4, and adversarial
weight loss equals 1; in addition, sparsity weight is
1 for Newsela and Biendata, and 0.6 for WikiLarge;
lastly, coherence weight is 0.05 for Newsela, 0.012
for WikiLarge, and 0.0001 for Biendata.

5 Results
5.1 Complexity Prediction

In Table 3, we evaluate how well the representative
shallow, deep, and pre-trained classification mod-
els can determine whether a sentence needs to be
simplified at all. We test for statistical significance
of the best classification results compared to all
other models using a two-tailed z-test.

In general, the best performing models can
achieve around 80% accuracy on two datasets
(Newsela and WikiLarge) and a very high perfor-
mance on the Biendata (> 95%). This difference
presents the difficulty of complexity prediction in
different domains, and distinguishing highly spe-
cialized scientific content from public facing press
releases is relatively easy (Biendata).

Deep classification models in general outper-
form shallow ones, however with carefully de-
signed handcrafted features and proper hyperpa-
rameter optimization shallow models tend to ap-
proach to the results of the deep classifiers. Over-
all models pre-trained on large datasets and fine-
tuned for text simplification yield superior classifi-

Table 3: Accuracy of representative shallow*, deep,
and pre-trained models for complexity prediction.
BOLD: best performing models.

Classifier Newsela | WikiLarge | Biendata
NB n-grams 73.10 % 62.70 % 84.30 %
NB enriched features 73.10 % 63.10 % 86.00 %
LR n-grams 75.30 % 71.90 % 89.60 %
LR enriched features 76.30 % 72.60 % 91.70 %
SVM n-grams 75.20 % 71.90 % 89.50 %
SVM enriched features 77.39 % 70.16 % 88.60 %
RF n-grams 71.50 % 71.50 % 84.60 %
RF enriched features 74.40 % 73.40 % 87.00 %
LSTM (word-level) 73.31 % 71.62 % 89.87 %
CNN (word-level) 70.71 % 69.27 % 89.05 %
CNN (char-level) 78.83% 74.88 % 88.00 %
CNN (word & char-level) 75.90 74.00 % 92.30 %
Extractive Adversarial Networks | 72.76 % 71.50 % 88.64 %
ULMFiT 80.83% " 74.80 % 94.17 %
BERT 7715 % | 81.45%** 94.43 %
XLNeT 78.83%1 | 7349% | 9548%

* Shallow models perform similarly and some are omitted for space;
Difference between the best performing model and other models is statistically
significant: p < 0.05 (¥), p < 0.01 (**), except for t: difference between
this model and the best performing model is not statistically significant.

cation performance. For Newsela the best perform-
ing classification model is ULMFiT (accuracy =
80.83%, recall = 76.87%), which significantly (p <
0.01) surpasses all other classifiers except for XL-
NeT and CNN (char-level). On WikiLarge, BERT
presents the highest accuracy (81.45%, p < 0.01),
and recall = 83.30%. On Biendata, XLNeT yields
the highest accuracy (95.48%, p < 0.01) with re-
call =94.93%, although the numerical difference
to other pre-trained language models is small. This
is consistent with recent findings in other natural
language processing tasks (Cohan et al., 2019).

5.2 Complexity Explanation

We evaluate how well complexity classification can
be explained, or how accurately the complex parts
of a sentence can be highlighted.

Results (Table 4) show that highlighting words
in the AoA lexicon or LR features are rather strong
baselines, indicating that most complexity of a sen-
tence still comes from word usage. Highlighting
more LR features leads to a slight drop in preci-
sion and a better recall. Although LSTM and LR
perform comparably on complexity classification,
using LIME to explain LSTM presents better re-
call, F1, and TER (at similar precision) compared
to using LIME to explain LR. The LIME & LSTM
combination is reasonably strong on all datasets,
as is SHAP & LR. TER is a reliable indicator of
the difficulty of the remainder (unhighlighted part)
of the complex sentence. ED with a substitution
penalty of 1.5 efficiently captures the variations
among the explanations. On Newsela and Bien-
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Table 4: Results for complexity explanation. P, R and
F1 - the higher the better; TER and ED 1.5 - the lower
the better. BOLD & Underlined: best & second best.

Dataset Explanation Model P R F1 TER | ED 1.5
Random 0.515 | 0.487 | 0.439 | 0.985 | 13.825
AoA lexicon 0.556 | 0.550 | 0.520 | 0.867 | 12.899
LR Features 0.522 | 0.250 | 0.321 | 0.871 | 12.103
Newsela LIME & LR 0.535 | 0.285 | 0.343 | 0.924 | 12.459
LIME & LSTM 0.543 | 0.818 | 0.621 | 0.852 | 11.991
SHAP & LR 0.553 | 0.604 | 0.546 | 0.848 | 12.656
Extractive Networks | 0.530 | 0.567 | 0.518 | 0.781 | 11.406
Random 0.412 | 0.439 | 0.341 | 1.546 | 17.028
AoA lexicon 0.427 | 0.409 | 0.357 | 1.516 | 16.731
LR Features 0.442 | 0.525 | 0.413 | 0.993 | 17.933
WikiLarge | LIME & LR 0.461 | 0.509 | 0.415 | 0.988 | 18.162
LIME & LSTM 0.880 | 0.470 | 0.595 | 1.961 | 25.051
SHAP & LR 0.842 | 0.531 | 0.633 | 1.693 | 22.811
Extractive Networks | 0.452 | 0.429 | 0.359 | 1.434 | 16.407
Random 0.743 | 0.436 | 0.504 | 1.065 | 12.921
AoA lexicon 0.763 | 0.383 | 0.475 | 1.064 | 13.247
LR Features 0.796 | 0.257 | 0.374 | 0.979 | 10.851
Biendata | LIME & LR 0.837 | 0.466 | 0.577 | 0.982 | 10.397
LIME & LSTM 0.828 | 0.657 | 0.713 | 0.952 | 16.568
SHAP & LR 0.825 | 0.561 | 0.647 | 0.979 | 11.908
Extractive Networks | 0.784 | 0.773 | 0.758 | 0.972 | 10.678

data, the extractive adversarial networks yield solid
performances (especially TER and ED 1.5), indicat-
ing that jointly making predictions and generating
explanations reinforces each other. Table 5 pro-
vides examples of highlighted complex sentences
by each explanatory model.

5.3 Benefit of Complexity Prediction

One may question whether explainable prediction
of text complexity is still a necessary preliminary
step in the pipeline if a strong, end-to-end simpli-
fication generator is used. We show that it is. We
consider the scenario where a pre-trained, end-to-
end text simplification model is blindly applied to
texts regardless of their complexity level, compared
to only simplifying those considered complex by
the best performing complexity predictor in Ta-
ble 3. Such a comparison demonstrates whether
adding complexity prediction as a preliminary step
is beneficial to a text simplification process when a
state-of-the-art, end-to-end simplifier is already in
place. From literature we select the current best text
simplification models on WikilLarge and Newsela
which have released pre-trained models:

¢ ACCESS (Martin et al., 2020), a controllable
sequence-to-sequence simplification model
that reported the highest performance (41.87
SARI) on WikiLarge.

* Dynamic Multi-Level Multi-Task Learning
for Sentence Simplification (DMLMTL) (Guo
et al., 2018), which reported the highest per-
formance (33.22 SARI) on Newsela.

We apply the author-released, pre-trained AC-
CESS and DMLMTL on all sentences from the
validation and testing sets of all three datasets. We
do not use the training examples as the pre-trained
models may have already seen them. Presumably,
a smart model should not further simplify an input
sentence if it is already simple enough. However, to
our surprise, a majority of the out-of-sample simple
sentences are still changed by both models (above
90% by DMLMTL and above 70% by ACCESS,
please see Table 6).

We further quantify the difference with vs. with-
out complexity prediction as a preliminary step. In-
tuitively, without complexity prediction, an already
simple sentence is likely to be overly simplified and
result in a loss in text simplification metrics. In con-
trast, an imperfect complexity predictor may mis-
taken a complex sentence as simple, which misses
the opportunity of simplification and results in a
loss as well. The empirical question is which loss
is higher. From Table 7, we see that after directly
adding a complexity prediction step before either
of the state-of-the-art simplification models, there
is a considerable drop of errors in three text sim-
plification metrics: Edit Distance (ED), TER, and
Fréchet Embedding Distance (FED) that measures
the difference of a simplified text and the ground-
truth in a semantic space (de Masson d’ Autume
et al., 2019). For ED alone, the improvements are
between 30% to 50%. This result is very encour-
aging: considering that the complexity predictors
are only 80% accurate and the complexity predic-
tor and the simplification models don’t depend on
each other, there is considerable room to optimize
this gain. Indeed, the benefit is higher on Biendata
where the complexity predictor is more accurate.

Qualitatively, one could frequently observe syn-
tactic, semantic, and logical mistakes in the model-
simplified version of simple sentences. We give a
few examples below.

e In Ethiopia, HIV disclosure is low — In
Ethiopia , HIV is low (ACCESS)

* Mustafa Shahbaz , 26 , was shopping for
books about science . — Mustafa Shahbaz
, 26 years old , was a group of books about
science . (ACCESS)

* New biomarkers for the diagnosis of
Alzheimer’s — New biomarkers are diag-
nosed with Alzheimer (ACCESS)
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Table 5: Explanations of complexity predictions (in red). Extractive network obtains a higher recall.

Explanatory Model | Complexity Explanation

LIME & LR Their fatigue changes their voices , but they ’re still on the freedom highway .
LIME & LSTM Their fatigue changes their voices , but they ’re still on the freedom highway .
SHAP & LR Their fatigue changes their voices , but they ’re still on the freedom highway .

Extractive Networks

Their fatigue changes their voices , but they 're still on the freedom highway .

Simple sentence

Still , they are fighting for their rights .

LIME & LR Digitizing physically preserves these fragile papers and allows people to see them , he said .
LIME & LSTM Digitizing physically preserves these fragile papers and allows people to see them , he said .
SHAP & LR Digitizing physically preserves these fragile papers and allows people to see them , he said .

Extractive Networks

Digitizing physically preserves these fragile papers and allows people to see them , he said .

Simple sentence

The papers are old and fragile , he said .

Table 6: Percentage of out-of-sample simple sentences
changed by pre-trained, end-to-end simplification mod-
els. Ideal value is 0%.

Dataset | Pre-trained Model | Validation | Testing
Newsela ACCESS 7273 % | 75.50 %
DMLMTL 90.48 % 91.69 %
WikiLarge ACCESS 70.83 % | 71.12 %
DMLMTL 95.20 % 95.61 %
Biendata ACCESS 94.25 % 93.66 %
DMLMTL 98.88 % 98.73 %

Table 7: Out-of-sample performance of simplification
models. ED, TER, FED metrics: the lower the better.
Adding complexity prediction as preliminary step re-
duces simplification error by a wide margin.

Dataset Sentence Pairs Metric ACCESS DMLMTL
ED 4.044 12.212
No complexity prediction TER 0.175 1.611
(simplify everything) FED 0.016 0.170
ED 2.631 (-35%) | 8.677 (-29%)
Newsela With complexity prediction TER 0.089 (-49%) | 1.149 (-29%)
(predicted simple: no change) | FED 0.006 (-63%) | 0.066 (-61%)
ED 5.857 16.920
No Complexity Prediction TER 0.208 2.328
(simplify everything) FED 0.004 0.143
ED 4.021 (-31%) | 10.566 (-38%)
WikiLarge | With Complexity Prediction | TER 0.132 (-37%) | 1.452 (-38%)
(predicted simple: no change) | FED 0.002 (-50%) | 0.049 (-66%)
ED 3.796 9.030
No Complexity Prediction TER 0.254 1.348
(simplify everything) FED 0.033 0.131
ED 1.887 (-50%) | 5.249 (-42%)
Biendata With Complexity Prediction TER 0.114 (-55%) | 0.819 (-39%)
(predicted simple: no change) | FED 0.009 (-73%) | 0.051 (-61%)

» Healthy diet linked to lower risk of chronic
lung disease — Healthy diet linked to lung
disease (DMLMTL)

* Dramatic changes needed in farming practices
to keep pace with climate change — changes
needed to cause climate change (DMLMTL)

* Social workers can help patients recover from
mild traumatic brain injuries — Social work-
ers can cause better problems . (DMLMTL)

All these qualitative and quantitative results sug-
gest that the state-of-the-art black-box models tend

to oversimplify and distort the meanings of out-
of-sample input that is already simple. Evidently,
the lack of transparency and explainability has lim-
ited the application of these end-to-end black-box
models in reality, especially to out-of-sample data,
context, and domains. The pitfall can be avoided
with the proposed pipeline and simply with explain-
able complexity prediction as a preliminary step.
Even though this explainable preliminary does not
necessarily reflect how a black-box simplification
model “thinks”, adding it to the model is able to
yield better out-of-sample performance.

6 Conclusions

We formally decompose the ambiguous notion of
text simplification into a compact, transparent, and
logically dependent pipeline of sub-tasks, where ex-
plainable prediction of text complexity is identified
as the preliminary step. We conduct a systematic
analysis of its two sub-tasks, namely complexity
prediction and complexity explanation, and show
that they can be either solved separately or jointly
through an extractive adversarial network. While
pre-trained neural language models achieve signif-
icantly better performance on complexity predic-
tion, an extractive adversarial network that solves
the two tasks jointly presents promising advantage
in complexity explanation. Using complexity pre-
diction as a preliminary step reduces the error of
the state-of-the-art text simplification models by a
large margin. Future work should integrate ratio-
nale extractor into the pre-trained neural language
models and extend it for simplification generation.
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