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Abstract. We consider a stochastic inventory control problem under censored demand, lost
sales, and positive lead times. This is a fundamental problem in inventory management, with
significant literature establishing near optimality of a simple class of policies called “base-
stock policies” as well as the convexity of long-run average cost under those policies. We con-
sider a relatively less studied problem of designing a learning algorithm for this problem
when the underlying demand distribution is unknown. The goal is to bound the regret of the
algorithm when compared with the best base-stock policy. Our main contribution is a learn-
ing algorithm with a regret bound of O((L + 1)VT + D) for the inventory control problem.
Here, L > 0 is the fixed and known lead time, and D is an unknown parameter of the demand
distribution described roughly as the expected number of time steps needed to generate
enough demand to deplete one unit of inventory. Notably, our regret bounds depend linearly
on L, which significantly improves the previously best-known regret bounds for this problem
where the dependence on L was exponential. Our techniques utilize the convexity of the
long-run average cost and a newly derived bound on the “bias” of base-stock policies to
establish an almost black box connection between the problem of learning in Markov decision
processes (MDPs) with these properties and the stochastic convex bandit problem. The techni-
ques presented here may be of independent interest for other settings that involve large struc-
tured MDPs but with convex asymptotic average cost functions.
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1. Introduction
Many operations management problems involve mak-
ing decisions sequentially over time, where the outcome
of a decision may depend on the current state of the sys-
tem in addition to an uncertain demand or customer
arrival process. This includes several online decision-
making problems in revenue and supply chain manage-
ment. There, the sales revenue and supply costs incurred
as a result of pricing and ordering decisions may depend
on the current level of inventory in stock, back orders,
outstanding orders, etc. in addition to the uncertain
demand and/or supply for the products. A Markov deci-
sion process (MDP) is a useful framework for modeling
these sequential decision-making problems. In a typical
formulation, the state of the MDP captures the current
position of inventory. The reward (observed sales)
depends on the current state of the inventory in addition
to the demand. The stochastic state transition and reward
generation models capture the uncertainty in demand.

A fundamental yet notoriously difficult problem in
this area is the periodic inventory control problem
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under positive lead times and lost sales (Zipkin 2000,
2008). In this problem, in each of the T sequential
decision-making periods, the decision maker takes
into account the current on-hand inventory and the
pipeline of outstanding orders to decide the new
order. There is a fixed delay (i.e., lead time) between
placing an order and receiving it. A random demand
is generated from a static distribution, independently
in every period. However, the demand information is
censored in the sense that the decision maker observes
only the sales (i.e., minimum of the demand and the
on-hand inventory). Any unmet demand is lost and
incurs a penalty called the lost sales penalty. Any left-
over inventory at the end of a period incurs a holding
cost. The aim is to minimize the aggregate long-term
inventory holding cost and lost sales penalty. There is
a significant existing research that develops a Markov
model (or semi-Markov model as the lost sales pen-
alty is unobserved) for this problem and studies meth-
ods for computing optimal policies, assuming the
demand distribution is either known or can be efficiently
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simulated (e.g., see the survey in Bijvank and Vis 2011).
In particular, a simple class of policies called base-
stock policies has been shown to be theoretically near
optimal for this problem (Huh et al. 2009b, Bijvank
and Vis 2011): that is, the cost of the optimal base-
stock policy converges to the cost of the optimal pol-
icy as the lost sales penalty grows. Under a base-stock
policy, the inventory position is always maintained at
a target “base-stock” level. Notably, when using a
base-stock policy, the infinite horizon average cost
function for the inventory control MDP can be shown
to be convex in the base-stock level (Janakiraman and
Roundy 2004). Therefore, under the known demand
model, convex optimization can be used to compute
the optimal base-stock policy.

In this paper, we considered a relatively less studied
problem of periodic inventory control when the deci-
sion maker does not know the demand distribution a
priori. The goal is to design a learning algorithm that
can use the observed outcomes of past decisions to
implicitly learn the unknown underlying MDP model
and adaptively improve the decision-making strategy
over time (also known as a reinforcement learning
algorithm). Because computing an optimal policy for
the inventory control problem in general is fundamen-
tally difficult, we will benchmark our algorithm against
a more well-understood target: the optimal base-stock
policy. Although this is not the true optimal policy, the
simplistic nature along with theoretical guarantees of
near optimality (see theorem 5 of Huh et al. 2009b) of
base-stock policies makes it an attractive benchmark to
measure our learning algorithm against.

The two main challenges in designing an efficient
learning algorithm for the inventory control problem
described are presented by the censored demand and
the positive lead time. The censored demand assump-
tion results in an exploration-exploitation trade-off for
the learning algorithm. Because the decision maker
can only observe the sales, which is the minimum of
the demand and the on-hand inventory for a product,
the quality of samples available for demand estimation
of a product depends crucially on the past ordering
decisions. For example, suppose that because of the past
ordering policies, a certain product was maintained at a
low inventory level for most of the past sales periods.
Then, the higher quantiles of the demand distribution
for that product would be unobserved. Therefore, in
order to ensure accurate demand learning, large inven-
tory states need to be sufficiently explored. However,
this exploration needs to be limited because of the hold-
ing cost incurred for any leftover inventory. There has
been significant recent work on exploration-exploitation
algorithms for regret minimization in finite state and
finite action MDPs, with regret bounds that depend line-
arly or sublinearly on the size of the state space and the

action space (e.g., Bartlett and Tewari 2009, Jaksch et al.
2010, Agrawal and Jia 2017). However, the positive lead
time in delivery of an order results in a much enlarged
state space (exponential in lead time) for the inventory
control problem considered here because the state needs
to track all the outstanding orders in the pipeline. There
is a further issue of discretization because the state space
(inventory position) and the action space (orders) are
continuous. Discretizing over a grid would result in a
further enlarged state space and action space. As a
result, none of these reinforcement learning techniques
can be applied directly to obtain useful regret bounds
for the inventory control problem considered here.

The main insight in this paper is that even though
the state space is large, the convexity of the average
cost function under the benchmark policies (here,
base-stock policies) can be used to design an efficient
learning algorithm for this MDP. We use the relation
between bias and infinite horizon average cost of a policy
given by Bellman equations to provide a connection
between stochastic convex bandit optimization and
the problem of learning and optimization in such
MDPs. Specifically, we build upon the algorithm for
stochastic convex optimization with bandit feedback
from Agarwal et al. (2011) to derive a simple algo-
rithm that achieves an O((L + 1)VT + D) regret bound
for the inventory control problem. Here, L is the fixed
and known lead time, and D is a parameter of the
demand distribution F, defined as the expected num-
ber of independent draws needed from distribution F
for the sum to exceed one. Importantly, although our
regret bound depends on D, our algorithm does not
need to know this parameter. The O(-) notation hides
logarithmic factors and absolute constants.

Our regret bound substantially improves the existing
results for this problem, provided by Huh et al. (2009a)
and Zhang et al. (2020), where the regret bounds grow
exponentially with the lead time L (roughly as DEVT),
and many further assumptions on the demand distribu-
tion are required for the bounds to hold. A more
detailed comparison with the related work is provided
later in the text. More importantly, we believe that our
algorithm design and analysis techniques can be applied
in an almost black box manner for minimizing regret in
other problem settings involving MDPs whose cost func-
tions are convex under benchmark policies. Such con-
vexity results are available for many other operations
management problems: for example, for several formu-
lations of admission control and server allocation prob-
lems in queuing (Weber 1980, Lee and Cohen 1983,
Shanthikumar and Yao 1987). Therefore, the techniques
presented here may be of independent interest.

1.1. Organization
The rest of the paper is organized as follows. In the
following subsections, we provide a formal problem
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definition and describe our main results along with a
precise comparison of our regret bounds with closely
related work. In Section 2, we present a learning algo-
rithm and regret analysis for optimizing a general
MDP with a convex cost function. We adapt this algo-
rithm design and regret analysis to the inventory
management problem in Section 3. We conclude in
Section 4.

1.2. Problem Formulation

We consider a single-product stochastic inventory
control problem with lost sales and positive lead
times. The problem setting considered here is similar
to the setting considered in Huh et al. (2009b) and
Zhang et al. (2020). An inventory manager makes
sequential decisions in discrete time steps t=1,...,T.
In the beginning of every time step f, the inventory
manager observes the current inventory level inv; and
L previous unfulfilled orders in the pipeline, denoted
as 0¢-r,0¢L+1,- - .,0t-1, for a single product. Here, L >0
is the lead time defined as the delay (number of time
steps) between placing an order and receiving it. Ini-
tially, in step 1, there is no inventory (inv; = 0) and no
unfulfilled orders. Based on this information, the man-
ager decides the amount o; € R of the product to order
in the current time step.

The next inventory position is then obtained through
the following sequence of events. First, the order o,
that was made L time steps earlier arrives, so that the
on-hand inventory level becomes I; = inv; +0;_;. Then,
an unobserved demand d; >0 is generated from an
unknown demand distribution F, independent of the
previous time steps. Sales is the minimum of the on-
hand inventory and the demand (i.e., sales y; := min
{I;,d;}). The decision maker only observes the sales
yr and not the actual demand d—the demand informa-
tion is, therefore, censored. A holding cost of h(I; — dy)*
is incurred on remaining inventory, and a lost sales
penalty of p(d; — I;)" is incurred on the part of demand
that could not be served because of insufficient on-hand
inventory. That is, the cost incurred at the end of step f is

ét = h(If — dt)+ + P(dt — It)+, (1)

where (It - dt)+ = max(It - dt, 0), (dt - It)+ = max(dt - It,O),
and &, p are prespecified constants denoting per unit
holding cost and per unit lost sales penalty, respec-
tively. Note that the lost sales and therefore, the lost
sales penalty are unobserved by the decision maker.

Figure 1 illustrates the described sequence of arriv-
als of orders and demand. The next step ¢ + 1 begins
with the leftover inventory

invq : (It — dt)+ = (il’th + 04—, — dt)+ (2)

and the new pipeline of outstanding orders 0;_r+1, ..., 0;.
An online learning algorithm for this problem needs
to sequentially decide the orders oj,...,0r under

demand censoring and without a priori knowledge of
the demand distribution. The objective is to minimize
the total expected cost E[Z], C¢].

Base-stock policies (also known as “order up” to
policies) form an important class of policies for the
inventory control problem. Under such a policy, the
inventory manager always orders a quantity that brings
the total inventory position (i.e., the sum of leftover
inventory plus outstanding orders) to some fixed value
known as the base-stock level, if possible. Specifically,
in the beginning of a step ¢, let the leftover inventory be
inv; and the outstanding orders be 0;_p,...,0,-1. Then,
on using a base-stock policy with level x, the new order
o; in step t is given by o; = (x —inv; — 3k, 0,;)". Zipkin
(2008) and Huh et al. (2009b) provide empirical results
that show that base-stock policies work well in many
applications. Furthermore, Huh et al. (2009b) show that
as the ratio of per unit lost sales penalty to holding cost
increases to infinity, the ratio of the total cost incurred
by the best base-stock policy to the optimal cost con-
verges to one. Because the ratio of per unit lost sales
penalty to holding cost is typically large in many appli-
cations, the best base-stock policy can be considered
close to optimal.

Considering the asymptotic optimality of base-stock
policies, several past works consider a more tractable
objective of minimizing the regret of an online algo-
rithm compared with the best base-stock policy (e.g.,
Huh et al. 2009a, Zhang et al. 2020).

1.2.1. Convexity Property. Let C;,t=1,2..., denote
the sequence of costs incurred on running the base-
stock policy with level x. Define A* as the expected
infinite horizon average cost of this base-stock policy
when starting from no inventory and no outstanding
orders: that is,

A=F

TG

Tlgr:ofgct invy =Ol. 3)
We also refer to the A* as the long-run average cost

of this policy. The following result from Janakiraman

and Roundy (2004) shows that this long-run average

cost is convex in x.

Lemma 1 (Derived from theorem 12 of Janakiraman and
Roundy 2004). Given a demand distribution F, F(0) >0
(i.e., there is a nonzero probability of zero demand). Then,
for any x > 0, the expected infinite horizon average cost, A,
of the corresponding base-stock policy is convex in x.

Remark 1. Theorem 12 of Janakiraman and Roundy
(2004) actually proves convexity of expected average
cost when starting from inventory level inv; =x.
However, in the definition of A*, we assumed there is
no starting inventory (i.e., invy = 0). On starting from
no inventory and no outstanding orders and using the
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Figure 1. (Color online) Timing of Arrival of Orders and Demand at Time ¢

Start of time ¢t
Inventory inv,

New order: o, units

Old order: o, units arrive

Demand d, occurs,
of which we observe
¥e = min(l, dr)

Start of time t + 1
Inventory inv,

Incur holding and lost sales cost
h(le—d)* +p(de—1)*

\

(

New on hand inventory level I, = inv, + 0,

base-stock policy with level x, the system will reach
the state with inventory level x and no outstanding
orders in finite (exactly L) steps. Therefore, A* is same
as the expected infinite horizon average cost incurred
on starting with inventory level inv; = x.

1.2.2. Regret Against Any Base-Stock Policy. Regret
of an algorithm against any given base-stock policy
with level x is defined as

T -
2.C|-E 4)

t=1

T
Regret(T,x) := E > ¢,
=1
where ét,@f,t =1,2..., are the sequence of costs
incurred on running the algorithm and the policy
with base-stock level x, respectively, starting from no
inventory and no outstanding orders. The expecta-
tions are taken with respect to any randomness in the
algorithm as well as randomness in the demand.
Then, given [0,U], a prespecified range of base-stock
levels to be considered, we bound worst-case regret:

Regret(T) := xrerlloaﬁj Regret(T, x). (5)

1.3. Main Results

Before we formally state our main result, we define D,
a parameter of the demand distribution F that appears
in our regret bounds. It is important to note that our
algorithm does not need to know the parameter D.

Definition 1. Define D as the expected number of inde-
pendent samples needed from distribution F for the
sum of those samples to exceed one. More precisely,
let dq,dy,d3,..., denote a sequence of independent
samples generated from the demand distribution F,
and let 7 be the minimum number such that

i1d; > 1. Then, define D := E[7]. We refer to D as the
expected time to deplete one unit of inventory. We
assume that the demand distribution F is such that D
is finite.

Our main result is stated as follows.

Theorem 1. Assuming that demand distribution F is such
that F(0) > 0 and the expected time D to deplete one unit of
inventory is finite, then given any lead time L >0, there
exists an algorithm (Algorithm 1) for the inventory control
problem with regret bounded as

Regret(T) < O(Dmax(h, p)Ulog*(T)

+(L+ l)max(h,p)U\/Tlog3(T)).

For T > (DU)?, this implies a regret bound of
Regret(T) < é((L + 1)max(h,p)u«/T),

where O(-) hides logarithmic factors in h,p,U,L, T, and
absolute constants.

Here, constants max(h, p) and U define the scale of
the problem. Note that the regret bound has a very
mild (additive) dependence on the parameter D of
the demand distribution. We conjecture that such a
dependence on D in the regret may be unavoidable
because every time a learning algorithm reaches an
inventory level higher than the optimal base-stock
level, it must necessarily wait for time steps roughly
proportional to D for the inventory to deplete in
order to play a better policy. Only an algorithm that
never overshoots the optimal inventory level may
avoid incurring this waiting time. However, without a
priori knowledge of the optimal level, an exploration-
based learning algorithm is unlikely to avoid this com-
pletely. The appearance of D here also reminds of the
appearance of diameter D in regret bounds for general
finite MDPs, where diameter is defined as the expected
time to go from one state to another (e.g., see Tewari and
Bartlett 2008, Jaksch et al. 2010, Agrawal and Jia 2017).

Remark 2. The assumption F(0) >0 in the theorem is
required only for using the result on convexity of
infinite horizon average cost given by theorem 12 of
Janakiraman and Roundy (2004) (see Lemma 1). The
convexity result can in fact be shown to hold under
some alternate conditions, like finite support of demand,
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or under sufficient discretization of demand, which
would also be sufficient for our results.

1.4. Comparison with Related Work

Some earlier works on exploration-exploitation algo-
rithms for the inventory control problem (Huh and
Rusmevichientong 2009, Besbes and Muharremoglu
2013) provide O(VT) regret bounds but under zero
lead time (Huh and Rusmevichientong 2009) and/or
perishable inventory (Besbes and Muharremoglu 2013)
assumptions. The inventory control problem consid-
ered here is exactly the same as that considered in the
recent work by Zhang et al. (2020) and the earlier
work by Huh et al. (2009a). Therefore, we provide a
precise comparison with the results obtained in those
works. Both works execute a base-stock policy over
constructed time periods called cycles and employ a
gradient estimation to revise the policy for the next
cycle. In particular, the simulated cycle-update policy
of Zhang et al. (2020) updates policies based on a
simulated inventory system running in parallel.

Our result matches the O(VT) dependence on T in
Zhang et al. (2020), improving on the O(T3) depend-
ence originally given in Huh et al. (2009a). Further, it
can be shown (see Zhang et al. 2020, proposition 1)
that for T > 5, the expected regret for any learning

algorithm in this setting is lower bounded by Q(VT),
and thus, our bound is optimal in T (within logarith-
mic factors). More importantly, our regret bound
scales linearly in L as opposed to the exponential
dependence on L in Zhang et al. (2020), which can be
traced to more delicate analysis of the cost function
and inventory model dynamics (Lemma 5). In particu-
lar, we note that replacing Lemma 5 with the analo-
gous bound from the analysis in Zhang et al. (2020)
would lead to an exponential dependence on lead time
as well. Specifically, the regret bound achieved by
Zhang et al. (2020) is of order O(max(f,p)*U2(1/c)"VT).
Besides having an exponential dependence on L, it
depends on a constant ¢ given by the product of some
positive probabilities for demand to take values in cer-
tain ranges, which requires several further assump-
tions on the distribution F (see assumption 1 of Zhang
et al. 2020). In comparison, our distribution parameter
D is milder and more interpretable, and most notably,
it appears as an additive (rather than multiplicative)
term in the regret bound.

Among other related work, Bartok et al. (2014), Besbes
etal. (2015), and Lugosi et al. (2017) provide O(WT) regret
bounds for variations of the inventory control problem
under adversarial demand. However, these works make
significant simplifying assumptions such as zero lead
time and perishing inventory. Under such assumptions,

there is no state dependence across periods, and the
problem becomes closer to an online learning problem
rather than a reinforcement learning problem. Finally,
as discussed earlier, the existing work on finite time
regret bounds for reinforcement learning algorithms for
general finite state MDPs, such as Bartlett and Tewari
(2009), Jaksch et al. (2010), and Agrawal and Jia (2017),
would imply a regret bound exponential in the lead time
because of the exponential size of the state space.

2. Learning to Optimize an MDP with
Convex Cost Function

In this section, we present a learning algorithm and
regret analysis for any MDP with a convex cost function.
Specifically, we consider the problem of regret minimi-
zation in an MDP given a single parametric set of poli-
cies. The main structural property assumed regarding
the MDP is that the average asymptotic average cost,
also known as loss, under any given policy in this set is
convex in the policy parameter. Given this convexity
property and a bound on the bias of the MDP, we
present a stochastic convex bandit-based learning algo-
rithm with sublinear regret bounds. In subsequent sec-
tions, we demonstrate that the required convexity and
bounded bias properties are indeed satisfied by the
inventory control MDP in order to derive an efficient
algorithm and improved regret bounds of the inventory
management problem. However, it is important to note
that the results presented in this section are more gener-
ally applicable to any MDP (discrete or continuous state
space) as long as it satisfies the prescribed convexity and
bounded bias properties. We present the results in this
section in a self-contained manner; the results presented
here can be understood and used without going through
the rest of the sections in the paper.

Formally, we are given an MDP M with state space
S and action space A as well as a parametric set of
policies:'

[M={n":S—> Axe X} (6)

A learning algorithm needs to make sequential
decisions using one of the policies in Il at every
discrete time step t=1,...,T. At every time step ¢,
the algorithm observes current state s; €S, chooses
x; € X, takes action m*(s;), and then, observes the
cost C,.

We aim to minimize regret of the algorithm against
the policies in Il. Given a starting state s; € S, regret in
time T against any policy 7* € Il is defined as

T T
Regret(T,x) :=E| > Cils1|—E| > Cils1|, (7
t=1 t=1
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with C} being the cost incurred at time t on using the
policy 7" at all time steps starting from state s;. Then,

Regret(T) := maxRegret(T, x).
XeX

We also consider “pseudoregret” against the asymp-
totic average cost
, 1
§'(s1) = E[hmpm 72 Gl IS1]
of policy "

Pseudoregret(T,x) := E —Tq"(s1). (8)

S1

T
>
t=1

We will focus on bounding the pseudoregret for our
algorithm against any policy in IT and show that it
can be used to derive a similar bound on regret.

We first present some key definitions and results that
will be used throughout the algorithm design and regret
analysis. In the MDP literature, the stochastic process
obtained on fixing a policy in an MDP is referred as a
Markov reward process (MRP) (Puterman 2014), which
is essentially a Markov chain with a reward (or cost)
associated with each state. We denote by M(x,s;) the
MRP obtained on fixing the policy as r* for x € X.

Definition 2 (Markov Reward Process M(x,s1)). Given
any x and s; € S, the MRP M(x,s;) is defined by the
bipartite stochastic process

{(st,C*(s));t=1,2,3,...},

where s; is distributed according to P*(s;) := Pr(sy|
a; = 1°(s;_1)), the state transition distribution under
policy %, and C*(s;) is the expected cost on taking
action a; = *(s;) in state s; in MDP M. Further, we
define S* C S as the set of reachable states in this MRP,
when starting from state sy, so thats; € S* for all .

Two important quantities are the loss and bias of
this MRP.

Definition 3 (Loss and Bias). For any s € S”, the loss
g*(s) of MRP M(x,s) is the long-run average cost
(starting from state s), and the bias v*(s) of M(x,s) is
the total difference in the cost from the asymptotic
average cost (starting from state s). More formally,
define (assuming limits exist)

T
g(s):=E Tli_r&%;@‘(st)lsl = Sl

v°(s):=E

T
TIE{L 2 Ci(st) —&*(st)ls1 = sl.
=1

The following relation between loss and bias is known.

Lemma 2 (Puterman 2014, theorem 8.2.6). For any state
se€S" in MRP M(x,s1), the bias and loss satisfy the fol-
lowing equation:

8'(8) = C*(s) + Eg _p5)[0"(s")] = 07 (s),

where P*(s) was defined as the probability distribution of
next state given state s.

A main new technical result that we derive and uti-
lize in this work is the following concentration lemma
for any MRP with bounded bias.

Lemma 3 (Concentration Under Bounded Bias). Assurme we
are given an MRP M(x,s1) such that the gain is uniform
across states, i.e.,

§'(s)=g(s") =g, Vs,s',
and the span of the bias v* is bounded by H: that is,
[v*(s) —v*(s')| < H, Vs,s’ €s”.

Let sq,...,sn denote an observed sequence of first N states
generated by MRP M(x,s1). Then, for any 6 >0, with

probability 1 -0,
H 2log(2/9)
SNTINTN

Proof. By Lemma 2, the loss ¢* and bias v* for policy
7" satisfy g%(s) = C*(s) + Egpr(s)[0*(s")] = v*(s) for all
states s € §*. Also, ¢* = g*(s1) = g*(s¢) for all £. We use
these observations to derive the following;:

1 N X X
‘N;“C (Sf)—g (s1)

1Y 1Y
[yt e

N
= B SCH )~ (€6 + B [7°(5)] - v51)
t=1

1 N
=N§W@%&wmwww

= | 0" (51) ~ Eu_proy [06"))

1 N-1
g 20 (500)~ By [(5))
t=1

H
<
N

1 N-1
+ 1 20" (81:1) = Egr-pis [0%()])
t=1

For the last inequality, we used the assumed bound
on bias. Now, let

Apq = vx(st+1) - Es%P’((sf)[Ux(sl)]'

Note that E[As1]s:] =0 and A4 < H (because of the
assumed bias bound). Therefore, Ay1,t=1, 2,..., is
a bounded martingale difference sequence. We
apply the Azuma-Hoeffding inequality (refer to
Lemma A.1 in Appendix A) to obtain that, for any

€>0,
N
P(ZAt

t=2

> 6) < 2exp(— 2(N5721)Hz)
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Therefore, by setting e = H/2(N —1)log(2/6), we

obtain that with probability at least 1 -0, Zfi 2At| <

H+/2(N —1)log(2/0). Substituting, we obtain
1Y H [2log(2/6)
Ntzzlc (St)_gx(51) SN-'_H T

Similarly, we can show concentration of average
observed cost versus asymptotic average cost.

Lemma 4 (Concentration of Average Observed Versus
Expected Cost). Given MRP M(x,s1) with uniform gain
and bias bounded by H, as defined in Lemma 3, let C} be
observed cost such that E[C}ls¢] = C*(s;). Assume that C}
is bounded between by Cmax. Then, for any s; € S, with

probability 1 -6,
H [2log(4/0)
SN+(CmaX+H) —N

Proof. Let si,sy,...,5; be the sequence of states
observed in MRP M(x,s;) starting from state s;, and
let F; be the filtration with respect to those states
$1,82,...,8t. Define X; =C*(s;) —C;. Note that |X;| <
|C*(s¢)| + |CF| < 2Cmax and E[X;|F;] = 0. Therefore, X;’s
form a martingale difference sequence, and a simple
application of the Azuma-Hoeffding inequality
(Lemma A.1) gives that, with probability 1-6/2,

N N
2 C%(s0) = 2 CF| < 2Cpuan 2log(4/0)
t=1 =1 N

Combining the inequality with Lemma 3, we get the
corollary.

33
2. G =8 (s1)
Ni= t

1
N

2.1. Algorithm Design

Here, we present a regret minimization algorithm for
the case when X = [0, U] for some Upin, Umax € R (i.e.,
ITis a set of single-parameter policies with the param-
eter range being a contiguous interval). Further, we
assume following properties.

Assumption 1. We are given an MDP M, policy set
IT={n":x€[0,Ul}, and a starting state s; such that for
all policies in I1, the MRP M(x,s1) satisfies the following
properties:

a. the cost function ¢*(s) is uniform (i.e., g*(s) = g*) for
all s,

b. the cost function ¢* is convex in x and Lipschitz contin-
uous with Lipschitz constant B, and

c. the span of bias is bounded by H (ie., [v*(s)—v"
(s)] <H, Vs,s’ €SY).

Utilizing the convexity property, our algorithm
design builds upon ideas from exploration-exploitation
algorithms for stochastic convex bandits. In particular,

because we restrict to the single parametric policies, we
extend the algorithm in Agarwal et al. (2011) for one-
dimensional stochastic convex bandits.

In the stochastic convex bandit problem, in every
round the decision maker chooses a decision x; and
incurs cost ¢ =f(x;) + 1, where f is some fixed but
unknown convex function and the noise y; is zero
mean and independent and identically distributed
across rounds f=1,...,T. The goal of an online algo-
rithm is to use past observations to make decisions
x,t=1,...,T in order to minimize the regret against
the best single decision, defined as ZtT=1(Ct —f(x)
with x* = argmin,exf(x). Therefore, based on the defi-
nition of regret (refer to Equation (7)), one may want
to consider a mapping of the problem of regret mini-
mization in MDP to the stochastic convex bandit prob-
lem by setting f(x) as A* = g*(s1), the long-run average
cost for policy 7", which is assumed to be convex in x.

However, a main challenge here is that the instan-
taneous cost C*(s¢) incurred on time t on playing a
policy 7 depends on the current state s, and there-
fore, unlike ¢;, C*(s;) is not an unbiased realization of
f(x;) = A™ (more precisely, the noise is not zero mean
and independent and identically distributed across
rounds). We overcome this challenge using the
concentration result derived in Lemma 3. This con-
centration result allows us to develop confidence
intervals on estimates of cost functions in a manner
similar to the stochastic convex bandit algorithms.

Our algorithm, summarized as Algorithm 1, is
derived from the algorithm in Agarwal et al. (2011)
for one-dimensional stochastic convex bandits. Fol-
lowing are the main components of our algorithm.

2.1.1. Working Intervals of Policy Parameter. The
algorithm maintains a confidence interval that con-
tains an optimal value of the policy parameter x, with
high probability. Initially, this is set as [0, U], the pre-
specified interval received as input to the algorithm.
As the algorithm progresses, this working interval is
refined by discarding portions of the interval, which
have low probability of containing an optimal value.

2.1.2. Epoch and Round Structure. The algorithm
proceeds in epochs k=1,2,.... Each epoch is a group
of consecutive time steps. A fixed working interval of
base-stock levels is maintained throughout an epoch,
denoted as [l r¢]. Each epoch is further split into
groups of consecutive time steps called rounds. The
algorithm plays policies 7", m*, ", policies corre-
sponding to parameters x;:= (I + 7, —Ix)/4,x. = [+
(e =1)/2, xy := I+ B(ry — Iy)) /4, respectively. Each of
these three policies is played repeatedly for N; time
steps, where N; = log(T)/y? with y, =27".
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Therefore, the number of sample observations
quadruples in each round. At the end of every
round, these observations are used to update a confi-
dence interval estimate for the long-run average cost
as described next. An epoch ends when the confi-
dence intervals at the end of a round meet a certain
condition.

2.1.3. Optional Step: Using i, to Reach a Desired Set
of States. We also consider the case when Assump-
tion 1 does not hold for all starting states but only
for certain starting states s; € S} ;. Additionally, we
are given a policy Tt to reach a state in Sj;, in
finite expected time Diy. In this case, the algorithm
uses 7, to reach one of these desired starting states
before playing a policy 7* in every round. If no such
policy 7ii, is provided, the algorithm skips this step.
This relaxed setting will be of use for the inventory
control problem, where we will bound bias of a pol-
icy m* only for the MRP obtained on starting from
an inventory position where the sum of the on-hand
inventory and the outstanding orders is x. Such a
state can be easily reached by ordering nothing for
some time and then ordering x. In the inventory con-
trol problem, Dini, the expected time to reach the
desired starting state, will be bounded by L+ DU,
with D being the expected time for enough demand
to be generated in order to deplete one unit
of inventory.

2.1.4. Updating Confidence Intervals. Given a vector
Cny=(Cy,Cy,...,CN)  of observed costs and

y = +log(T)/N, define

N
LB(Cy) := %Z C:—3Hy, and UB(Cy):
-1

1 N
:NZCI«+3H7/, 9)
i=1

where the bound H on bias is an input to the algorithm.

Now, let Cy, Cy;, Cyy denote the n = N; realizations
of pseudocosts (C;) observed on running base-stock
policy 7" for each of the three levels x € [x, x., %] in
round i. Then, at the end of round i, the algorithm
computes three intervals:

[LB(Cy), UB(CY))] for a e {l,c,r}.

We show later that for each of these three policies,
¢* € [LB(CY};), UB(C})] with probability 1—1/T?. This
uses Lemmas 3 and 4 proven earlier in order to bound
the difference between finite time average and asymp-
totic average of costs. Therefore, each of these inter-
vals is a high confidence interval for the respective
loss.

Algorithm 1 (Learning Algorithm for MDP with Convex Cost
Function)
Inputs: Set of policies IT={n":x€[0,U]}, bias
bound H, time horizon T.
Optional input: A description of the desirable set of
starting states S, for any policy x and a policy 7},
to reach that set.
Initialize: [, 1] := [0, U].
forepochsk=1,2,..., do
Set wy := r — Iy, the width of the working interval
[lk/ Vk] .
Set xp:=l+w/4 xc:=h+w/2, and x,:=[+
3wk / 4.
forroundi=1,2,..., do
Lety,=2"and N = log(T)/y>.
forae{l,c,r} do
Play policy m2, (if provided) until a time
step t such that s; € S},
Play policy i for N time steps to observe N
realizations of costs; store as vectors C};.
If at any point during these two steps, the
total number of time steps reaches T, exit.

Compute confidence interval [LB(Cy),
UB(Cy)] of length 6Hy,, as given by (9).
end

if max{LB(Cy), LB(C})} = min{UB(Cy), UB(CY),

UB(Cy)} + 6Hy, then
if LB(C) > LB(C},) then i, := x; and 7341 = 1.
if LB(Cy) < LB(C}) then i, :=I; and 741 = x,
Go to next epoch k + 1.

else
Go to next round 7 + 1.

end if

end
end

At the end of every round i of an epoch k, the algo-
rithm uses the updated confidence intervals to check if
either the portion [li,x;] or the portion [x,, 7] of the
working interval [I, ] can be eliminated. Given the con-
fidence intervals, the test used for this purpose is exactly
the same as in Agarwal et al. (2011) and uses convexity
properties of the loss g". If the test succeeds, at least 1/4 of
the working interval is eliminated, and the epoch k ends.

2.2. Regret Bound
We prove the following regret bound for Algorithm 1
when applied to any MDP under Assumption 1.

Theorem 2. Given any MDP M and a single parametric
policy set IT={n*:x € [0,U]}, Assumption 1 is satisfied
for all starting states sy € S. Then, the regret of Algorithm 1
is bounded as

Regret(T) = o((H +BU)Y TlogB(ﬁUT/H))

= O((BU + H)VT).
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Here, B is the Lipschitz factor for function g*, and H is
the given bound on bias, as per Assumption 1.

We also consider the case when Assumption 1 does
not hold for all starting states but only for starting
states s1 € Sinit. Also, we are given a policy Tini to
reach a state in Sjn;¢ in expected time Djy;;. In this case,
Algorithm 1 achieves the following regret bound.

Theorem 3. Given any MDP M and a single parametric pol-
icy set T1 = {m* : x € [0, U]}, Assumption 1 is satisfied for all
starting states in Siny (i.e., for s1 € Siy,). Also, we are given a
policy Ttinie such that on using this policy, the expected time to
reach a state in Sy, from any state using is bounded by Dip.
Then, the regret of Algorithm 1 is bounded as

Regret(T) = O((H + BU)| T log™(BUT /H)

+ Conax Dinielog?(BUT /H)).
That is,
Regret(T) = O((H + BU)VT + CraxDinit)-

Here, Ciax is an upper bound on the magnitude of observed
costs C} under any policy 1* € I'l; Lipschitz factor p and
bias bound H are as defined in Assumption 1.

In this section, we prove the regret bound stated in
Theorem 3 for Algorithm 1. Theorem 2 follows as a
corollary of Theorem 3, under a stronger condition
that Assumption 1 is satisfied for all starting states s;
so that ¢ is not required. We first prove a bound on
Pseudoregret(T, x) for any x € [0, U].

The regret analysis follows steps similar to the
regret analysis for stochastic convex bandits in Agar-
wal et al. (2011). We use the notation f(x) = ¢* in this
proof to connect the regret analysis here to the analy-
sis for stochastic convex bandits with convex function
f- Let x* := minyeo,1g" = minyejo,u f(x)- Also, let C; be
the observed cost at time . Then,

T
2.G

t=1

Pseudoregret(T,x) <E

T
-2 f().
t=1

Also, define £ to be the event that all confidence
intervals [LB(CY), UB(Cy )] calculated in Algorithm 1
satisfy f(x,) = g™ € [LB(C})), UB(C})], where n = N;
for every epoch k, round i, and a € {I,c,r}. The analy-
sis in this section will be conditional on event £, and
the probability P(£) of this event will be addressed
at the end.

We divide the regret into two parts. First, we con-
sider the regret over the set of times steps where pol-
icy Tinie is played. We denote the total contribution of
regret from these steps (across all epochs and rounds)
as Pseudoregret’(T). The policy 7 is played three
times in every round of an epoch. By the assumption
stated in Theorem 3, the expected number of steps to

reach Sini is at most Djpnit. Also, the regret in each time
step can be at most Crax. Therefore, in each round, the
expected regret because of the time steps where policy
Tinit 1S played is bounded by 3DinitCmax-

Because any epoch has at most T time steps and each
successive round within an epoch has four times the
number of time steps as the previous (note that
Niy1 = 4N;), there are at most log(T) rounds per epoch.
Also, in Lemma B.3 (see Appendix B), we show that,
under event &£, the number of epochs is bounded by

log, /3(%). Intuitively, this holds because in every epoch,
we eliminate at least (1/4)th of the working interval.

Using these observations, the regret from all the time
steps where policy 7t Was executed is bounded by

T
PseudoregretO(T) <log, /3(%)1055(]") X 3Dinit Cmax-

(10)
Next, we consider the regret over all remaining
time steps of an epoch, denoted as Pseudoregret'(T).
Algorithm 1 plays the policies 7%, t*, or " in these
steps, where x;,x.,x, are updated at the end of every
epoch. Consider a round 7 in epoch k. Let Ty, Tk i,
Ty, be the set of (at most) N; =log(T)/y? consecutive
time steps where policies ", 7*, " are played,
respectively, in round i of epoch k. Here, y, =27". Let
i be the policy used at time t. Note that for
t € Tyia, Xt = X,. Given Assumption 1, using Lemma 3
for 6 =2/T?, for epoch k, round I, and a € {I, ¢, r}, with
probability 1 -9,

Z (Ct —f(xt)) < Ni X [E-f— H M] < 3H)/iN,'
teTy ,; N;i N;i
ki,a
< 3HM
Vi

Substituting, we can derive that with probability
1-2/T?,

Pseudoregretl(T) =E

> Y Y —fm]

epoch k round ia€{l, c, r} t€Ty 0

>0 20 (Co—flx) +f(x)~f (X*))}

epoch k round iaefl, c,r} t€Ty 0

5 [0, 5 5 o)

epoch k round i Vi aef{l,c,r}t€Ty iz

=E

IN

E

(11)

Now, observe that for any round i of epoch k in
which the algorithm does not terminate, the total
number of time steps is bounded by T. So, for any
such k, i, and a € {l,¢,r}, we have N; = log(T)/)/? <T,

which y; =2 4/log(T)/T. Let wus

implies define
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Vin = 1/24/log(T)/T. Then, because y, =1y, we
have y,,, <y, for all round j (including the round

where the algorithm terminates). Recall that y, =27,
so we can bound the geometric series:

Z Z(9Hlog(T)) ;(18Hlog(T))

ymin

<log, /3(5 u )(36H\/ﬁg(:r))

(12)

where in the last inequality, we used the definition of
¥min and the bound log, s (T) on the number of epochs

from Lemma B.3 (see Appendix B).

Now, consider the second term in (11). We use the
results in Agarwal et al. (2011) regarding the conver-
gence of the convex optimization algorithm to bound
the gap between f(x;) and f(x*). Intuitively, the proof
works by showing that the working interval, which
contains the optimal solution under event &, shrinks
by a constant factor in every epoch, so that x; €
{x1,%c,%,} are closer and closer to the optimal level x".
Specifically, we adapt the proof from Agarwal et al.
(2011) to derive the following bound (see Lemma B.4
in Appendix B) under event £:

> flx) f(x)<(125U+1728H)10g4/3(ﬁ UT),/Tlog(T).

kyija,teTy;,
(13)

Substituting, in (11), with probability at least 1-
2/T? — Pr(=€), Pseudoregret! (T) is bounded by

Pseudoregret' (T) < O((BU + H)log4/3(%) Tlog(T).

(14)

Also, combining with the bound on Pseudoregret’(T)
from (10), we get the following regret bound with prob-
ability at least 1 —2/T? — Pr(=€):

Pseudoregret(T) < O((ﬁ U+ H)log, s (ﬁ%) Tlog(T)

ur
+ CimaxDinitlog, /3(‘87)105;(1")).

We complete the proof of the theorem statement
by bounding the probability of event £ (i.e., the event
that g* € [LB(CY), UB(Cy,)] for every epoch k, round 7,
n = N;, and a€{l,c,r}). By Lemma 3, the condition
is satisfied with probability at least 1 —1/T? for each k,
i, a. Because there are no more than T time steps
and therefore, at most T plays of any policy, by
union bound Pr(£) >1-1/T. Now, using the trivial
regret bound of CuaxT with probability 3/T, we get

the regret bound, and hence, the derived regret bound
holds with probability at least 1 —1/T.

Finally, to see that a similar regret bound holds for
Regret(T), we compare the two regret definitions:

T *
.G
t=1
Now, using Lemma 3 (for N=T,6=2/ T?), the differ-
ence |Tg" —E[>),Cls1]] can be bounded by
3H/Tlog(T) with probability 1—2/T?. Therefore, we
obtain a regret bound on Regret(T) of the same order
as Pseudoregret(T).

Regret(T) = Pseudoregret(T) + Tg* —E s1 .

3. Improved Regret Bounds for

Inventory Management

In this section, we apply the algorithm and regret
analysis presented in the previous section to the
inventory control problem. Specifically, we establish
that the convexity and bounded bias properties stated
in Assumption 1 hold for the MRP obtained on run-
ning a base-stock policy for the inventory control
problem, so that Theorem 3 can be applied to obtain
our main result stated in Theorem 1.

To define the MRP studied here, we observe that if
we start with an on-hand inventory level and a pipeline
of outstanding orders that sum to less than or equal to
x, then on using the base-stock policy with level x, the
new order o; will bring the sum to exactly x: that is,

L L-1
on ZX—(i.ert-f'ZOt_i) = x_It_ZOt—i
i=1 i=1

because I; = inv; + 0;_;. From here on, the base-stock
policy will always order whatever is consumed
because of demand (ie., o0w1=Yy;, where y;=
min{l;,d;} is the observed sales), so that the sum of
on-hand inventory level and outstanding orders will
be maintained at level x.

3.1. MRP Formulation

We define an MRP with state s; at time  defined as the
tuple of available inventory and outstanding orders
(including the new order) (i.e., s; = (I, 04-r+1, - - -, 0¢)). The
MRP starts from a state s; such that the inventory posi-
tion (ie., the sum of on-hand inventory level and out-
standing orders) is equal to x. Then, based on the obser-
vation made, the base-stock policy will maintain the
inventory position at level x, with the new state at
time f+1 being sy41 = (It = Y + 0¢—1.11,0t-142, - - -, 01, 0t41),
where o041 = 1;. We define the cost associated with each
state s; in this MRP as C*(s;) = E[C{|s;], where C}
defined as the following modification of the true cost C

Cf = Ct - pdt = h([t _yt) _pyt~ (15)
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The advantage of using this modified cost is that
because both I; (on-hand inventory) and y; (sales) are
observable, the pseudocost is completely observed.
On the other hand, recall that the “lost sales” in the
true cost are not observed. Further, because the term
pd; does not depend on the policy or the algorithm
being used, for any two policies ¥, 7, C; = C¥ =
C; —C, . Therefore, the regret of an algorithm under
the modified cost is the same as the regret under the
true cost; from here on, we use the regret definition
under the modified cost,

T

2,C

t=1

T

>

t=1

Regret(T,x) =E s;1|—E s1]. (16)

Definition 4 is the precise definition of the state
space, starting state, reward model, and transition
model of the MRP considered here.

Definition 4 (Markov Reward Process M (x,s+)). For any
x >0, let S}, be the set of (L + 1)-dimensional nonnega-
tive vectors whose components sum to x. Then, given
any x and s; € S, we define MRP M(x,s;) as the
bipartite stochastic process {(s;, C*(s¢));t =1, 2,3,...}.
Here, s; and C*(s;) denote the state and the cost at
time f, defined as follows. Given state s; = (s;(0),s:(1),

...,5¢(L)), the new state at time f + 1 is given by

i1 := (5/(0) =y +5¢(1),54(2),...,5:(L), y1),
where y; =min{s;(0),d;},d; ~F, generated independ-
ently from distribution F at every time t. Observe that
if s1 € S}, we have s; € S}, for all ¢ by the transition
process. That is, §* =S8, the set of states where
all components sum to x. Cost function C*(s;) is
defined as
C*(s1) = E[Cilse],

where

C == h(s¢(0) = yr) — pys. 17)

Two important quantities are the loss g*(s) and bias
v*(s) of this MRP for any state s € §*, which are as
defined in Definition 3:

S1 = Sl

S1 =Sl.

Remark 3. Technically, for the limits to exist and also,
for some other known results on MRPs used later, we
need finite state space and finite action space (see
chapter 8.2 in Puterman 2014). Because we restrict to
orders within range [0, U] and all states s € S* are vec-
tors in [0,x]" with x € [0, U], we can obtain finite state
space and action space by discretizing demand and

g(s):=E

1 T
Jim 7 2 C )

v*(s):=E

T
lim > C*(s) - g(5)
t=1

orders using a uniform grid with spacing € € (0,1).
Discretizing this way will give us a state space and
action space of size (U/e)" and U/e, respectively. In
fact, we can use arbitrary small precision parameter e
because our bounds will not depend on the size of the
state space or the action space. We, therefore, ignore
this technicality in rest of the paper.

Next, we show that conditions stated in Assump-
tion 1 are satisfied by this MRP and derive a bound H
on bias. To prove these results, we find it useful to
consider another related quantity, called the value of
a policy in finite time T.

Definition 5 (Value). For any s € §%, the value Vi(s) is
defined as the total expected cost incurred over T time
steps of MRP M(x, s): that is,

S1 = S].

T
Z C*(st)
t=1

We first prove a bound on the difference in value of
two states under any given base-stock policy and
then, use that bound to prove the properties of (a) uni-
form loss, (b) convexity of loss, and (c) bounded span
of bias, as needed for Assumption 1.

Vi(s):=E

3.2. Bounded Difference in Value

Lemma 5 (Bounded Difference in Value). For any x, T, and
s, s’ €SY,
Vi(s) — V3(s") < 36max(h, p)Lx.

Proof. For L = 0, s =s’ = (x), and hence, both sides are
zero in the inequality. Consider L>1. One way to
bound the difference between the two values V7 (s)
and V73(s’) is to upper bound the expected number of
steps for the MRPs to reach a common state, starting
from s and s’. Once a common state is reached, from
that point onward, the two processes will have the
same value. For example, in the event that there is
zero demand for L consecutive time steps, both proc-
esses will order O for L time steps and reach state
(x,0,...,0). Therefore, the difference in values can be
upper bounded by the expected number of steps until
this event happens, which is a quantity proportional
to the inverse of the probability that demand is zero
for L consecutive steps. Unfortunately, this probability
is exponentially small in L. In fact, the exponential
dependence of regret in previous works (Huh et al.
2009a, Zhang et al. 2020) can be traced to use of an
argument like the one given at some point in the anal-
ysis. Instead, we achieve a bound with linear depend-
ence on L through a more careful analysis of the costs
incurred on starting from different states.

For any s € S*, we define mj(s):= 3 5,(0) to be
the total on-hand inventory level (recall s;(0) = I;) and
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ny(s) := ZtT:ﬂ/t to be the total sales in T time steps
(recall y; = min(s4(0),d;),d; ~ F) on starting from state
s. Then,
T T
Vi(s) := E[Z Cils1=s|= E[Z hl; — (h+ p)yils1 = s]
i=1 i=1
= hE[m7(s)] - (h+ p)E[n7(s)].

Thus, the difference between values Vi(s) and
Vi(s’) can be bounded by bounding the difference in
the total on-hand inventory [m}(s) —my(s’)] and the
total sales |n}(s) —n}(s’)] when starting from state s’
versus s. We bound this difference by first considering
pairs of states s, s’ that satisfy s’>>s, with the relation >
defined as the property that for some index k > 0, the
first k entries satisfy s’(0) >5(0),...,s’(k) > s(k) and the
remaining L+1—k entries satisfy s’(k+1) < s(k+1),

.,8'(L) <s(L).

When s’>s and L >1, we bound the difference in
the total sales and the total on-hand inventory as

[n7(s) — n3(s")| < 3x and |my(s) — my(s")| < 6Lx.  (18)

To see the intuition behind proving these bounds, con-
sider the sales observed on starting from s’ versus s.
Recall that the first entry in s (and s’) is the on-hand
inventory, the second entry is the order to arrive next,
the next entry is the order to arrive after that, and so
on. Therefore, intuitively, s’>s implies that initially
more inventory is available on hand to satisfy demand,
when starting from s’. We use this intuition to show
that indeed more sales are observed initially on start-
ing from s’ compared with s. Over time, the two proc-
esses keep alternating between states with s;>s; and
s;=s; in cycles of length at most L. The additional sales
in one cycle with s;>s; compensate for the lower sales
in the next cycle with s;<s;, so that the total difference
is bounded. We also remark that the linear depend-
ence on L can be traced to the upper bound on the
difference in total on-hand inventory between two dif-
ferent states in (18). This bound is tight (with respect
to L) for the case when s = (x,0,...,0),s’=(0,...,0,x),
and there is zero demand for L consecutive time
steps. The formal proofs for bounding the difference
in total sales and on-hand inventory for the case s’=s
are provided in Lemmas C.4 and C.5, respectively,
in the appendix.

Then, we use the observation that §>s for all states
seS* for §:=(x,0,0,...,0). Therefore, we can apply
the result in (18) to conclude that

[n7(s) — n7(8)| < 3x and |m7(s) — my(8)| < 6Lx,
implying
[V1(s) = VI(8)| = [hE[m7(s) — m7(8)]
— (h+ PE[(s) - n3(6)]| < 9(h + p)Lx.

Because this holds for any state s, we have that for

two arbitrary starting states s,s’ € S%,

[V1(s) = VI(s") =1Vi(s) = V(8) + VI(8) — V1(s')|
<18(h+p)Lx < 36max(h,p)Lx. O

3.3. Uniform and Convex Loss

Next, we use the value difference lemma (Lemma 5)
to show that the loss ¢*(s) (refer to Definition 3) is
independent of the starting state s € S* in the inven-
tory control MRP.

Lemma 6 (Uniform Loss Lemma). For any x, s,s’ € S7,

§'(s") =g"(s) = ¢".

Proof. Using the definition of V}(s) and g*(s), g*(s) =
limr_,01/TV73(s) so that by Lemma 5,

X\ — : 1 X T l X (!
lg*(s) —&*(s)] = | lim = V7(s) - lim = V7(s")
< li S0max(ip)lx _
T—o0 T

because both limits exist (see Remark 3). Hence, for
anys,s’ € S%, g(s’) = g(s).

Now, the convexity of ¢* follows almost immedi-
ately from convexity of long-run average cost A* for
any base-stock policy, proven by Janakiraman and
Roundy (2004) (refer to Lemma 1).

Lemma 7 (Convexity Lemma). Assume that demand distri-
bution F is such that there is a constant probability of zero
demand (i.e., F(0) > 0). Then, for any base-stock level x and
s € S*, g(s) is convex in x.

Proof. Let s" :=(x,0,...,0), and let u be the mean of the
demand distribution F. On using the base-stock policy
with level x, starting with no inventory and no out-
standing orders, the first order will be x, which will
arrive at time step L+1. The orders and the on-hand
inventory will be zero for the first L time steps
(=L =... =1 =0). All the sales will be lost for these
first L steps, and therefore, the true cost éf in each of
these steps is the lost sales penalty pd;. In the step L + 1,
we will have an on-hand inventory I 1 = x and no out-
standing orders. From here on, the system will follow a
Markov reward process M(x,s) with s; = s’. Therefore,
by the relation (see (15)) between the modified cost C;
and the true cost (lost sales penalty plus holding Cost)
Ct, we have C} =C, —pd;, for t > L + 1. Therefore,

L+T
g(s) = hmIE ZC (st)|sp41 =5’
T
T+L
= lim E|= C Al =x,00 =0y =---=0;, =0
o t%l( 4 e+ 1 2 L
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T+L

15 50
72(Ci —pd)
t=1

:%E}ZOE invq =0:|:Ax—p[.l.
Therefore, under the given assumption that the
demand distribution F has a nonzero probability of
zero demand, we can use Lemma 1 to conclude
that the first term is convex in x, which implies that
g*(s’) is convex. Now, by Lemma 6, for any state
se S, ¢(s) =g*(s’). Therefore, g*(s) is convex in x
forallseS”.

We also prove the following bound on the Lipschitz
factor of g*.

Lemma 8 (Lipschitz Factor of g*). The function ¢* is Lip-
schitz continuous in x for x € [0, U], with the Lipschitz fac-
tor of B = max(h, p). That is, for any 6 >0,

8

Proof. Let us compare the loss g**° versus ¢* on execut-
ing the base-stock policy with level x + 6 versus x. Let us
assume that the starting states for the two MRPs are
sl =(x+6,0,...,00€ 8™ and s = (x,0,...,0) € S, res-
pectively (this is without loss of generality because recall
from Lemma 6 that loss is independent of the starting
state). We compare the two losses by coupling the exe-
cution of the two MRPs. For every time t, let s} :=
(I},0l;,1,---,0}) be the state of the system on following
the base-stock policy with level x+6 and s?:=
(12,07, ,1,--.,07) be the state of the system on following
the policy with level x. Define s] > s? if every entry in s;
is at least the respective entry in s,.

We will first show by induction that at each time step
t, st > s?. In the first time step, we have s} = (x +6,0,
...,0)>(x,0,...,0) = s?. From then on, the new order
placed at time ¢ + 1 is the amount of sales in the previous
time step t. Therefore, if at time t, we have that s! > s?,
then the orders at time t + 1 satisfy o}, = min(d;,I}) >
min(d;, [?) = 0%,,. Also, I}, = (I} —min(d;,I})) + o} >
(I? = min(d;, I?)) + 0> ; = I?,,. Hence, we have s},; >s2,,.
By induction, we have that for every t > 1, s} > s?.

We complete the proof by noting that, additionally,
at every time t, the total sum of the entries of s} is
exactly 6 greater than the sum of the entries of s?.
Therefore, the difference 0<I} —I? <6 for every t,
which implies the difference in sales 0<y] -y =
min(dy, I}) —min(d;, I?) < 6. This implies 0 < (I} —y})—
(I? = y?) < 6. Recall pseudocost C*° = (I} —y)h - py}
and CF = (I? - y?)h — py?; therefore, we have that for
every t and every sequence of demand realizations,

|C¥+0 — CF| < max(h, p)o.

x40

- ¢*| < max(h, p)o.

xX+0

By definition of loss ¢ as the long-run average of
these costs (see Definition 3), we have

|gx+‘S — ¢ < max(h, p)o.

3.4. Bound on Bias

Our main technical insight for the inventory control
problem is the following bound on bias under any
base-stock policy.

Lemma 9 (Bounded Bias Lemma). For any x and
s,s’ € 8%, the difference in bias v*(s) — v*(s’) as

v*(s) —v*(s") < 36max(h, p)Lx.

That is, for all x € [0, U], we have that the span of bias is
bounded by H = 36max(h, p)LU.

Proof. From Lemma 6, g*(s;) =g"(s;) =¢* for all t.
Now, by definition of bias v*(-) (refer to Definition 3),

T
v*(s) = ]E[Tlim Z C'(sp)— ¢

s1 = s] = Thm Vi(s) - Tg"
and
T
v*(s’) = IE[ Tlim > C(s)—g"
= Tlglgo Vi(s") - Tq .

We note that both of the limits exist (see Remark 3),
and hence, by Lemma 5,

0%(s) ~ o(s') = lim (V§(s) = Tg") - lim (V}(s') = T%")
= Iim Vi(s) - V§(5')

< 36max(h, p)Lx.

S = s’]

3.5. Algorithm and Regret Bound
We apply Algorithm 1 to the inventory control prob-
lem with the following inputs.

o [1is the set of base-stock policies 7" with x € [0, U].

e H = 36max(h,p)LU.

o Si =S" is the set of all vectors s = (s(0),s(1),...,
s(L)) such thats > 0 and Zfzos(i) =x.

e 7t is the policy of ordering zero until 3 (i) < x
and then, using policy 7* once so that % s(i) = x.

Then, we use the convexity property and bound on
bias proven in the previous section to obtain the regret
bound stated in Theorem 1.

Proof of Theorem 1. By Lemmas 6-9, the conditions
(a)-(c) of Assumption 1 are satisfied with H=
36LUmax(h,p) and p = max(h, p).

Further, we observe that Diy;, the expected time to
reach the set of states Sini defined, is bounded by L +
DU under the policy 7y defined. To see this, note
that under this policy, an order of zero units is placed
until inventory position falls below x. Note that order-
ing zero for L steps will result in at most U inventory
on hand and no orders in the pipeline. By definition
of D, the expected number of time steps to deplete U
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units of inventory is upper bounded by DU. There-
fore, the expected time for inventory position to fall
below x is at most L + DU. Then, using policy 7" once
will bring the inventory position to x (i.e., the state to
be in S}, ;). Therefore, Dine < L+ DU + 1.

Also, CL=h(I;—y:)—py: <max(h,p)2ly:| + |I;|) < 3max
(h,p)U. Therefore, Cmax = 3max(h, p)U upper bounds
the observed costs.

Substituting Cmax = 3Umax(h,p), H = 36LUmax (h, p),
B=max(h,p)Dipt=L+DU+1 in Theorem 3, we
obtain the result stated in Theorem 1. O

4. Conclusions

We presented an exploration-exploitation algorithm to
minimize regret in the periodic inventory control prob-
lem under censored demand, lost sales, and positive
lead time when compared with the best base-stock pol-
icy. By using convexity properties of the long-run aver-
age cost function and a newly proven bound on the
bias of base-stock policies, we extended a stochastic
convex bandit algorithm to obtain a simple algorithm
that substantially improves upon the existing solutions
for this problem. In particular, the regret bound for our
algorithm maintains an optimal dependence on T while
also achieving a linear dependence on lead time. The
algorithm design and analysis techniques were pre-
sented for any general MDP satisfying the convexity
and bounded bias properties. We believe that these
techniques could be useful for obtaining efficient solu-
tions for other classes of learning problems where the
MDPs involved may be large, but the long-run average
cost under benchmark policies is known to be convex.

Acknowledgments

The authors thank the anonymous associate editor and re-
viewers for their valuable comments. A preliminary version of
this paper was accepted to the 20th Association for Computing
Machinery (ACM) Conference on Economics and Computation
2019.

Appendix A. Concentration Bounds

Lemma A.1 (Azuma—Hoeffding Inequality). Let X1, X>,... be
a martingale difference sequence with |X;| < c for all i. Then, for all
e>0and neN,

n
2 Xi

i=1

P >€

&2
< 2exp(— @)

Appendix B. Proof Details for Theorem 3

We present additional results required to complete the
proof of Theorem 3. Recall that f(x):=g¢* is a convex func-
tion. Also, given confidence intervals defined as in (9), recall
that & is the event when all confidence intervals
[LB(CY;), UB(C4)] calculated in all rounds of Algorithm 1 sat-
isfy g% € [LB(C}),UB(C})] for N>N; in every round i,
every epoch k, and a € {I,c,r}.

The proofs for the lemmas provided are similar to the
proofs of the corresponding lemmas in Agarwal et al. (2011).
We include the proofs here for completeness.

Lemma B.1 (Lemma 1 in Agarwal et al. 2011). Recall [I, r¢]
denotes the working interval in epoch k of Algorithm 1, with
[l1,71] :=[0,U]. Then, under event &, for epoch k ending in round
i, the working interval [ly1, 741 for the next epoch k+1 contains
every x € [Iy, 1] such that f(x) < f(x*)+ 6Hy,. In particular, x* €
(I, 7] for all epochs k.

Proof. Consider any epoch k that is not the last epoch. Then,
under Algorithm 1, if the epoch k ends in round i, then

max{LB(Ck), LB(CL)} = min{UB(CY), UB(C,), UB(Cx)} + 6Hy,,

where N = N;. Hence,
1. LB(Ck) > UB(Cy) + 6Hy,,
2. LB(C},) > UB(CY) + 6Hy,, or
3. max{LB(Ck), LB(Cy)} > UB(CS;) + 6Hy,.
Consider case (1) (case (2) is analogous). Then,

flx) Zf(xr) +6Hy,. (B.1)

We need to show that every x € [li,li11] has f(x) > f(x*)+
6Hy, (for this case, note that 7 =71, and hence, the
interval [ris1,7¢] is of length zero). Pick x € [Ii, x;] so that
x; € [x,x]. Then, x;=Ax+(1-A)x, for some 0<A<1 so
by convexity,

fla) SAf(x) + (1 = A)f ().
This implies that

F(x) = f(x,) +M > f(x,) + 6HTV > f(x") + 6Hy,,

where we used (B.1) and that A <1.
Now, consider case (3). Assume LB(C)>LB(Cy) (the
other case is analogous). Then, in case (3), we have

fa) = f(xc) + 6Hy;.

We need to show that every xe€|[l, k1] has f(x)>
f(x*) + 6Hy,. (Again, rx.1 =11, and hence, the interval [r.q,7k]
is of length zero.) This follows from the same argument with
x, replaced by x.. The fact that x* € [I, ] for all epochs k fol-
lows by induction. O

Lemma B.2 (Lemma 2 in Agarwal et al. 2011). Under &, if
epoch k does not end in round i, then f(x) < f(x*) +72Hy, for each
Xe {Xy, Xe, X[}-

Proof. Under Algorithm 1, round i continues to round
i+1if

max{LB(CY), LB(Cy)} < min{UB(Ck), UB(C,), UB(CL)} + 6Hy,.

We observe that because each confidence interval is of length
6Hy,, this means that f(x;),f(x.),f(x;) are contained within an
interval of length at most 18Hy,. By Lemma B.1, x* € [Ii, r¢].
Under event &, without loss of generality, assume x* < x. (the
other case is analogous). Then, there exists A >0 such that
X' =x.+ Alx. — x,), so that

1
1+4° "1

X = Xy



Downloaded from informs.org by [160.39.60.189] on 18 October 2022, at 07:46 . For personal use only, all rights reserved.

Agrawal and Jia: Learning in Structured MDPs with Convex Cost Functions

1660

Operations Research, 2022, vol. 70, no. 3, pp. 1646—1664, © 2022 INFORMS

Note that A <2; this is because |x. —Ii| =% and |x, —x | =
wy /4, so that
b= x| _ =] _wi/2 _

A= < = =
[, — x| 7 e — x| wi/4

Now, because f is convex,

f( C)— f( x) + 1+/\f(xr)

and so,
fx) =@+ A)|flxe) - f (xr)

= fle) + 1+ D)(fxe) = f(xr))
2 flxr) = (L + D) foxe) = f ()]
> f(x,) — (1 + A)18Hy,
> f(x;) — 54Hy,.
Thus, for each x € {x;, x.,x,},
f(x) <f(x,) +18Hy,; < f(x") + 72Hy,.
Lemma B.3 (Lemma 4 in Agarwal et al. 2011). Under &, the
total number of epochs K is bounded by log, 5(T).

Proof. Observe that for any round i that does not terminate
the algorithm, N; =1log(T)/y? < T (because the algorithm ter-
minates upon reaching T time steps), which implies

> y/log(T)/T. Because y,,; =(1/2)y,, let us define y,. =

(1/2)4/log(T)/T so that y,, <y, for any y, Define the inter-
val I:=[x*—=6Hy, . /B, x*+6Hy, . /B, so that for any x €I,

fQ) = f(x") < plx = | < 6HY 1y,

because the Lipschitz factor of f is . Now, for any epoch
k', which ends in round i, Hy_, <Hy,, and hence, by
Lemma B.1, we have

Ic{xe[0,U]:f(x) <f(x")+6Hy,} < [lis1,141]

So, for any epoch k', the length of interval I is no more than
the length of interval [ly41,7r41], and so,

12Hy,,.
B

Because wy 1 <3/4wp for any k' =1,2,...
that for k¥ =K-1,

ez o

Rearranging the inequality, we get that

1o [ orw puT
K<3 g4/3(16(6H) log(T)) = l°g4/3( H )

STt = g1 = Wyega

,K—-1, we have

Lemma B.4 (Lemma 3 in Agarwal et al. 2011). Recall Ty, is
the set of consecutive time steps where base-stock policy level x, is
played in round i of epoch k, for a € {I,c,r}. Then, under &, we can

bound

T
DS =f) = > fla)-fx)
t=1

kyi,a,t€T, i

<(12pU+ 1728H)log4/3(%T), |Tlog(T).

Proof. Let us first fix an epoch k and assume it ends in
round i(k). If i(k) = 1, then

2 () = f(x") <3NPl -

iya,t€Tyiq
Otherwise, if i(k) > 1, then
i(k)-1

> Fl)—fN= > > (flx) —f(x)

iya,t€Ty i, i a,t€Ty i,

=1
+ >3 (flx) = f(x).

a,t€Ty i),a

By Lemma B.2, for each x; € {x,,x.,x}, f(x;) —f(x") < 72Hy,

¥ < (310g(T)

1

)ﬁu (B2)

foralli=1,2,...,i(k)— 1. Also, Vit-1= Zyi(k), so when i(k)>1,
i(k)-1
>0 F)—fa)< > 2% (2Hy)+ 2 (72Hyg )
i,0,t€Tkiq i=1 a,t€Tkiq a,t€Tkik),a

i0-1
< Z (3Ni)(72HVi) + (3Ni(k))(144H7/i(k))
i=1
i)

< > 432N:Hy,
i=1

< 864Hlog(T)

- Y min ’

where in the last step, we used that
1 1 1 2
Z A+z+=5+...)=
: 7/1 min 2 22 min

Combining this result with (B.2), we have for any epoch k,
irrespective of number of rounds i(k),

S (F) —f) < (3log(T)) 11+ SO4HI0B(T)
i,a,t€Ty ;0 )/1 ymz‘n
(because y,,,, <y, =1/2) < (610g(T))ﬁll+ 864Iyﬂog(T)

log(T) —22(6BU + 864H).

Therefore, summing over all epochs k, by Lemma B.3,

ST (Fo) — (& ))<log4/3(ﬁ m)k;g(T) (68U + 864H),

kyija,t€Tia min

and the result follows from substituting 7,.. = (1/2)
log(T)/T. O

Appendix C. Proof Details for Lemma 5

In this section, we provide the proof details for results used
in Lemma 5 when L > 1. Recall that MRP M(x,s;) is defined
such that state s=(s(0),s(1),...,s(L)), with s(0) being the
on-hand inventory after the current time step’s order arrival
and new order, and s(1),...,s(L) are outstanding orders, with
s(L) being the most recent order scheduled to arrive L time
steps after the current time. The process starts with a state
s € S* (i.e, a state s; such that s1(0)+... +s1(L) = x). Then,
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because of the use of the base-stock policy with level x, new
orders are placed such that at every time step t=1,2,...,T,
we have ZiL:Ost(i) =x (ie, s; €SY), where s, is the state at
time t. We observe on-hand inventory level I; :=s;(0) and
the sales given by y; := min(d;,I;), where d; ~F. Under the
base-stock policy, the sales y; also happen to be the order
placed in the next time step. The new state at time t + 1 is
given by

i1 = (5:(0) =y +5,(1),5,(2),...,5/(L), ys).
Let nr(sy) := Zleyt denote the sum of sales from time 1 to

T and mr(sy) := Zthl I; denote the sum of on-hand inventory
levels.

Appendix C.1. Bounding Cumulative Observed Sales
We bound the difference between the total sales in time T
starting from two different states s,s” when the states satisfy
the following property given.

Definition C.1. Define states s:=(s(0),s(1),...,s(L)),s" :=
(s’(0),s’(1),...,s'(L)). We say that s'=s if s’ =(s(0)+
60,5(1) +01,.. .,S(L) + 6L)/ where (So +01+...+0, =0 and
there exists some 0<k<L-1 such that 6;>0 for all i€
{0,1,...,k} and 6; <0 forall ie {k+1,k+2,...,L}.

We first provide a simple bound on #nr(s})—nr(s1)
when sj>s; and T<L+1, which will be useful in our
proof for larger T.

Lemma C.1. Given two states s1,s} with s}=sy and s;,s] € S*,
define Yy :=3_ 1y, Y;:= Sy, to be the total observed sales up

to time t in process M(x,s1) and M(x,s}), respectively. Then, for
t=1,2,...,L+1, we have that

Y;-Y; < max (0g+... +0k),
0<k<t-1

where 6; = s' (i) — s(i) as defined in Definition C.1.
Proof. We couple the demand realizations in the two proc-
esses M(x,s1) and M(x,s}) so that the demands at time ¢

are the same for both of the processes, denoted by d;. We
prove the lemma statement by induction on t. For t = 1,

y& —h= 1’1’1]1’1(5(0) + 60/d1) - mm(S(O),dl) < 60

because s;>=s; implies that s(0) + 69 > s(0). Assume for any
time up to t — 1, the hypothesis holds. Then, consider time
t <L+1, and observe that on-hand inventory is

I} =5/(0) =(s(0) + 09 +5(1) + 61 + ... +5(t = 1)+ 04-1)
—i+. +yi)

and

I =5:0)=(s(0)+s(1)+... +s(t—=1)— (1 + ... +y-1),
so subtracting, we get

L-L+Y, ;= Yi1=00+01+... +011. (C.1)
Now, we write
Vi-Yi=yi—y+ Y- Y
=min(l},d¢) — min(l;, d;) + Y, = Vi1

There are four cases to consider.

1. df < I;,df < I[. In this case, Y; - Yt = dt _dt + Y;_] - thl =
Y, — Yion < maxoskr—2(00 + ... +0k) < maXoeksr-1(00 + ... +
Ox) by the induction hypothesis.

2.d;>1;,dy > 1. Inthis case, Y =Y, = - L+ Y, ; =Y, 1=
Ogp+... +0i1 < maxOSkg,l(éo +...+ bk) by (Cl)

3. I} <d; <I}. In this case, Y] =Y =d; =L +Y]_ = Y1 =
A=+ =L+Y,_ =Yg =di=I + 0o+ ... +0-1 <o +...
+04-1 < MaXo<r<t-1(60 + ... +0x) by (C.1).

4. [} <d; <I;. In this case, Y] =Y, =[] -d;+Y, ;=Y 1 <
Y, — Y1 <maXogrer—2(00 + ... +0k) < maxogret—1 (00 + ... +
Ok) by the induction hypothesis.

Therefore, we have proven that under the induction
hypothesis,

Y; -Y; < 02]’(1251(60 +...0+ 6}()/
and the desired result for all te€{1,2,...,L+1} follows by
induction. O

Lemma C.2. Consider the MRPs on following base-stock policy
with level x starting in states sq1,87 € S* with sj>=sq. Let I; =
s¢(0),1; = s;(0) be the on-hand inventory levels in the two processes
at time t. Then, if I, =1, >0 for all t€{1,2, ..., L+1}, then it
holds that nr(s] ;) = nr(sp+1) for any T.

Proof. If we have I] —I; > 0, then the respective sales at time
t satisfy y; >y; as well. Therefore, each entry of state s;_; =
(I} 1, Y1, Y5, -, y;) is at least the respective entry of state
st+1 = (IL+1,Y1,Y2, - - -, yr). Because the total sum of the entries
in each state is equal to x, we conclude that s;,; =s;41 and
hence, nr(s),;) = nr(sp+1) for any T. O

Lemma C.2 shows that if we ever observe a t with
s;=st, 51,87 € ST and the next L consecutive on-hand inven-
tory levels in the process starting from state s; are at least
as high as when starting from state s;, then the two proc-
esses will reach an identical state at time t + L; hence, all
future observed sales will be the same. Utilizing this prop-
erty, for states s1>s; we can define the following sequence
of times at which the two processes get synchronized.

Definition C.2. Given starting states s;,s] of two coupled
processes M(x,s1), M(x,s}), with s]=s;, define a sequence of
times

1=0p<11<01<12<02<...<T

as follows. For i>1, t; is the first time after f=0;1 at
which I} <I, o; is the first time after t=1; at which
I} > 15, and T is the first time at which sf = sr. By Lemma
C.2, 1;—0;-1 <L and 0; — t; < L (whenever t;,0; exist).

Lemma C.3. Given starting states sj>s; and the sequence
defined (Definition C.2), S, = S0, and s, =8, for all i, where
7;,0; <T.

Proof. We have s/ s, for the starting state at time t=1=
oo. If time t=1; <T exists, then 71 — 09 <L by Lemma C.2.
Furthermore, we can show that sy, =8, To see this,

s;l = (I;]'S/oo(ﬁ +1-0p),.. "S(/IU(L)’]/GO’ Y1)
and

St = (111/SL70(T1 +1- O_0)/ cee /S(Io(L)/y(m/ .. ~1y11—1)'
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By definition of 7y, for times t€{og,00+1,...,71 -1}, we
have I, > I;, and hence, y/ > y;. We also know that <L It
suffices to show that s/ (i) <sg (i) for all i€{r;+1-
aop, .- .,L}

Recall I\ =17,y -y 4 +s;, (D=1 4 -y, 4+ (11~
09) and similarly, I, = Ir,_1 — Yr,—1 + S5,(T1 — 0¢) so that

7 ! ’
Irl—l _]/7171 +SO'0 (Tl - GO) < IT1—1 —Yu-1 +Sﬁo(71 - GO)
7 !
= 111 yT] -1 + 5 (Tl - UO)/

where the last inequality holds because I} _; > I;,-1 implies
that (for any given demand d;,_1)

-1 _yfq—l = I',rl—l _min(l-/[l_lrd’n—l) = (I‘/[l—l _d11—1)+
> (I’rl—l _d11—1)+ = 171—1 _min(lrl—lrdﬁ—l) = 111—1 — Y1
Hence, sgo(’cl —00) <5q,(T1 —0p), and because s}>si, sl
(i) < s4,(i) holds for all ie{t;+1—-0y,...,L}. So, combined
with the observation that y; >y, t € {0y,..., 71 — 1}, we have
shown that Sy, =8z,

We can inductively apply the argument for each successive
0i,T;, so that s =s,, and s <s,, foralli. O

Finally, we are ready to bound the difference in total
observed sales in time T starting from two states s} >s;, with
s1,8] € S*, under base-stock policy with level x.

Lemma C.4. Let s}, s1 € S¥, and s} = s;. Then,

[n3(s]) — ny(s1)] < 3.
Proof. Let sequence oy, 71,01,... be the sequence of time
indices as in Definition C.2. First, we show that

ny(sy) —ny(s1) = —2x.

Let us assume that in our sequence of times, the last ¢ is
opm- Then, note that

T T
nwH(s]) = nk(s1) = > yi — D
t=1

I\/tI:11 Tir1—1
—Z(Z(y] y]) Z(yt Yi)-
J=0i t=om
We will show that >77'yj—y)=0 for any

i=0,1,...,M~-1. Consider the process starting from states
s/ ,Sq,s where S5, Sq; by Lemma C.3.
By (C1)in the proof of Lemma C.1,

W+ A ) = Wo, ¥+ Y1)
=[(s,,(0) =55,(0)) + ... + (S;’_(Ti+1 = 0;) = 86,(Tix1 — 07))]
(IT,H T1+l)

(C2)

Now, consider the (coupled) processes starting from states
S.,/5t.,, where 7 <s. .. Recall that

vy =T s (T +1=09),...

Ti+l Tiv1”

’S(]’ (L)/]//al/ e ’y;iu—l)
and
186:(L)s Your -+ 1 Y1),

and as proved in Lemma C.3, I’ iy <lti1s S0 (i) < s4,(i) for all
ie{ti+1-o0;...,L} and y; >y, for all t € {oj,...,Tis1 —1}.
S0, s, 5., and by Lemma C.1, we have that

L9717

St = (ITH]lSJI(TiJrl +1- ai)/ s

Yo + -+ + Y1) — (J;,H +y:7,+|—1)

< (I, — 71+1) +[(8,(Tis1 +1 = ‘71)

=5,,(Tis1 +1=00) + ... +(54,(L) =8}, (L))]

= (I, — I, ) +[(},(0) = 56,(0)) + ... + (s, (Tix1 — 04) = 56, (Tiz1 — 00))],
(C.3)

where the last equality follows from the fact that because

sal,s"j, € S%, the sum of all the entries in a state is always

the same as x.

Combining the two results in (C.2) and (C.3), we have that
foranyi=0,1,..., M-1,

Gix1—1

> Wi-y) =, +

j=ai

+y¢,7‘+1—1) - (yﬁi +... +y0i+1*1) >0.

Therefore, we can conclude that

T f
np(sy) —mp(s1) = DL -y = 2 (i -y,
=0y =0y
where T :=min(T, T). By our construction of the o,7
sequence, [ —oy+1< 2(L+1). Note that over any L+1
consecutive time steps, the total observed sales difference
in those L+1 time steps can be at most x for any two start-
ing states (this is because the total inventory position is
always x). So, n}(s}) — ni(s1) > Zf:m () —y) = —2x.
To complete the proof, we show in a similar way that
n¥(s}) —mh(s1) <3x. Let us assume that in our sequence of
times, the last 7 is 7x. Then, note that

T T
ni(s)) —ni(s1) = Zy; - Zyt
K=1/7i:1—-1
—Z(yt yt)+Z(Z v - y]) Z(yt i)

J=Ti t=1g

For any i=1,2,...,K~1, consider the process starting from
states s’ ,s;, where s; <s; by the previous lemma. By an

i’

1dent1cal argument, we can show that 377" ! Wi -y) <0
and 3T e Wi Y1) = Z j=z, Wi —y1) < 2x. Noting that because

there are at most L + 1 time steps in 377" () —yy), it is
bounded by x. Thus, we have shown that nj(s])—n}(s1)
< 3x. Combining with the lower bound of —2x, we have

Imy(s]) —ny(s1)| < 3x. O

Appendix C.2. Bounding the Cumulative On-Hand
Inventory Level

Lemma C.5. Let s’,s € S, and s’>s. Then,

miy(s) —mi(s")| < 6Lx.

Proof. Recall from before that y;, I, are the observed sales
and the on-hand inventory level at the beginning of time
t>1, respectively. Under the base-stock level x policy, the
order placed at time t is precisely y; (assume without loss
of generality y; =0 because we start at a state s or s’ with
total inventory position x). Also, given starting state
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s =(s(0),5(1),...,s(L)), we denote yo:=s(L),y—1:=s(L—1),
..., ¥1-1 :=s(1). Because under the base-stock policy, the new
order is equal to the sales, the on-hand inventory level transi-
tions as follows:

Iy =L =y +yir.

Therefore, we can write the on-hand inventory level at
any time k>1 as

k-1
Le=hL+ > \(yi-L—v),
=

and hence, the total sum of all on-hand inventory levels
up to time T is

T T k-1

D= Z(Il + > Y —yy)
= = =
T k-1

=Th+> > -L— V)
=2 =1

T-1
=Th + > (T—i)yi-L —yi)

i=1
T-1 T-1

=ThL + Z(T - i)yifL - Z(T - Z)yl
i=1 i=1

Now, if we break up the summations on the right-hand side
and reindex,

71 L -1
DT =iy =>(T=ilyir+ D>, (T=iyr
i=1 i=1

i=L+1
T-L-1

L
=2 (T=iyir+ >, (T-L—-i)y
i=1 i=1

and

T-1 T-L-1 T-1
DT =iy = > (T=iyi+ >, (T,
i=1 i=1

i=T-L

so that

T T-1 T-1
Dk =Th+ >3(T = d)yir — > (T = i)y
k=1 i=1 i=1

L T-L-1 T-1
=Th+ > (T—i)yiL —( > Lyi+ > (T- i)yi).
i=1 i=1 i=T—L
Define
T-1 T-L-1 T-1
€:= ZLy,»—( >0 Lyi+ D) (T—i)yi) >0,
=1 =1 i=T-L
and observe that
L-1 L-1
€= Z Wrr4i < LZ Yr-r+i < Lx (C4)
i=1 i=1

because in L — 1 consecutive time steps, the total sales on
following the base-stock level x policy cannot exceed x.

We can write
T L T-1
Zlk =ThL + Z(T - i)yifL - ZLy, +€
k=1 i=1 i=1
L T-1
=>(T-i)s(i)—L>yi+e
i=0 i=1

by substituting the defined values of yo,...,y1r.

Now, let Ij,y;,s'(i),€’ be the respective values if the
starting state is s’ instead of s, with s’>s. Then, an
expression similar to that given can be derived for
WL Ir. Therefore, the difference |m!(s’) —ml(s)| can be
bounded as

T T
21— 2

k=1 k=1

m{(s’) —my(s)| =

L L

< DUT =15 (i) = D (T —1)s(i)
i=0 i=0

T-1
+ LD —yi)| + e’ —el

i=1
<(Tx— (T -L)x)+L(3x) + 2(Lx)
=6Lx,

where we bounded |ZiL:o(T_ i)s’ (i) — ZZ.L:O(T— i)s(i)| by
the largest possible value that occurs when s’ = (x,0,...,0)
and s=(0,...,0,x), used (C.4) to bound |¢| < LX, and used

Lemma C.4 to bound ZIT:(}/Z -y). O

Endnote

1 Here, for simplicity of notation, we assume deterministic policies. The
results in this section can be easily extended to randomized policies.
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