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Abstract. We present an algorithm based on posterior sampling (aka Thompson sampling)
that achieves near-optimal worst-case regret bounds when the underlying Markov decision
process (MDP) is communicating with a finite, although unknown, diameter. Our main
result is a high probability regret upper bound of Õ(DS

�����
AT

√ ) for any communicating MDP
with S states, A actions, and diameter D. Here, regret compares the total reward achieved
by the algorithm to the total expected reward of an optimal infinite-horizon undiscounted
average reward policy in time horizon T. This result closely matches the known lower
bound of Ω( ���������

DSAT
√ ). Our techniques involve proving some novel results about the anti-

concentration of Dirichlet distribution, which may be of independent interest.
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1. Introduction
Reinforcement learning (RL) refers to the problem of learning and planning in sequential decision-making systems
when the underlying system dynamics are unknown and may need to be learned by trying out different options
and observing their outcomes. A typical model for the sequential decision-making problem is a Markov decision
process (MDP), which proceeds in discrete time steps. At each time step, the system is in some state s, and the deci-
sion maker may take any available action a to obtain a (possibly stochastic) reward. The system then transitions to
the next state according to a fixed state transition distribution. The reward and the next state depend on the current
state s and the action a but are independent of all the previous states and actions. In the reinforcement learning prob-
lem, the underlying state transition distributions and/or reward distributions are unknown and need to be learned
using the observed rewards and state transitions while aiming to maximize the cumulative reward. This requires the
algorithm to manage the tradeoff between exploration versus exploitation, that is, exploring different actions in dif-
ferent states to learn the model more accurately versus taking actions that currently seem to be reward maximizing.

Exploration-exploitation tradeoff has been studied extensively in the context of stochastic multiarmed bandit
(MAB) problems, which are essentially MDPs with a single state. The performance of MAB algorithms is typically
measured through regret, which compares the total reward obtained by the algorithm to the total expected reward
of an optimal action. Optimal regret bounds have been established for many variations of MAB (see Bubeck and
Cesa-Bianchi [11] for a survey), with a large majority of results obtained using the upper confidence bound (UCB)
algorithm, or more generally, the optimism in the face of uncertainty principle. Under this principle, the learning
algorithm maintains tight overestimates (or optimistic estimates) the expected rewards for individual actions, and
at any given step, picks the action with the highest optimistic estimate. More recently, posterior sampling, aka
Thompson sampling (Thompson [40]), has emerged as another popular algorithm design principle in MAB,
owing its popularity to a simple and extendable algorithmic structure, an attractive empirical performance (Chap-
elle and Li [14], Kauffman et al. [23]), and provably optimal performance bounds that have been recently obtained
for many variations of MAB (Agrawal and Goyal [3], Agrawal and Goyal [4], Agrawal and Goyal [5], Bubeck and
Liu [12], Russo and Van Roy [32], Russo and Van Roy [33]). In this approach, the algorithm maintains a Bayesian
posterior distribution for the expected reward of every action; then at any given step, it generates an independent
sample from each of these posteriors and takes the action with the highest sample value.

In this paper, we consider the RL problem in a similar regret-based framework, where the total reward of the
reinforcement learning algorithm is compared with the total expected reward achieved by a single benchmark
policy over a time horizon T. In our setting, the benchmark policy is the infinite-horizon undiscounted average
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reward optimal policy for the underlying MDP. Here, the underlying MDP is assumed to have finite states S and
finite actions A and is assumed be communicating with (unknown) finite diameterD. The diameter D is an upper
bound on the expected time it takes to go from any state s to any other state s′ using an appropriate policy, for
any pair s, s′. Most algorithms studied in the literature that achieve interesting regret bounds assume the finite
diameter setting. We note, however, an exception to this is the work of Fruit et al. [17], who consider potentially
infinite diameter in the case of weakly-communicating or multichain MDPs. The UCRL2 algorithm of Jaksch et al.
[20], which is based on the optimism principle, achieved the first finite time regret upper bound of Õ(DS

�����
AT

√ )
for this problem. A similar bound was achieved by Bartlett and Tewari [9], although under an assumption of
known diameter. Jaksch et al. [20] also established a worst-case lower bound of Ω( ���������

DSAT
√ ) on the regret of any

algorithm for this problem. More recent works have achieved better regret bounds than the original UCRL2
work. Fruit et al. [18] demonstrated a regret bound of Õ(S �������

DAT
√ ) with a more careful analysis of the UCRL2

algorithm. Using slightly different problem parameters, Ortner [26] proves a regret bound of Õ( �����������
tmixSAT

√ ),
where tmix is a mixing time parameter of the MDP, and Talebi and Maillard [38] prove a Õ( ��������������∑

s,aV∗
s,aST

√ ) regret
bound, where V∗

s,a is the variance of the bias function. The best result under our setting has been achieved by

Zhang and Ji [41], where they design an algorithm that achieves near-optimal regret of Õ( ���������
DSAT

√ ). The draw-
back, however, is that their algorithm is inefficient to implement, as it requires an optimization over a nonconvex
constraint set.

Our main contribution is a posterior sampling–based algorithm with a high probability worst-case regret
upper bound of Õ(DS

�����
AT

√ ). Although the theoretical bound is of the same order as that of UCRL2, we believe
posterior sampling–based algorithms have advantages over confidence interval–based techniques (e.g.,
UCRL2), in that we are no longer required to search over high-dimensional continuous intervals in solving the
MDP; instead, we can simply apply standard MDP techniques under posterior sampling. In particular, this
means that we are not restricted to extended value iteration (as in Jaksch et al. [20]) as the technique for solving
MDPs but rather can use any black-box method. Thus, although UCRL2 with extended value iteration to solve
the MDP is computationally efficient (in S and A), depending on the domain and the problem structure, other
techniques may be more efficient for the given MDP and can be used in our posterior sampling–based algo-
rithm. Our algorithm uses an “optimistic” version of the posterior sampling heuristic while using several ideas
from the algorithm design structure in Jaksch et al. [20], such as an epoch-based execution and the extended
MDP construction. Our algorithm proceeds in epochs, where in the beginning of every epoch, for every state
and action, it generates ψ � Õ(S) sample transition probability vectors from a posterior distribution and then
solves an extended MDP with ψA actions and S states formed using these samples. The optimal policy com-
puted for this extended MDP is used throughout the epoch.

The posterior sampling for RL (PSRL) approach has been studied previously in Abbasi-Yadkori and Szepesvari [1],
Osband and Van Roy [27], Osband et al. [28], and Ouyang et al. [30], but in a Bayesian regret framework. Bayesian
regret is defined as the expected regret over a known prior on the transition probability matrix. Osband and Van Roy
[27] demonstrate an Õ(H ������

SAT
√ ) bound on the Bayesian regret for PSRL in finite-horizon episodicMDPs, when the epi-

sode length is H. For the nonepisodic case, Ouyang et al. [30] propose an algorithm that achieves a regret bound of
Õ(HS

�����
AT

√ ), where H here is the bound on the span of the MDP. In this paper, we consider the stronger notion of
worst-case regret, akaminimax regret, which requires bounding themaximum regret for any instance of the problem.1

We consider a nonepisodic communicatingMDP setting and prove aworst-case regret bound of Õ(DS
�����
AT

√ ), whereD is
the unknown diameter of the communicating MDP. In comparison with PSRL that generates a single sample from
the posterior, our optimistic PSRL algorithm is slightly inefficient as it generates multiple (Õ(S)) samples (although
only once in every epoch). It is not entirely clear if the extra samples are only an artifact of the analysis. In an empirical
study of a multiple sample version of posterior sampling for RL, Fonteneau et al. [16] show that multiple samples can
potentially improve the performance of posterior sampling in terms of probability of taking the optimal decision. Our
analysis uses some ideas from the Bayesian regret analysis. However, bounding theworst-case regret requires several
new technical ideas, in particular, for proving optimism of the gain of the sampled MDP. Further discussion is pro-
vided in Section 4.

PSRL (and our optimistic PSRL) approaches are referred to as “model-based” approaches, because they explic-
itly estimate the transition probability matrix underlying the MDP model. Another closely related line of work
investigates optimistic versions of “model-free algorithms” like value-iteration (Azar et al. [8]) and Q-learning
(Kakade et al. [21]). However, the setting considered in both these works is that of an episodic MDP, where the
learning agent interacts with the system in episodes of fixed and known length H. Under this setting, both the
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previously mentioned works achieve minimax (i.e., worst-case) regret bound of Õ( ���������
HSAT

√ ) when T is large
enough compared with the episode lengthH. To understand the challenges in our setting compared with the epi-
sodic setting, although the initial state of each episode can be arbitrary in the episodic setting, importantly, the
sequence of these initial states is shared by the algorithm and any benchmark policy. In contrast, in the nonepiso-
dic setting considered in this paper, the state trajectory of the benchmark policy over T time steps can be com-
pletely different from the algorithm’s trajectory. To the best of our understanding, the shared sequence of initial
states of every episode, and the fixed known lengthH of episodes seems to form crucial components of the analy-
sis in the episodic settings of Azar et al. [8] and Kakade et al. [21]. Thus, it would be difficult to extend such an
analysis to the nonepisodic communicating MDP setting considered in this paper.

Among other related work, Burnetas and Katehakis [13] and Tewari and Bartlett [39] present optimistic lin-
ear programming approaches that achieve logarithmic regret bounds with problem dependent constants.
Strong Probably Approximately Correct (PAC) bounds have been provided in Kearns and Singh [24], Brafman
and Tennenholtz [10], Kakade [22], Asmuth et al. [7], and Dann and Brunskill [15]. There, the aim is to bound the
performance of the policy learned at the end of the learning horizon and not the performance during learning as
quantified here by regret. Notably, the BOSS algorithm proposed in Asmuth et al. [7] is similar to the algorithm pro-
posed here in the sense that the former also takes multiple samples from the posterior to form an extended (referred
to as merged) MDP. Strehl and Littman [36, 37] provide an optimistic algorithm for bounding regret in a discounted
reward setting, but the definition of regret is different in that it measures the difference between the rewards of an
optimal policy and the rewards of the learning algorithm on the state trajectory taken by the learning algorithm.

2. Preliminaries and Problem Definition
2.1. Communicating MDP
We consider an MDP M defined by tuple {S,A,P, r, s1}, where S is a finite state-space of size S, A is a finite
action-space of size A, P : S ×A→ ΔS is the transition model, r : S ×A→ [0, 1] is the reward function, and s1 is
the starting state. When an action a ∈A is taken in a state s ∈ S, a reward rs,a is generated, and the system transi-
tions to the next state s′ ∈ S with probability Ps,a(s′), where

∑
s′∈S Ps,a(s′) � 1.

We consider communicating MDPs with finite diameter. Here we define communicating MDPs and recall
some useful known results for such MDPs.

Definition 1 (Policy). A deterministic policy π : S →A is a mapping from state space to action space.

Definition 2 (Gain of a Policy). The gain λπ(s) of a policy π, from starting state s1 � s, is defined as the infinite
horizon undiscounted average reward, given by

λπ(s) � E lim
T→∞

1
T

∑T
i�1

rst,π(st)

∣∣∣∣∣ s1 � s

[ ]
:

The variable st is the state reached at time t, on executing policy π.

Definition 3 (Diameter D(M)). Diameter D(M) of an MDP M is defined as the minimum time required to go
from one state to another in the MDP using some deterministic policy:

D(M) � max
s≠s′, s, s′∈S

min
π:S→A

Tπ
s→s′ ,

where Tπ
s→s′ is the expected number of steps it takes to reach state s′ when starting from state s and using

policy π.

Definition 4 (Communicating MDP). An MDP M is communicating if and only if it has a finite diameter. That is,
for every pair of states s, s′:s≠ s′, there exists a policy π such that the expected number of steps to reach s′ from s,
Tπ
s→s′ , is at most D, for some constant D ≥ 0.

Lemma 1 (Optimal Gain and Bias for a Communicating MDP). For a communicating MDPM with diameter D:
(a) Puterman [31] (theorems 8.1.2 and 8.3.2): The optimal (maximum) gain λ∗ is state independent and is achieved by a

deterministic stationary policy π∗, that is, there exists a deterministic policy π∗ such that

λ∗ :�max
s′∈S

max
π

λπ(s′) � λπ∗ (s), ∀s ∈ S:
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Here, π∗ is referred to as an optimal policy for MDPM.
(b) Bartlett and Tewari [9] (theorem 4): The optimal gain> λ∗ satisfies the following equations:

λ∗ �min
h∈RS

max
s, a rs,a +PT

s,ah− hs �max
a

rs,a +PT
s,ah

∗ − h∗s, ∀s, (1)

where h∗, referred to as the bias vector of MDPM, satisfies

max
s

h∗s −min
s

h∗s ≤D:

Given these definitions and results, we can now define the RL problem studied in this paper.

2.2. RL Problem
The RL problem proceeds in rounds t � 1, : : : ,T. The learning agent starts from a state s1 at round t � 1. In the
beginning of every round t, the agent takes an action at ∈A and observes the reward rst,at and the next state
st+1 ~ Pst,at , where r and P are the reward function and the transition model, respectively, for a communicating
MDPMwith diameter D.

The learning agent knows the state-space S, the action spaceA, and the rewards rs,a, ∀s ∈ S,a ∈A, for the underly-
ingMDP, but not the transitionmodel P or the diameterD. (The assumption of known and deterministic rewards has
been made here only for simplicity of exposition because the unknown transition model is the main source of diffi-
culty in this problem.Our algorithm and results can be extended to bounded stochastic rewardswith unknowndistri-
butions using standard Thompson sampling forMAB, e.g., using the techniques in Agrawal andGoyal [4].)

The agent can use the past observations to learn the underlying MDP model and decide future actions. The goal is to
maximize the total reward

∑T
t�1 rst,at , or equivalently, minimize the total regret over a time horizon T, defined as

R(T,M) :� Tλ∗ −∑T
t�1

rst,at , (2)

where λ∗ is the optimal gain of MDPM.
We present an algorithm for the learning agent with a near-optimal upper bound on the regret R(T,M) for

any communicating MDPMwith diameter D, thus bounding the worst-case regret over this class of MDPs.

3. Algorithm Description
Our algorithm combines the ideas of posterior sampling (aka Thompson sampling) with the extended MDP con-
struction used in Jaksch et al. [20]. Here we first describe the main components of our algorithm. Our algorithm
is then summarized as Algorithm 1.

Some notation: The term Nt
s,a denotes the total number of times the algorithm visited state s and played action

a until before time t, and Nt
s,a(i) denotes the number of time steps among these Nt

s,a steps where the next state was
i, that is, the steps where a transition from state s to i was observed. We index the states from 1 to S, so that∑S

i�1Nt
s,a(i) �Nt

s,a for any t. We use the symbol 1 to denote the vector of all ones and 1i to denote the vector with
one at the ith coordinate and zero elsewhere.

3.1. Doubling Epochs
Our algorithm uses the epoch-based execution framework of Jaksch et al. [20]. An epoch is a group of consecutive
rounds. The rounds t � 1, : : : ,T are broken into consecutive epochs as follows: the kth epoch begins at the round τk
immediately after the end of the (k − 1)th epoch and ends at the first round τ such that for some state-action pair s, a,
Nτ

s,a ≥ 2Nτk
s,a. The algorithm computes a new policy π̃k at the beginning of every epoch k and uses that policy through

all the rounds in that epoch. Because the total number of visits to any state action-pair is bounded by T, it is easy to
observe that, irrespective of how the policies {π̃k} are computed, the number of epochs is bounded by SA log2(T).

3.2. Posterior Sampling
We use posterior sampling to compute the policy π̃k in the beginning of every epoch k. The algorithmmaintains a
posterior distribution over the transition probability vector Ps,a, for every s ∈ S,a ∈A. Observe that Ps,a specifies a
categorical distribution over states 1, : : : ,S, with parameters Ps,a(i), i � 1, : : : ,S. Dirichlet distribution is a convenient
choice for maintaining a posterior over parameters Ps,a, as Dirichlet distribution is a conjugate prior for the catego-
rical distribution. In particular, it satisfies the following useful property: given a prior Dirichlet(α1, : : : ,αS) on Ps,a,
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after observing a transition from state s to i (with underlying probability Ps,a(i)), the posterior distribution is given
by Dirichlet(α1, : : : ,αi + 1, : : : ,αS). By this property, for any s ∈ S, a ∈A, on starting from the prior Dirichlet(1) for
Ps,a, the posterior at time t is Dirichlet({Nt

s,a(i) + 1}i�1,: : : ,S).
A direct application of the PSRL approach introduced in Osband and Van Roy [27] would involve sampling a

transition probability vector from the Dirichlet posterior for each state-action pair to form a sample MDP. A sam-
ple policy π̃k would then be computed as an optimal policy for the sampled MDP. Our algorithm uses a modi-
fied optimistic version of this approach. At the beginning of every epoch k, for every s ∈ S, a ∈A such that
Nτk

s,a ≥ η, it generates multiple samples for Ps,a from a boosted variance posterior. Specifically, for each s, a, it gener-
ates ψ independent sample probability vectors Q1,k

s,a , : : : ,Q
ψ,k
s,a as

Qj,k
s,a ~Dirichlet(Mτk

s,a),
whereMt

s,a denotes the vector [Mt
s,a(i)]i�1,: : : ,S, with

Mt
s,a(i) :� 1

κ
(Nt

s,a(i) +ω), for i � 1, : : : ,S: (3)

Here, ψ,κ,ω,η are parameters of the algorithm. The values of these parameters are initialized as η � ��������
TS=A

√
+12ωS4, ψ �Θ(S log(SA=ρ)), κ �Θ(log(T=ρ)), ω �Θ(log(T=ρ)), given any ρ ∈ (0, 1]. In the regret analysis, we
derive sufficiently large constants to be used in the definition of ψ,κ,ω to guarantee the regret bounds. In particular,
for our proofs we use ψ � (2S=C) log(SA=ρ) with the constant C defined as C � ηk(δ)=2, where η � 0:15,δ � ((1−Φ)
(1=2))=2, k(δ) � 2:82=δ4, withΦ being the cumulative distribution function of the standard normal distribution.

We remark that no attempt has been made to optimize this constant, and it is likely that a much smaller con-
stant suffices.

3.3. Simple Optimistic Sampling
Posterior sampling is used for every s ∈ S, a ∈Awith large enough previous visits, specifically those withNτk

s,a ≥ η.
For every remaining s, a, that is, those withNτk

s,a < η, the algorithm uses a simple optimistic sampling, as described
in Algorithm 1. Intuitively, this process overestimates one randomly selected component of the vector Ps,a while
underestimating the remaining components. This special sampling has been introduced in the algorithm to handle
a technical difficulty in analyzing the anti-concentration of Dirichlet posteriors when the parameters are very
small. It is possible that with a different analysis technique, this is not required to achieve the regret bounds.

Algorithm 1 (Posterior Sampling–Based Algorithm for the RL Problem)
Inputs: State space S, Action spaceA, starting state s1, reward function r, time horizon T, parameters ρ ∈ (0, 1].
Initialize: Set ψ :� 2S

C log SA
ρ

( )
,η :�

���
TS
A

√
+ 12ωS4,ω :� 720 log(T=ρ),κ :� 120 log(T=ρ), τ1 :� 1.

for all epochs k � 1, 2, : : : , do
Sample transition probability vectors: For each s, a, generate ψ independent sample probability vectors
Qj,k

s,a, j � 1, : : : ,ψ, as follows:
• (Posterior sampling): For s, a such thatNτk

s,a ≥ η, sample from the Dirichlet distribution:

Qj,k
s,a ~Dirichlet(Mτk

s,a),
withMτk

s,a(i), i ∈ S as defined in (3).
• (Simple optimistic sampling): For s, a such thatNτk

s,a < η, use the following simple optimistic sampling: let

P−
s,a :� P̂s,a −D,

where P̂s,a(i) :� N
τk
s,a(i)
N

τk
s,a
, and Δi :�min

���������������
4P̂s,a(i)log(2ST)

N
τk
s,a

√
+ 3 log(2ST)

N
τk
s,a

, P̂s,a(i)
{ }

, and let z be a random vector picked

uniformly at random from {11, : : : ,1S}; set
Qj,k

s,a � P−
s,a + 1−∑S

i�1
P−
s,a(i)

( )
z:

Compute policy π̃k: as the optimal gain policy for extended MDP M̃
k

constructed using sample set
{Qj,k

s,a, j � 1, : : : ,ψ, s ∈ S,a ∈A}.
Execute policy π̃k:
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for all time steps t � τk,τk + 1, : : : , until break epoch do
Play action at � π̃k(st).
Observe the transition to the next state st+1.
Set Nt+1

s,a (i),Mt+1
s,a (i) for all a ∈A, s, i ∈ S as defined (refer to Equation (3)).

If Nt+1
st,at ≥ 2Nτk

st,at , then set τk+1 � t+ 1 and break epoch.

end for
end for

3.4. Extended MDP

The policy π̃k used in epoch k is computed as the optimal policy of an extended MDP M̃
k
defined by the sampled

transition probability vectors. The construction of this extended MDP is derived from a similar construction in

Jaksch et al. [20]. Given sampled vectors {Qj,k
s,a, j � 1, : : : ,ψ, s ∈ S,a ∈A}, we define an extended MDP M̃

k
by

extending the original action space as follows: for every s, a, create ψ actions for every action a ∈ A, denote by aj

the action corresponding to action a and sample j; then, in MDP M̃
k
, on taking action aj in state s, reward is rs,a

but the state transition follows the transition probability vector Qj,k
s,a.

The algorithm uses the optimal policy π̃k of the extended MDP M̃
k
whose action space is technically different

from the action space A of MDP M̃
k
. We slightly abuse the notation to say that the algorithm takes action at �

π̃(st) ∈A to mean that the algorithm takes action at � a ∈A when π̃k(st) � aj for some j.
Our algorithm is summarized as Algorithm 1.

4. Regret Bounds
We prove that with high probability, the regret of Algorithm 1 is bounded by Õ(DS

�����
AT

√ ).
Theorem 1. For any communicating MDP M with S states, A actions, and diameter D, for T ≥Ω

(
SA log4(SAT=ρ)

)
, the

regret of Algorithm 1 is bounded as

R(T,M) ≤O DS
�����
AT

√
log2(SAT=ρ) +DS3A2log2 SAT=ρ

( )( )
,

with probability 1− ρ, for any 0 < ρ ≤ 1=16S2. For T ≥Ω(S4A3), this gives a regret bound of
R(T,M) ≤O DS

�����
AT

√
log2(SAT=ρ)

( )
:

Here O(·) notation hides only the absolute constants.

Proof. Here we provide a proof of the previous theorem. The proofs of the lemmas used this proof are provided
in the subsequent sections.

As defined in Section 2,

R(T,M) � Tλ∗ −∑T
t�1

rst,at ,

where λ∗ is the optimal gain of MDP M, at is the action taken, and st is the state reached by the algorithm at time
t. Algorithm 1 proceeds in epochs k � 1, 2, : : : ,K, where K ≤ SA log(T). To bound its regret in time T, we separately
analyze the regret in each epoch k, namely,

Rk :� (τk+1 − τk)λ∗ − ∑τk+1−1
t�τk

rst,at , (4)

where τk was defined as the starting time step of epoch k. The proof of epoch regret bound has two main
components:

(a)Optimism: Recall that in every epoch k, the algorithm runs an optimal gain policy for the extendedMDP M̃
k
.

We show that the extended MDP M̃
k
is optimistic, that is, its optimal gain is (close to) λ∗ or higher. Specifically, let

λ̃k be the optimal gain of the extended MDP M̃
k
. In Lemma 3 (Section 5.2), which forms a main novel technical

component of our proof, we show that with probability 1− ρ,

λ̃k ≥ λ∗ −O D log2(T=ρ)
����
SA
T

√( )
:
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Substituting this upper bound on λ∗ in the expression for Rk, we obtain the following bound on the epoch
regret, with probability 1− ρ:

Rk ≤
∑τk+1−1
t�τk

λ̃k − rst,at +O D log2(T=ρ)
����
SA
T

√( )( )
: (5)

(b) Deviation bounds: Next, the first term in the previous expression is λ̃k, which is the gain of the algorithm’s
chosen policy π̃k on MDP M̃

k
(with transition probability vectors P̃s,a :�Qj,k

s,a for some j); and the second term is the
reward obtained on executing the same policy π̃k, but on the true MDP M (with transition probability vectors Ps,a).
We bound the difference

∑
t(λ̃k − rst,at) by bounding the deviation (P̃s,a −Ps,a) for every s, a.

We use the relation between the gain, the bias vector, and the reward vector of an optimal policy for a
communicating MDP, as discussed in Section 2. To use this relation for MDP M̃

k
, we show that this MDP is

communicating by comparing it to the true MDP M, which was assumed to be communicating with diameter

D. Specifically, in Lemma 6 (Section 5.4), we prove a bound of 2D on the diameter of MDP M̃
k
for any k with

probability 1− ρ, when T ≥Ω(SA log4(SAT=ρ)).
Therefore, we can use the relation between the gain λ̃k, the bias vector h̃, and reward vector of optimal

policy π̃k for communicating MDP M̃
k
, as given by Lemma 1(b). According to this relation, for any state

s and action a � π̃k(s), λ̃k � rs,a + P̃
T
s,ah̃ − h̃s, where P̃s,a :�Qj,k

s,a for some j. Because at � π̃k(st), using this

relation:

∑τk+1−1
t�τk

(λ̃k − rst,at) �
∑τk+1−1
t�τk

(P̃st,at − 1st)Th̃

� ∑τk+1−1
t�τk

(P̃st,at −Pst,at +Pst,at − 1st)Th̃: (6)

In Lemma 4 (Section 5.3), we prove that with probability 1− ρ, for all s, a, and all h ∈ [0, 2D]S:

(P̃s,a −Ps,a)Th ≤O D

�����
S

Nτk
s,a

√
+ S
Nτk

s,a

( )
log2(SAT=ρ)

( )
: (7)

We can use this result to bound first term in (6) by observing that h̃ ∈ R
S, the bias vector of MDP M̃

k
satisfies

(refer to Lemma 1),

maxs h̃s −mins h̃s ≤D(M̃k) ≤ 2D,

where the last inequality holds with probability 1− ρ, as shown in Lemma 6 (Section 5.4).
To bound the second term of (6), we observe that E[1Tst+1 h̃ | π̃k, h̃, st] � PT

st,at h̃ and use Azuma-Hoeffding inequal-
ity to obtain with probability 1− ρ,

∑τk+1−1
t�τk

Pst,at − 1st
( )Th̃ ≤O D

�������������������������
(τk+1 − τk)log(1=ρ)

√( )
: (8)

Substituting the bounds from Equations (7) and (8) into (6), and combining it with (5), we obtain the following
bound onRk with probability 1− 3ρ:

Rk �O D(τk+1 − τk)
����
SA
T

√
+D

∑
s,a

(Nτk+1
s,a −Nτk

s,a)
��
S

√�����
Nτk

s,a
√ + S

Nτk
s,a

( )( )
log2

SAT
ρ

( )( )

+O D

����������������������
(τk+1 − τk)log 1

ρ

( )√( )
: (9)
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We observe that (by definition of an epoch) the number of visits of any state-action pair can at most double in
an epoch,

Nτk+1
s,a −Nτk

s,a ≤ Nτk
s,a,

so that

D
∑
s, a

(Nτk+1
s,a −Nτk

s,a)
S

Nτk
s,a

( )
≤ DS2A:

Substituting this observation, we can bound the total regret R(T) � ∑K
k�1Rk as the following, with probability

1− 3Kρ: ∑K
k�1

Rk ≤O
∑K
k�1

D(τk+1 − τk)
����
SA
T

√
+D

∑
s, a

(Nτk+1
s,a −Nτk

s,a)
��
S

√�����
Nτk

s,a
√( )

+DS2A

( )
log2

SAT
ρ

( )( )

+O
∑K
k�1

D
�������������������������
(τk+1 − τk)log(1=ρ)

√( )
:

Applying Lemma B.5 (see Appendix) with zk �Nτk+1
s,a −Nτk

s,a and Zk−1 �Nτk
s,a, it follows that

D
∑K
k�1

∑
s,a

(Nτk+1
s,a −Nτk

s,a)
��
S

√�����
Nτk

s,a
√( )

≤D
��
S

√ ∑
s,a

( ��
2

√ + 1)
�����
NτK

s,a

√
:

Substituting, we can bound the total regret as

∑K
k�1

Rk ≤ O D
������
SAT

√ +D
��
S

√ ∑
s, a

�����
NτK

s,a

√( )
+ KDS2A

( )
log2

SAT
ρ

( )
+D

�������������
KTlog

1
ρ

( )√( )
,

where we used that
∑

kτk+1 − τk � T and hence
∑K

k�1
������������
τk+1 − τk

√ ≤ �����
KT

√
.

Now, because of our epoch definition, we have that K ≤ SA log(T), and because
∑

s,aNτK
s,a ≤ T, by simple worst

scenario analysis,
∑

s,a
�����
NτK

s,a
√ ≤ ������

SAT
√

. Thus, we obtain

R(T,M) ≤O DS
�����
AT

√
log2

SAT
ρ

( )
+DS3A2log2

SAT
ρ

( )( )
:

For T ≥Ω(S4A3), this gives a regret bound of

R(T,M) ≤O
(
DS

�����
AT

√
log2(SAT=ρ)

)
: w

5. Proofs of the Lemmas Used in Section 4
5.1. Notation
We use the following notations repeatedly in this section. Fix an epoch k, state s, action a, and sample j. The specific
values of k, j, s, a will be clear from the context in a given proof. We denote n �Nτk

s,a, ni �Nτk
s,a(i) for all i ∈ S, and

m � n+ωS
κ . Here ω � 720 log(T=ρ) and κ � 120 log(T=ρ), as defined in the algorithm. Also, we denote pi � Ps,a(i),

p̂i :� ni
n , p̄i � ni+ω

n+ωS, and p̃i �Qj,k
s,a(i), for i ∈ S.

When n > η, the algorithm uses Dirichlet posterior sampling to generate sample vectors Qj,k
s,a, so that in this

case p̃ is a random vector distributed as Dirichlet(mp̄1, : : : ,mp̄S).
When n < η, simple optimistic sampling is used, so that p̃ was generated as follows: denote

p− � p̂ −
����������������
4p̂i log(2TS)

n

√
+ 3 log(2TS)

n

( )
1

[ ]+
,
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and let z be a random vector picked uniformly at random from {11, : : : ,1S}; then

p̃ � p− + 1−∑
j
p−j

( )
z:

We define

δi :� p̂i − pi, Δi :� p̂i − p−i � min

�����������������
4p̂i log(2ST)

n

√
+ 3 log(2ST)

n
, p̂i

{ }
:

Then, using Bernstein’s inequality (Corollary B.1 in the Appendix, with Zt � 1(st � i, st−1 � s, at−1 � a), t � 2, : : :τk),
we have that with probability (1− 1=2S), |δi | ≤

��������������������
4p̂i log(2TS)=n

√ + 3 log(2TS)=n.
Therefore, ∑

i
δi � 0,

∑
i
Δi �

∑
i
(p̂i − p−i ) � 1 − ∑

i
p−i , and Δi ≥ δi with probability 1 − 1

2S

( )
:

The previous notations and observations will be used repeatedly in the proofs in this section.

5.2. Optimism
The goal of this section is to show optimism, that is,

λ̃k ≥ λ∗ − Õ D

����
SA
T

√( )
:

First, in Lemma 2, we prove for any fixed vector, for every s, a, there exists a sample transition probability
vector whose projection on that vector is optimistic, with high probability. To prove this, we prove the fol-
lowing fundamental new result on the anticoncentration of any fixed projection of a Dirichlet random
vector.

Proposition 1. Fix any vector h ∈ R
S such that |hi − hi′ | ≤D for any i, i′. Consider a random vector p̃ generated from

Dirichlet distribution with parameters (mp̄1, : : : ,mp̄S), where mp̄i ≥ 6. Then, for any ρ ∈ (0, 1), with probability at least
(C=S) − 2Sρ,

(p̃ − p̄)Th ≥ 1
8

����������∑
i<S

γ̄ic̄
2
i

m

√
− 2SD log(2=ρ)

m
,

where γ̄i :� p̄ i(p̄ i+1+: : :+p̄S)(p̄ i+: : :+p̄S) , c̄i � (hi − H̄i+1), H̄i+1 � 1∑S
j�i+1 p̄j

∑S
j�i+1 hjp̄j, for any fixed ordering on states i � 1, : : : ,S. Also, let

constant C � ηk(δ)=2, where η � 0:15,δ � ((1−Φ)(1=2))=2, k(δ) � 2:82=δ4, with Φ being the cdf of the standard normal
distribution.

The proof is provided in the Appendix. In the Appendix, we also prove the following strong concentration
bound for the empirical probability vectors.

Proposition 2. Fix any vector h ∈ R
S such that |hi − hi′ | ≤D for any i, i′. Fix any epoch k, state s, action a. As defined in

the notations section, denote n �Nτk
s,a, ni �Nτk

s,a(i), pi � Ps,a(i), p̂i :� ni
n , for i � 1, : : : ,S. Then, if τk − 1 ≥ 96, for any

ρ ∈ (0, 1), with probability 1− ρ,

|(p̂ − p)Th | ≤ 2

����������������������
log(T=ρ)∑

i<S

γic
2
i

n

√
+ 3D

log(T=ρ)
n

,

where γi � pi(pi+1+⋯+pS)
(pi+⋯+pS) , ci � hi −Hi+1, Hi+1 � 1∑S

j�i+1 pj
∑S

j�i+1 hjpj, for any fixed ordering on states i � 1, : : : ,S.

Together the previous two results allow us to prove the following lemma.
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Lemma 2. Fix any vector h ∈ R
S such that |hi − hi′ | ≤D for any i, i′, and any epoch k. Then, given 0 < ρ ≤ (1=16S2), for

every s, a, with probability at least 1− ρ=SA, there exists at least one j such that

(Qj,k
s,a)Th ≥ PT

s,ah−O D log2(T=ρ)
����
SA
T

√( )
:

Proof. Fix an epoch k, state and action pair s, a, and sample j. We use the notation defined in Section 5.1 so that

p̃ �Qj,k
s,a, p � Ps,a, and so on. We show that with probability at least C=S− 8Sρ, p̃Th ≥ pTh−O D log2(T=ρ)

(
����������(SA=T)√ ). Now assuming ρ ≤ (1=16S2), given large enough number ψ (specifically, given

ψ ≥ (2S=C) log
(
(SA=ρ)

)
�Θ(S log(SA=ρ))) of independent samples for every s, a, this result will give us the lemma

statement. To prove this result, we consider two cases.

Case 1: n > η. When n > η, Dirichlet posterior sampling is used so that p̃ is a random vector distributed as
Dirichlet(mp̄1, : : : ,mp̄S), wherem � n+ωS

κ , p̄i � ni+ω
n+ωS. We show that with probabilityΩ(1=S) − 8Sρ, the random quan-

tity p̃Th exceeds its mean p̄Th enough to overcome the possible deviation of empirical estimate p̄Th from the true
value pTh. This involves combining the Dirichlet anticoncentration bound from Proposition 1 to lower bound p̃Th
(mp̄i ≥ (ω=κ) � 6, ∀i ∈ S) and the concentration bound on empirical estimates p̂ from Proposition 2 to lower bound
p̄Th (τk − 1 ≥ n ≥ η ≥ 96), which by definition is close to p̂Th.

In Proposition A.1 (in the Appendix), we prove a slight modification of Proposition 1 to show that with
probability C=S− 7Sρ,

(p̃ − p̄)Th ≥ 0:148

������������
κ
∑
i

γic
2
i

n

√
−O

DSω log(T=ρ)
n

( )
: (10)

The above bound replaces γ̄i, c̄i,m in the lower bound provided by Proposition 1 by γi, ci,n instead. With this
modification, the lower bound becomes directly comparable to the bound on the deviation | (p̂ − p)Th | provided
by Proposition 2. To combine this lower bound with the deviation bound, we calculate

| (p̄ − p̂)Th | �
∣∣∣∣∣∑Si�1 hi np̂i +ω

n+ωS
− np̂i

n

( )∣∣∣∣∣ �
∣∣∣∣∣∑i

hi
ω(1− Sp̂i)
n+ωS

( )∣∣∣∣∣ ≤ ωDS
n+ωS

≤ ωDS
n

:

Then, using the above bound along with (10) and the result from Proposition 2, we have that with probability
C=S− 8Sρ,

(p̃ − p)Th � (p̃ − p̄)Th+ (p̄ − p̂)Th+ (p̂ − p)Th
≥ (p̃ − p̄)Th− |(p̄ − p̂)Th | − |(p̂ − p)Th |

≥ 0:148

������������
κ
∑
i

γic
2
i

n

√
− 2

����������������������
log(T=ρ)∑

i<S

γic
2
i

n

√
−O

DSωlog(T=ρ)
n

( )

≥ −O ω
DS log(T=ρ)

n

( )

≥ −O D log2(T=ρ)
����
SA
T

√( )
,

where the second last inequality follows from the observation that with κ � 120 log(T=ρ), the first term is bigger
than the second. Then, substituting ω � 720 log(T=ρ) and n ≥ η � ��������

TS=A
√ + 12ωS4, we obtain the last inequality.

Case 2: n < η. When n < η, simple optimistic sampling is used. Using notation and observations made in Section
5.1, in this case p̃ � p− + (1−∑

jp−j )z. With probability 1=S, z � 1i for an i such that hi � ‖h‖∞, and (by union bound
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over all i) with probability 1− S 1
2S � 1

2 , |δi | ≤ ( ��������������������
4p̂i log(2TS)=n

√ + (3 log(2TS)=n)) for every i. Therefore, with proba-
bility at least 1=2S: ∑

i
p̃ihi �

∑
i
p−i hi + ‖h‖∞ 1−∑

j
p−j

( )
�∑

i
p−i hi + ‖h‖∞

∑
j
Δj

�∑
i
(p̂i −Δi)hi + ‖h‖∞Δi �

∑
i
p̂ihi + (‖h‖∞ − hi)Δi

≥∑
i
p̂ihi + (‖h‖∞ − hi)δi �

∑
i
(p̂i − δi)hi + ‖h‖∞δi

�∑
i
pihi + ‖h‖∞

∑
i
δi �

∑
i
pihi: w

Finally, we use the previous lemma to prove the main optimism lemma (Lemma 3).

Lemma 3 (Optimism). For every epoch k, the optimal gain λ̃k of the extended MDP M̃
k
satisfies

λ̃k ≥ λ∗ −O D log2(T=ρ)
����
SA
T

√( )
,

with probability 1− ρ, given small enough ρ ≤ (1=16S2), where λ∗ the optimal gain of MDPM and D is the diameter.

Proof. Let h∗ be the bias vector for an optimal policy π∗ of MDP M (refer to Lemma 1 in the preliminaries sec-
tion). Because h∗ is a fixed (although unknown) vector with |hi − hj | ≤D, we can apply Lemma 2 to obtain that

with probability 1− ρ, for all s, a, there exists a sample vector Qj,k
s,a for some j ∈ {1, : : : ,ψ} such that

(Qj,k
s,a)Th∗ ≥ PT

s,ah
∗ − δ,

where δ �O D log2(T=ρ) ��������
SA=T

√( )
. Now, consider the policy π for MDP M̃

k
which for any s, takes action aj, where

a � π∗(s), and j is a sample satisfying the previous inequality. Note that π is essentially π∗ but defined for an MDP
with a different transition probability matrix. LetQπ be the transition matrix for policy π, with rows formed by the
vectorsQj,k

s,π∗(s). Let Pπ∗ be the transition matrix whose rows are formed by the vectors Ps,π∗(s). This implies

Qπh∗ ≥ Pπ∗h∗ − δ1:

Let Q∗
π denote the limiting matrix for Markov chain with transition matrix Qπ. Observe that Qπ is aperiodic,

recurrent, and irreducible: it is aperiodic and irreducible because each entry of Qπ being a sample from Dirichlet
distribution is nonzero, and it is positive recurrent because in a finite irreducible Markov chain, all states are pos-
itive and recurrent. This implies that Q∗

π is of the form 1q∗T, where q∗ is the stationary distribution of Qπ, and 1 is
the vector of all 1s (refer to (A.6) in Puterman [31]). Also, Q∗

πQπ �Qπ, and Q∗
π1 � 1.

Therefore, the gain of policy π,

λ̃(π)1 � (rTπq∗)1 � Q∗
πrπ,

where rπ is the S-dimensional vector [rs,π(s)]s�1,: : : ,S. Now,

λ̃(π)1−λ∗1 �Q∗
πrπ −λ∗1

�Q∗
πrπ −λ∗(Q∗

π1): : : (using Q∗
π1 � 1)

�Q∗
π(rπ −λ∗1)

�Q∗
π(I −Pπ∗ )h∗: : : (using (1))

�Q∗
π(Qπ −Pπ∗ )h∗: : : (using Q∗

πQπ �Q∗
π)

≥ −δ1: : : (using (Qπ −Pπ∗ )h∗ ≥ −δ1,Q∗
π1 � 1):
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Then, by optimality,

λ̃k ≥ λ̃(π) ≥ λ∗ − δ: w

5.3. Deviation Bounds

Lemma 4. In every epoch k, with probability 1− ρ, for all samples j, all s, a, and all vectors h ∈ [0,H]S,

(Qj,k
s,a −Ps,a)Th ≤O H

�����
S

Nτk
s,a

√
+ S
Nτk

s,a

( )
log2(SAT=ρ)

( )
:

Proof. Fix an s,a, j, k. Let p̃ �Qj,k
s,a. Denote n �Nτk

s,a and m � n+ωS=κ, and ni �Nτk
s,a(i), p̄i :� ni +ω=n+ωS and p̂i :�

ni
n for i � 1, : : : ,S. Recall that η � ��������

TS=A
√ + 12ωS4 and ω � 720 log(T=ρ). It suffices to prove the lemma statement

for H � 1. We consider two cases.

Case 1: When n > η, posterior sampling is used. Therefore, p̃ is an S-dimensional Dirichlet random vector with
parameters mp̄i, i � 1, : : : ,S. Let X be distributed as Gaussian with mean μ � p̄Th and variance σ2 � 1

m. Now, for

any fixed h ∈ [0, 1]S, by Gaussian-Dirichlet stochastic optimism (see Lemma B.1 in the Appendix):

X:so p̃Th:

Then by Gaussian concentration (Corollary B.2), for any ρ′ ∈ (0, 1), and fixed h ∈ [0, 1]S, with probability at least
1− ρ′,

| p̃Th− p̄Th | ≤
�������������
2
m

log
2
ρ′

( )√
≤

������������������������
140
n

log
T
ρ

( )
log

2
ρ′

( )√
: (11)

In the last inequality, we substituted m ≥ n=κ, with κ � 120 log(T=ρ). In Proposition 2, we proved a strong upper
bound on | p̂Th− pTh | for any fixed h ∈ [0, 1]S, which was used for proving optimism. A corollary of that concen-
tration bound (by using observations that γi � pi(pi+1+⋯+pS)

(pi+⋯+pS) ≤ pi, and |ci | ≤ 1 when h ∈ [0, 1]S) is that for any

ρ′ ∈ (0, 1), and fixed h ∈ [0, 1]S with probability 1− ρ′,

| (p̂ − p)Th | ≤ 2

��������������
log(T=ρ′)

n

√
+ 3 log(2=ρ′)

n
: (12)

Also, for all h ∈ [0, 1]S:

| p̂Th− p̄Th | ≤∑
i

∣∣∣∣∣ ni +ω

n+ωS
− ni
n

∣∣∣∣∣ ≤ ∑
i

ωSni
(n+ωS)n ≤ ωS

n
, (13)

where ω � 720 log(T=ρ). Combine the bounds from Equations (11), (12), and (13) and take union bound over all
fixed h on an ε-grid over [0, 1]S, with ε � 1=n. Then, substituting ρ′ by ρ′=nS, we have that with probability 1− ρ′,
for all h ∈ [0, 1]S,

| p̃Th− pTh | ≤ 14

���������������������������
S log(T=ρ′) log(T=ρ)

n

√
+ 5

S log(T=ρ′)
n

+ 2
ωS
n

: (14)

Previously, we used that for all h′ not on the ε-grid, ‖h′ − h‖∞ ≤ ε � (1=n), so that | p̃Th′ − pTh′ | ≤ | p̃Th− pTh | +
(1=n) for some h on the ε-grid.

Case 2: When n ≤ η, simple optimistic sampling is used. Using notation in Section 5.1, in this case p̃ � p−+
(1−∑S

i�1 p−i )z, where z is a random vector picked uniformly at random from {11, : : : ,1S}. Using Bernstein’s
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inequality (Corollary B.1) to bound (p̂ − p), we have for any ρ′′ ∈ (0, 1), with probability 1− ρ′′, for all
h ∈ [0, 1]S:

(p̃Th− pTh) ≤ (p̂Th− pTh) +∑
i

���������������
3p̂i log(4S)

n

√
+∑

i

3 log(4S)
n

≤ ‖p̂ − p‖1‖h‖∞ +
��������������
S
3 log(4S)

n

√
+ 3S log(4S)

n

≤
������������������
4S log(T=ρ′′)

n

√
+ 3S log(T=ρ′′)

n
+

�������������
S
3 log(T)

n

√
+ 3S log(4S)

n

� 4

����������������
S log(T=ρ′′)

n

√
+ 3S log(4ST=ρ′′)

n
: (15)

Equations (14) and (15) provide a bound on | (Qj,k
s,a)Th̃ −PT

s,ah̃ | for any given s,a, j, k. Substituting ρ′ � ρ′′

� ρ=(SAψ), and taking a union bound over all possible values of s, a, j, we get the lemma statement. (Here
ψ �Θ(S log(SA=ρ)).) w

5.4. Diameter of the Extended MDP

Algorithm 1 computes policy π̃k in epoch k as an optimal gain policy of the extended MDP M̃
k
. Our goal in this

section is to prove that the diameter of M̃
k
is within a constant factor of the diameterM. We begin by deriving a

bound on the diameter of M̃
k
under certain conditions and then prove that those conditions hold with high

probability.

Lemma 5. For any state s ∈ S, let Es ∈ R
S
+ be the vector of the minimum expected times to reach s from s′ ∈ S in true MDP

M, that is, Es
s′ �minπTπ

s′→s. Note that Es
s � 0. For any episode k, if for every s, a there exists some j such that

Qj,k
s,a ·Es ≤ Ps,a ·Es + δ, (16)

for some δ ∈ [0, 1), then the diameter of extended MDP M̃
k
is at most D=(1− δ), where D is the diameter of MDPM.

Proof. Fix an epoch k. For brevity, we omit the superscript k later.
Fix any two states s1 ≠ s2. We prove the lemma statement by constructing a policy π̃ for M̃ such that the

expected time to reach s2 from s1 is at most D=(1− δ). Let π be the policy for MDPM that minimizes the expected
time to reach s2 from other states. Therefore, the time to reach s2 from s1 using π is at most D (because M has
diameter D). Let E be the |S | − 1-dimensional vector of expected times to reach s2 from every state, except s2
itself, using π (E is the subvector formed by removing sth2 coordinate of vector Es2 where Es was defined in the
lemma statement. Es2

s2 � 0). By first step analysis, E is a solution of

E � 1+P†
πE,

where P†
π is defined as the (S− 1) × (S− 1) transition matrix for policy π in MDP M, with the (s,s′)th entry being

the transition probability Ps,π(s)(s′) for all s, s′ ≠ s2. Also, by choice of π, E satisfies

Es1 ≤D:

Now, we define π̃ using π as follows: For any state s≠ s2, let a � π(s) and jth sample satisfies the property (16)
for s,a,Es2 , then we define π̃(s) :� aj. Let Qπ̃ be the transition matrix (dimension S × S) for this policy.

The termQπ̃ defines a Markov chain. Next, we modify this Markov chain to construct an absorbing Markov chain
with a single absorbing state s2. Let Q†

π̃ be the (S− 1) × (S− 1) submatrix of Qπ̃ obtained by removing the row and
column corresponding to the state s2. Then we defineQ′ as (an appropriate reordering of) the following matrix:

Q′
π̃ � Q†

π̃ q
0 1

[ ]
,

where q is an (S− 1)-length column vector such that the rows of Q′̃
π sum to one. Because the probabilities in Qπ̃

were drawn from Dirichlet distribution, they are all strictly greater than zero and less than one. Therefore, each
row-sum of Q†

π̃ is strictly less than one, so that the vector q has no zero entries, and the Markov chain is indeed
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an absorbing chain with single absorbing state s2. Then we notice that (I−Q†
π̃)−1 is precisely the fundamental

matrix of this absorbing Markov chain and hence exists and is nonnegative (Grinstead and Snell [19], theorem

11.4). Let Ẽ be defined as the (S− 1)-dimensional vector of expected time to reach s2 from s′ ≠ s2 in MDP M̃
k

using π̃. Then, it is the same as the expected time to reach the absorbing state s2 from s′ ≠ s2 in the Markov chain
Q′̃

π , given by

Ẽ � (I−Q†
π̃)−11:

Then, using (16) (because Es2
s2 � 0, the inequality holds for P†,Q†),

E � 1+P†
πE ≥ 1+Q†

π̃E− δ1 ⇒ (I−Q†
π̃)E ≥ (1− δ)1: (17)

Multiplying the nonnegative matrix (I−Q†
π̃)−1 on both sides of this inequality, it follows that

E ≥ (1− δ)(I−Q†
π̃ )−11 � (1− δ)Ẽ,

so that Ẽs1 ≤ (1=(1− δ))Es1 ≤D=(1− δ), proving that the expected time to reach s2 from s1 using policy π̃ in MDP

M̃
k
is at most D=(1− δ). w

Now we can use the previous result to prove that the diameter of the extended MDP is bounded by twice the
diameter of the original MDP.

Lemma 6. Assume T ≥ 2C̄SA log4(SAT=ρ) with some large enough constant C̄, and 0 < ρ ≤ (1=16S2). Then, for any

epoch k, the diameter of MDP M̃
k
is bounded by 2D, with probability 1− ρ.

Proof. Fix an epoch k. For any state s, let Es be as defined in Lemma 5. We show that with probability 1− ρ, for
all s, a, there exists some j with Qj,k

s,a ·Es ≤ Ps,a ·Es + δ, with δ ≤ 1=2. This will allow us to apply Lemma 5 to bound

the diameter of M̃
k
.

Given any s,a, j,k, we use notations and observations from Section 5.1, so that p̃ �Qj,k
s,a,p � Ps,a and so on. Also,

let h � Es. Then, minihi � 0,maxi hi �D.
First consider all s, awith n > η. Using (14) (in the proof of Lemma 4), we have

p̃Th− pTh ≤ 14D

���������������������������
S log(T=ρ′) log(T=ρ)

n

√
+ 5D

S log(T=ρ′)
n

+ 2D
ωS
n

,

with probability 1− ρ′ for any ρ′ ∈ (0, 1). Substituting ρ′ � ρ=(2SAψ), we get that with probability 1− ρ
2, for all s,

a, j such that n > η, p̃Th− pTh ≤ δ, where δ � 14D
����������������������
2 log2(SAT=ρ)=η

√
+ 5D(2S log(SAT=ρ′))=η+ (2ωSD=η). Then,

using η � ��������
TS=A

√ + 12ωS4, and T ≥ C̄SA log4(SAT=ρ) (for some constant C̄), we get δ ≤ 1=2. Although no attempt
has been made to optimize constants, we note that C̄ ≥ 284 is sufficient.

For s, a such that n ≤ η, simple optimistic sampling is used. Using notations introduced in Section 5.1, in this
case p̃ � p− + (1−∑

j p−j )z, where z is a random vector picked uniformly at random from {11, : : : ,1S}. With proba-
bility 1=S, z � 1i for i such that hi �mini hi � 0. Therefore, with probability at least 1=2S:

p̃Th � (p−)Th �∑
i
(p̂i −Δi)hi ≤

∑
i
(p̂i − δi)hi � pTh:

Because we have ψ ≥ (2S=C) log(SA=ρ) independent samples for every s, a, with probability 1− (ρ=2), there exists
at least one sample j such that Qj,k

s,a · h ≥ Ps,a · h.
Therefore, we have shown that with probability 1− ρ, for all s, a, there exists some j such that Qj,k

s,a ·Es ≤ Ps,a ·Es

+δ, with δ ≤ 1=2. By Lemma 5, we obtain that the diameter of M̃
k
is bounded by D=(1− δ) ≤ 2D with probability

1− ρ. w
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6. Conclusions
We presented an algorithm inspired by posterior sampling that achieves near-optimal worst-case regret bounds
for the reinforcement learning problem with communicating MDPs in a nonepisodic, undiscounted average
reward setting. Our algorithm may be viewed as a randomized version of the UCRL2 algorithm of Jaksch et al.
[20], with randomization via posterior sampling. Our analysis demonstrates that posterior sampling provides
adequate amount of uncertainty in the samples, so that an optimistic policy can be obtained without excess
overestimation.

Although our work surmounts some important technical difficulties in obtaining worst-case regret bounds for
posterior sampling–based algorithms for communicating MDPs, the provided bound does not achieve optimal
regret in S and D. Obtaining a better worst-case regret bound remains an open question. In particular, we believe
that studying value functions may improve the dependence on S in the regret bound, possibly for large T (Azar
et al. [8] produce an Õ( ���������

HSAT
√ ) bound when T ≥H3S3A). We also leave as future work the analysis regarding

the necessity of multiple posterior samples; in particular, whether the number of samples required in every
epoch can be reduced from Õ(S) to Õ( log(S)) or a constant.

Acknowledgments
The authors thank Tor Lattimore for pointing out a mistake in an earlier version of this work and Ian Osband for the
fruitful discussions toward resolving the said mistake.

Appendix A. Missing Proofs from Section 5.2

A.1. Anti-Concentration of Dirichlet Distribution: Proof of Proposition 1
We prove the following general result on anti-concentration of Dirichlet distributions, which will be used to prove
optimism.

Proposition 1 (Restated from Main Text). Fix any vector h ∈ R
S such that |hi − hi′ | ≤D for any i, i′. Consider a random vector p̃

generated from Dirichlet distribution with parameters (mp̄1, : : : ,mp̄S), where mp̄i ≥ 6. Then, for any ρ ∈ (0, 1), with probability at
least (C=S) − 2Sρ,

(p̃ − p̄)Th ≥ 1
8

����������∑
i<S

γ̄ic̄
2
i

m

√
− 2SD log(2=ρ)

m
,

where γ̄i :� p̄ i(p̄ i+1+: : :+p̄S)(p̄ i+: : :+p̄S) , c̄i � (hi − H̄i+1), H̄i+1 � 1∑S
j�i+1 p̄j

∑S
j�i+1 hjp̄j, for any fixed ordering on states i � 1, : : : ,S. Also, let constant

C � (ηk(δ)=2), where η � 0:15,δ � ((1−Φ)((1=2))=2, k(δ) � (2:82=δ4), with Φ being the cdf of the standard normal distribution.

We use an equivalent representation of a Dirichlet vector in terms of independent Beta random variables.

Fact A.1. Fix an ordering of indices 1, : : : ,S, and define ỹi :� p̃ i
p̃ i+⋯+p̃S

, ȳi :� p̄ i
p̄ i+⋯+p̄S

. Then, for any h ∈ R
S,

(p̃ − p̄)Th �∑
i
(ỹi − ȳi)(hi − H̃i+1)(p̄i+⋯ + p̄S) �

∑
i
(ỹi − ȳi)(hi − H̄i+1)(p̃i+⋯ + p̃S),

where H̃i+1 � 1∑S
j�i+1 p̃j

∑S
j�i+1 hjp̃j, H̄i+1 � 1∑S

j�i+1 p̄j
∑S

j�i+1 hjp̄j.

Proof. We will prove the first equality, that is,

(p̃ − p̄)Th � ∑
i
(ỹi − ȳi)(hi − H̃i+1)(p̄i+ ⋯ + p̄S): (A.1)

The second equality follows analogously from the same proof steps. After substituting H̃i+1 in the right-hand side, the
coefficient of hk for any k is given by

p̃k
p̄k+⋯ + p̄S
p̃k+⋯ + p̃S

( )
− p̄k −

∑k−1
i�1

(ỹi − ȳi)
p̃k

p̃i+1+⋯ + p̃S

( )
(p̄i+⋯ + p̄S):
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Therefore, to prove (A.1) holds, it suffices to show that for k � 1, 2, : : : ,S,

∑k−1
i�1

(ȳi − ỹi)(p̄i + : : : + p̄S)
p̃i+1 + : : : + p̃S

� 1− p̄k + : : : + p̄S
p̃k+⋯ + p̃S

: (A.2)

We prove (A.2) by induction on k, because p̃, p̄ are probability vectors and hence sum to one. The case k � 1 clearly
holds. For k � 2, we have that the left-hand side of (A.2) becomes

p̄1 − p̃1
p̃2 + : : : + p̃S

� p̄1 − p̃1
1− p̃1

� 1− p̃1 − (1− p̄1)
1− p̃1

� 1− p̄2 + : : : + p̄S
p̃2 + : : : p̃S

:

Now, assume (A.2) holds up to k – 1, and we will prove it holds for k. By the induction hypothesis and some algebra,

∑k
i�1

(ȳi − ỹi)(p̄i + : : : + p̄S)
p̃i+1 + : : : + p̃S

� ∑k−1
i�1

(ȳi − ỹi)(p̄i + : : : + p̄S)
p̃i+1 + : : : + p̃S

+ (ȳk − ỹk)(p̄k + : : : + p̄S)
p̃k+1 + : : : + p̃S

� 1 − p̄k + : : : + p̄S
p̃k + : : : + p̃S

+ (ȳk − ỹk)(p̄k + : : : + p̄S)
p̃k+1 + : : : + p̃S

� 1 − p̄k + : : : + p̄S
p̃k + : : : + p̃S

+ p̄k
p̄k + : : : + p̄S

− p̃k
p̃k + : : : + p̃S

( )
p̄k + : : : + p̄S
p̃k+1 + : : : + p̃S

� 1 − p̄k + : : : + p̄S
p̃k + : : : p̃S

+ p̄k
p̃k+1 + : : : + p̃S

− p̃k(p̄k + : : : + p̄S)
(p̃k + : : : + p̃S)(p̃k+1 + : : : + p̃S)

� 1 + p̄k(p̃k + : : : + p̃S) − (p̄k + : : : p̄S)(p̃k+1 + : : : + p̃S) − p̃k(p̄k + : : : + p̄S)
(p̃k + : : : + p̃S)(p̃k+1 + : : : + p̃S)

( )

� 1 + p̄k(p̃k + : : : + p̃S) − (p̄k + : : : p̄S)(p̃k + : : : + p̃S)
(p̃k + : : : + p̃S)(p̃k+1 + : : : + p̃S)

( )

� 1 − p̄k+1 + : : : + p̄S
p̃k+1 + : : : + p̃S

as desired. w

The subsequent fact follows from a known property of Dirichlet distributions (see section 1.4 of Albert and Denis [6]).

Fact A.2. For i � 1, : : : ,S, ỹi :� p̃i=p̃i+⋯ + p̃S are independent Beta random variables distributed as Beta(mp̄i,m(p̄i+1+⋯ + p̄S)),
with mean

E[ỹi] �
mp̄i

m(p̄i+⋯ + p̄S)
� ȳi,

and variance

σ̄2
i :� E[(ỹi − ȳi)2] �

p̄i(p̄i+1+⋯ + p̄S)
(p̄i+⋯ + p̄S)2(m(p̄i+⋯ + p̄S) + 1) :

We derive the following basic anti-concentration inequality for Beta random variables.

Lemma A.1 (Anti-Concentration for Beta Random Variables). Let Fa,b denote the cdf of a Beta random variable with parameter
(a, b), with a ≥ 6,b ≥ 6. Let

z � a
a+ b

+C

�����������������������
ab

(a+ b)2(a+ b+ 1)

√
+ C
a+ b

,

with C ≤ 0:5. Then,

1− F(a,b)(z) ≥ 1−Φ(1) − 0:005 ≥ 0:15:
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Proof. Let x � C
��������

ab
(a+b+1)

√
+C. Then, z � a+x

a+b , w1 � (b(a+ x)=(a+ b))1=3 andw2 � [a(b− x)=(a+ b))]1=3. Also, z ≤ 2C
����
ab
a+b

√
. Also,

(a+ b− 1)(1− z) ≥ (a+ b− 1) 1− a
a+ b

−C

�����������������������
ab

(a+ b)2(a+ b+ 1)

√
− C
a+ b

( )
� (a+ b− 1) b

a+ b
− C
a+ b

�����������
ab

a+ b+ 1

√
− C
a+ b

( )

≥ a+ b− 1
a+ b

b−C

�����������
ab

a+ b+ 1

√
− C
a+ b

( )
≥ 11
12

b−C
��
b

√ − C
12

( )
≥ 0:8:

Hence, we can apply Fact B.5 relating Beta with Normal. We bound the numerator and denominator in the expression of
y to show that the relation Iz(a,b) ≤ Φ(y) + ε holds for some y ≤ 1:

numerator(y) � 3 w1 1− 1
9b

( )
−w2 1− 1

9a

( )[ ]

� 3
ab

a+ b

( )1
3

1+ x
a

( )1
3
1− 1

9b

( )
− 1− x

b

( )1
3
1− 1

9a

( )[ ]

≤ 3
ab

a+ b

( )1
3

1+ x
3a

( )
1− 1

9b

( )
− 1− x

3b
− 2x2

9b2

( )
1− 1

9a

( )[ ]

� 3
ab

a+ b

( )1
3 b− a

9ab

( )
+ x(a+ b)

3ab

( )
− 2x

27ab

( )[ ]
+ 3

ab
a+ b

( )1
3 2x2

9b2
1− 1

9a

( )[ ]

≤ 3
ab

a+ b

( )1
3 b− a

9ab

( )
+ x(a+ b)

3ab

( )[ ]
+ 3

ab
a+ b

( )1
3 2x2

9b2
1− 1

9a

( )[ ]

� ab
a+ b

( )1
3 a+ b

ab

( )
b− a

3(a+ b)
( )

+ x+ 2x2

3b2
1− 1

9a

( )[ ]

≤ ab
a+ b

( )1
3 a+ b

ab

( )
b− a

3(a+ b)
( )

+ 2x2

3b2
1− 1

9a

( )
+C+C

ab
a+ b

( )1
2

[ ]

≤ b− a

3
�����������
ab(a+ b)√ + 4C2

���
ab

√

b2
������
a+ b

√ +C
������
a+ b

√ ���
ab

√ +C

( )
ab

a+ b

( )5
6 a+ b

ab

( )

≤ 1

3
��
6

√ + 1

6
��
6

√ + 1

2
��
3

√ + 1
2

( )
ab

a+ b

( )5
6 a+ b

ab

( )
:

Previously, we used that C ≤ (1=2) and a,b ≥ 6. Similarly,

denominator(y) � w2
1

b
+w2

2

a

[ ]1=2

� ab
a+ b

( ) 1+ x
a

( )2
3

b
+

1− x
b

( )2
3

a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
2

≥ ab
a+ b

( )1
3 1+ 2x

3a− x2
9a2

( )
b

+
1− 2x

3b

( )
a

− x2

9a2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
2

� ab
a+ b

( )1
3 a 1+ 2x

3a− x2
9a2

( )
+ b 1− 2x

3b− x2
9b2

( )
ab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
2

� ab
a+ b

( )1
3 a+ b

ab
1− x2

9ab

( )( )1
2

≥ ab
a+ b

( )1
3 a+ b

ab
1− 4C2

9(a+ b)
( )( )1

2

≥ ab
a+ b

( )1
3 a+ b

ab
107
108

( )( )1
2

:

Agrawal and Jia: Optimistic Posterior Sampling for Reinforcement Learning
Mathematics of Operations Research, Articles in Advance, pp. 1–30, © 2022 INFORMS 17

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

60
.3

9.
60

.1
89

] o
n 

18
 O

ct
ob

er
 2

02
2,

 a
t 0

7:
54

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Hence, we have that

y ≤
1

3
��
6

√ + 1
6

��
6

√ + 1
2

��
3

√ + 1
2����

107
108

√ ≤ 1,

so that Iz(a,b) ≤ φ(1) + ε for ε ≤ 0:005. The lemma statement follows by observing that 1− F(a,b)(z) � 1− Iz(a,b) ≥
1−φ(1) − ε ≥ 1− 0:845− 0:005 ≥ 0:15. w

Lemma A.2 (Corollary of Lemma A.1). Let ỹi , ȳi, σ̄i be defined as in Fact A.2. If mp̄i,m(p̄i+1+⋯ + p̄S) ≥ 6, then, for any positive
constant C ≤ 1

2,

P | ỹi − ȳi | ≥ Cσ̄ i + C
m(p̄i+⋯ + p̄S)

( )
≥ 0:15≕ η:

Proof. By Fact A.2, ỹi is a Beta random variable with parameters (mp̄i,m(p̄i+1+⋯ + p̄S)) and mean ȳi. Then, by Lemma
A.1 with a �mp̄i,b �m(p̄i+1+⋯ + p̄S), we have that, for any C ≤ 1=2,

P ỹi ≥ ȳi +Cσ̄ i + C
m(p̄i + : : : + p̄S)

( )
≥ 0:15: (A.3)

Now, by symmetry of the Beta distribution, 1− ỹi is a Beta random variable with parameters (m(p̄i+1+⋯ + p̄S),mp̄i) and
mean 1− ȳi. Again by Lemma A.1 with a �m(p̄i+1+⋯ + p̄S),b �mp̄i, we have that, for any C ≤ 1

2,

P (1− ỹi ) ≥ (1− ȳi ) +Cσ̄i + C
m(p̄i + : : : + p̄S)

( )
≥ 0:15: (A.4)

The result follows from (A.3) and (A.4). w

Lemma A.3 (Application of Berry-Esseen Theorem). Let G ⊆ {1, : : : ,S} be a set of indices, zi ∈ R, i ∈ G be fixed. Let

XG :�∑
i∈G

(ỹi − ȳi)zi,

with ỹi, ȳi defined as before, and mp̄i ≥ 6 for all i. Let F be the cumulative distribution function of

XG

σG
, where, σ2G � ∑

i∈G
z2i σ̄

2
i ,

with σ̄i being the standard deviation of ỹi (refer to Fact A.2). Let Φ be the cumulative distribution function of standard normal distri-
bution. Then, for all ε > 0:

sup
x

|F(x) −Φ(x) | ≤ ε,

as long as �����|G |√ ≥ 2:8R
ε

, where R :�max
i, j∈G

ziσ̄i

zjσ̄j
:

Proof. We have that Yi � (ỹi − ȳi)zi. Then, Yi, i ∈ G are independent variables, with E[Yi] � 0,

σ2i :� E[Y2
i ] � E[(ỹi − ȳi)2(zi)2]
� z2i σ̄

2
i ,

ρi :� E[ |Yi |3] ≤ E[ |Yi |4]3=4

� E[ | ỹi − ȳi |4]3=4z3i
� κ

3=4
i E[ | ỹi − ȳi |2]3=2z3i

≤ κiσ̄
3
i z

3
i ,

where the first inequality is by using Jensen’s inequality, and

κi � E[(ỹi − ȳi)4]
E[(ỹi − ȳi)2]2

≥ 1
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is the kurtosis of ỹi. It is known that the kurtosis of a Beta(νμ,ν(1−μ)) random variable is

κi � 3+ 6
(3+ ν)

(1− 2μ)2(1+ ν)
μ(1−μ)(2+ ν) − 1

( )
≤ 3+ 6

νμ(1−μ) :

For ỹi ~ Beta(mp̄i,m(p̄i+1 + : : : + p̄S)), ν �m(p̄i + : : : + p̄S) and μ � ȳi. One of μ and 1−μ is at least 1
2, so that

κi ≤ 3+ 12
min(mp̄i,m(p̄i+1 + : : : + p̄S))

≤ 5,

because mp̄i ≥ 6 for all i.
Now, we use Berry-Esseen theorem (Fact B.4), with

ψ1 �
1����������∑
i∈G σ2i

√ max
i∈G

ρi

σ2i
≤ (maxi∈G κi)�����|G |√ maxi∈G ziσ̄i

mini∈G ziσ̄i

to obtain

sup
x

|F(x) −Φ(x) | ≤ 0:56ψ1 ≤
2:8�����|G |√ maxi∈G ziσ̄i

mini∈G ziσ̄i
:

The lemma statement follows if
�����|G |√ ≥ 2:8R=ε, where R :�maxi,j∈G(ziσ̄i=zjσ̄j). w

Lemma A.4. Assume mp̄i ≥ 6, ∀i. Then, for any fixed zi, i � 1, : : : ,S,

Pr
∑S
i�1

(ỹi − ȳi)zi ≥
1
4

�����������∑S
i�1

z2i σ̄
2
i

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≥ ηk(δ)

2S
,

where η � 0:15,δ � ((1−Φ)(1=2))=2, k(δ) � 2:82=δ4, with Φ being the cdf of the standard normal distribution.

Proof. We consider two cases: if S < k(δ) and if S ≥ k(δ). For the first case, when S < k(δ), we use Lemma A.2 on each
index i, so that

Pr
∑
i
(ỹi − ȳi)zi ≥ 0:5

�����������∑
i
z2i σ̄

2
i

√( )
≥ ηk(δ),

where η � 0:15.
If it is the case that S ≥ k(δ), we consider the group of indices with the k(δ) largest values of |ziσ̄ i | , call it group

G(1), and then divide the remaining indices into groups of G as follows. Note that G−G(1) is the set of all ungrouped
indices. Let index k � arg maxi∈G−G(1) |ziσ̄i | . Then the new group G(2) consists of index k along with all other indices
j ∈ G−G(1), where |zkσ̄k |= |zjσ̄j | ≤ 1

δ. To form successive groups, we repeat this procedure on the remaining ungrouped
indices, creating new groups when necessary, until all are grouped. By construction, we have that |ziσ̄i |= |zjσ̄j | ≤ 1

δ for
all i, j in any given group G. In addition, we can define an ordering � on groups by ordering them by maximum
value of |ziσ̄i | in the group, that is, GBG′ if maxi∈Gz2i σ̄

2
i ≥maxj∈G′z2j σ̄

2
j . Then, for GBG′, we also have

maxi∈Gz2i σ̄
2
i ≥ 1

δ2
maxj∈G′z2j σ̄

2
j .

Recall from Lemma A.3, for every group G ∈ G of size
�����|G |√

> 2:8=δε, we have that the cdf of XG
σG

is within ε of the nor-
mal distribution cdf. By definition of δ, it follows that Pr(XG=σG ≥ 1

2) ≥ 2δ− ε. Using this result for ε � δ, we get that for
every group of size at least k(δ), we have, for any group G where |G | ≥ (k(δ))2,

Pr XG ≥ 1
2
σG

( )
≥ δ:

Now, consider the top log1=δ(S) groups (with respect to the ordering � ), including G(1). First consider the top groups of
cardinality at least k(δ): call these “top big groups.” For every top big group of (including G(1)), we have that∑

i∈top big groups
(ỹi − ȳi)zi ≥

1
2

�����������������������∑
i∈top big groups

z2i σ̄
2
i

√
, (A.5)
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with probability at least δ log1=δ(S) � 1
S. Next, consider the remaining top groups where the cardinality is less than k(δ), we

refer to these as “top small groups.” For the first (i.e., lowest index) top small group, say G(ℓ), we use Lemma A.2 at most
k(δ) times, so that

Pr
∑
i∈G(ℓ)

(ỹi − ȳi)zi ≥ 0:5
�������������∑
i∈G(ℓ)

z2i σ̄
2
i

√( )
≥ ηk(δ), (A.6)

where η ≥ 0:15. Combining (A.5) and (A.6), we have that with probability at least 1
Sη

k(δ),∑
i∈ top big groups,G(ℓ)

(ỹi − ȳi)zi ≥
1
2

��������������������������∑
i∈ top big groups, Ḡ

z2i σ̄
2
i

√
: (A.7)

Let G( j) denote the jth group according to ordering B . Also, let |z(1)σ̄(1) | �mini∈G(1) |ziσ̄i | . Then, because for any
G,G′, GBG′, we have that maxi∈G z2i σ̄

2
i ≥ 1

δ2
maxj∈G′ z2j σ̄

2
j , for every remaining top small group G(j), j > ℓ, we can bound the

group’s total variance by

k(δ)max
i∈G( j)

z2i σ̄
2
i ≤ k(δ)δ2( j−ℓ)max

i∈G(ℓ)
z2i σ̄

2
i ≤ k(δ)δ2( j−2)z2(1)σ̄2

(1):

Therefore, the sum of the standard deviation for top small groups, excluding group G(ℓ), is at most

k(δ) ∑
G:top small groups−G(ℓ)

max
i∈G

z2i σ̄
2
i ≤ k(δ) ∑log1=δ(S)

j�3
δ2( j−2)z2(1)σ̄

2
(1) ≤

k(δ)δ2
1− δ2

z2(1)σ̄
2
(1)

as it is a geometric series with multiplier δ2.
For the remaining “bottom groups” (i.e., those not among the top log1=δ(S) groups), each element’s variance is at most

1
S2 z

2
(1)σ̄

2
(1); therefore,

∑
i∈top small groups−G(ℓ), bottom groups

z2i σ̄
2
i ≤

k(δ)δ2
1− δ2

+ S
S2

( )
z2(1)σ̄

2
(1) ≤

k(δ)
25

z2(1)σ̄
2
(1) ≤

1
25

∑
i∈G(1)

z2i σ̄
2
i : (A.8)

By Cantelli’s inequality (Fact B.3), with probability at least 1=2,

∑
i∈top small groups−G(ℓ), bottom groups

(ỹi − ȳi)zi ≥ −
����������������������������������������������∑
i∈top small groups−G(ℓ), bottom groups

z2i σ̄
2
i

√
≥ −1

5

�������������∑
i∈G(1)

z2i σ̄
2
i

√
: (A.9)

Hence, combining (A.7) and (A.9), with probability at least ηk(δ)=2S �Ω(1=S),
∑
i
(ỹi − ȳi)zi ≥

1
2

����������������������������∑
i∈top big groups,G(ℓ)

z2i σ̄
2
i

√
− 1
5

�������������∑
i∈G(1)

z2i σ̄
2
i

√

≥ 1
4

����������������������������∑
i∈top big groups,G(ℓ)

z2i σ̄
2
i

√
+ 1
20

�������������∑
i∈G(1)

z2i σ̄
2
i

√

≥ 1
4

����������������������������∑
i∈top big groups,G(ℓ)

z2i σ̄
2
i

√
+ 1
4

���������������������������������������������∑
i:top small groups−G(ℓ), bottom groups

z2i σ̄
2
i

√

≥ 1
4

�����������∑
i
z2i σ̄

2
i

√
,

where we used (A.8) in the previous third inequality. w

We are now ready to prove Proposition 1.

Proof of Proposition 1. Because p̃ and p̄ are probability vectors (sum to one), it is sufficient to consider h ∈ [0,D]S. Now,
use Fact A.1 to express (p̃ − p̄)Th as

(p̃ − p̄)Th � ∑
i
(ỹi − ȳi)(hi − H̃i+1)(p̄i+⋯ + p̄S):
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We note that H̃i is the scalar product of (S− i+ 1)-dimensional Dirichlet random vector (ỹi, : : : , ỹS) with the fixed vector
(hi, : : : ,hS), and H̄i is the expected value of that product. Therefore, we can derive deviation bounds for this product
using a similar argument as used in the proof of Case 1 of Lemma 4 in Section 5.3.

For any i, Let X be distributed as Gaussian with mean μ � H̄i=D and variance σ2 � 1
m(p̄ i+: : :+p̄S). Now, by Gaussian-

Dirichlet stochastic optimism (Lemma B.1), X:so
1
DH̃i: Then by Gaussian concentration and Corollary B.2, for any

ρ ∈ (0, 1),

|H̃i − H̄i | ≤D

���������������������
2 log(2=ρ)

m(p̄i + : : : + p̄S)

√
, (A.10)

with probability 1− ρ.
Similarly, noting that ỹi is a Beta random variable, using Gaussian-Beta stochastic optimism (Lemma B.2), if X is dis-

tributed as Gaussian with mean μ � ȳi and variance σ2 � 1
m(p̄ i+: : :+p̄S), then X:so ỹi. Then by Corollary B.2, with probability

1− ρ,

| ỹi − ȳi | ≤
���������������������

2 log(2=ρ)
m(p̄i + : : : + p̄S)

√
: (A.11)

Therefore, with probability 1− 2Sρ,

(p̃ − p̄)Th−∑
i
(ỹi − ȳi)(hi − H̄i+1)(p̄i+⋯ + p̄S)

� ∑
i
(ỹi − ȳi)(H̄i+1 − H̃i+1)(p̄i+⋯ + p̄S)

≥ −∑
i

���������������������
2 log(2=ρ)

m(p̄i + : : : + p̄S)

√
D

���������������������
2 log(2=ρ)

m(p̄i + : : : + p̄S)

√
(p̄i+⋯ + p̄S)

� −2SD log(2=ρ)
m

: (A.12)

Then, applying Lemma A.4 (given mp̄i ≥ 6) for zi � (hi − H̄i+1)(p̄i+⋯ + p̄S), i � 1, : : : ,S, with probability at least ηk(δ)=2S,

(p̃ − p̄)Th ≥ 1
4

�����������∑
i
z2i σ̄

2
i

√
− 2SD log(2=ρ)

m
:

Now, we observe ∑
i
z2i σ̄

2
i � (hi − H̄i+1)2(p̄i+ ⋯ + p̄S)2σ̄2

i �
c̄2i p̄i(p̄i + : : : , p̄S)

m(p̄i + : : : + p̄S) + 1
,

to obtain that with probability at least (ηk(δ)=2S) − 2Sρ,

(p̃ − p̄)Th ≥ 1
8

����������∑
i

γ̄ic̄
2
i

m

√
− 2SD log(2=ρ)

m
,

where

γ̄i �
p̄i(p̄i+1 + : : : + p̄S)
(p̄i + : : : + p̄S)

: w

A.2. Concentration of Empirical Probability Vectors: Proof of Proposition 2

Proposition 2 (Restated from Main Text). Fix any vector h ∈ R
S such that |hi − hi′ | ≤D for any i, i′. Fix any epoch k, state s,

action a. As defined in the notations section, denote n �Nτk
s,a, ni �Nτk

s,a(i), pi � Ps,a(i), p̂i :� ni
n , for i � 1, : : : ,S. Then, if τk − 1 ≥ 96, for

any ρ ∈ (0, 1), with probability 1− ρ,

| (p̂ − p)Th | ≤ 2

����������������������
log(T=ρ)∑

i<S

γic
2
i

n

√
+ 3D

log(T=ρ)
n

,

where γi � pi(pi+1+⋯+pS)
(pi+⋯+pS) , ci � hi −Hi+1, Hi+1 � 1∑S

j�i+1 pj
∑S

j�i+1 hjpj, for any fixed ordering on states i � 1, : : : ,S.
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Proof. For every t � 2, : : : ,T, i � 1, : : : ,S, define

Zt,i � ci 1(st � i) − ci
pi

pi+⋯ +pS
·1(st ∈ i, : : : ,S{ })

( )
1(st−1 � s, at−1 � a),

Zt �
∑S
i�1

Zt,i:

For i � 1, : : : ,S, define yi � pi
(pi+⋯+p̂S) , ŷi �

p̂ i(p̂ i+⋯+p̂S). Then,∑τk
t�2Zt

n
�∑

i
cip̂i −

∑
i

cipi
pi+⋯ +pS

· (p̂i + : : : + p̂S) �
∑S−1
i�1

(ŷi − yi)(p̂i + : : : + p̂S)ci � (p̂ − p)Th,

where we used Fact A.1 for the last equality. Now, E[Zt |st−1,at−1] �∑
iE[Zt,i |st−1, at−1] � 0. Also, we observe that for any t,

Zt,i and Zt,j for any i≠ j are independent given the state st−1 and action at−1: (assume j > i without loss of generality)

E[Zt,iZt,j |st−1 � s,at−1 � a] � cicjE

[
1(st � i) 1(st � j) −1(st � j) pi

pi+⋯ +pS
·1(st ∈ i, : : : ,S{ })

−1(st � i) pj
pj+⋯ +pS

·1(st ∈ j, : : : ,S
{ })

+ pjpi
(pj+⋯ +pS)(pi+⋯ +pS) ·1(st ∈ j, : : : ,S

{ }) |st−1 � s, at−1 � a

]

� cicjE −1(st � j) pi
pi+⋯ +pS

+ pjpi
(pj+⋯ +pS)(pi+⋯ +pS) ·1(st ∈ j, : : : ,S

{ }) |st−1 � s, at−1 � a
[ ]

� cicj − pjpi
pi+⋯ +pS

+ pjpi
(pi+⋯ +pS)

( )
� 0:

Therefore, ∑τk
t�2

E[Z2
t |st−1, at−1] �

∑τk
t�2

∑
i
E[Z2

t,i |st−1, at−1] �
∑S−1
i�1

c2i nγi,

where the last equality is obtained using the following derivation:

E

∑τk
t�2

Z2
t,i

∣∣∣∣∣ st−1 � s, at−1 � a

[ ]
� c2i

∑τk
t�2

1(st−1 � s, at−1 � a) pi − p2i
(pi+ ⋯ + pS)2

(pi+ ⋯ + pS)
( )

:

The previous expression is zero for i � S. For i < S, we get

E

∑τk
t�2

Z2
t,i

∣∣∣∣∣ st−1 � s, at−1 � a

[ ]
� c2i

∑τk
t�2

1(st−1 � s, at−1 � a) pi(pi+1+ ⋯ + pS)
pi+ ⋯ + pS

� c2i n
pi(pi+1+ ⋯ + pS)

pi+ ⋯ + pS
� nγic

2
i :

Then, using Bernstein’s inequality (refer to Corollary B.1) with Mτk � |∑τk
t�2Zt | and Vτk :�∑τk

t�2 E[Z2
t |st−1,at−1] ≤∑

i<Snγic
2
i ,

we get the desired bound on (p− p̂)Th � 1
n
∑τk

t�2Zt. w

A.3. Modified Anti-Concentration Bound: Proof of Proposition 3
We use the notation described in Section 5.1. Given an epoch k, state s, action a, and sample j, we denote n �Nτk

s,a,ni �Nτk
s,a(i),

m � n+ωS
κ , where ω � 720 log(T=ρ) and κ � 120 log(T=ρ), as defined in the algorithm. Then, we denote pi � Ps,a(i), p̂i :� ni

n , p̄i � ni+ω
n+ωS,

and p̃i �Qj,k
s,a(i), for i ∈ S.

Also, as defined earlier in Proposition 1 and Proposition 2, we denote

γ̄i :�
p̄i(p̄i+1 + : : : + p̄S)
(p̄i + : : : + p̄S)

, c̄i � (hi − H̄i+1), H̄i+1 � 1∑S
j�i+1p̄j

∑S
j�i+1

hjp̄j,
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and

γi �
pi(pi+1+ ⋯ + pS)
(pi+ ⋯ + pS) , ci � hi −Hi+1,Hi+1 � 1∑S

j�i+1pj

∑S
j�i+1

hjpj:

We prove the following result for s, a such that n > η. Recall that for such s, a, the algorithm uses Dirichlet posterior sam-

pling to generate sample vectors Qj,k
s,a, so that in this case p̃ is a random vector distributed as Dirichlet(mp̄1, : : : ,mp̄S).

Proposition A.1. Assume that h ∈ [0,D]S, and n > 12ωS2, and states i � 1, : : : ,S are ordered such that p̄1 ≤⋯≤ p̄S. Also,
ω � 720 log(T=ρ),κ � ω

6, as defined in the algorithm. Then, with probability C
S − 7Sρ,

(p̃ − p̄)Th ≥ 0:148

������������
κ
∑
i

γic
2
i

n

√
−O

DSω log(T=ρ)
n

( )
:

The constant C is defined as in Proposition 1.

Proof. The proof is obtained by a modification to the proof of Proposition 1, which proves a similar bound but in terms
of γ̄i s and c̄ i s and m. Because κ � ω=6, mp̄i � (ni +ω)=κ ≥ 6.

In the proof of that proposition, we obtained (refer to Equation (A.12)) that with probability 1− 2Sρ (given mp̄i ≥ 6),

(p̃ − p̄)Th ≥ ∑
i
(ỹi − ȳi)(hi − H̄i+1)(p̄i+⋯ + p̄S) −

2DS log(2=ρ)
m

≥ ∑
i
(ỹi − ȳi)(hi − H̄i+1)(p̄i+⋯ + p̄S) −O

DSω log(T=ρ)
n

( )
,

where ỹi :� p̃ i
p̃ i+⋯+p̃S

, ȳi :� p̄ i
p̄ i+⋯+p̄S

, H̃i+1 � 1∑S
j�i+1 p̃j

∑S
j�i+1 hjp̃j, H̄i+1 � 1∑S

j�i+1 p̄j
∑S

j�i+1 hjp̄j. Now, breaking up the term in the sum-

mation and using Lemma A.7 to bound |Hi+1 − H̄i+1 | (p̄i+⋯ + p̄S) (because we have that ω � 720 log(T=ρ) and n > 12ωS2 by
assumption) and Lemma B.2 and Corollary B.2 to bound | ỹi − ȳi | (see (A.11) in the proof of Proposition 1), we get that for
every i, with probability 1− 4Sρ,

(p̃ − p̄)Th−∑
i
(ỹi − ȳi)(hi −Hi+1)(p̄i+⋯ + p̄S) +O

DSω log(T=ρ)
m

( )
≥ ∑

i
(ỹi − ȳi)(H̄i+1 −Hi+1)(p̄i+⋯ + p̄S)

≥ −∑
i

�������������������
2 log(2=ρ)

m(p̄i+⋯ + p̄S)

√
3D

�����������������������������
log(T=ρ) (p̄i+⋯ + p̄S)

n

√
+ 4

(ωS+ log(T=ρ))D
n

( )

(∗) ≥ −6DS
������������������������
log(2=ρ) log(T=ρ)√ �����

mn
√ − 4(ωS+ log(T=ρ))D ��������������

2 log(2=ρ)√
n

���
m

√ ∑
i

1�����������������(p̄i+⋯ + p̄S)
√ :

Recall that m � (n+ωS)=κ, so that for n > Sω, n ≥mκ=2 �mω=12 ≥m log(2=ρ). Therefore, the first term of (∗) is at least

−6DS
������������������������
log(2=ρ) log(T=ρ)√ ����������������
m2 log(2=ρ)√ � −6DS

�������������
log(T=ρ)√
m

� −O DSω log(T=ρ)
n

( )
:

Then using Lemma A.5 and m � (n+ Sω)=κ > 6n=ω > 72S2, the second term in (∗) is at least

−8S(ωS+ log(T=ρ))D ��������������
2 log(2=ρ)√

n
�������
72S2

√ � −O DSω log(T=ρ)
n

( )
:

Now, applying Lemma A.4 (given mp̄i ≥ 6) for zi � (hi −Hi+1)(p̄i+⋯ +p̄S), i � 1, : : : ,S, with probability ηk(δ)=2S,

∑
i
(ỹi − ȳi)zi ≥

1
4

�����������∑
i
σ̄2
i z

2
i

√
:

We substitute this in the left-hand side along with the observation

∑
i
z2i σ̄

2
i �

∑
i
(hi −Hi+1)2(p̄i+ ⋯ + p̄S)2σ̄2

i �
∑
i

c2i p̄i(p̄i + : : : , p̄S)
m(p̄i + : : : + p̄S) + 1

≥ ∑
i

6
7
γ̄ic

2
i

m
:
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Thus far, we have that with probability (ηk(δ)=2S) − 4Sρ,

(p̃ − p̄)Th ≥
��
6

√

4
��
7

√
����������∑
i

γ̄ic
2
i

m

√
−O

DSω log(T=ρ)
n

( )
: (A.13)

Now, because n > 12ωS2 and S ≥ 2, we have that 1=n+ωS ≥ 24=25n and hence 1=m � κ=n+ωS ≥ 24κ=25n. Finally, we use
Lemma A.6 with c � (12 �����

30)√
=5 to lower bound γ̄i by (1=1:53)γi −O(ωS=n) to get with probability (ηk(δ)=2S) − 7Sρ,

(p̃ − p̄)Th ≥ 1
1:53

��
6

√

4
��
7

√
����
24

√����
25

√
������������
κ
∑
i

γic
2
i

n

√
−O

DSω log(T=ρ)
n

( )

≥ 0:148

������������
κ
∑
i

γic
2
i

n

√
−O

DSω log(T=ρ)
n

( )
: w

Lemma A.5. Let x ∈ R
n such that 0 ≤ x1 ≤⋯≤ xn ≤ 1 and

∑
ixi � 1. Then,∑n

i�1

1������������
xi+⋯ xn

√ ≤ 2n:

Proof. Define f (x, j) :� 1���������
xj+⋯+xn√ for all j � 1, ⋯ ,n, and f (x) � ∑n

j�1 f (x, j). We prove that x∗ :� 1
n ,

1
n , ⋯ , 1n

( )
achieves the maxi-

mum value of f(x). Consider any solution x′. Suppose that there exists some index pair i, j with i < j and some ε > 0 such
that x′i ≠ x′j and increasing x′i by ε and decreasing x′j by ε preserves the ordering of the indices. This would strictly
increase the objective f (x′), because f (x′, k) strictly increases for all i < k ≤ j and remains unchanged otherwise. Hence, x′ is
not an optimal solution. The only case where no such index pair (i, j) exists is when all x′i are equal, that is, when x′ � x∗.
Because f (x) �∑

i f (x, i) is a continuous function over a compact set, it has a maximum, which therefore must be attained
at x∗.

This means

f (x) � ∑n
i�1

1������������
xi+ ⋯ xn

√ ≤ ∑n
i�1

1���������������
x∗i+ ⋯ + x∗n

√ � ∑n
i�1

��
n
i

√
≤ ��

n
√ ∫ n

i�0
1�
i

√ di � 2n: w

Lemma A.6. Let 6=5 < c ≤ (12 ����
30

√ )=5 and n > 12ωS2, where ω � 720 log(T=ρ). Then for any group G ⊆ S of indices, with proba-
bility 1− ρ,

1− 1
c

( )∑
i∈G

p̄i − 2ωS
n

≤∑
i∈G

pi ≤ 1+ 1
c

( )∑
i∈G

p̄i + 2ωS
n

:

If in the definition of γ̄i, we use an ordering of i such that p̄S ≥ 1
S (e.g., if max p̄i is the last in the ordering), then for all i, with prob-

ability 1− 3ρ,

γi ≤
1+ 1

c

( )2
1− 1

c − 1
6

γ̄i +
2 1+ 1

c + 1
6

( )
1− 1

c − 1
6

ωS
n

:

Proof. Given a group G ⊆ S, define pG � ∑
i∈Gpi, p̂G � ∑

i∈Gp̂i, and p̄G �∑
i∈Gp̄i. Also define Zt � (1(st ∈ G) − pG) 1(st−1 �

s, at−1 � a). Then, let Mτ �∑τ
t�2Zt and Vτ � ∑τ

t�1E[(Zt)2 |F t−1]. Note that E[Zt |F t−1] � 0 and

Vτ � n(pG(1− pG)2 + (1− pG)(−pG)2) � npG(1− pG),
so that by Bernstein’s inequality (Corollary 1),

|Mτ | �
∣∣∣∣∣∑τt�2 Zt

∣∣∣∣∣ ≤ 2
���������������������������
npG(1− pG) log(τ=ρ)

√
+ 3 log(τ=ρ) ≤ 2

�����������������
npG log(τ=ρ)

√
+ 3 log(τ=ρ):

Noting that ∑τ
t�2 1(st ∈ G)1(st−1 � s, at−1 � a)

n
� ∑

i∈G
p̂i,
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we have that

| p̂G − pG | � |Mτ |
n

≤ 2

����������������
pG log(τ=ρ)

n

√
+ 3 log(τ=ρ)

n
:

Substituting pG ≤ p̂G + | p̂G − pG | in the right-hand side, rearranging terms, and squaring both sides, we have

| p̂G − pG |2 − 2 | p̂G − pG | 3 log(τ=ρ)n
+ 3 log(τ=ρ)

n

( )2
≤ 4p̂G log(τ=ρ)

n
+ 4 | p̂G − pG | log(τ=ρ)

n
:

Then, simplifying by completing the square, the previous expression is equivalent to

| p̂G − pG | ≤ 2

����������������
p̂G log(τ=ρ)

n

√
+ 9 log(τ=ρ)

n
:

Because | p̄G − p̂G | ≤ ωS=n,

|pG − p̄G | � |pG − p̂G + p̂G − p̄G |

≤ 2

�������������������������
p̄G +ωS

n

( )
log(τ=ρ)

n

√√√√
+ 9 log(τ=ρ)

n
+ωS

n

≤ 2

����������������
p̄G log(τ=ρ)

n

√
+ 2

�����������������
ωS
n

log(τ=ρ)
n

√√√
+ 9 log(τ=ρ)

n
+ωS

n

≤ 2

����������������
p̄G log(τ=ρ)

n

√
+ 2ωS

n
,

because ω � 720 log(T=ρ). Now, for n > 12ωS2 and S ≥ 2,

np̄i � n
np̂i +ω

n+ωS
≥ nω
n+ωS

≥ 24ω
25

≥ 4c2 log(τ=ρ),

for c ≤ (12 ����
30

√ )=5. Hence,

|pG − p̄G | ≤ p̄G

��������������
4 log(τ=ρ)

np̄G

√
+ 2ωS

n
≤ p̄G

����������������
4 log(τ=ρ)
4c2 log(τ=ρ)

√
+ 2ωS

n
≤ 1
c
p̄G + 2ωS

n
,

so that ∑
i
pi ≤ 1+ 1

c

( )∑
i
p̄i + 2ωS

n
,
∑
i
pi ≥ 1− 1

c

( )∑
i
p̄i − 2ωS

n

when k > 1. For the second statement of the lemma, using what we just proved, we have that with probability 1− 3ρ,

γi �
pi(pi+1+⋯ +pS)

pi+⋯ +pS
≤

1+ 1
c

( )2
p̄i(p̄i+1+⋯ + p̄S) + 2 1+1

c( )ωS(p̄ i+⋯+p̄S)
n + 4ω2S2

n2

1− 1
c

( )
(p̄i+⋯ + p̄S) − 2ωS

n

:

Now, if c > 6
5 and indices i are ordered such that p̄S ≥ 1=S, then p̄i+⋯ + p̄S ≥ 1=S for all i. Also, if n > 12ωS2, we have

the following bound on the denominator from the previous expression: (1− 1=c)(p̄i+⋯ + p̄S) − (2ωS=n) ≥ (1− (1=c)−
(1=6))(p̄i+⋯ + p̄S), so that

γi ≤
1+ 1

c

( )2
1− 1

c − 1
6

γ̄i +
2 1+ 1

c + 1
6

( )
1− 1

c − 1
6

ωS
n

: w

Lemma A.7. For any fixed h ∈ [0,D]S, and i, let Ĥi � 1∑S
j�i p̂j

∑S
j�i hjp̂j, Hi � 1∑S

j�i pj
∑S

j�i hjpj, H̄i � 1∑S
j�i p̄j

∑S
j�i hjp̄j. Then if τk − 1 ≥ 96,

with probability 1− ρ,

| (H̄i −Hi)(p̄i + : : : + p̄S) | ≤ 2D

�����������������������������
log(T=ρ) (pi+⋯ +pS)

n

√
+ 3

(ωS+ log(T=ρ))D
n

:
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Moreover, if we also assume that n > 12ωS2, where ω � 720 log(T=ρ)), then with probability 1− 2ρ,

| (H̄i −Hi)(p̄i + : : : + p̄S) | ≤ 3D

�����������������������������
log(T=ρ) (p̄i+⋯ + p̄S)

n

√
+ 4

(ωS+ log(T=ρ))D
n

:

Proof. For every t � 2, : : : ,T, ℓ � i, i+ 1, : : : ,S, define

Zt,ℓ � hℓ1(st � ℓ) − hℓ
pℓ

pi+⋯ +pS
·1(st ∈ i, : : : ,S{ })

( )
1(st−1 � s,at−1 � a),

Zt �
∑
ℓ≥i

Zt,ℓ:
Then, ∑τk

t�2Zt

n
� ∑

ℓ≥i
hℓp̂ℓ −

∑
ℓ≥i

hℓ
pℓ

pi+ ⋯ +pS · (p̂i + : : : + p̂S) � (Ĥi −Hi)(p̂i + : : : + p̂S):

where we used Fact A.1 for the last equality. Now, E[Zt |st−1,at−1] � ∑
ℓ≥iE[Zt,ℓ |st−1, at−1] � 0. Also, we observe that for any

t, Zt,ℓ and Zt,j for any ℓ ≠ j,ℓ, j ≥ i are negatively correlated given the current state and action:

E[Zt,ℓZt,j |st−1,at−1] � hℓhjE

[
1(st � ℓ)1(st � j) −1(st � j) pℓ

pi+⋯ +pS ·1(st ∈ i, : : : ,S{ })

−1(st � ℓ) pj
pi+⋯ +pS ·1(st ∈ i, : : : ,S{ })

+ pjpℓ
(pi+⋯ +pS)2

·1(st ∈ i, : : : ,S{ }) |st−1,at−1
]

� hℓhj − 2pjpℓ
pi+⋯ +pS +

pℓpj
(pi+⋯ +pS)2

·1(st ∈ i, : : : ,S{ })
( )

� hℓhj − pjpi
pi+⋯ +pS

( )
≤ 0:

Also,

E

∑τk
t�2

Z2
t,ℓ |st−1 � s, at−1 � a

[ ]
� h2ℓ

∑τk
t�1

1(st−1 � s, at−1 � a) pℓ − p2ℓ
(pi+ ⋯ +pS)2

(pi+ ⋯ +pS)
( )

� h2ℓ
∑τk
t�1

1(st−1 � s, at−1 � a) pℓ(
∑

j≥i,j≠kpj)
pi+ ⋯ +pS

� nh2ℓ
pℓ(∑j≥i,j≠kpj)
pi+ ⋯ +pS

� nh2ℓ
pℓ(∑j≥i,j≠kpj)
pi+ ⋯ +pS

≤ nD2pℓ:

Therefore,

Vτk :�
∑τk
t�2

E[Z2
t |st−1 � s, at−1 � a] ≤ ∑τk

t�1

∑
ℓ≥i

E[Z2
t,ℓ |st−1 � s, at−1 � a] ≤ nD2(pi+ ⋯ +pS):

Then, applying Bernstein’s inequality (refer to Corollary 1) to bound |Mτk | � |∑τk
t�2Zt | , we get the following bound on

(1=n)∑τk
t�2Zt � (Ĥi −Hi)(p̂i + : : : + p̂S) with probability 1− ρ:

| (Ĥi −Hi)(p̂i + : : : + p̂S) | �
∣∣∣∣∣ 1n∑τk

t�2
Zt

∣∣∣∣∣ ≤ 2D

�����������������������������
log(T=ρ) (pi+⋯ +pS)

n

√
+ 3D

log(T=ρ)
n

:

Also,

|Ĥi − H̄i | �
∣∣∣∣∣∑S
ℓ�i

p̂ℓ
p̂i+ ⋯ +p̂S

hℓ − p̄ℓ
p̄i+ ⋯ +p̄S

hℓ

( )∣∣∣∣∣ ≤ ωSD
n(p̂i+ ⋯ +p̂S)

,
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Combining,

| (H̄i −Hi)(p̂i + : : : + p̂S) | ≤ 2D

�����������������������������
log(T=ρ) (pi+ ⋯ +pS)

n

√
+ 3D

log(T=ρ)
n

+ ωSD
n

:

Replacing p̂i by p̄i,

| (H̄i −Hi)(p̄i + : : : + p̄S) | ≤ 2D

�����������������������������
log(T=ρ) (pi+⋯ +pS)

n

√
+ 3

(ωS+ log(T=ρ))D
n

,

with probability 1− ρ.
Now, if we also have that ω � 720 log(T=ρ) and n > 12ωS2, using Lemma A.6 with c � 3 to replace pi by p̄i, with prob-

ability 1− 2ρ,

| (H̄i −Hi)(p̄i + : : : + p̄S) | ≤ 3D

�����������������������������
log(T=ρ) (p̄i+⋯ +p̄S)

n

√
+ 4

(ωS+ log(T=ρ))D
n

: w

Appendix B. Some Useful Facts and Known Inequalities

Fact B.1 (Bernstein’s Inequality from Seldin et al. [34] Lemma 11 and Corollary 12). Let Z1,Z2, : : : ,Zτ be a bounded mar-
tingale difference sequence so that |Zi | ≤ K and E[Zi |F i−1] � 0. Define Mτ �∑τ

i�1Zi and Vτ �∑τ
i�1E[(Zi)2 |F i−1]. For any

c > 1 and δ ∈ (0, 1), with probability greater than 1− δ, if������������
ln 2ν

δ

(e− 2)Vτ

√
≤ 1
K
,

then

|Mτ | ≤ (1+ c)
������������������
(e− 2)Vτln

2ν
δ

√
,

otherwise,

|Mτ | ≤ 2K ln
2ν
δ
,

where

ν �
⌈
ln

������(e−2)τ
ln2

δ

√( )
ln c

⌉
+ 1:

Corollary 1 (to Bernstein’s Inequality). Let Zi for i � 1, ⋯ ,τ, Mτ, and Vτ as previously. For τ ≥ 96 and δ ∈ (0, 1), with probabil-
ity greater than 1− δ,

|Mτ | ≤ 2
���������
Vτln

τ

δ

√
+ 3Kln

τ

δ
:

Proof. Applying Bernstein’s inequality with c � 1+ 4
τ, with probability greater than 1− δ,

|Mτ | ≤ (1+ c)
������������������
(e− 2)Vτln

2ν
δ

√
+ 2K ln

2ν
δ

≤ (1+ c)
������������������
(e− 2)Vτln

τ
4
3

δ

√
+ 2K ln

τ
4
3

δ

≤ (1+ c)
�������������������
(e− 2)4

3
Vτln

τ

δ

√
+ 3K ln

τ

δ

≤ 2
���������
Vτln

τ

δ

√
+ 3K ln

τ

δ
,
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where

ν �
⌈
ln

������(e−2)τ
ln2

δ

√( )
ln c

⌉
+ 1 �

⌈
τ

2
ln

����������
(e− 2)τ
ln 2

δ

√( )⌉
+ 1 ≤ τ

2
ln

����������(e− 2)τ
ln2

√( )
+ 2 ≤ 1

2
τ

4
3: w

Fact B.2 (Multiplicative Chernoff Bound;Kleinberg et al. [25], Lemma 4.9). Consider n independent and identially distrib-
uted random variables X1, ⋯ ,Xn on [0, 1]. Let μ be their mean and let X be their average. Then for any α > 0, the follow-
ing holds:

P( |X−μ | < r(α,X) < 3r(α,μ)) > 1− eΩ(α),

where r(α,x) � ���
αx
n

√ + α
n :

More explicitly, we have that with probability 1− ρ,

|X−μ | <
����������������
3 log(2=ρ)X

n

√
+ 3 log(2=ρ)

n
:

Fact B.3 (Cantelli’s Inequality). Let X be a real-valued random variable with expectation μ and variance σ2. Then P(X−
μ ≥ λ) ≤ σ2

σ2+λ2 for λ > 0 and P(X−μ ≥ λ) ≥ 1− σ2

σ2+λ2 for λ < 0.

Fact B.4 (Berry-Esseen Theorem). Let X1,X2, : : : ,Xn be independent random variables with E[Xi] � 0, E[X2
i ] � σ2i > 0, and

E[ |Xi |3] � ρi <∞. Let

Sn � X1 +X2 + : : : +Xn�����������������
σ21 + : : : + σ2n

√
and denote Fn the cumulative distribution function of Sn and Φ the cumulative distribution function of the standard nor-
mal distribution. Then for all n, there exists an absolute constant C1 such that

supx∈R |Fn(x) −Φ(x) | ≤ C1ψ1,

where ψ1 � (∑n
i�1 σ2i )−1=2max1≤i≤n

ρi
σ2i
. The best upper bound on C1 known is C1 ≤ 0:56 (Shevtsova [35]).

Fact B.5 (Abramowitz and Stegun [2] 26.5.21). Consider the regularized incomplete Beta function Iz(a,b) (cdf) for the Beta
random variable with parameters (a, b). For any z such that (a+ b− 1)(1− z) ≥ 0:8, Iz(a,b) � Φ(y) + ε, with |ε | < 0:005 if
a+ b > 6. Here Φ is the standard normal cdf with

y �
3 w1 1− 1

9b

( )
−w2 1− 1

9a

( )[ ]
w2

1
b + w2

2
a

[ ]1=2 ,

where w1 � (bz)1=3 and w2 � [a(1− z)]1=3.
Definition B.1. For any X and Y real-valued random variables, X is stochastically optimistic for Y if for any u : R→ R
convex and increasing E[u(X)] ≥ E[u(Y)].
Lemma B.1 (Gaussian vs. Dirichlet Optimism, from Osband et al. [29], Lemma 1). Let Y � PTV for V ∈ [0, 1]S fixed and P ~

Dirichlet(α) with α ∈ RS+ and
∑S

i�1 αi ≥ 2. Let X ~N(μ,σ2) with μ �
∑S

i�1 αiVi∑S
i�1 αi

, σ2 � ∑S
i�1 αi

( )−1, then X is stochastically optimistic

for Y.

Lemma B.2 (Gaussian vs. Beta Optimism from Osband et al. [29], Lemma 6). Let Ỹ ~ Beta(α,β) for any α,β > 0 and

X ~N α
α+β ,

1
α+β

( )
. Then X is stochastically optimistic for Ỹ whenever α+ β ≥ 2.

Lemma B.3 (Dirichlet vs. Beta Optimism from Osband et al. [29], Lemma 5). Let y � pTv for some random variable p ~
Dirichlet(α) and constants v ∈Rd and α ∈N d. Without loss of generality, assume v1 ≤ v2 ≤⋯≤ vd. Let α̃ �∑d

i�1 αi(vi − v1)=(vd − v1)
and β̃ �∑d

i�1 αi(vd − vi)=(vd − v1). Then, there exists a random variable p̃ ~ Beta(α̃, β̃) such that, for ỹ � p̃vd + (1− p̃)v1, E[ỹ |y] � E[y].
Lemma B.4. If E[X] � E[Y] and X is stochastically optimistic for Y, then –X is stochastically optimistic for –Y.
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Proof. By lemma 3.3 in Osband et al. [29], X stochastically optimistic for Y is equivalent to having X�D Y+A+W with A ≥ 0
and E[W |Y+A] � 0 for all values y + a. Taking expectation of both sides, we get that E[X] � E[Y] +E[A] +E[W] and because
E[X] � E[Y] � 0 and E[W] � E[E[W |Y+A]] � 0 we get that E[A] � 0. Because A ≥ 0,A � 0. Also, E[W |Y � y] � 0 for all y.

Now we can show that –X is stochastically optimistic for –Y as follows: From the previous statements, −X�D − (Y+A
+W) � −Y+ (−W). Then for all y′, E[−W | −Y � y′] � −E[W |Y � −y′] � 0 by definition of W. Therefore, –X is stochastically
optimistic for –Y. w

Corollary B.2. Let Y be any distribution with mean μ such that X ~N(μ,σ2) is stochastically optimistic for Y. Then with probabil-
ity 1− ρ,

|Y−μ | ≤
�����������������
2σ2 log(2=ρ)

√
:

Proof. For any s > 0, and t, and applying Markov’s inequality,

P(Y − μ > t) � P(Y > μ + t) � P(esY > es(μ+t)) ≤ E[esY]
es(μ+t)

:

By Definition B.1, taking u(a) � esa, which is a convex and increasing function, E[esY] ≤ E[esX], and hence

P(Y−μ > t) ≤ E[esX]
es(μ+t)

� eμs+1
2σ

2s2

es(μ+t)
� e

1
2σ

2s2−st:

Because the previous expression holds for all s > 0, using s � t
σ2
, P(Y−μ > t) ≤ e−

t2

2σ2 .
Similarly, for the lower tail bound, we have for any s > 0,

P(Y − μ < −t) � P(−Y > −μ + t) � P(es(−Y) > es(−μ+t)) ≤ E[es(−Y)]
es(−μ+t)

:

By Lemma B.4, –X is stochastically optimistic for –Y, so E[es(−Y)] ≤ E[es(−X)], and hence

P(Y−μ < −t) ≤ E[es(−X)]
es(−μ+t)

� e−μs+1
2σ

2s2

es(−μ+t)
� e

1
2σ

2s2−st:

Again, letting s � t
σ2
, P(Y−μ < −t) ≤ e−

t2

2σ2 .

Then, for t � �����������������
2σ2 log(2=ρ)√

, we have that

P( |Y−μ | ≤
�����������������
2σ2 log(2=ρ)

√
) ≥ 1− ρ: w

Lemma B.5 (Lemma 19 in Jaksch et al. [20]). For any sequence of numbers z1, : : : ,zn with 0 ≤ zk ≤ Zk−1 :�max{1,∑k−1
i�1 zi},∑n

k�1

zk������
Zk−1

√ ≤ ( ��
2

√ + 1) ����
Zn

√
:

Endnote
1 Worst-case regret is a strictly stronger notion of regret than Bayesian regret. However, a caveat is that the reward distributions are assumed
to be bounded or sub-Gaussian to prove worst-case regret bounds. Conversely, the Bayesian regret bounds in the previously mentioned liter-
ature allow more general (known) priors on the reward distributions with possibly unbounded support. Bayesian regret bounds under such
more general reward distributions are incomparable to the worst-case regret bounds presented here.
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