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1. Introduction
Reinforcement learning (RL) refers to the problem of learning and planning in sequential decision-making systems
when the underlying system dynamics are unknown and may need to be learned by trying out different options
and observing their outcomes. A typical model for the sequential decision-making problem is a Markov decision
process (MDP), which proceeds in discrete time steps. At each time step, the system is in some state s, and the deci-
sion maker may take any available action a to obtain a (possibly stochastic) reward. The system then transitions to
the next state according to a fixed state transition distribution. The reward and the next state depend on the current
state s and the action a but are independent of all the previous states and actions. In the reinforcement learning prob-
lem, the underlying state transition distributions and/or reward distributions are unknown and need to be learned
using the observed rewards and state transitions while aiming to maximize the cumulative reward. This requires the
algorithm to manage the tradeoff between exploration versus exploitation, that is, exploring different actions in dif-
ferent states to learn the model more accurately versus taking actions that currently seem to be reward maximizing.

Exploration-exploitation tradeoff has been studied extensively in the context of stochastic multiarmed bandit
(MAB) problems, which are essentially MDPs with a single state. The performance of MAB algorithms is typically
measured through regret, which compares the total reward obtained by the algorithm to the total expected reward
of an optimal action. Optimal regret bounds have been established for many variations of MAB (see Bubeck and
Cesa-Bianchi [11] for a survey), with a large majority of results obtained using the upper confidence bound (UCB)
algorithm, or more generally, the optimism in the face of uncertainty principle. Under this principle, the learning
algorithm maintains tight overestimates (or optimistic estimates) the expected rewards for individual actions, and
at any given step, picks the action with the highest optimistic estimate. More recently, posterior sampling, aka
Thompson sampling (Thompson [40]), has emerged as another popular algorithm design principle in MAB,
owing its popularity to a simple and extendable algorithmic structure, an attractive empirical performance (Chap-
elle and Li [14], Kauffman et al. [23]), and provably optimal performance bounds that have been recently obtained
for many variations of MAB (Agrawal and Goyal [3], Agrawal and Goyal [4], Agrawal and Goyal [5], Bubeck and
Liu [12], Russo and Van Roy [32], Russo and Van Roy [33]). In this approach, the algorithm maintains a Bayesian
posterior distribution for the expected reward of every action; then at any given step, it generates an independent
sample from each of these posteriors and takes the action with the highest sample value.

In this paper, we consider the RL problem in a similar regret-based framework, where the total reward of the
reinforcement learning algorithm is compared with the total expected reward achieved by a single benchmark
policy over a time horizon T. In our setting, the benchmark policy is the infinite-horizon undiscounted average
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reward optimal policy for the underlying MDP. Here, the underlying MDP is assumed to have finite states S and
finite actions A and is assumed be communicating with (unknown) finite diameter D. The diameter D is an upper
bound on the expected time it takes to go from any state s to any other state s’ using an appropriate policy, for
any pair s,s’. Most algorithms studied in the literature that achieve interesting regret bounds assume the finite
diameter setting. We note, however, an exception to this is the work of Fruit et al. [17], who consider potentially
infinite diameter in the case of weakly-communicating or multichain MDPs. The UCRL2 algorithm of Jaksch et al.

[20], which is based on the optimism principle, achieved the first finite time regret upper bound of O(DSVAT)
for this problem. A similar bound was achieved by Bartlett and Tewari [9], although under an assumption of
known diameter. Jaksch et al. [20] also established a worst-case lower bound of Q(VDSAT) on the regret of any
algorithm for this problem. More recent works have achieved better regret bounds than the original UCRL2

work. Fruit et al. [18] demonstrated a regret bound of O(SVDAT) with a more careful analysis of the UCRL2
algorithm. Using slightly different problem parameters, Ortner [26] proves a regret bound of O(V£xSAT),
where t,,, is a mixing time parameter of the MDP, and Talebi and Maillard [38] prove a O( 354V ,ST) regret
bound, where V7, is the variance of the bias function. The best result under our setting has been achieved by

Zhang and Ji [41], where they design an algorithm that achieves near-optimal regret of O(VDSAT). The draw-
back, however, is that their algorithm is inefficient to implement, as it requires an optimization over a nonconvex
constraint set.

Our main contribution is a posterior sampling—based algorithm with a high probability worst-case regret

upper bound of O(DSVAT). Although the theoretical bound is of the same order as that of UCRL2, we believe
posterior sampling-based algorithms have advantages over confidence interval-based techniques (e.g.,
UCRL2), in that we are no longer required to search over high-dimensional continuous intervals in solving the
MDP; instead, we can simply apply standard MDP techniques under posterior sampling. In particular, this
means that we are not restricted to extended value iteration (as in Jaksch et al. [20]) as the technique for solving
MDPs but rather can use any black-box method. Thus, although UCRL2 with extended value iteration to solve
the MDP is computationally efficient (in S and A), depending on the domain and the problem structure, other
techniques may be more efficient for the given MDP and can be used in our posterior sampling-based algo-
rithm. Our algorithm uses an “optimistic” version of the posterior sampling heuristic while using several ideas
from the algorithm design structure in Jaksch et al. [20], such as an epoch-based execution and the extended
MDP construction. Our algorithm proceeds in epochs, where in the beginning of every epoch, for every state
and action, it generates 1) = O(S) sample transition probability vectors from a posterior distribution and then
solves an extended MDP with (/A actions and S states formed using these samples. The optimal policy com-
puted for this extended MDP is used throughout the epoch.

The posterior sampling for RL (PSRL) approach has been studied previously in Abbasi-Yadkori and Szepesvari [1],
Osband and Van Roy [27], Osband et al. [28], and Ouyang et al. [30], but in a Bayesian regret framework. Bayesian
regret is defined as the expected regret over a known prior on the transition probability matrix. Osband and Van Roy

[27] demonstrate an O(HVSAT) bound on the Bayesian regret for PSRL in finite-horizon episodic MDPs, when the epi-
sode length is H. For the nonepisodic case, Ouyang et al. [30] propose an algorithm that achieves a regret bound of

O(HSVAT), where H here is the bound on the span of the MDP. In this paper, we consider the stronger notion of
worst-case regret, aka minimax regret, which requires bounding the maximum regret for any instance of the problem.'

We consider a nonepisodic communicating MDP setting and prove a worst-case regret bound of O(DSVAT), where D is
the unknown diameter of the communicating MDP. In comparison with PSRL that generates a single sample from

the posterior, our optimistic PSRL algorithm is slightly inefficient as it generates multiple (O(S)) samples (although
only once in every epoch). It is not entirely clear if the extra samples are only an artifact of the analysis. In an empirical
study of a multiple sample version of posterior sampling for RL, Fonteneau et al. [16] show that multiple samples can
potentially improve the performance of posterior sampling in terms of probability of taking the optimal decision. Our
analysis uses some ideas from the Bayesian regret analysis. However, bounding the worst-case regret requires several
new technical ideas, in particular, for proving optimism of the gain of the sampled MDP. Further discussion is pro-
vided in Section 4.

PSRL (and our optimistic PSRL) approaches are referred to as “model-based” approaches, because they explic-
itly estimate the transition probability matrix underlying the MDP model. Another closely related line of work
investigates optimistic versions of “model-free algorithms” like value-iteration (Azar et al. [8]) and Q-learning
(Kakade et al. [21]). However, the setting considered in both these works is that of an episodic MDP, where the
learning agent interacts with the system in episodes of fixed and known length H. Under this setting, both the
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previously mentioned works achieve minimax (i.e., worst-case) regret bound of O(VHSAT) when T is large
enough compared with the episode length H. To understand the challenges in our setting compared with the epi-
sodic setting, although the initial state of each episode can be arbitrary in the episodic setting, importantly, the
sequence of these initial states is shared by the algorithm and any benchmark policy. In contrast, in the nonepiso-
dic setting considered in this paper, the state trajectory of the benchmark policy over T time steps can be com-
pletely different from the algorithm’s trajectory. To the best of our understanding, the shared sequence of initial
states of every episode, and the fixed known length H of episodes seems to form crucial components of the analy-
sis in the episodic settings of Azar et al. [8] and Kakade et al. [21]. Thus, it would be difficult to extend such an
analysis to the nonepisodic communicating MDP setting considered in this paper.

Among other related work, Burnetas and Katehakis [13] and Tewari and Bartlett [39] present optimistic lin-
ear programming approaches that achieve logarithmic regret bounds with problem dependent constants.
Strong Probably Approximately Correct (PAC) bounds have been provided in Kearns and Singh [24], Brafman
and Tennenholtz [10], Kakade [22], Asmuth et al. [7], and Dann and Brunskill [15]. There, the aim is to bound the
performance of the policy learned at the end of the learning horizon and not the performance during learning as
quantified here by regret. Notably, the BOSS algorithm proposed in Asmuth et al. [7] is similar to the algorithm pro-
posed here in the sense that the former also takes multiple samples from the posterior to form an extended (referred
to as merged) MDP. Strehl and Littman [36, 37] provide an optimistic algorithm for bounding regret in a discounted
reward setting, but the definition of regret is different in that it measures the difference between the rewards of an
optimal policy and the rewards of the learning algorithm on the state trajectory taken by the learning algorithm.

2. Preliminaries and Problem Definition
2.1. Communicating MDP
We consider an MDP M defined by tuple {S, A, P,r,s1}, where S is a finite state-space of size S, A is a finite
action-space of size A, P: Sx A — AS is the transition model, 7: S x A — [0,1] is the reward function, and s; is
the starting state. When an action a € A is taken in a state s € S, a reward 1, is generated, and the system transi-
tions to the next state s’ € S with probability P;,(s"), where YgesPsq(s”) = 1.

We consider communicating MDPs with finite diameter. Here we define communicating MDPs and recall
some useful known results for such MDPs.

Definition 1 (Policy). A deterministic policy 7t : S — A is a mapping from state space to action space.

Definition 2 (Gain of a Policy). The gain A™(s) of a policy n, from starting state s; =s, is defined as the infinite
horizon undiscounted average reward, given by
S1 = Sl.

Definition 3 (Diameter D(M)). Diameter D(M) of an MDP M is defined as the minimum time required to go
from one state to another in the MDP using some deterministic policy:

A(s)=E

1 T
lim f;} o)

The variable s; is the state reached at time ¢, on executing policy 7.

D(M)= max min T

s—s’/
s#s’,5,5'€S :S—A

where T7

S—

policy 7.

s is the expected number of steps it takes to reach state s’ when starting from state s and using

Definition 4 (Communicating MDP). An MDP M is communicating if and only if it has a finite diameter. That is,
for every pair of states s,s".s # s’, there exists a policy 7 such that the expected number of steps to reach s’ from s,
T™ .., is at most D, for some constant D > 0.

s—s'/

Lemma 1 (Optimal Gain and Bias for a Communicating MDP). For a communicating MDP M with diameter D:
(a) Puterman [31] (theorems 8.1.2 and 8.3.2): The optimal (maximum) gain A is state independent and is achieved by a
deterministic stationary policy 7", that is, there exists a deterministic policy 7* such that

PARE masxmaX/\”(s') =A"(s), VseS.
s'e T
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Here, 1" is referred to as an optimal policy for MDP M.
(b) Bartlett and Tewari [9] (theorem 4): The optimal gain> A” satisfies the following equations:

A" =minmaxrs, + PSTah —hs = maxrg, + PsTﬂh* —-h, Vs, 1)
heRS 5,4 ’ a ’

where h*, referred to as the bias vector of MDP M, satisfies

maxh; —minh] <D.
S S

Given these definitions and results, we can now define the RL problem studied in this paper.

2.2. RL Problem

The RL problem proceeds in rounds t =1,...,T. The learning agent starts from a state s; at round f = 1. In the
beginning of every round ¢, the agent takes an action a; € A and observes the reward r,,,, and the next state
St+1 ~ Ps, ., where r and P are the reward function and the transition model, respectively, for a communicating
MDP M with diameter D.

The learning agent knows the state-space S, the action space A, and the rewards 7, ,, Vs € S,a € A, for the underly-
ing MDP, but not the transition model P or the diameter D. (The assumption of known and deterministic rewards has
been made here only for simplicity of exposition because the unknown transition model is the main source of diffi-
culty in this problem. Our algorithm and results can be extended to bounded stochastic rewards with unknown distri-
butions using standard Thompson sampling for MAB, e.g., using the techniques in Agrawal and Goyal [4].)

The agent can use the past observations to learn the underlying MDP model and decide future actions. The goal is to
maximize the total reward 3L, 7y, 5, or equivalently, minimize the total regret over a time horizon T, defined as

T
R(T,M):=TA" = > rs,a. 2
t=1
where A" is the optimal gain of MDP M.
We present an algorithm for the learning agent with a near-optimal upper bound on the regret R(T, M) for
any communicating MDP M with diameter D, thus bounding the worst-case regret over this class of MDPs.

3. Algorithm Description
Our algorithm combines the ideas of posterior sampling (aka Thompson sampling) with the extended MDP con-
struction used in Jaksch et al. [20]. Here we first describe the main components of our algorithm. Our algorithm
is then summarized as Algorithm 1.

Some notation: The term N, denotes the total number of times the algorithm visited state s and played action
a until before time ¢, and N} (i) denotes the number of time steps among these N{ , steps where the next state was
i, that is, the steps where a transition from state s to i was observed. We index the states from 1 to S, so that
Yo, NL,(i)=N!, for any t. We use the symbol 1 to denote the vector of all ones and 1, to denote the vector with
one at the ith coordinate and zero elsewhere.

3.1. Doubling Epochs

Our algorithm uses the epoch-based execution framework of Jaksch et al. [20]. An epoch is a group of consecutive
rounds. The rounds t =1,...,T are broken into consecutive epochs as follows: the kth epoch begins at the round 7
immediately after the end of the (k — 1)th epoch and ends at the first round 7 such that for some state-action pair s, a,
N¢, > 2Nk The algorithm computes a new policy 7ty at the beginning of every epoch k and uses that policy through
all the rounds in that epoch. Because the total number of visits to any state action-pair is bounded by T, it is easy to
observe that, irrespective of how the policies {7} are computed, the number of epochs is bounded by SAlog,(T).

3.2. Posterior Sampling

We use posterior sampling to compute the policy 7ty in the beginning of every epoch k. The algorithm maintains a
posterior distribution over the transition probability vector Ps,, for every s € S,a € A. Observe that P, , specifies a
categorical distribution over states 1, ..., S, with parameters P ,(i),i = 1,...,S. Dirichlet distribution is a convenient
choice for maintaining a posterior over parameters P; ,, as Dirichlet distribution is a conjugate prior for the catego-
rical distribution. In particular, it satisfies the following useful property: given a prior Dirichlet(as, ..., as) on P,
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after observing a transition from state s to i (with underlying probability P;,(7)), the posterior distribution is given
by Dirichlet(as,...,a; +1,...,as). By this property, for any s € S,a € A, on starting from the prior Dirichlet(1) for
Py, the posterior at time # is Dirichlet({N{ (i) + 1},-; ).

A direct application of the PSRL approach introduced in Osband and Van Roy [27] would involve sampling a
transition probability vector from the Dirichlet posterior for each state-action pair to form a sample MDP. A sam-
ple policy 7ty would then be computed as an optimal policy for the sampled MDP. Our algorithm uses a modi-
fied optimistic version of this approach. At the beginning of every epoch k, for every s€ S,a€ A such that
NIk >, it generates multiple samples for P, from a boosted variance posterior. Specifically, for each s, 4, it gener-

s,a —

ates ¢ independent sample probability vectors Q!%, .., QS 4 as
sta ~ Dirichlet(M}),

where M{ , denotes the vector [M! (i)],-; s, with
. 1
ML, (i) := E(N;ﬂ(i) +w), fori=1,...,8S. 3)

Here, ¢, x,w,n are parameters of the algorithm. The values of these parameters are initialized as n=+/TS/A
+12wS%, 1 = O(Slog(SA/p)), k = B(log(T/p)), w = O(log(T/p)), given any p € (0,1]. In the regret analysis, we
derive sufficiently large constants to be used in the definition of ¢, , w to guarantee the regret bounds. In particular,
for our proofs we use i = (25/C)log(SA/p) with the constant C defined as C = n(®) /2, where n = 0.15,6 = ((1 — ®)
(1/2))/2, k(5) = 2.8%/5*, with @ being the cumulative distribution function of the standard normal distribution.

We remark that no attempt has been made to optimize this constant, and it is likely that a much smaller con-
stant suffices.

3.3. Simple Optimistic Sampling

Posterior sampling is used for every s € S,a € A with large enough previous visits, specifically those with N{% > 1.
For every remaining s, 4, that is, those with N* <7, the algorithm uses a simple optimistic sampling, as described
in Algorithm 1. Intuitively, this process overestimates one randomly selected component of the vector P;, while
underestimating the remaining components. This special sampling has been introduced in the algorithm to handle
a technical difficulty in analyzing the anti-concentration of Dirichlet posteriors when the parameters are very
small. It is possible that with a different analysis technique, this is not required to achieve the regret bounds.

Algorithm 1 (Posterior Sampling—Based Algorithm for the RL Problem)
Inputs: State space S, Action space A, starting state s;, reward function r, time horizon T, parameters p € (0,1].
Initialize: Set ¢ := 2Slog(s“‘) n:= \/—TE+ 12wS*, w := 7201og(T/p), x := 1201og(T/p)- thi=1.

for all epochsk=1,2,..., do
Sample transition probability vectors: For each s, a, generate 1 independent sample probability vectors

QX i=1,...,1, as follows:
° (POSterim' sampling): For s, a such that NIt > 11, sample from the Dirichlet distribution:

s,a =

Qsjg ~ Dirichlet(Mg"),

with M} (1 € S as defined in (3).

e (Simple optimistic sampling): For s, a such that Nk <1, use the following simple optimistic sampling: let

P;ﬂ = IA)S,,; —A,

where Pj (i) := ‘ﬁ;l) ,and A; = min{ 4P“’”("I)\;?kg(25T) +31°g(ZST) Psg(z)} and let z be a random vector picked

uniformly at random from {13,...,1s}; set
s
Qi =r,,+ (1 - ZP;a(i))z.
i=1
Compute policy 7*: as the optimal gain policy for extended MDP M" constructed using sample set

(Qlki=1,...,,s€S,ac A}.
Execute polzcy 7k
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for all time steps t = 74, 74 + 1,. .., until break epoch do

Play action a; = 7t,(s¢).

Observe the transition to the next state s;,1.

Set Nit1(i), MIt1(i) for alla € A,s,i € S as defined (refer to Equation (3)).

L s,a
t+1 T

If st,af > ZNS[k,g[,

end for

end for

then set 7,1 =t + 1 and break epoch.

3.4. Extended MDP

The policy 7t used in epoch k is computed as the optimal policy of an extended MDP M defined by the sampled
transition probability vectors. The construction of this extended MDP is derived from a similar construction in
Jaksch et al. [20]. Given sampled vectors {ng};, j=1,...,¥,s€S,ae A}, we define an extended MDP /\;lk by
extending the original action space as follows: for every s, a, create i actions for every action a € A, denote by @/
the action corresponding to action a2 and sample j; then, in MDP /\;lk, on taking action # in state s, reward is 7,
but the state transition follows the transition probability vector Qﬁjﬁ.

The algorithm uses the optimal policy 7, of the extended MDP M" whose action space is technically different
from the action space A of MDP M £ We slightly abuse the notation to say that the algorithm takes action a; =

7t(st) € A to mean that the algorithm takes action a; = a € A when 7t,(s;) = @ for some j.
Our algorithm is summarized as Algorithm 1.

4. Regret Bounds )
We prove that with high probability, the regret of Algorithm 1 is bounded by O(DSVAT).

Theorem 1. For any communicating MDP M with S states, A actions, and diameter D, for T > Q(SA log4(SAT/ p)), the
regret of Algorithm 1 is bounded as

R(T, M) < O(DSVAT log*(SAT/p) + DS* A%log’(SAT/p)),
with probability 1 — p, for any 0 < p < 1/16S%. For T > Q(S*A3), this gives a regret bound of
R(T, M) < O(DSVAT logX(SAT/p)).

Here O(-) notation hides only the absolute constants.

Proof. Here we provide a proof of the previous theorem. The proofs of the lemmas used this proof are provided
in the subsequent sections.
As defined in Section 2,

T
R(T, M) =TA" = > rs.a,,
t=1

where A" is the optimal gain of MDP M, 4, is the action taken, and s, is the state reached by the algorithm at time
t. Algorithm 1 proceeds in epochs k=1,2,...,K, where K < SAlog(T). To bound its regret in time T, we separately

analyze the regret in each epoch k, namely, )
Tht1—

Ry := (Tk+1 - Tk)/\* - Z Tsia0s (4)

t=T1y
where 7, was defined as the starting time step of epoch k. The proof of epoch regret bound has two main
components:
(a) Optimism: Recall that in every epoch k, the algorithm runs an optimal gain policy for the extended MDP M.
We show that the extended MDP M" is optimistic, that is, its optimal gain is (close to) A* or higher. Specifically, let

Ak be the optimal gain of the extended MDP M". In Lemma 3 (Section 5.2), which forms a main novel technical
component of our proof, we show that with probability 1 —p,

DlogZ(T/p)\/?).

;\kZ/\*—O




Downloaded from informs.org by [160.39.60.189] on 18 October 2022, at 07:54 . For personal use only, all rights reserved.

Agrawal and Jia: Optimistic Posterior Sampling for Reinforcement Learning
Mathematics of Operations Research, Articles in Advance, pp. 1-30, © 2022 INFORMS 7

Substituting this upper bound on A" in the expression for Ry, we obtain the following bound on the epoch

regret, with probability 1 — p:
Dlog*(T/ P)\/

(b) Deviation bounds: Next, the first term in the previous expressmn is /\ x, which is the gain of the algorithm’s
chosen policy 7, on MDP M (with transition probability vectors P, := Qb , for some j); and the second term is the
reward obtained on executing the same policy 7, but on the true MDP M (with transition probability vectors P ).
We bound the difference 3;(A — ¥s,a,) by bounding the deviation (135 «—Ps,) for every s, a.

We use the relation between the gain, the bias vector, and the reward Vector of an optimal policy for a

Tgp1—1

Ry < Z (Ak VSM[+O

t’Tk

©)

communicating MDP, as discussed in Section 2. To use this relation for MDP /\/t we show that this MDP is
communicating by comparing it to the true MDP M, which was assumed to be communicating with diameter

D. Specifically, in Lemma 6 (Section 5.4), we prove a bound of 2D on the diameter of MDP M for any k with
probability 1 - p, when T > Q(SAlog*(SAT/p)).

Therefore, we can use the relation bEtween the gain Ay, the bias vector /1, and reward vector of optimal
policy 7tx for communicating MDP M, as given by Lemma 1(b). According to this relation, for any state
s and action a=7(s), Ax = Tsa+ P h hs, where Psa = Qsﬂ for some j. Because a; =7(s;), using this

relation:
Trp1—1 - Tp1—1 - -
Z Ak =Ts0) = Z (Psya = 15,)Th
t=1y =1
Tpe1—1 - ~
= Z (P, = Peay + Poya, = 15) . (6)

l’=Tk

In Lemma 4 (Section 5.3), we prove that with probability 1 — p, for all s, 4, and all € [0,2D]°:

/ S S
D N Ngz)log (SAT/p)|.

We can use this result to bound first term in (6) by observing that / € R, the bias vector of MDP M satisfies
(refer to Lemma 1),

(Ps,a - Ps,a)Th < @) (7)

maxs /15 — ming 15 < D(/\;lk) <2D,

where the last inequality holds with probability 1 — p, as shown in Lemma 6 (Section 5.4).

To bound the second term of (6), we observe that E[lsTmfl |7, b, 5] = PsTmfz and use Azuma-Hoeffding inequal-
ity to obtain with probability 1 - p,

Tr1—1

Z (Psyar — 1St)TP~1 < O(D\/(TkJrl - Tk)log(l/p)). (8)

=T

Substituting the bounds from Equations (7) and (8) into (6), and combining it with (5), we obtain the following
bound on Rj with probability 1 —3p:

[SA VS S 2(SAT)
D(Tjs1—7 +D Nkt — NTk + = | Jlog [ ——
( k+1 k) Z( (\/Z\]—;{; Ns,a ) o

Dy f(’rkﬂ - Tk)log(%)). )

Rik=0

+0
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We observe that (by definition of an epoch) the number of visits of any state-action pair can at most double in
an epoch,
N7k+l — NTk NTk
s,a s,a

s,a’

so that

DZ(NTM NZ) ( Sk) < DS?A.
s,a

Substituting this observation, we can bound the total regret R(T) = £K | Ry as the following, with probability

1-3Kp:
Vs 10g2(ﬂ)
p

D(Tk+1—1’k)\/7 +DZ(NW NZ) ( T

ZD\/ (Thr1 — ©)log(1/ p))-
k=1

K
>, +DS’A

k=1

K
ZRk <O
k=1

+0

Applying Lemma B.5 (see Appendix) with z; = Nkt — N¢k and Z;_q = N, it follows that

(\/\1/\% < D‘@;(‘ﬁ NN

D AINGK logz(s‘:T) + D, fKTlog(;)),

where we used that ;7441 — 7x = T and hence ZkK=1 VTr+1 — Tk < VKT.
Now, because of our epoch definition, we have that K < SAlog(T), and because X;,N;¥ < T, by simple worst

sa =
scenario analysis, 35 ,v/Ns5 < VSAT. Thus, we obtain

DZ Z(NTkH NTk

k=1 s,a

Substituting, we can bound the total regret as

K

D> Re<O

k=1

DVSAT + DVS + KDS%A

R(T,M) < O(DS VATIO#(%) + DSBAZlng(SIST)).
For T > Q)(S*A%), this gives a regret bound of

R(T,M) < O(DS\/A_TlogQ(SAT/p)). O

5. Proofs of the Lemmas Used in Section 4
5.1. Notation
We use the following notations repeatedly in this section. Fix an epoch k, state s, action 4, and sample j. The specific

values of k, j,s,a will be clear from the context in a given proof. We denote n = N, n; = N (i) for all i € S, and

m="25 Here w =720 log(T/ p) and x =1201log(T/p), as defined in the algorithm. Also, we denote p; = P 4(i),

pii=",p, =10 and p, = Qsa(z) forie S.
When n > 1, the algorithm uses Dirichlet posterior sampling to generate sample vectors Qsﬂ, so that in this
case p is a random vector distributed as Dirichlet(mp,,..., mpg).

When n < 1, simple optimistic sampling is used, so that p was generated as follows: denote

+
_ . [4p,1og(2TS) 3log(2TS)
p = |:p — ( P i + gn )1

7
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and let z be a random vector picked uniformly at random from {13, ...,1s}; then

ﬁ:p_+(1—;pj_)z.

Then, using Bernstein’s inequality (Corollary B.1 in the Appendix, with Z; = 1(s; =1,51-1 =5,4i-1 =4), t =2,...7y),

we have that with probability (1 —1/25), |6;] < +/4p,1og(2TS)/n + 31og(2TS) /n.
Therefore,

We define

Z 5 =0, Z A = Z(ﬁi -p)=1- Zpi—’ and A; > §; (with probability 1 - %)
i [ 1 !

The previous notations and observations will be used repeatedly in the proofs in this section.

5.2. Optimism
The goal of this section is to show optimism, that is,

SA
T

First, in Lemma 2, we prove for any fixed vector, for every s, a, there exists a sample transition probability
vector whose projection on that vector is optimistic, with high probability. To prove this, we prove the fol-
lowing fundamental new result on the anticoncentration of any fixed projection of a Dirichlet random
vector.

Proposition 1. Fix any vector h € R such that |h;—h;| <D for any i,i’. Consider a random vector p generated from
Dirichlet distribution with parameters (mp,,...,mps), where mp; > 6. Then, for any p € (0,1), with probability at least

(C/S)—-2Sp,
- f y:€;  2SDlog(2
(p- p)Th > = 1<§s 70‘%( /p)’

S (Pt +Ps)
where ;1= H, =(hj—Hix1),His1 = sz i+ ]p] , for any fixed ordering on statesi=1,...,5. Also, let

constant C = n*® /2, where n=0.15,6 = (1 - ®)(1/2))/2, k(6) = 2.8%/5*, with ® being the cdf of the standard normal
distribution.

The proof is provided in the Appendix. In the Appendix, we also prove the following strong concentration
bound for the empirical probability vectors.

Proposition 2. Fix any vector h € R such that |h; — hy| < Dfor any i,i’. Fix an]/ epoch k, state s, action a. As defined in

the notations section, denote n=Ngy, n; =N (@), pi=Ps,(0), p;:="2, for i=1,...,5. Then, if 17,—1>96, for any
p €(0,1), with probability 1 — p,
flor log(T/p)
(5 p)'1 <2, log(T/p) 332+ 3p 0BT/R),
i<S
where 7y, =W, ci=hi—Hi1, Hi = 2] P 2] i+1 hjpj, for any fixed ordering on statesi=1,...,S.

Together the previous two results allow us to prove the following lemma.
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Lemma 2. Fix any vector h € R® such that |h; —hy| < D for any i,i’, and any epoch k. Then, given 0 < p < (1/16S?), for
every s, a, with probability at least 1 — p/SA, there exists at least one j such that

ot

Proof. Fix an epoch k, state and action pair s, 4, and sample j. We use the notation defined in Section 5.1 so that
p= ng;’;, p=Ps, and so on. We show that with probability at least C/S—8Sp, p"h>pTh- O(D log*(T/p)
VJ(SA/T)). Now assuming p<(1/16S?), given large enough number ¢ (specifically, given

Y >(25/C) log((SA / p)) = 0O(Slog(SA/p))) of independent samples for every s, 4, this result will give us the lemma

QX5'n>Pl h-0

statement. To prove this result, we consider two cases.

Case 1: n>1. When n >, Dirichlet posterior sampling is used so that p is a random vector distributed as
Dirichlet(mp, ..., mps), where m =25 5. = "*% We show that with probability Q(1/S) — 8Sp, the random quan-

Kk /PiT ntwS
tity p"h exceeds its mean 57k enough to overcome the possible deviation of empirical estimate 77 from the true

value p" h. This involves combining the Dirichlet anticoncentration bound from Proposition 1 to lower bound p"h
(mp; > (w/x) =6, Vi€ S) and the concentration bound on empirical estimates p from Proposition 2 to lower bound

pTh (T — 1 > n > n > 96), which by definition is close to p' 1.
In Proposition A.1 (in the Appendix), we prove a slight modification of Proposition 1 to show that with

probability C/S —7Sp,
, 2
~ _ =\T ViCi _ Dswlog(T/P) 10
(p—p) h=0.1484 |« Ei o O(in . (10)

The above bound replaces y,,¢;,m in the lower bound provided by Proposition 1 by y,,c;, n instead. With this

modification, the lower bound becomes directly comparable to the bound on the deviation |(p — p)Th| provided
by Proposition 2. To combine this lower bound with the deviation bound, we calculate
w(l- Sp,.))' - wDS - a)DS‘

5y (1Pt @ np,
;hi(n+a)5_7)_zi]hi( n+wS )| n+wS" n

Then, using the above bound along with (10) and the result from Proposition 2, we have that with probability
C/S—-85Sp,

(B =p)'hl =

@-p)'h=@-p) h+@-p)h+(H-p)h
>@-p)h=1@-p)'hl = 1(p-p)h|

> 0.148\/1<Z ch2 - 2\/log(T/p)Z ch2 _ o(%gmp))

i<S

B O(a) DSloi(T/p))

> -0O|D logX(T/p) %

U

where the second last inequality follows from the observation that with x = 120log(T/p), the first term is bigger
than the second. Then, substituting w = 7201og(T/p) and n > 1 = \/TS/A + 12wS*, we obtain the last inequality.

Case 2: n < 7. When n < 1), simple optimistic sampling is used. Using notation and observations made in Section
5.1,in this case p =p~ + (1 - ij]T)z. With probability 1/S, z =1; for an i such that ; = |||, and (by union bound
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over all i) with probability 1 - S5 =1, |6;] < (\/4p,10g(2TS)/n + (3log(2TS)/n)) for every i. Therefore, with proba-
bility at least 1/25:

Dphi= D pihi+ ||h||oo(1 - ZP}) =2 P b+l 2 A
7 ; 7 7 7
= Z(f);‘ = Aphi + ||| Ai = Zf’ihi + ([|7lloo = hi)A;
2 Zﬁihz‘ + (1hlloo = h:)6; = Z(f?f — 0i)h; + |||,

= 2 pihi+|ll 2200 = > piti. O

Finally, we use the previous lemma to prove the main optimism lemma (Lemma 3).
Lemma 3 (Optimism). For every epoch k, the optimal gain Ay of the extended MDP M satisfies

Ar = A" = 0O[D log*(T/p) %

7

with probability 1 — p, given small enough p < (1/16S?), where A* the optimal gain of MDP M and D is the diameter.

Proof. Let /" be the bias vector for an optimal policy 7" of MDP M (refer to Lemma 1 in the preliminaries sec-
tion). Because " is a fixed (although unknown) vector with |h; —h;| < D, we can apply Lemma 2 to obtain that

with probability 1 — p, for all s, a, there exists a sample vector ngl; for someje{1,...,¢} such that
QI5"n > PL i -5,

where 6 = O(D log?(T/p)+/SA/ T). Now, consider the policy r for MDP M which for any s, takes action @/, where

a =1"(s), and j is a sample satisfying the previous inequality. Note that 7 is essentially 7* but defined for an MDP
with a different transition probability matrix. Let Q be the transition matrix for policy 7, with rows formed by the

vectors Q’SI; (s)- Let Pr- be the transition matrix whose rows are formed by the vectors P ;). This implies
Qnh* > Prh* —01.

Let Q;, denote the limiting matrix for Markov chain with transition matrix Q. Observe that Q. is aperiodic,
recurrent, and irreducible: it is aperiodic and irreducible because each entry of Q. being a sample from Dirichlet
distribution is nonzero, and it is positive recurrent because in a finite irreducible Markov chain, all states are pos-
itive and recurrent. This implies that Q7 is of the form 1q*T, where q" is the stationary distribution of Qy, and 1 is
the vector of all 1s (refer to (A.6) in Puterman [31]). Also, Q;,Qr = Qr, and Q;1=1.

Therefore, the gain of policy T,

A1 = (r7q")1 = Q;rr,
where 17, is the S-dimensional vector [7; 7()ls=1 . 5. Now,
A1-A1=Qhr— A1

= Qurn —A(Q1).. . (using Q71 =1)

=Qn(rr = A1)

=Q; (I—-Px)h"... (using (1))

= Qu(Qn = Pro)l.... (using Q7. Qr = Q7)

> —01... (using (Qr — P )" > —61,Q51=1).



Downloaded from informs.org by [160.39.60.189] on 18 October 2022, at 07:54 . For personal use only, all rights reserved.

Agrawal and Jia: Optimistic Posterior Sampling for Reinforcement Learning
12 Mathematics of Operations Research, Articles in Advance, pp. 1-30, © 2022 INFORMS

Then, by optimality,
>A(m) > A" =6, O

5.3. Deviation Bounds

Lemma 4. In every epoch k, with probability 1 — p, for all samples j, all s, a, and all vectors h € [0,H]°,

. [s s
(QF-P,)'h < O(H( N NTk)logz(SAT/ P

Proof. Fix an s,a,j,k. Let p = Qj’k Denote n = Nt and m =n+wS/x, and n; = Ni(i), p, := n; + w/n + S and p; :=
%fori=1,...,S. Recall that n = /TS/A +12wS* and w = 720log(T/p). It suffices to prove the lemma statement
for H=1. We consider two cases.

Case 1: When n > r], posterior sampling is used. Therefore,  is an S-dimensional Dirichlet random vector with
parameters mp,,i = .,S. Let X be distributed as Gaussian with mean y =p"h and variance ¢*> =1. Now, for

any fixed h € [0,1]°, by Gaussian-Dirichlet stochastic optimism (see Lemma B.1 in the Appendix):
X = p'h

Then by Gaussian concentration (Corollary B.2), for any p’ € (0,1), and fixed & € [0,1]°, with probability at least

1-p/,
|pTh—pTh| <\/ log \/140 p)log(%). (11)

In the last inequality, we substituted m > n/x, with x = 1201og(T/p). In Proposition 2, we proved a strong upper

bound on |p h —pTh| for any fixed & € [0,1]°, which was used for proving optimism. A corollary of that concen-
tration bound (by using observations that y, = W <pi, and [¢;| <1 when he][0, 1]5) is that for any

p’ €(0,1), and fixed 1 € [0, 1]S with probability 1 - p’,

1G5 —p)"h1 <2, OBT/E) S10B2/PT) (12

Also, forall h € [0,1]°:

n; +w

pTh—p"h < >

S (13)

n+wS n +wS)n "~

where w =7201log(T/p). Combine the bounds from Equations (11), (12), and (13) and take union bound over all
fixed h on an e-grid over [0,1]°, with € = 1/n. Then, substituting p’ by p’/n®, we have that with probability 1 - p’,
forall h € [0,1]°,

BT pTh| <14 \/Slog(T/pn)log(T/p) SIOg;T/p) +2w75. (14)

Previously, we used that for all 1’ not on the e-grid, ||’ — ||, <€ =(1/n), so that |p"h' —p W | < |p"h—pTh| +
(1/n) for some h on the e-grid.

Case 2: When n <1, simple optimistic sampling is used. Using notation in Section 5.1, in this case p =p~+
1- 21 1P7)z, where z is a random vector picked uniformly at random from {1,...,1s}. Using Bernstein’s
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inequality (Corollary B.1) to bound (p —p), we have for any p” €(0, 1), with probability 1-p”, for all
hel0,1]°:

n

R 3log(4S) 3Slog(4S
<1 = plhll, + s 21081, 5108ES)
< [4Slog(T/p )+3510g(T/p )+ /SBIOg(T)+3510g(4S)
n n n n
—4 /Slog(nT/p )+3510g(4711ST/p ). (15)

Equations (14) and (15) provide a bound on |(Q£,’§)T}~1—P5T,ﬂf1| for any given s,a,j k. Substituting p’ = p”
=p/(SAY), and taking a union bound over all possible values of s, 4, j, we get the lemma statement. (Here
P =0(Slog(SA/p)).) O

) . 3p,10g(45) < 3log(4S)
Ty, T Ty, T ,
@'h-p'h) <(@'h ph)+Zi] . +Z

5.4. Diameter of the Extended MDP
Algorithm 1 computes policy 7t in epoch k as an optimal gain policy of the extended MDP M*. Our goal in this
section is to prove that the diameter of M is within a constant factor of the diameter M. We begin by deriving a

bound on the diameter of AM* under certain conditions and then prove that those conditions hold with high
probability.

Lemma 5. For any state s € S, let E* € RS be the vector of the minimum expected times to reach s from s’ € S in true MDP
M, that is, Ej, = min, T, _, . Note that E} = 0. For any episode k, if for every s, a there exists some j such that

§'—s*
QI E <Py E° 4+, (16)

for some 6 € [0, 1), then the diameter of extended MDP /\;lk is at most D /(1 — 0), where D is the diameter of MDP M.

Proof. Fix an epoch k. For brevity, we omit the superscript k later.

Fix any two states s; # ;. We prove the lemma statement by constructing a policy 7 for M such that the
expected time to reach s, from s, is at most D/(1 - 6). Let 7 be the policy for MDP M that minimizes the expected
time to reach s, from other states. Therefore, the time to reach s, from s; using 7 is at most D (because M has
diameter D). Let E be the |S| —1-dimensional vector of expected times to reach s, from every state, except s,
itself, using 7 (E is the subvector formed by removing s coordinate of vector E> where E° was defined in the
lemma statement. E? = 0). By first step analysis, E is a solution of

E=1+P'E,

where P! is defined as the (S —1) X (S — 1) transition matrix for policy 7 in MDP M, with the (s,s’)th entry being
the transition probability P ,)(s") for all s,s” # s5. Also, by choice of 7, E satisfies

E. <D.

Now, we define 7t using 7t as follows: For any state s # s,, let 2 = 7t(s) and jth sample satisfies the property (16)
for s,a, E, then we define 7i(s) := #/. Let Qz be the transition matrix (dimension S x S) for this policy.

The term Qy defines a Markov chain. Next, we modify this Markov chain to construct an absorbing Markov chain
with a single absorbing state s,. Let QL be the (S —1) x (S — 1) submatrix of Qx obtained by removing the row and
column corresponding to the state s,. Then we define Q’ as (an appropriate reordering of) the following matrix:

, | QL
Q= [ 0 (11

7

where q is an (S — 1)-length column vector such that the rows of Q’ sum to one. Because the probabilities in Qx
were drawn from Dirichlet distribution, they are all strictly greater than zero and less than one. Therefore, each
row-sum of Q? is strictly less than one, so that the vector q has no zero entries, and the Markov chain is indeed
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an absorbing chain with single absorbing state s,. Then we notice that (I—QL)™" is precisely the fundamental
matrix of this absorbing Markov chain and hence exists and is nonnegative (Grinstead and Snell [19], theorem

11.4). Let E be defined as the (S — 1)-dimensional vector of expected time to reach s, from s’ # s, in MDP /\;lk
using 7. Then, it is the same as the expected time to reach the absorbing state s, from s’ # s, in the Markov chain
Q%, given by

E=(1-QhH'
Then, using (16) (because E22 = 0, the inequality holds for P*,Q"),
E=1+PE>1+QE-61= (I-QLE>(1-0)1. (17)
Multiplying the nonnegative matrix (I — Qf )™ on both sides of this inequality, it follows that
E>(1-0)I-Qh) 1= (1-9)E,

so that E, < (1/(1-0))Es, <D/(1-96), proving that the expected time to reach s, from s; using policy 7 in MDP
M" is at most D/(1-9). O

Now we can use the previous result to prove that the diameter of the extended MDP is bounded by twice the
diameter of the original MDP.
Lemma 6. Assume T >2CSA log*(SAT/p) with some large enough constant C, and 0 < p < (1/16S?). Then, for any
epoch k, the diameter of MDP M is bounded by 2D, with probability 1 — p.

Proof. Fix an epoch k. For any state s, let E° be as defined in Lemma 5. We show that with probability 1 — p, for
all s, a, there exists some j with Qéj],; -E° <P, -E°+0, with 6 <1/2. This will allow us to apply Lemma 5 to bound
the diameter of /\;lk. ‘

Given any s,4,j,k, we use notations and observations from Section 5.1, so that p = Qgﬁ,p = P, and so on. Also,
let h = E°. Then, min;h; = 0, max; h; = D.

First consider all s, a with nn > 1. Using (14) (in the proof of Lemma 4), we have

57— p™h < 14D \/SIOg(T/p;)log(T/p) +5D510g;T/p ) +2D°”7S,

with probability 1 —p’ for any p’ € (0, 1). Substituting p’ = p/(2SAy), we get that with probability 1 -4, for all s,

a, j such that n>n, Th—pTh <6, where 6=14D4/210g*(SAT/p)/n+5D(2510g(SAT/p’))/n+ (2wSD/7). Then,
using 1 = y/TS/A + 12wS*, and T > CSA log*(SAT/p) (for some constant C), we get 6 < 1/2. Although no attempt

has been made to optimize constants, we note that C > 28* is sufficient.
For s, a such that n <17, simple optimistic sampling is used. Using notations introduced in Section 5.1, in this
case p =p~ + (1 - X;p; )z, where z is a random vector picked uniformly at random from {1, ...,1s}. With proba-

bility 1/S, z =1, for i such that h; = min; h; = 0. Therefore, with probability at least 1/2S:
pli=(p) =33~ ki < D3P, — ki =pTh.

Because we have ¢ > (25/C)log(SA/p) independent samples for every s, a, with probability 1 — (p/2), there exists
at least one sample j such that ng]; “h>Pg,-h. ,
Therefore, we have shown that with probability 1 — p, for all s, a, there exists some j such that ng],f “E°<P,-E°

+0, with 6 <1/2. By Lemma 5, we obtain that the diameter of M" is bounded by D/(1 - 6) < 2D with probability
1-p. O
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6. Conclusions

We presented an algorithm inspired by posterior sampling that achieves near-optimal worst-case regret bounds
for the reinforcement learning problem with communicating MDPs in a nonepisodic, undiscounted average
reward setting. Our algorithm may be viewed as a randomized version of the UCRL2 algorithm of Jaksch et al.
[20], with randomization via posterior sampling. Our analysis demonstrates that posterior sampling provides
adequate amount of uncertainty in the samples, so that an optimistic policy can be obtained without excess
overestimation.

Although our work surmounts some important technical difficulties in obtaining worst-case regret bounds for
posterior sampling—based algorithms for communicating MDPs, the provided bound does not achieve optimal
regret in S and D. Obtaining a better worst-case regret bound remains an open question. In particular, we believe
that studying value functions may improve the dependence on S in the regret bound, possibly for large T (Azar

et al. [8] produce an O(VHSAT) bound when T > H3S?A). We also leave as future work the analysis regarding
the necessity of multiple posterior samples; in particular, whether the number of samples required in every

epoch can be reduced from O(S) to O(log(S)) or a constant.

Acknowledgments
The authors thank Tor Lattimore for pointing out a mistake in an earlier version of this work and Ian Osband for the
fruitful discussions toward resolving the said mistake.

Appendix A. Missing Proofs from Section 5.2

A.1. Anti-Concentration of Dirichlet Distribution: Proof of Proposition 1
We prove the following general result on anti-concentration of Dirichlet distributions, which will be used to prove
optimism.

Proposition 1 (Restated from Main Text). Fix any vector h € R such that |h;—hy| < D for any i,i’. Consider a random vector p
generated from Dirichlet distribution with parameters (mp,,...,mpg), where mp, > 6. Then, for any p € (0, 1), with probability at

least (C/S)—2Sp,
- ’ ZSD log(2
(p p)Th>— ZV Tng( /p),
i<S

where y, ,:%, =(—Hi1),Hip1 = ﬁz“] w1 Py for any fixed ordering on states i=1,...,S. Also, let constant
=1+

C = (n"®/2), where n=0.15,6 = (1 - ®)((1/2))/2, k(6) = (2.8%/6%), with ® being the cdf of the standard normal distribution.

We use an equivalent representation of a Dirichlet vector in terms of independent Beta random variables.

Fact A.1. Fix an ordering of indices 1,...,S, and define 7, := 7 f +p ;= 7 + +p . Then, for any h € RS,
S

@ _ﬁ)Th = Z(gz _]?i)(hz’ _Hz‘+1)(f)i+ +}_75) = Z(}Z _yi)(hi _Hi-v-l)(fji"' +l~75)r

where Hi1 = %2]45:”1 h]'f?j, Hig =

s _
i hip I3
j=i+1Pj

1
Siia b
Proof. We will prove the first equality, that is,

7 =p)'h =230~ )i = Hin) (i - +)- (A1)

The second equality follows analogously from the same proof steps. After substituting H;,; in the right-hand side, the
coefficient of Iy for any k is given by

k

e e ]
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Therefore, to prove (A.1) holds, it suffices to show that for k=1,2,...,S,

k_l(yi_yi)(f_’i+-"+f_75)=1_’_7k+"'+’_75_ (A2)
= Pt +Ps Pit - +Ps

We prove (A.2) by induction on k, because p,p are probability vectors and hence sum to one. The case k = 1 clearly
holds. For k = 2, we have that the left-hand side of (A.2) becomes

P1=Ps :ﬁl_ﬁl 1_151_(1_151):1_1_72"'-""'?_75.
Pt +bhs 1-py 1-p Pyt---Ps

Now, assume (A.2) holds up to k — 1, and we will prove it holds for k. By the induction hypothesis and some algebra,

Zk:(yi_gi)(l_’f+~-~ +ﬁs)=§(yz‘_9f)(f7i+~-' +f75)+(yk_yk)(ﬁk+"' +Ps)
i-1 Pir ¥ +Ps p) Pur ¥ +Ps Prer+--- TPs

:1_;?k+"' +l_75+@k_.’71<)(7_’k+~-~ +Ps)

Pt +Ps Pra +--- +Ps
=1_;:ak+...+;:95+(ﬁ Pr o Pr _ ~pk+..‘+ﬁ~5
Ppt... +Ps p oo AP Prtee. AP Py F--- + P
=1_F_’k+~~-+f75+ P PP+ - +Ps)

Pet-Ps  Prat- tPs (Bxto +P)Prag +ooe +Ps)
=1+(F_’k(i~7k+-~- +f’s)_~(f’k+~~f7§)(f71i+1+'-~ +f7§)_ﬁk(f]k+"' +Ps)
P+ +P)Prsr -+ +Po)
=1+(ﬁk(fjk+'~" +F~’s)_~(?_7kj‘~~f75)(f7k":~- +Ps)
Pr+ AP Py - + D)
o _Prate ths
Praa T Ps

as desired. O
The subsequent fact follows from a known property of Dirichlet distributions (see section 1.4 of Albert and Denis [6]).

Fact A.2. Fori=1,...,S, ¥, :=p,/p;+ - + P4 are independent Beta random variables distributed as Beta(mp,, m(p,,,+ - +ps)),
with mean

~ mp;

=g

and variance

PPt +Ps) .
(Pt + PV (m(pi -+ +pg) +1)

o7 =E[([;,~7)°] =

We derive the following basic anti-concentration inequality for Beta random variables.

Lemma A.1 (Anti-Concentration for Beta Random Variables). Let F,;, denote the cdf of a Beta random variable with parameter

(a, b), with a>6,b> 6. Let
a ab C
z=——+C\[—m
a+b (a+b)(a+b+1) a+b

1- F(ﬂ,b)(z) >1-d(1)-0.005 > 0.15.

with C <0.5. Then,
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Proof. Letx=C (HM e

ab C b C ab C
(@+b-1)1-2) > @+b- 1)(1—3‘C @+b2@a+b+1) a+b) (@+b- 1)(a+b a+bVa+b+1 a+b)

Za+b—1(b_C ab c) 11(b C\/———)>08

a+b a+b+1 a+b|~12

+C.Then, z =%, w; = (b(a+x)/(a+1))"/> and w, = [a(b - x)/(a +b))]'>. Also, z < 2C, /22 Also,

Hence, we can apply Fact B.5 relating Beta with Normal. We bound the numerator and denominator in the expression of

y to show that the relation I,(a,b) < ®(y) + € holds for some y < 1:

numerator(y) = 3[“’1(1 9b) wz(l - 9171)]

[EEVIEERE ]

Gl

w
o =
x|
S
—=
+
—_—

a+
ab \’[(b—a\ (x(a+Db) ab \o[2x2 1
<3+ W)“L( 3ab )*3(m) o (1 9

[ ab V{a+b\[[ b-a 2x21 1
‘(F) (a_b) (3(a+b))”+ﬁ( _971)]
ab \M{a+b\|[ b-a 2x? 1 ab \!
<(al (5 oo *aﬂ@‘gJ+C+C@+bH
=
3+/ab(a +b) bz\/a+ \ab ab

( b-a 4c2\/_ C\/a+b+c)(ﬂb)§
a+
(g

+L+L+_)(ﬂ) (M)
3v6 6V6 23 2)\a+b)\ ab )
Previously, we used that C < (1/2) and a,b > 6. Similarly,

2 211/2
denominator(y) = ?14_72
(a1 (-
“\a+b b a
b [(0+E-8) (1-%) e
a+b b a 942
~ ﬂ%”(l’L__W)”’( x ;bz)
“la+ b
_( ab %a+b 1_x_2 2
Cla+ ab 9ab
ab %a+b 4C2 \\2
>l— ) |——(1-
a+ ab 9a+D)
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Hence, we have that
+ 14
y<? “h <1,

so that I(a,b)<p(1)+e for €<0.005. The lemma statement follows by observing that 1-F((z)=1-1I(a,b)>
1-¢(1)—e>1-0.845-0.005>0.15. O

sIH
sIH
NIH
A
N

Lemma A.2 (Corollary of Lemma A.1). Let 1j;,y,,6; be defined as in Fact A.2. If mp,,m(p,,,+ -+ +pg) =6, then, for any positive
constant C <1,

C

——————|>0.15=:9.
T R

P(Iy? -vi| >Co; +

Proof. By Fact A2, ij; is a Beta random variable with parameters (mp;, m(p,,,+ -+ +p5)) and mean j,;. Then, by Lemma
Al with a=mp,b=m(p,,,+ - +ps), we have that, for any C<1/2,

P(y} > +Co; + > 0.15. (A3)

w7
mp;+... +pg)

Now, by symmetry of the Beta distribution, 1~7; is a Beta random variable with parameters (m(p,,,+ - +ps), mp;) and
mean 1-7,. Again by Lemma A.1 with a =m(p,,,+ - +p),b = mp,, we have that, for any C <1,

P((l i) > (1-7;)+Ca; + >0.15. (A.4)

w7 )
mp;+ ... +ps)
The result follows from (A.3) and (A4). O

Lemma A.3 (Application of Berry-Esseen Theorem). Let G C{1,...,S} be a set of indices, z; € R,i € G be fixed. Let

X6 = Z@z -z,

i€G
with 1,3, defined as before, and mp,; > 6 for all i. Let F be the cumulative distribution function of
X
—G, where, 026 = szélz,
oG i€G
with 6; being the standard deviation of ¥, (refer to Fact A.2). Let @ be the cumulative distribution function of standard normal distri-
bution. Then, for all € > 0:

sup |F(x) - ®(x)| <€,

as long as

2.8R Zi0;
V|G| ==—, where R:=max—"
€ z,jeGZ]G]

Proof. We have that Y; = (i, — #,)zi. Then, Y;,i € G are independent variables, with E[Y;] =0,
o7 =E[Y}] = E[({7, - 7,)*()]

—Zlol’

=E[|Y:°] <E[|Y;[*]*

:E[|gi_yi|4]3/4z?
_K3/4E[|yi_9i|2]3/zz?
<1<alzl,

where the first inequality is by using Jensen’s inequality, and

_ ElF-5)1
E[@; -5)°F

i
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is the kurtosis of ¥,. It is known that the kurtosis of a Beta(v,v(1 - 1)) random variable is

6 ((1-2u)*(1+v) 6

=3+ -1|1<3+——.

B+ V)(u(l - W2+v) vu(l—p)

For ¥, ~ Beta(mp,,m(p,,, + ... +Ps)), v=m(p; +... +ps) and =7,. One of u and 1 -y is at least J, so that

12
N = — — S 5/
min(mp, mp,., +... +pg))

Ki

KiS3+

because mp; > 6 for all i.
Now, we use Berry-Esseen theorem (Fact B.4), with

1 p; _ (Maxec K;) MaXieG zi0;
max-—

1,b1 - Siec 52 i€G 0‘7.2 - \/|G| min;eg zi0;
Y i

to obtain

2.8 maxieg zi0
F(x) = B(x)] < 0561, < o DG 2T
sgpl (x) = O(x)] L2 VG| minicg z,6;

The lemma statement follows if V|G| >2.8R/e, where R := max;jec(2i6;/2iG;). O

Lemma A.4. Assume mp, > 6, Vi. Then, for any fixed z;, i=1,...,S,

where 1=0.15,0 = (1 - D)(1/2))/2, k(6) = 2.8%2/6*, with ® being the cdf of the standard normal distribution.

Proof. We consider two cases: if S <k(0) and if S >k(5). For the first case, when S <k(5), we use Lemma A.2 on each

index i, so that
Pr(Z(g,. ~9)2:205 > zfa,?) > 1),
where n=0.15.

If it is the case that S>k(5), we consider the group of indices with the k() largest values of |z;5;|, call it group
G(1), and then divide the remaining indices into groups of G as follows. Note that G— G(1) is the set of all ungrouped
indices. Let index k = arg max;eg_gu)|2z:6i|. Then the new group G(2) consists of index k along with all other indices

j€G—G(1), where |zG¢|/|zd;| <} To form successive groups, we repeat this procedure on the remaining ungrouped
indices, creating new groups when necessary, until all are grouped. By construction, we have that |zd;|/|zd;| <} for
all i, j in any given group G. In addition, we can define an ordering < on groups by ordering them by maximum
value of |z;| in the group, that is, G>G’ if maxieczféf > maxjegz]z&jz. Then, for G>G’, we also have
Mmaxecz?% > %maxjeng&]z.

Recall from Lemma A.3, for every group G € G of size V[G[ > 2.8/5¢, we have that the cdf of ff—g is within € of the nor-
mal distribution cdf. By definition of 9, it follows that Pr(Xg/oc > 1) > 26 —e. Using this result for € =6, we get that for
every group of size at least k(0), we have, for any group G where |G| > (k(5))%,

1
PI’(XG > EGG) > 0.

Now, consider the top log, ;(S) groups (with respect to the ordering <), including G(1). First consider the top groups of
cardinality at least k(0): call these “top big groups.” For every top big group of (including G(1)), we have that

1
2 @-g)mzs S 2, (A5)

ietop big groups ietop big groups
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with probability at least 5'°814(5) = %. Next, consider the remaining top groups where the cardinality is less than k(6), we
refer to these as “top small groups.” For the first (i.e., lowest index) top small group, say G(¢), we use Lemma A.2 at most

k(0) times, so that
Pr(Z(yl 7)z205 | > 5] )>nk‘5 (A6)
i€G(() i€G(()

where 7> 0.15. Combining (A.5) and (A.6), we have that with probability at least 27®

L 1 _
> @ —y)zz 7 > z75;. (A7)
i€ top big groups, G(¢) i€ top big groups, G
Let G(j) denote the jth group according to ordering >. Also, let |z(1)6(1)| = minega)lziGi|. Then, because for any

G,G’, G>G’, we have that max;cg 21.261.2 > lzmaxjec/

>3 for every remaining top small group G(j),j > ¢, we can bound the

% J’
group’s total variance by

2-2 2(j—C 2-2 2j-2).2 =2
k(6) g}%zia,- < k(5)5%Y )gba(zziai < k()52 )2(1)0(1)-

Therefore, the sum of the standard deviation for top small groups, excluding group G(¢), is at most

10g1/0(5) k(6)62
k() 2. maxz;5; <k(©) >, 6*zh5 < —2(21)5(21>
G:top small groups—G(¢) i€G j=3 1 6

as it is a geometric series with multiplier &°.
For the remaining “bottom groups” (i.e., those not among the top log, ,;(S) groups), each element’s variance is at most
$24,00); therefore,

(k)& o _kO) ,
2=2 2 2
9; <(1_52 + 5t < 55 70t <5 Z Ty (A.8)

ietop small groups—G(¢), bottom groups ieG(1)

By Cantelli’s inequality (Fact B.3), with probability at least 1/2,

-7z > - 252, (A.9)

ietop small groups—G((), bottom groups \/ietop small groups—G((), bottom groups

Hence, combining (A.7) and (A.9), with probability at least n*®)/25 = Q)(1/S),

- 1 S, 1 -
Z(%‘ — )z ZE\/ Z 25} 5 757
7 .

ietop big groups, G(£)

1 1
- D zlal+— > Z?

ietop big groups, G(£) i€G(1)

\%

1

1
1 22(72 —
ietop big groups, G({) i:top small groups—G({), bottom groups

1 Z
27 /Z 2252,

where we used (A.8) in the previous third inequality. O

\%
I

We are now ready to prove Proposition 1.

Proof of Proposition 1. Because p and p are probability vectors (sum to one), it is sufficient to consider /1 € [0,D]°. Now,
use Fact A.1 to express (p —p) I as

@-p)'h= 2@ =)k —Hi1)(@+ -+ +Po)-
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We note that H; is the scalar product of (S —i+1)-dimensional Dirichlet random vector (¥,,...,¥#) with the fixed vector
(h,...,hs), and H; is the expected value of that product. Therefore, we can derive deviation bounds for this product
using a similar argument as used in the proof of Case 1 of Lemma 4 in Section 5.3.

For any i, Let X be distributed as Gaussian with mean y=H;/D and variance o> = m Now, by Gaussian-
Dirichlet stochastic optimism (Lemma B.1), X>,5H;. Then by Gaussian concentration and Corollary B.2, for any

pe(0,1),

p,| 2l8@/p) (A.10)

H;-H; = —,
| | m(p;+... +pg)

IA

with probability 1 - p.
Similarly, noting that ¥, is a Beta random variable, using Gaussian-Beta stochastic optimism (Lemma B.2), if X is dis-

tributed as Gaussian with mean y =, and variance 0 = m, then X >, #,;. Then by Corollary B.2, with probability
1-p,

- - 210g(2/p)
[7;, -7, < . +py) (A.11)

Therefore, with probability 1 —25Sp,
P =p)h= 20~ 7~ Hin) @+ - +Ps)

= Z(yl —gi)(HiH —Hi+1)(l_7i+ +ﬁs)

Z/ 2log(2/p) D 2log(2/p) B+ - +Ps)

\m(@,+... +pg) \Nm+... +pg) !
_ZSDlog(Z/p) ' (A12)
m
Then, applying Lemma A.4 (given mp, > 6) for z; = (h; - I:I,»+1)(f7,.+ < +pg),i=1,...,S, with probability at least r]k(‘s)/2S,

25Dlog(2/p)

N 2.2 _
® P)h24 z;0; .

Now, we observe

s2n o _
20 _ g F e e s ez CiPiPit D)
21‘ z;6; = (hi = Hipn) (p;+ - +Ppg)70; —m(r-]i_’_'” +f’s)+1,

to obtain that with probability at least (%) /2S) —2Sp,

- p)rh>_ /ZV 25D1c1>ng(2/p),

-:151'(751'+1+~~~ +Ps)
! (p;+... +ps)

where

. O

A.2. Concentration of Empirical Probability Vectors: Proof of Proposition 2

Proposition 2 (Restated from Main Text). Fix any vector h € RS such that |hj—hy| <D for any i,i’. Fix any epoch k, state s,
action a. As defined in the notations section, denote n = N, ny = N;;(i), pi=Py,(0), P, := %, fori=1,...,S. Then, if t,—12>96, for

any p € (0, 1), with probability 1~ p,
D ,'Clz 10 T
l(p-p)'hl <2 1og(T/p)Z7/7 + 3D#,
i<S

where y; = %, i=hi—Hi1, Hiq = s Z] w1 ypj, for any fixed ordering on states i=1,...,S.
= i+1P
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Proof. For every t=2,...,T,i=1,...,5, define

: pi .
Zii=\cil(sy=i)—¢c;—————-1 - 1(si—q = 1=
t,i Ci (St 1) Ci pi+ +Ps (St € {lr rS}) (Sf 1=5,011 ﬂ),

S
Zt = Z Zt,i.
i=1

Fori=1,...,S, define y; = p+~!-7-1+f75)’9i = (ﬁ#ﬁiﬂ"’s)' Then,
7 R cipi . = P N R N
= Zcipi—Zm'(Pi+~~~ +pg) = ;}(yi—yi)(rn +.. o +pgai=({E-p)h,

where we used Fact A.1 for the last equality. Now, E[Z;|s;—1,at-1] = Z:E[Zt]5t-1,a:-1] = 0. Also, we observe that for any ¢,
Zii and Z;; for any i # j are independent given the state s;_; and action 4;;: (assume j > i without loss of generality)

E[Z:Zij|si-1 =s,ai-1 = a] = ciE| L(sy = 1) 1(s; =) — L(s; = ) 75 A(sred{i,...,S})

—IL(st=i)¢-n(ste{j,...,s})

pit e +ps
pipi
+ -1(s L, SH|si-1 =s,a-1=a
(p]+ +PS)(P1‘+ +p5) ( t { })' t—1 t—1
, pi pipi ,
= cicE|-1(s; = + s eli,..., Vs =8,a1 =
Cicj (se=1)— Tps ot ps) it - +ps) (st fj Plsii=s,ai1=a

(_ pipi pipi
pit - +ps  (pit - +ps)

Therefore,

Tk Tg S-1
SEZ s ai1] = D) SVE[Z s, aia] = >y,
=2 =2 i i=1

where the last equality is obtained using the following derivation:

Tk
E| > 7,

t=2

i ( F’z
Sg-1 =5,0p-1 = A =C; 1(s4-1 =8, a41-1 = a) (pz . +pS) .
} Z (pi+ - +ps )2

t=2
The previous expression is zero for i = S. For i < S, we get

Tk
E| > 72

t=2

N (piv1t - +ps)
St1 =S, =a|=c; > Msiy =s,a-1 = g) PEPIT 1 TPS)
= pit 4 ps

_ Cl-zn pi(piv1+ - +ps)
pit - +ps
Then, using Bernstein’s inequality (refer to Corollary B.1) with M,, = |25, Z;| and V,, := DI E[Z%|si-1,a1-1] < Zi<sn7/ic,2/
we get the desired bound on (p — f))Th =iy, 7. D

_ny[l

A.3. Modified Anti-Concentration Bound: Proof of Proposition 3
We use the notation described in Section 5.1. Given an epoch k, state s, action 4, and sample j, we denote n = NZ £, N;fz(i),

m= ”+;?)S' Where @ =720log(T/p) and x = 1201log(T/p), as defined in the algorithm. Then, we denote p; = Ps4(i), p, := %, p, = 2%,
and p, = Q4 (i), fori € S.
Also, as defined earlier in Proposition 1 and Proposition 2, we denote

s, ._F_’f(f’i 1t +P5) =
om0 = e H B = 5 S

S
Z] 1+1p]] i+1
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and
5

1
,Ci = hi —=Hi, Hin = ——— > hjpj.
j=i+1P] j=ir1

v, = pi(pir1+ - +ps)
b (pit e +ps)
We prove the following result for s, a such that n > 1. Recall that for such s, a, the algorithm uses Dirichlet posterior sam-

pling to generate sample vectors ng, so that in this case p is a random vector distributed as Dirichlet(mp,, ..., mpg).

Proposition A.1. Assume that he[0,D]°, and n>12wS?, and states i=1,...,S are ordered such that P < <pg. Also,
w =7201og(T/p),x =%, as defined in the algorithm. Then, with probability §—7Sp,

2
#-p)h= 0,148\/15)/;:‘" - o(%gmp)).

The constant C is defined as in Proposition 1.

Proof. The proof is obtained by a modification to the proof of Proposition 1, which proves a similar bound but in terms
of ¥, s and ¢; s and m. Because x = w/6, mp; = (n; + w)/x > 6.
In the proof of that proposition, we obtained (refer to Equation (A.12)) that with probability 1 -2Sp (given mp, > 6),

2DSlog(2/p)
m

(5 =p)'h = 33, — )0 — Hia) Pyt - +P)

> Z(gz _yi)(hi _Hi+1)(ﬁi+ +;§S) _ O(w)’

where 7, := _ Z] 1 P Now, breaking up the term in the sum-

Ps P . 1
P +p5,]/1 = PP, /H+1 Z] ,+1 ~]Z] i+l ]P]/ i+1 = ZI l+1 ;
mation and using Lemma A.7 to bound |Hj1 —His1|(B,+ -+ +P5) (because we have that w =7201og(T/p) and 1 > 12wS? by
assumption) and Lemma B.2 and Corollary B.2 to bound [, — ;| (see (A.11) in the proof of Proposition 1), we get that for

every i, with probability 1 —4Sp,

(=)= 330, ~ 700~ Hia )+ = +pg) + O P8P

> Z(y, —]?i)(HHl —Hi+1)(}_71‘+ +735)

_Z 2log(2/p)

m(p e +p)

3D\/log(T/p)

6DS+/1log(2/p)log(T/p) B 4(wS + log(T/p))D+/21og(2/p) Z 1
i i NoEn)

Recall that m = (n+wS)/x, so that for n > Sw, n > mx /2 = mw/12 > mlog(2/p). Therefore, the first term of (+) is at least
_6DS+/log(2/p)log(T/p) __ 6DS+/1og(T/p) _ _O(DSw log(T/p))
\m?log(2/p) m n

Then using Lemma A.5 and m = (n + Sw)/x > 6n/w > 7252, the second term in (+) is at least

_ 8S(wS + log(T/p))D+210g(2/p) _ _O(DSwlog(T/p))
n\7252 - n '

Now, applying Lemma A.4 (given mp, > 6) for z; = (h; — Hi1)(p,+ -+ +Pg),i =1,...,S, with probability nk(é)/ZS,

~ _ 1 -
22§z = ZW'

We substitute this in the left-hand side along with the observation

(b~ +ps) , @S+ log(T/p))D)
n n

()= -

o o _
2-2 _ T (5 o4 a= 222 P+ .- Ps) 67:c
Zziai —Zi:(hz Hi)™(pi+ - +Pg)0; _Zi:m(f’i+~'~+f’s)+1>2 :
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Thus far, we have that with probability (17®)/2S) —4Sp,
- V6 y .2 DSwlog(T

Now, because 7 > 12wS? and S > 2, we have that 1/n+ @S >24/25n and hence 1/m =« /n+ @S > 241 /25n. Finally, we use
Lemma A.6 with ¢ = (124/30)/5 to lower bound ¥, by (1/1.53)y, — O(wS/n) to get with probability (1*®/2S) —7Sp,

o_or 1 VBV vis (DSwlog(T/p))

n

?-p) h_1534\/-\/— 2.5

2
>0.148, /KZ%‘TCi _ O(%gwp)). .

Lemma A.5. Let x € R" such that 0 <xy <--<x, <1and 3;x;=1. Then,
n 1
i=1 Xit e Xy

for all j=1, ---,n, and f(x) = £, f(x,j). We prove that x*:= (}11 1., %) achieves the maxi-

Proof. Define f(x,j) := \/ﬁ rp
mum value of f(x). Consider any solution x’. Suppose that there exists some index pair i, j with i < j and some € > 0 such
that x{ # x{ and increasing x; by € and decreasing x; by € preserves the ordering of the indices. This would strictly
increase the objective f(x’), because f(x’,k) strictly increases for all i < k <j and remains unchanged otherwise. Hence, x’ is
not an optimal solution. The only case where no such index pair (i, j) exists is when all x] are equal, that is, when x" = x".
Because f(x) = X;f(x,i) is a continuous function over a compact set, it has a maximum, which therefore must be attained
at x*.
This means

flo) = Z\/xz <_=1 N Z <\/_/ —di=2n. O

i=1

Lemma A.6. Let 6/5 < c < (12V30)/5 and n > 12wS?, where @ =720log(T/p). Then for any group G C S of indices, with proba-
bility 1-p,

(1-*)sz-@<2pz_

ieG ieG

1+ )Zp,+@

ieG

If in the definition of y,;, we use an ordering of i such that pg >3 (e.g., if maxp, is the last in the ordering), then for all i, with prob-
ability 1-3p,

Proof. Given a group GCS, define pg = Tiecpi, P = ZiecP;, and pg = Ziegp;. Also define Z; = (1(s; € G) —pg) 1(si-1 =
s,a;-1 =a). Then, let M; =3} ,Z; and V, = 3] IEI[(Zt)2 | Fi-1]. Note that E[Z;|F;-1] =0 and

Ve =n(pc(1-pe)* + (1 = pe)(=pc)?) = npc(1 - pe),

so that by Bernstein’s inequality (Corollary 1),

|M,| = < 2\/npc(1 —pc)log(t/p) +3log(t/p) <24 npslog(t/p) +3log(t/p).

>
t=2

Noting that

X, (st € G)U(st-1 = 5,41 = )

n Zpﬂ

ieG
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. M, log(t 3log(t
|PG—pG|=|n|S2 PG i( /), g}i /p)

Substituting pg <P + [P —pcl in the right-hand side, rearranging terms, and squaring both sides, we have

we have that

3log(t/p) , (3 log(t /p))2 4Pclog(t/p) , 4l —pollog(t/p)
- < :

A _ 2_ A _
lpc—pcl”—2lpc —pcl . " .

Then, simplifying by completing the square, the previous expression is equivalent to

-1 !
|FA7G—PG| SZ pG Oi(T/p)+9 Ogr(lT/p)

lpc =Pl =Ipc —Pc+Pc —Pcl

_ S
J (Pc +7)log(’f/P) ,2log(z/p)  wS
n " !

- ®S | (t/p)
<2, [Pc1o8(t/p) | | Tw 98P Ilog(t/p)  wS
n n n n
<2, [Pclo8®/p) 205
n n

because w =720log(T/p). Now, for n > 12wS? and S >2,

Because |p; —psl <wS/n,

<2

__onpite  nw 240,
S oS TS 25 log(t/p),
for ¢ < (12\/%)/5. Hence,
_ _ |[4log(t/p) 2wS _ |4log(t/p) 2wS 1_ 2wS
P pG|SPG\J np TSP 46210g(’1'/p)+ n ScPet T

2wS 2wS

1 _ 1 _
R

so that

when k > 1. For the second statement of the lemma, using what we just proved, we have that with probability 1—3p,

2_ _ 2(1+71. WS(P+-++Ps) 262
1 ¢ i S 4w°S
i( g )<( +E) pi(pi 1+...+p )+#+w_2

i pit - +ps (1—%)(ﬁi+...+f75)_%

Now, if ¢ >g and indices i are ordered such that p,>1/S, then p,+ - +p;>1/S for all i. Also, if n> 12wS?, we have
the following bound on the denominator from the previous expression: (1—1/c)(p;+ - +ps)— (QwS/n)>(1-(1/c)—
(1/6))(p;+ --- +ps), so that

(1 +%)2 2(1 +%+%)w5

< V. + —. O
R
Lemma A.7. For any fixed h € [0,D]°, and i, let H; = ZS%Z/‘S# hip;, Hi = #Zﬁ;i hp;, Hi = 25%21-5:,4 hip;. Then if T, —1 > 96,
=i P; j=iPj =i P;

with probability 1 - p,

(H = H)P, + ... +pg)] < 2D\/log(T/p) (pi+ = ps) | 5(@S+ IOE(T/F’))D,
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Moreover, if we also assume that n > 12wS?, where w = 72010g(T/p)), then with probability 1—2p,

|(Fi = H)(B;+ . + )| < 3D\/ log(T/p) Pi* - tPs) , @S+ 1o§<T/p»D.

Proof. For every t=2,...,T,{=1i,i+1,...,S, define

— — — p€ . i = =
Zio=hel(sy =) hlpﬁ 75 1(st €4i,...,S}) |U(s¢-1 = s,a;-1 = a1),

Z[ = Z Zt,{“

Then, =i

ZZZZ‘ A pe A A ~ N A
_thpc_zhf’m'@ﬁm +ps)=Hi—H)P; +... +Pg)

n 0>i >i

where we used Fact A.1 for the last equality. Now, E[Z;|s;—1,a;-1] = Z¢siE[Z1¢|si-1,a-1] = 0. Also, we observe that for any
t, Zi¢ and Z; for any ¢ # j,{,j > i are negatively correlated given the current state and action:

E[Zi¢Z1j15t-1,a1-1] = heyE

— _ _ Pe .
L(se = O)L(sr =) — st —])m' I(st€{i,...,S})

P .
(s =) —L—1(s; €4i,...,S
(st )Pz‘+"'+Ps (sredi )
pipe
(pi+ - +ps)’

2pipe pepi .
= hhj| — / + / sy e{i,...,S
: J( e R LI

. ﬂ(St € {i, .. ‘,S})|St1,ﬂt1]

PP
B hfh]( pit - +PS)
<0,

Also,

=2 =1 (pz"" +PS)
e _ _ Pe(Zjsijeby)
= hf;:ﬂ(st—l =5,a;1 = a)m
= i Pe(Zjsij2kps)
pi+ cee +ps
pi+ e +ps
<nD?p;.

Tk Tk 2
E| > \Z2 |sie1 =s,a-1 = a] =h; > (s = 5,81 = a)(pf . +P5))

— 2
=nhy

Therefore,

Tk Tk

Vo 1= DVE[Z} |si1 = s, a1 = a] < D D VE[Z] |51 = 5,41 = a] < nD*(pi+ -+ +ps).
=) =1 (=i

Then, applying Bernstein’s inequality (refer to Corollary 1) to bound |M,,| = |%%, Z;|, we get the following bound on
(1/m)xr, Z = (H; —H)(p, +... +pg) with probability 1 - p:

%2 Zi| < 2D\/ log(T/p) L% - *7s), 3p IOg(nT/ P
t=2

(Hi=H)(p; + ... +ps)l =

Also,

wSD

Z(A p[ _ h[—_ pé’ _ h[)S _ —
S\t tPs o Pyt HPg n(p+ - +pg)

|Hz' -Hi| =
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Combining,

((Hy = H)(p, + ... +po)l < 2D\/log(T/p) (pi+ = *Ps) y 3p log(nT/p) + ‘“iD A

Replacing p; by p;,

_ _ _ i+ wS + log(T D
\(H; = H) (B, + ... +)] SZD\/log(T/p)(p . Ps) | 5! f( /p)D
with probability 1— p.

Now, if we also have that w =720log(T/p) and n > 12wS?, using Lemma A.6 with ¢ = 3 to replace p; by p,, with prob-
ability 1-2p,

|

(- H)(p, + ... +pg)| < 3D\/ log(T/p) i = Ps) | 45+ IOS(T/ D
Appendix B. Some Useful Facts and Known Inequalities

Fact B.1 (Bernstein’s Inequality from Seldin et al. [34] Lemma 11 and Corollary 12). Let Z1,Z;,...,Z. be a bounded mar-
tingale difference sequence so that |Z;| <K and E[Z;|F;-1] =0. Define M, =X7,Z; and V=37, E[(Z;)?| Fi-1]. For any
¢ >1and 0€(0, 1), with probability greater than 1 -0, if

ln% - 1
-2V, K’

then
IMc] < (1+ (e~ 2)Veln,
otherwise,
IM.| < 2Kln2§,
where

v= +1.

Inc

Fn( )

Corollary 1 (to Bernstein’s Inequality). Let Z; for i=1, -, 7, M, and V as previously. For t>96 and 6 € (0, 1), with probabil-

ity greater than 1 -9,
/ T T

Proof. Applying Bernstein’s inequality with ¢ =1+2, with probability greater than 1 -6,

M, <(1 +C)w/(e—2)VT1n2é—?+2K1n2§
/ s 4
T3 T3
<(1+¢) (6—2)V11n3+2Kln3
<(1+c)\[(e—2)%V1r1£+31<1nE
- 3775 )

[ T T
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where

1S

+1=

V=

Fn( )

Inc

T (e—2)T T (e—2)T
211‘1( ln% ) +1 Szln( ™

Fact B.2 (Multiplicative Chernoff Bound;Kleinberg et al. [25], Lemma 4.9). Consider #n independent and identially distrib-
uted random variables X, ---,X, on [0, 1]. Let u be their mean and let X be their average. Then for any a > 0, the follow-
ing holds:

1
+2<-7 O

P(|X - u| < r(a,X) <3r(a,p) >1-e2@,

where r(a,x) = \Z+2.
More explicitly, we have that with probability 1 - p,

X =] < ﬁk%fhﬂx+3b€?hﬂ.

Fact B.3 (Cantelli's Inequality). Let X be a real-valued random variable with expectation i and variance o?. Then P(X —
p=A) <2

%+

Fact B.4 (Berry-Esseen Theorem). Let X3, X»,..., X, be independent random variables with E[X;] =0, E[X?] =¢? >0, and
E[|X;|®] = p, < co. Let

32brA>0amiHX—y2A)Zl—ﬁ%7brA<0

+

Xi+Xo+...+ X,
Sy=————

2 2
o +... +02

and denote F,, the cumulative distribution function of S,, and ® the cumulative distribution function of the standard nor-
mal distribution. Then for all #, there exists an absolute constant C; such that

supxer | Fu(x) — O(x)| < Cripy,
where ¢, = (21, a?)_l/ 2maX1§i§n % The best upper bound on C; known is C; <0.56 (Shevtsova [35]).
Fact B.5 (Abramowitz and Stegun [2] 26.5.21). Consider the regularized incomplete Beta function I,(a,b) (cdf) for the Beta

random variable with parameters (1, b). For any z such that (a+b—1)(1-2)>0.8, I.(a,b) = P(y) +€, with |e| <0.005 if
a+b>6. Here @ is the standard normal cdf with
fefi-a)--3)

[w_%_,’_ﬁill/z

y:

7

b a

where wy = (bz)"/® and w, = [a(1 - z)]"/°.

Definition B.1. For any X and Y real-valued random variables, X is stochastically optimistic for Y if for any u#:R — R
convex and increasing E[u(X)] > E[u(Y)].

Lemma B.1 (Gaussian vs. Dirichlet Optimism, from Osband et al. [29], Lemma 1). Let Y =PTV for V € [0,1]° fixed and P ~

S YA _
Dirichlet(ar) with a € RS and 33, o; > 2. Let X ~ N(u,0?) with p =%, o?=(2%, a) U then X is stochastically optimistic

for'Y.

i=1 i

Lemma B.2 (Gaussian vs. Beta Optimism from Osband et al. [29], Lemma 6). Let Y ~ Beta(, p) for any a,p>0 and
X ~ N(L L ) Then X is stochastically optimistic for Y whenever a + p > 2.

atp’ a+f

Lemma B.3 (Dirichlet vs. Beta Optimism from Osband et al. [29], Lemma 5). Let y =pTv for some random variable p ~
Dirichlet(a) and constants v € R and a € N, Without loss of generality, assume v; <vy <---<vy. Let & = 2?21 ai(vi—v1)/(vg—v1)
andﬁ = Z‘f:l ai(vg —v;)/(vg — v1). Then, there exists a random variable p ~ Beta(&,B) such that, for ij = pvg + (1 - p)or, E[y|y] = E[y].

Lemma B.4. If E[X] = E[Y] and X is stochastically optimistic for Y, then —X is stochastically optimistic for =Y.
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Proof. By lemma 3.3 in Osband et al. [29], X stochastically optimistic for Y is equivalent to having X=p Y + A+ W with A >0
and E[W|Y + A] = 0 for all values y + a. Taking expectation of both sides, we get that E[X] = E[Y] + E[A] + E[W] and because
E[X] =E[Y] =0and E[W] = E[E[W|Y + A]] = 0 we get that E[A] = 0. Because A >0, A =0. Also, E[W|Y =y] =0forall y.

Now we can show that —X is stochastically optimistic for —Y as follows: From the previous statements, —X=p — (Y +A
+W)=-Y+(-W). Then for all v/, E[-W|-Y =y'] = —-E[W|Y = —y’'] =0 by definition of W. Therefore, —-X is stochastically
optimistic for-Y. O

Corollary B.2. Let Y be any distribution with mean u such that X ~ N(u,0?) is stochastically optimistic for Y. Then with probabil-

ity 1-p,
Y — u| < 4/20210g(2/p).

Proof. For any s > 0, and ¢, and applying Markov’s inequality,

E[esY]

PY-pu>H=P(Y>pu+t) = P(e? > ) < oSt

By Definition B.1, taking u(a) = ¢, which is a convex and increasing function, E[¢'] < E[¢X], and hence
E[ESX] e(ls-%—%UZSZ .
P(Y—[.l>f)§mzmzezg .
12
Because the previous expression holds for all s > 0, using s =%, P(Y —u > t) <e27.
Similarly, for the lower tail bound, we have for any s > 0,
- - E[e")]
P(Y—[l < —t) = P(—Y > —y+t) = P(ES( Y > 65( ['H)) < W
By Lemma B.4, -X is stochastically optimistic for -Y, so E[¢*"")] < E[¢*¥)], and hence
[es(—X)] o lis+io’s?

E 10257 —st
P(Y —u< —f) < es(—u+h) = es(—utt) = ’

2
Again, letting s = 5, P(Y —u < —t) <e 2.
Then, for t = 4/20210og(2/p), we have that
P(|Y — | < 4/20%l0g(2/p) =1—-p. O

Lemma B.5 (Lemma 19 in Jaksch et al. [20]). For any sequence of numbers z1, ...z, with 0 < zx < Zi_1 := max{1, 5 z;},

Zn“ < (\2+1)VZ,.

k=1 Zk—l

Endnote

! Worst-case regret is a strictly stronger notion of regret than Bayesian regret. However, a caveat is that the reward distributions are assumed
to be bounded or sub-Gaussian to prove worst-case regret bounds. Conversely, the Bayesian regret bounds in the previously mentioned liter-
ature allow more general (known) priors on the reward distributions with possibly unbounded support. Bayesian regret bounds under such
more general reward distributions are incomparable to the worst-case regret bounds presented here.
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