

1 Published in *Coastal Engineering Journal*, 2021/10/2

2

3 **Evaluating XBeach performance for extreme offshore-directed
4 sediment transport events on a dissipative beach**

5

6 Takayuki Suzuki ^{a*} and Daniel T. Cox ^b

7 ^a* Department of Civil Eng., Yokohama National University, Yokohama, Japan,

8 suzuki-t@ynu.ac.jp

9 ^b School of Civil and Construction Eng., Oregon State University, Corvallis, USA

10 Dan.Cox@oregonstate.edu

11

12

13 **Abstract**

14 The performance of the process-based nearshore model XBeach for predicting extreme
15 offshore-directed sediment transport was investigated using field observations at a
16 dissipative beach in Japan. Three extreme erosion events were identified from a record
17 of 6,209 observations of the cross-shore profile change at Hasaki, Japan, from 1987 to
18 2003. The analysis considered the sensitivity of the wave nonlinearity of short waves
19 that could be tuned using the parameter, f_{ua} , to the observed bed profile change. The
20 comparisons revealed that for extreme offshore-directed sediment transport events, f_{ua}
21 = 0.0 is the best fit for predicting these extreme beach profile changes. In the nearshore
22 zone, erosion was underestimated, and the BSS exhibited low values. Peak sediment
23 deposition occurred in the bar-offshore zone with sediments transported from the
24 nearshore zone and was estimated by the model reasonably well. In addition to the three

25 extreme events, 14 other large events were identified, and the trends of beach profile
26 change could be estimated with sufficient tuning of the f_{ua} parameter. After analyzing
27 the correlation between f_{ua} and wave and morphology-related parameters, the f_{ua} value
28 could be correlated to the observed volume change. This suggested that if there were a
29 rough estimate of the expected total volume change, this may help in setting f_{ua} value.

30

31 Keywords: cross-shore sediment transport, beach profile change, volume change, field
32 data

33

34

35 **1. Introduction**

36 Sediments are dynamically transported in onshore and offshore directions in coastal
37 areas, especially in the foreshore and nearshore zones. Managing both types of sediment
38 transport is important for coastal problems, such as beach erosion and accretion.
39 Moreover, the foreshore and nearshore zones are the regimes where the public interacts
40 with the ocean during recreational and leisure activities. Therefore, estimating the beach
41 profile change of these zones is of paramount importance for disaster prevention of
42 natural catastrophic events, such as storms and storm surges, as well as for recreation
43 and habitat.

44 Sediment transport rates in the foreshore zone (e.g., Baldock et al., 2011; Puleo et
45 al., 2000; Suzuki et al., 2007) and nearshore zones (e.g., Deigaard et al., 1986; Elgar et
46 al., 2001) have been investigated, and numerical models for these zones have been
47 proposed (e.g., Bailard, 1981; Jayaratne et al., 2014; Kelly and Dodd, 2010; Larson et
48 al., 2004). Several process-based beach profile evolution models have been proposed,

49 including SBeach (Larson and Kraus, 1989), CShore (Kobayashi and Farhadzadeh,
50 2008; Figlus et al., 2011), and XBeach (Roelvink et al., 2009). While there is no
51 universally accepted model, this study focuses on XBeach because it is more widely
52 used globally than SBeach and CShore in recent years and because the source code is
53 easily available. The model includes the hydrodynamic processes of short wave and
54 long wave transformations, wave-induced setup, and unsteady currents, overwash and
55 inundation, and the morphodynamic processes, including the effects of vegetation and
56 hard structures.

57 The XBeach model predicts the coastal morphological response due to the time-
58 varying wave and water level conditions. XBeach is under continuous development as
59 an open-source model, including numerical schemes for swash zone dynamics
60 (Roelvink et al., 2018), dune erosion events, and overwash. Table 1 summarizes some
61 of the recent XBeach research and information about geographic location,
62 morphological time scale, sediment diameter, a targeted region in the coastal zone, and
63 hydrodynamic parameters.

64 The evolution time scales in these studies vary from a few hours (e.g., Elsayed and
65 Oumeraci, 2017) to several years (e.g., Faraci et al., 2014). XBeach has been shown to
66 have good applicability for both short and medium timescales of morphology change.
67 XBeach has been frequently applied to the field observations (e.g., de Vet et al., 2015),
68 large-scale laboratory experiments (e.g., Do et al., 2018), and smaller-scale experiments
69 (e.g., Berard et al., 2017), and most of the cases were applied to dune erosion.

70 XBeach was originally developed to simulate the impact of storms and hurricanes
71 on sandy beaches, with an emphasis on foreshore profile change, dune erosion, and
72 overwash. For dune erosion, the model has been applied to several different coasts and

73 shows reasonable results of beach profile change with some tuning of parameters (e.g.,
74 Splinter and Palmsten, 2012; Armaroli et al., 2013; de Winter et al., 2015). For
75 overwash events, XBeach has been shown to predict both erosion and accretion of the
76 foreshore profile (e.g., McCall et al., 2010; Williams et al., 2015) with necessary
77 parameter tuning. XBeach has been applied to the swash and inner-bar zone of sediment
78 movement under erosive conditions (e.g., Bolle et al., 2011; Vousdoukas et al., 2011;
79 Dissanayake et al., 2014). Comparison with observations showed that the predicted
80 profile changes were less accurate than the dune erosion cases. There have been
81 relatively few cases of accretion. Pender and Karunarathna (2013) reported that XBeach
82 predicted post-storm recovery reasonably well.

83 For the cross-shore sediment transport, it is suggested that the effect of wave
84 nonlinearity is important (e.g., Bugajny et al., 2013; Nederhoff et al., 2015). In XBeach,
85 wave nonlinearity parameter f_{ua} plays an important role for cross-shore sediment
86 transport. Elsayed and Oumeraci (2017) suggested using the average beach slope
87 steepness to determine the parameter f_{ua} for dune erosion. Rafati et al. (2021) adjusted
88 the f_{ua} and other coefficients, and improved the agreement of the computed results with
89 observed wave heights, offshore-directed mean currents (undertow), the wave-orbital-
90 velocity third moments (skewness and asymmetry), and onshore/offshore sandbar
91 migration.

92 In summary, XBeach has been extensively used for cross-shore sediment transport
93 over a range of time scales and morphologies. However, a fair amount of tuning is
94 required (e.g., Palmsten and Splinter, 2016), and the universal nature of these
95 coefficients is uncertain for both onshore and offshore-directed transport conditions.
96 This study focuses on this aspect by carefully selecting field data for which there is only

97 offshore-directed transport and investigating the sensitivity of short wave nonlinearity
 98 parameter, f_{ua} , on beach profile change using extreme offshore-directed sediment
 99 transport events. Moreover, we attempt to determine a predictive relationship for f_{ua}
 100 based on incident wave conditions, grain size, and total volume of sediment transport.

101

102 **Table 1.** Summary of XBeach application for beach profile change using field and
 103 large-scale experimental data.

104

105

ID	authors	year	Lab/Field	location	duration	d_{50} [mm]	Event/transport direction	Version	dune	berm, inner- bar	outer- bar	profile	WL- aveH	Hs	velocity	volume, recession	runup	ground- water
a1	Roelvink et al.	2009	Lab	Netherlands	Delta flume	6, 8 h	0.2	Dune erosion	1D, 2D	X	X	X	X	X	X	X		
a2			Field	USA	Maryland	20 h	n/a	Overwash		X	X		X					
b	Lindemer et al.	2010	Field	USA	Barrin Is.	60.5 h	n/a	Overwash	2D	X	X		X					
c	McCall et al.	2010	Field	USA	Santa Rosa	36 h	0.2	Overwash	2D	X	X		X					X
d	de Alegria-Arzaburu et al.	2010	Field	UK	Slapton Sands	68 h	6	Dune erosion, Overwash	1D	X	X		X					
e	Bollaert et al.	2011	Field	Belgium	Ostend	50 h	n/a	Erosion	1D, 2D		X		X					
f	Voudoukou et al.	2011	Field	Portugal	Faro Beach	12-18 h	0.5	Erosion	1D	X	X		X					
g	Splinter and Palmsten	2012	Field	Australia	Gold Coast	160 h	0.25	Dune erosion	2D	X			X					X
h1	Williams et al.	2012	Lab	Netherlands	Delta Flume BARDEX	3-6 h	11	Dune erosion, Overwash	1D	X	X		X	X		X	X	X
h2			Field	UK	Slapton Sands	70 h	6	Dune erosion, Overwash	1D	X	X		X	X		X	X	X
i	Armaroli et al.	2013	Field	Italy	Emilia-Romagna	26-41 h	0.21	Dune erosion	2DH	X	X		X					
j	Callaghan et al.	2013	Field	Australia	Collaroy/Narrabeen	29-72 d	0.35	Erosion			X		X					X
k1	Pender and Karunarathne	2013	Field	Australia	Narrabeen	49.5 h	0.37	Erosion	2D		X		X					X
k2			Field	Australia	Narrabeen	24.5 d	0.37	Accretion	2D		X		X					X
l	Dissanayake et al.	2014	Field	UK	Sefton Coast	8 d	0.2	Erosion	1D, 2D	X	X		X					X
m	Faraci et al.	2014	Field	Italy	Belvedere Marittimo	2 y	3	Erosion	1D		X		X					
n1	Jamal et al.	2014	Lab	Germany	GWK	2.7 h	21	Berm formation	V12, 1DH	X		X		X				
n2			Field	UK	Christchurch	22 h	7.2	Berm formation	V12, 1DH		X		X					
o	Splinter et al.	2014	Field	Australia	Gold Coast	24.75 d	n/a	Dune erosion	V18	X			X					X
p	Verheyen et al.	2014	Field	Ghana	Ada	1 y	0.54	Dune erosion	1DH	X	X		X					
q	de Vet et al.	2015	Field	USA	New York	48 h	0.4	Dune erosion, Overwash	2D	X			X					
r	de Winter et al.	2015	Field	Netherlands	Egmond	75 h	0.3	Dune erosion	2D, V19	X			X					X
s	Williams et al.	2015	Field	Ireland	Rossbeigh	24 h	0.235	Overwash	1D, 2D	X			X					X
t	Palmsten and Splinter	2016	Lab	USA	OSU	16 h	0.23	Dune erosion	1D, V18	X			X	X	X			
u	de Winter and Ruessink	2017	Field	Netherlands	Egmond, Noordwijk	5 h	0.2	Dune erosion	2D, V19	X			X	X	X			X
v1	Elsayed and Oumeraci	2017	Lab	Germany	GWK	1.59 h	0.16	Dune erosion	2D	X			X					X
v2			Field	USA	Santa Rosa	36 h	0.2	Overwash	2D	X			X					X
w	Do et al.	2018	Lab	USA	OSU	2.15 h	0.2	Dune erosion	1D	X	X		X					X
x	Schambach et al.	2018	Field	USA	Rhode Island	45 h	0.58	Dune erosion	2D	X			X					X
y	Yin et al.	2019	Field	China	Xiamen Island	26 h	0.386	Offshore	1D		X		X	X				
z	Schweiger et al.	2020	Field	Germany	Rostock-Warnemünde	30 h	0.3	Onshore, offshore	2DH	X	X		X	X	X			X
aa	Rafati et al.	2021	Field	USA	near Duck	4-5 d	0.2	Onshore, offshore	1D		X	X	X	X	X			
A	Present research		Field	Japan	Hasaki Coast	3 d	0.18	Onshore, offshore	1D, Kings		X	X	X	X	X			

106

107

108

109 2. XBeach Model

110 In the present study, we used the Kingsday version of the XBeach model in hydrostatic
111 mode. Details of the model can be found in the online documentation of XBeach, and
112 this section briefly explains the sediment transport equations, which are the subject of
113 this investigation.

114 The shallow water momentum equation (wave action balance) is given by:

$$115 \frac{\partial A}{\partial t} + \frac{\partial c_x A}{\partial x} + \frac{\partial c_y A}{\partial y} + \frac{\partial c_\theta A}{\partial t} = - \frac{D_w + D_f}{\sigma} \quad (1)$$

116 where x is the cross-shore direction, y is the alongshore direction, c_x and c_y are the wave
117 propagation speeds in the x and y directions, respectively, A is the parameter of wave
118 action, which is the ratio between the wave energy density and intrinsic wave
119 frequency, D_w and D_f are dissipation terms for the waves and bottom friction, σ is the
120 intrinsic wave frequency, θ is the wave angle with respect to the x -axis, and t is time.

121 Three different wave-breaking formulations for nonstationary wave conditions have
122 been implemented in XBeach and affect the wave dissipation term, D_w , the original
123 formulation of Roelvink (1993), an extended version described in Roelvink (1993), and
124 a formulation following Daly et al. (2010). The wave dissipation term of Roelvink-
125 extended (default) is given as

126 In this study, based on previous investigations (Suzuki and Cox, 2019), the
127 formulation of Daly et al. was used for the analysis. The wave breaking formation of
128 Daly et al. is given as

$$129 D_w = 2 \frac{\alpha}{T_{rep}} Q_b E_w \frac{H_{rms}}{h} \quad (2)$$

$$130 Q_b = 1 - \exp\left(-\left(H_{rms}/H_{max}\right)^n\right) \quad (3)$$

$$131 H_{max} = \gamma(h + \delta H_{rms}) \quad (4)$$

132 where α is the wave dissipation coefficient, T_{rep} is the representative wave period, Q_b is
 133 the fraction of wave breaking, ρ is the water density, and E_w is the energy density of the
 134 wave. The maximum wave height is calculated as a ratio of the water depth plus a
 135 fraction of the wave height (δH_{rms}) using a breaker index γ . Alternatively, the
 136 formulation of Daly et al. states that waves are fully breaking if the wave height exceeds
 137 a threshold (γ) and stop breaking if the wave height falls below another threshold (γ_2).
 138 The fraction of wave breaking, Q_b , is determined by:

$$139 \quad Q_b = \begin{cases} 1 & \text{if } H_{rms} > \gamma h \\ 0 & \text{if } H_{rms} < \gamma_2 h \end{cases} \quad (5)$$

140 The default values of the parameters γ and γ_2 were 0.55 and 0.10, respectively.
 141 Sediment concentrations in the water column are modeled using a depth-averaged
 142 advection-diffusion scheme with a source-sink term based on equilibrium sediment
 143 concentrations (Galappatti and Vreugdenhil, 1985), and the effect of wave skewness
 144 and asymmetry are accounted for in the advection-diffusion equation given by

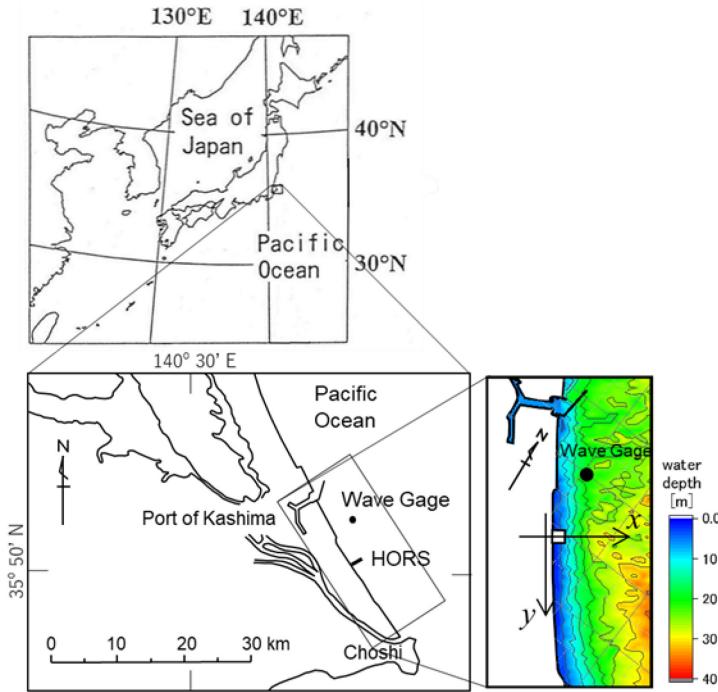
$$145 \quad \frac{\partial hC}{\partial t} + \frac{\partial hC(u^E - u_a \sin \theta)}{\partial x} + \frac{\partial hC(v^E - u_a \cos \theta)}{\partial y} + \frac{\partial}{\partial x} \left[D_h h \frac{\partial C}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_h h \frac{\partial C}{\partial y} \right] = -\frac{hC_{eq} - hC}{T_a} \quad (6)$$

146 where C is the depth-averaged sediment concentration, C_{eq} is the total equilibrium
 147 sediment concentration, u^E and v^E are the Eulerian cross-shore and longshore velocities,
 148 respectively, D_h is the sediment diffusion coefficient, θ is the wave angle, and T_a is the
 149 adaptation time. XBeach does not simulate the wave shape of short (gravity) waves;
 150 hence, the sediment advection velocity, u_a , is included to account for wave shape effects
 151 on sediment transport and is given as
 152

$$153 \quad u_a = (f_{sk} S_k - f_{as} A_s) u_{rms} \quad (7)$$

154 The advection velocity u_a is calculated as a function of wave skewness (S_k), wave
155 asymmetry (A_s), root-mean-square velocity u_{rms} , and two calibration factors f_{Sk} and f_{As} .
156 A higher value of u_a will simulate a stronger onshore sediment transport component.
157 Both f_{Sk} and f_{As} can be set to the same value using the parameter f_{ua} , i.e., $f_{ua} = f_{Sk} = f_{As}$,
158 and a lot of researchers calibrate using f_{ua} . In summary, XBeach contains several tuning
159 parameters, including f_{ua} and f_{mor} . This study focuses on f_{ua} and whether it can be held
160 constant for extreme offshore-directed erosion events.

161


162 3. Methodology

163 3.1 Field Observations

164 The study site is a natural sandy beach on the Hasaki coast of Japan, facing the Pacific
165 Ocean and angled 31 degrees anti-clockwise from the north, as depicted in Figure 1. In
166 this research, x positive is set as the seaward distance perpendicular to the shore, and y
167 positive is set as 90 degrees clockwise direction, parallel to the shore (Fig. 1). The x - y
168 origin was set near the shoreline. The study site includes the Hazaki Oceanographical
169 Research Station (HORS), which maintains a 427 m long research pier positioned
170 perpendicular to the shore. The pier was constructed in 1986 and has been in continuous
171 operation for nearshore processes research, including measurements of nearshore
172 hydrodynamics and morphological responses (e.g., Kuriyama, 2002; Suzuki et al.,
173 2009).

174

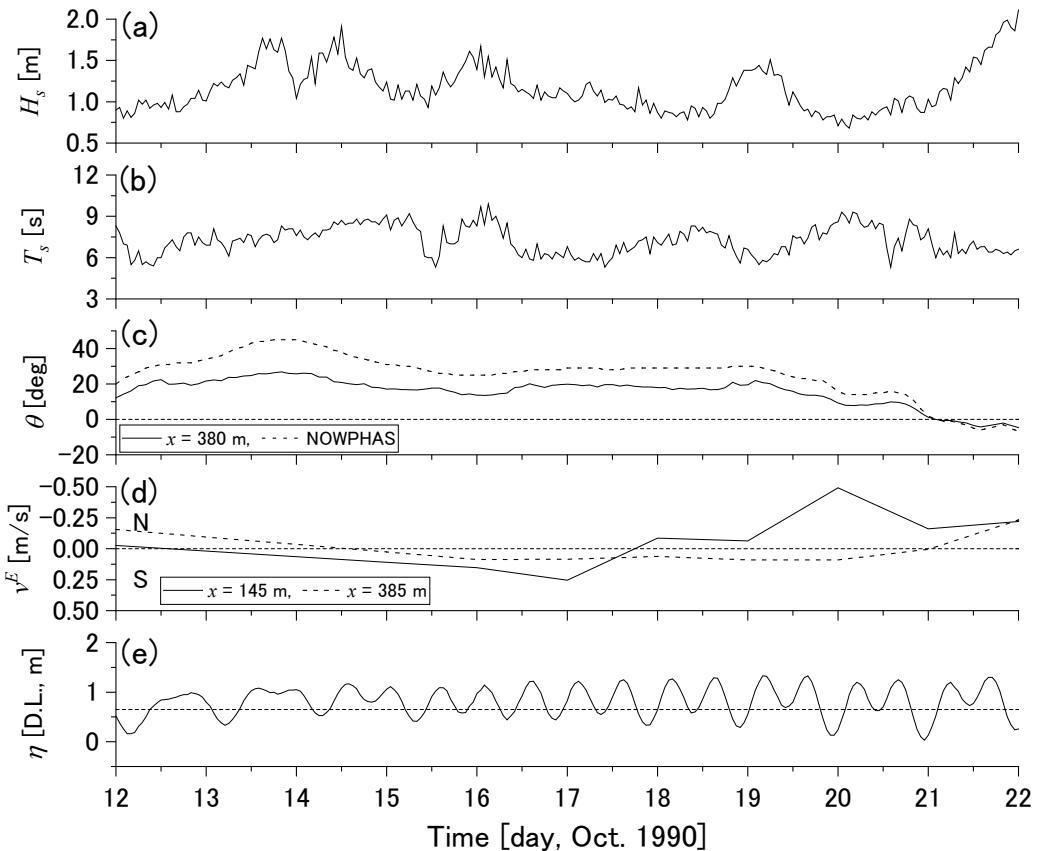
175

176

177

178 **Figure 1.** Location of study site of Hazaki Oceanographical Research Station (HORS)
 179 on the Hasaki coast of Japan facing the Pacific Ocean, and detailed bathymetry (Japan
 180 Oceanographic Data Center) around the HORS.

181


182 Beach profiles along the pier were measured at 5 m intervals from March 1986 to
 183 the present, following the procedure established by Katoh and Yanagishima (1988)
 184 using a 3 kg lead weight from above the pier and using a level and staff landward of the
 185 pier. Surveys were conducted every weekday from March 1986 to March 2011, and
 186 once a week thereafter. The longshore currents along the pier were measured together
 187 with a beach profile survey using a spherical float with a diameter of 0.2 m, 1 m below
 188 the water surface. Kuriyama et al. (2008) confirmed the accuracy of the current
 189 measurements by comparing the float measurements with data from an electromagnetic
 190 current meter, and the correlation coefficient R was 0.97. The median sediment diameter

191 of the coast was 0.18 mm, and it was almost uniform along the pier (Katoh and
192 Yanagishima, 1995).

193 Wave data were observed at three locations on the pier ($x = 40$ m, 145 m, and 380
194 m) using an ultrasonic gage and at one location offshore of the Port of Kashima (dot in
195 Fig. 1) using an ultrasonic sensor. The offshore wave gage was located approximately 8
196 km north of the HORS pier at a water depth of 24 m to provide continuous observations
197 of the wave height, period, and direction in deeper water. The significant wave height
198 and significant wave period were calculated hourly using a 20-min sample (Suzuki et
199 al., 2019). The wave direction was observed only at the offshore location. Therefore, the
200 wave direction at the end of the pier was estimated using Snell's law, and the wave
201 condition offshore of the Port of Kashima was assumed to represent the wave conditions
202 offshore of the pier based on previous numerical modeling work by Kuriyama (2012).

203 The water level data were recorded hourly at the end of the pier. The high, mean,
204 and low water levels based on the datum level (D.L.) at the Hasaki coast (Tokyo Peil -
205 0.687 m) were 1.25, 0.65, and -0.20 m, respectively. Figure 2 presents an example of
206 the wave, current, and water level of October 12–22, 1990, corresponding to one of the
207 comparison cases discussed later.

208
209

210

211

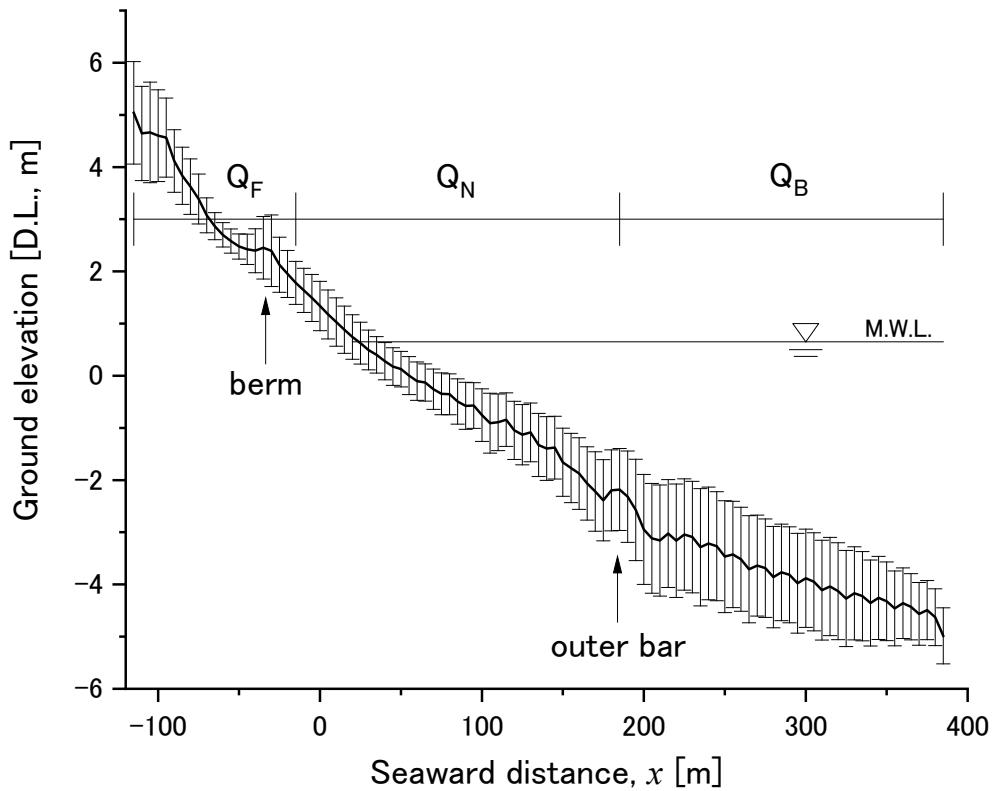
212 **Figure 2:** Observed data from Oct. 12-22, 1990. (a) wave height, (b) wave period, (c)
213 wave direction, (d) longshore current, and (e) water level.

214

215 3.2 Selection of Extreme Offshore-directed Sediment Transport Events

216 As mentioned earlier, cross-shore beach profile surveys were conducted continuously
217 (approximately once per day) along the pier. In this study, data from January 1987 to
218 December 2003 were used, resulting in approximately 6,209 profiles over the 16 years.
219 This section discusses the down-selection of data, resulting in extreme offshore
220 dominant sediment transport events. In the down-selection process, we focus on

221 identifying cross-shore dominant sediment transport events for which the volume of
222 sediment is conserved within the profile.


223

224 3.2.1 Selection of Cross-shore Dominant Sediment Transport Events

225 Figure 3 presents the averaged beach profile and the standard deviation for all 6,209
226 profiles. Two peaks are visible in the mean profile, one at $x = -35$ m at the berm area
227 landward of the mean water line and another at $x = 185$ m at the outer bar. Occasionally,
228 an inner bar forms in the inner surf zone ($0 \text{ m} < x < 180 \text{ m}$), but this inner bar feature
229 was ephemeral and not retained in the mean profile. It is noted that periodic features are
230 visible in the region $200 \text{ m} < x < 385 \text{ m}$ due to the pilings supporting the pier. To select
231 the onshore- and offshore-directed sediment transport cases, the cross-shore distance of
232 the beach profile was separated into three zones based on the two peaks in the averaged
233 beach profile: the foreshore zone ($-115 \text{ m} < x < -20 \text{ m}$), the nearshore zone ($-15 \text{ m} < x <$
234 180 m) and the bar offshore zone ($185 \text{ m} < x < 385 \text{ m}$) and are denoted with subscripts
235 “F” (foreshore), “N” (nearshore) and “B” (bar offshore).

236

237

238

239

240 **Figure 3.** Averaged beach profile and its standard deviation using, the data from Jan.
241 1987 to Dec. 2003.

242

243 The volume difference, Q [m^3/m], over three days was calculated for each zone, that
244 is $Q = Q(t) - Q(t-3)$, where t is the time in days, and denoted as Q_F (foreshore), Q_N
245 (nearshore), and Q_B (bar offshore). The volume difference for the total profile (-115 m
246 $< x < 385 \text{ m}$) was also calculated, Q_T . Values for which $Q < 0$ indicate offshore-directed
247 transport.

248 The following procedure was used to down-select the data:

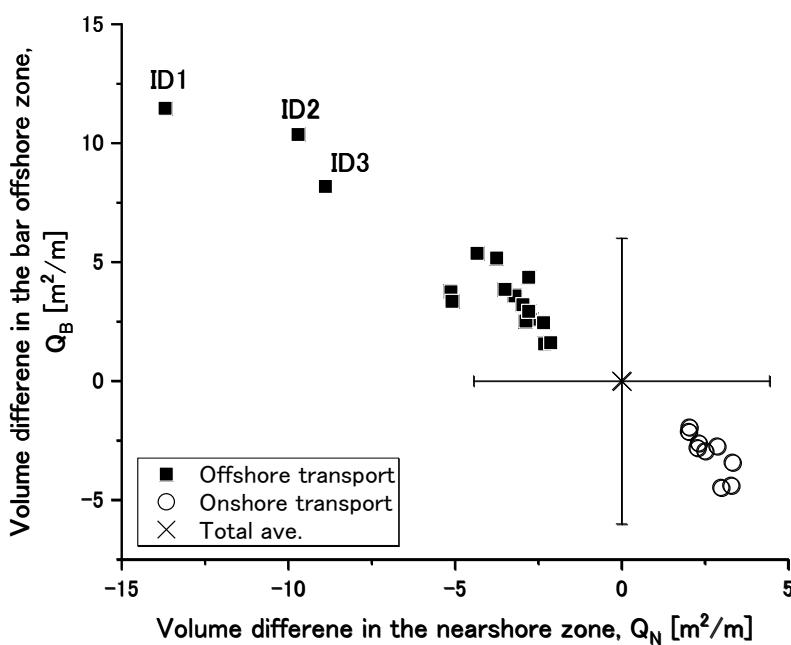
249 1. Focusing on nearshore sediment transport, we discriminated between onshore and
250 offshore events. This yielded 3318 onshore events ($\sum Q_N > 0$) and 2888 offshore-
251 directed events ($\sum Q_N < 0$) in the nearshore.

252 2. Considering a closed system where the sediment mass is conserved in the cross-
253 shore, we chose events for which the total transport normalized by the total
254 magnitude of transport was less than 10 % ($\sum Q_T / \sum |Q_T| < 0.1$). This reduced the
255 number of nearshore onshore events from 3318 to 470 and the number of offshore-
256 directed events from 2888 to 605.

257 3. We considered cases for which the longshore current at the nearshore zone, $x = 145$
258 m, was less than 0.25 m/s because this is a reasonable estimate of the critical value
259 for the initiation of sediment transport, further reducing the cases to 285 onshore
260 and 346 offshore-directed events.

261 4. We considered events for which there was a fairly large signal in the onshore or
262 offshore-directed event defined as $\sum Q_N > 2$ [m^3/m], causing a reduction to 69
263 onshore and 101 offshore-directed events.

264 5. We considered events that occurred only on weekdays. Moreover, we also
265 eliminated events lacking complete hydrodynamic data due to instrument failure,
266 maintenance or replacement. This reduced the cases to 9 onshore and 17 offshore-
267 directed events.


268 In summary, our down-selection process reduced the cases to be considered from
269 6,206 to 26 events.

270

271 3.2.2 Selection of Extreme Offshore-directed Sediment Transport Events

272 Despite the above reduction, it was necessary to examine each profile to select a
 273 reasonable final number of events for comparison with XBeach. Figure 4 illustrates the
 274 correlation between the volume difference in the nearshore zone Q_N and that in the bar
 275 offshore zone Q_B for the selected offshore/onshore dominant events. The cross symbol
 276 indicates the averaged values, and the error bars indicate the standard deviation, σ . All
 277 the events have negative correlations for the offshore dominant events, and sediment in
 278 the nearshore zone moves to the bar offshore zone. For the offshore dominant events,
 279 three events were larger than the value of 2σ . Here, the focus is on three extreme
 280 events that are numbered from ID1 to ID3.

281

282

283

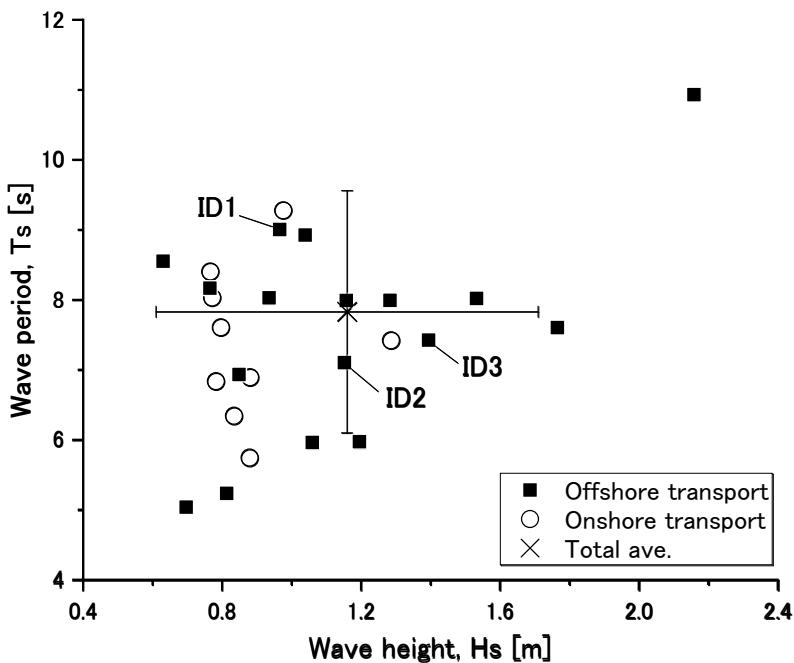
284 **Figure 4:** Correlation between volume difference in the nearshore zone, Q_N , and that in
 285 the bar offshore zone, Q_B .

286

287

288 Table 2 summarize the volume differences at each zone, longshore current at the
 289 cross-shore location of $x = 145$ m for the selected three extreme offshore-directed
 290 sediment transport events, and the last row lists the average, standard deviation,
 291 maximum and minimum values calculated using the dataset from 1987 to 2003 for the
 292 reference. We note here that two extreme offshore-directed sediment transport events
 293 ($\sum Q_N = -11.41 \text{ m}^3/\text{m}$ and $-10.72 \text{ m}^3/\text{m}$) were neglected because the longshore current at
 294 $x = 145$ m was large ($\langle |v_{145m}| \rangle = 0.430 \text{ m/s}$ and 0.277 m/s) for these two events.

295 **Table 2.** Selected three extreme offshore-directed sediment transport events of volume
 296 difference at each zone.


ID	Date		$\sum Q_F$ [m^3/m]	$\sum Q_N$ [m^3/m]	$\sum Q_B$ [m^3/m]	$\sum Q_T$ [m^3/m]	$\sum Q_T $ [m^3/m]	$\frac{\sum Q_T}{\sum Q_T }$	$\langle v_{145m} \rangle$ [m/s]
1	1988/ 9/19-22		0.40	-13.69	11.46	-1.83	36.1	-0.051	0.220
2	1990/10/15-18		0.10	-9.70	10.36	0.76	24.1	0.032	0.151
3	1993/10/4-7		0.10	-8.88	8.17	-0.61	24.8	-0.025	0.218
Full data	1987/ 1/1– 2003/	Ave	0.012	0.0056	-0.006	0.012	15.3	0.050	0.246
		std	0.346	4.44	6.01	8.30	8.21	0.415	0.138
	12/31	Max	1.89	23.3	36.89	47.6	84.8	0.960	0.963
		Min	-4.84	-29.3	-52.0	-59.5	2.71	-0.980	0.004

297

298

299 Figure 5 presents the wave conditions for the selected offshore/onshore dominant
 300 events. The cross symbol indicates the averaged values, and the error bars depict the
 301 standard deviations. The extreme offshore dominant events are marked as ID1, 2, and 3,

302 and no significant trend can be seen for the extreme events, meaning that the wave
303 height and periods that produced these events were within the range of the other events.
304

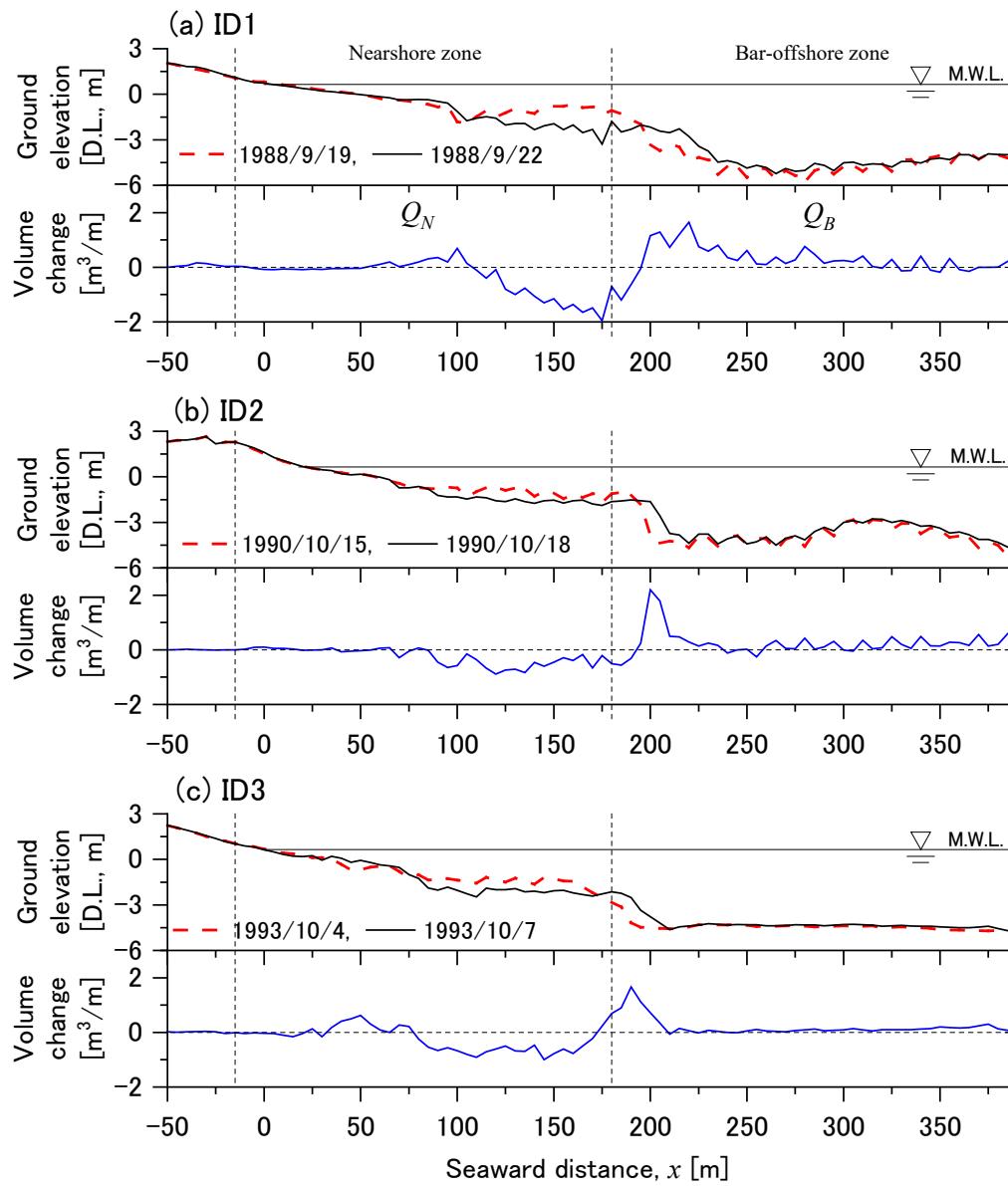
305
306
307 **Figure 5:** Correlation between significant wave height and wave period.
308
309

310 Table 3 lists the wave conditions for each extreme offshore-directed event. Figure 2
311 displayed a representative sample of the data corresponding to ID 2. Although it can be
312 seen that ID 1 and 3 have similar wave periods that are somewhat lower than the mean
313 period, the mean significant wave heights for each of the three events are typical of the
314 wave heights for this area.

315
316

317 **Table 3.** Wave conditions of selected three extreme offshore-directed sediment
 318 transport events.

ID	Date	$\langle H_s \rangle$ [m]		$\langle T_s \rangle$ [s]		Wave direction at $x =$ 380 m, $\langle \theta \rangle$ [degree]
		Ave.	std	Ave.	std	
1	1988/9/19-22	0.97	0.24	9.00	1.06	8.1
2	1990/10/15-18	1.15	0.17	7.10	1.19	17.5
3	1993/10/4-7	1.40	0.22	7.42	1.30	7.3
Full data	1987.1.1– 2003.12.31	1.16	0.55	7.83	1.73	15.3


319

320

321 Figure 6 shows the beach profile change and the volume change of the three selected
 322 extreme offshore-directed sediment transport events: (a) ID 1, (b) ID 2, and (c) ID 3.

323 The top panel in each subplot exhibits the pre- and post-event cross-shore profiles and
 324 mean water level. The bottom panel displays the resulting sediment transport, Q , over
 325 the three days. The light dashed vertical lines in the figure indicate the three zones
 326 (foreshore, nearshore, and bar offshore). All the events are somewhat similar in that
 327 sediment transported offshore-ward from a relatively wide section of the nearshore zone
 328 ($80 \text{ m} < x < 190 \text{ m}$) and deposited in a relatively narrow portion of the offshore bar area
 329 ($190 \text{ m} < x < 240 \text{ m}$). Moreover, some sediment deposition occurred at the onshore end
 330 of the eroded area in the nearshore zone.

331

332

333

334 **Figure 6:** Beach profile change and volume change of extreme offshore-directed
 335 sediment transport events. (a) ID1, 1988/9/19–22, (b) ID2, 1990/10/15–18, and (c) ID3,
 336 1993/10/4–7.

337

338

339 3.3 XBeach Setup and Error Metrics

340 The XBeach domain was 500 m in the cross-shore direction with a grid resolution of 5
341 m for the longshore direction, that is, the 1-D model. The location of the offshore
342 boundary is the same as the pier end of the HORS. The median diameter d_{50} is set as the
343 same median diameter at the Hasaki coast, 0.18 mm. The wave height and period inputs
344 at the offshore boundary were created using a JONSWAP spectrum with default
345 parameters, and the H_{mo} and T_p observed waves at the end of the pier. As explained
346 earlier, the wave angle at the pier was estimated using Snell's law from the offshore
347 ultrasonic sensor. Tidal variation was also included at the offshore boundary. Since
348 cross-shore dominant sediment transport events were selected, the effect of longshore
349 current was neglected in this analysis. Table 4 lists the summary of the main parameter
350 values used in this study. The other XBeach hydrodynamic and morphodynamic
351 parameters were set as default values.

352

353

354 **Table 4.** XBeach parameters for the selected events.

Parameter description	Default	Used in this analysis
Wave breaking parameter	Roelvink extended	Daly et al.
Sed. transport formula	vanthiel_vanrijn	soulsby_vanrijn
Morphological Accel. param.: f_{mor}	1	5
Wave nonlinearity param.: f_{ua}	0.1	0 – 0.55
Bed friction (Chezy): C	55	30

355

356

357 The performance of XBeach on the prediction of wave height and beach profile
 358 change can be evaluated on the basis of the relative mean absolute error (RMAE) and
 359 Brier Skill Score (BSS), respectively. The formulae are as follows (e.g., van Rijn et al.,
 360 2003):

$$361 \quad \text{RMAE} = \langle |H_c - H_m| - \Delta H_m \rangle / \langle H_m \rangle \quad (8)$$

$$362 \quad \text{BSS} = 1 - \left[\langle (|z_{b,c} - z_{b,m}| - \Delta z_{b,m})^2 \rangle / \langle (z_{b,0} - z_{b,m})^2 \rangle \right] \quad (9)$$

363 where indexes m and c are measured and computed. H is the wave height, z_b is the bed
 364 level, ΔH_m and $\Delta z_{b,m}$ are the errors of the measured wave height and bed level, $z_{b,0}$ is the
 365 initial bed level, and $\langle \dots \rangle$ is the averaging procedure over the time series. Table 5 lists
 366 the qualifications of the model performance (excellent, good, etc.) based on the RMAE
 367 and BSS ranges. It is noted that the statistic parameters of wave height and bed level are
 368 corrected for the measurement errors being $\Delta H_m = 0.1$ m and $\Delta z_{b,m} = 0.1$ m in field
 369 conditions (van Rijn et al., 2000). In this analysis, $\Delta H_m = 0.05$ m and $\Delta z_{b,m} = 0.05$ m are
 370 used.

371

372

373 **Table 5.** Qualification of error ranges of process parameters (van Rijn et al., 2003).

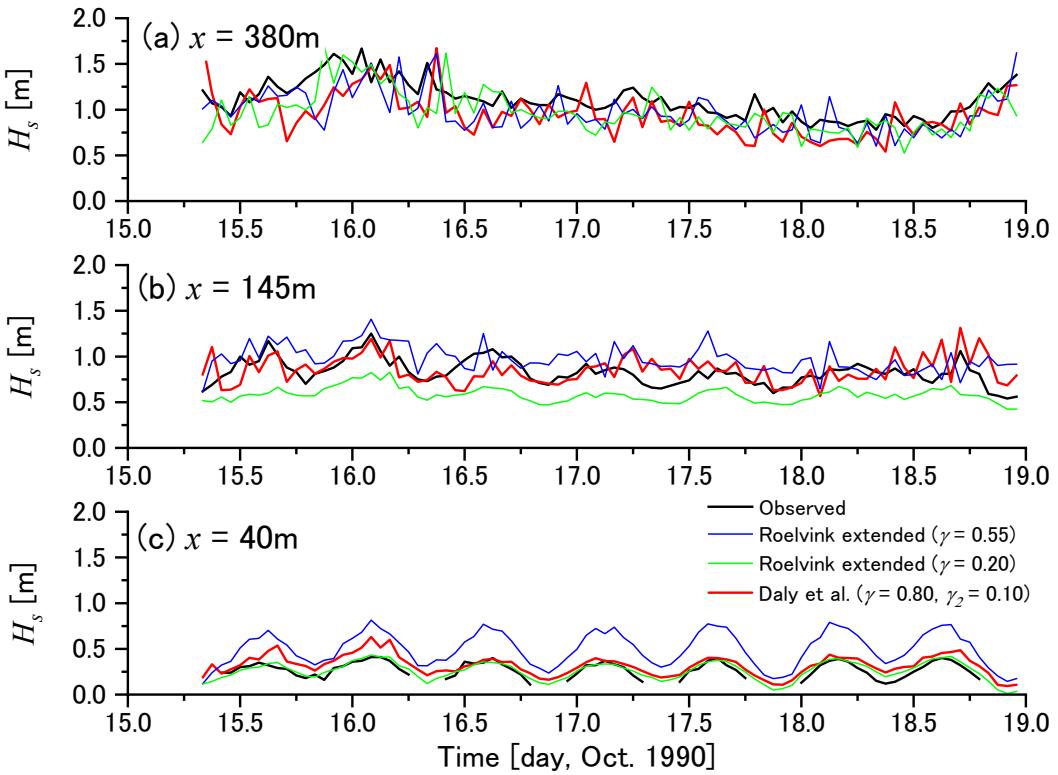
Qualification	Wave height	Morphology
	RMAE	BSS
Excellent	< 0.05	1.0 – 0.8
Good	0.05 – 0.1	0.8 – 0.6
Fair	0.1 – 0.2	0.6 – 0.3
Poor	0.2 – 0.3	0.3 – 0

Bad	> 0.3	< 0
-----	-------	-----

374

375

376 **5. Analysis and discussion of extreme offshore-directed sediment transport**


377 **repeatability**

378 **5.1 Effect of wave breaking parameter on wave height**

379 In this section, the effect of the wave breaking formulations on the wave height
 380 variation inside the surf zone and the effect of wave nonlinearity on beach profile
 381 change are discussed using the event, ID 2 (1990/10/15–18). Recalling Figure 2, the
 382 observations show relatively high wave conditions before and during the event (Fig.
 383 2a). The wave direction during the event was coming from northward (2c) yet the
 384 longshore current remained relatively small and less than 0.25 m/s during the event
 385 (2d). The statistical values of the observed data at the pier end during the event are
 386 listed in Table 3, and the ranges of the values are $0.86 \text{ m} < H_s < 1.67 \text{ m}$ and $5.3 \text{ s} < T_s <$
 387 9.9 s.

388 Figure 7 shows the observed and calculated wave height time series at $x = 380 \text{ m}$,
 389 145 m, and 40 m using both wave breaking formulations (Roelvink extended and Daly
 390 et al.). The solid line indicates the observed data, blue, green, and red lines indicate the
 391 Roelvink extended with the default $\gamma = 0.55$, calibrated $\gamma = 0.20$, and Daly et al. formula
 392 with calibrated $\gamma = 0.80$ and $\gamma_2 = 0.10$, respectively.

393

394

395 **Figure 7:** Observed and simulated wave height using extended Roelvink and Daly et al.
 396 wave breaking formulations. (a) $x = 380$ m, (b) $x = 145$ m, and (c) $x = 40$ m.

397

398 The Roelvink extended formulation with default $\gamma (= 0.55)$ indicates that the wave
 399 height at $x = 380$ m and 145 m show reasonable agreement with RMAE values of 0.11
 400 and 0.16 , respectively. However, at $x = 40$ m, the wave height is overestimated with a
 401 bad agreement (RMAE = 0.94). This indicates that the wave breaking model with
 402 default γ does not adequately reduce the wave energy due to wave breaking. With
 403 tuning using $\gamma = 0.20$, it was possible to obtain excellent results at $x = 40$ m (RMAE =
 404 0.04) and reasonable agreement at $x = 380$ (RMAE = 0.11). However, the wave heights
 405 were underestimated with poor agreement at $x = 145$ m (RMAE = 0.24). In summary, it
 406 was not possible to tune the Roelvink extended formulation with a single value to

407 provide adequate agreement at all three locations in the surf zone. In contrast, the
408 formulation of Daly et al. (red lines) shows reasonable results at all three locations: $x =$
409 380 m (RMAE = 0.11), 145 m (RMAE = 0.10) and 40 m (RMAE = 0.16). Table 6
410 summarizes the wave height comparisons.

411 Therefore, the wave-breaking formulation of Daly et al. with tuned the breaker
412 indexes γ and γ_2 for each event was used for the sediment transport comparison in the
413 next section.

414

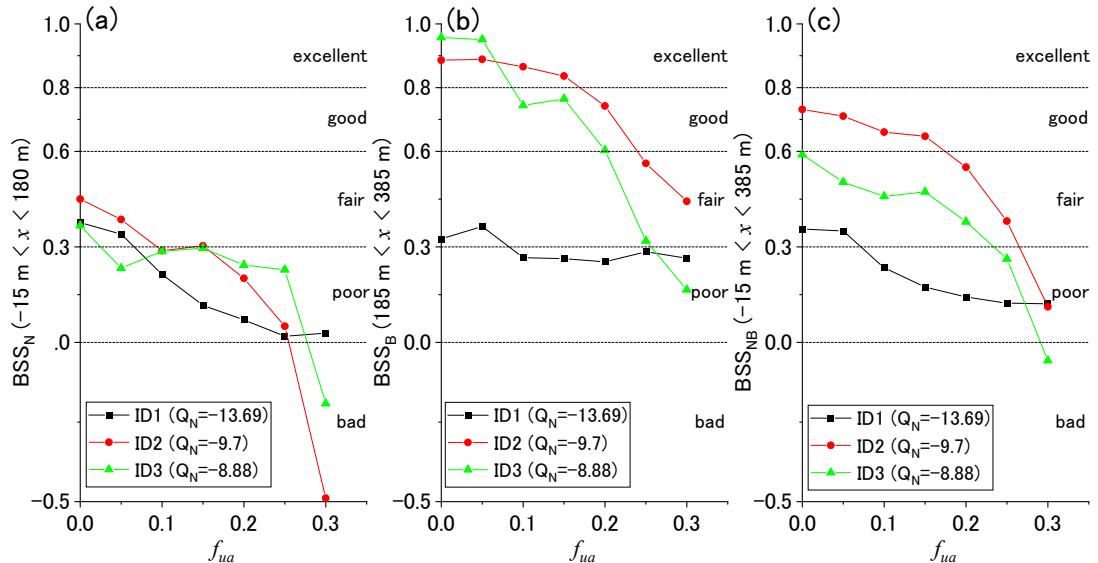
415

416 **Table 6:** Wave breaking formulations and its parameter values and RMAE of each
417 formulation.

Wave breaking model	RMAE of H_s [m]			418
	$x = 380$ m	$x = 145$ m	$x = 40$ m	
Roelvink extended, $\gamma = 0.55$	0.11 Fair	0.16 Fair	0.94 Bad	
Roelvink extended, $\gamma = 0.20$	0.12 Fair	0.24 Poor	0.04 Excellent	
Daly et al., $\gamma = 0.80$, $\gamma_2 = 0.10$	0.14 Fair	0.10 Good	0.16 Fair	

419

420


421 **5.2 XBeach cross-shore sediment transport prediction**

422 As mentioned previously, the effect of wave nonlinearity on sediment transport was
423 modeled in XBeach using wave skewness and asymmetry parameters. The parameter f_{ua}

424 can change both parameters simultaneously and is discussed in detail in this section.
425 Similar to the wave comparison, the BSS is also used for model-data comparison of the
426 morphological change. For all the events, almost no profile change occurred in the
427 foreshore zone ($-115 \text{ m} < x < -20 \text{ m}$). Therefore, the BSS is calculated for the nearshore
428 zone ($\text{BSS}_N: -15 \text{ m} < x < 180 \text{ m}$), bar offshore zone ($\text{BSS}_B: 185 \text{ m} < x < 385 \text{ m}$), and
429 combined nearshore and bar offshore zones ($\text{BSS}_{NB}: -15 \text{ m} < x < 385 \text{ m}$). The wave
430 nonlinearity parameter, f_{ua} , is calibrated to fit the beach profile change with the
431 observed data for each event. Since the wave propagation was adjusted as discussed in
432 section 5.1, the model's predictive skill is related to the morphodynamic parameters,
433 e.g., f_{ua} .

434 Figure 8 displays the correlation between the f_{ua} and BSS for different zones. In the
435 nearshore zone, panel (a), all the events exhibit nearly the same trend, wherein $f_{ua} = 0.0$
436 is the best result; however, the qualification is fair. The BSS_N values gradually decrease
437 when the f_{ua} increase and become a bad rank. Conversely, in the bar-offshore zone,
438 panel (b), although BSS_B for ID1 is a fair rank at $f_{ua} = 0.0$, and almost constant at 0.23,
439 IDs 2 and 3 are excellent ranks at low $f_{ua} (< 0.05)$. For ID2 and 3, BSS_B gradually
440 decreased when the f_{ua} increased. Panel (c) shows the BSS of the area includes both
441 nearshore and bar-offshore zones ($\text{BSS}_{NB}: -15 \text{ m} < x < 385 \text{ m}$). All the values of BSS_{NB}
442 decrease when the number of f_{ua} increases. Overall, for the extreme offshore-directed
443 sediment transport events, $f_{ua} = 0.0$ displayed the best fit. Table 7 lists the best BSS
444 using $f_{ua} = 0.0$ for each zone.

445

446

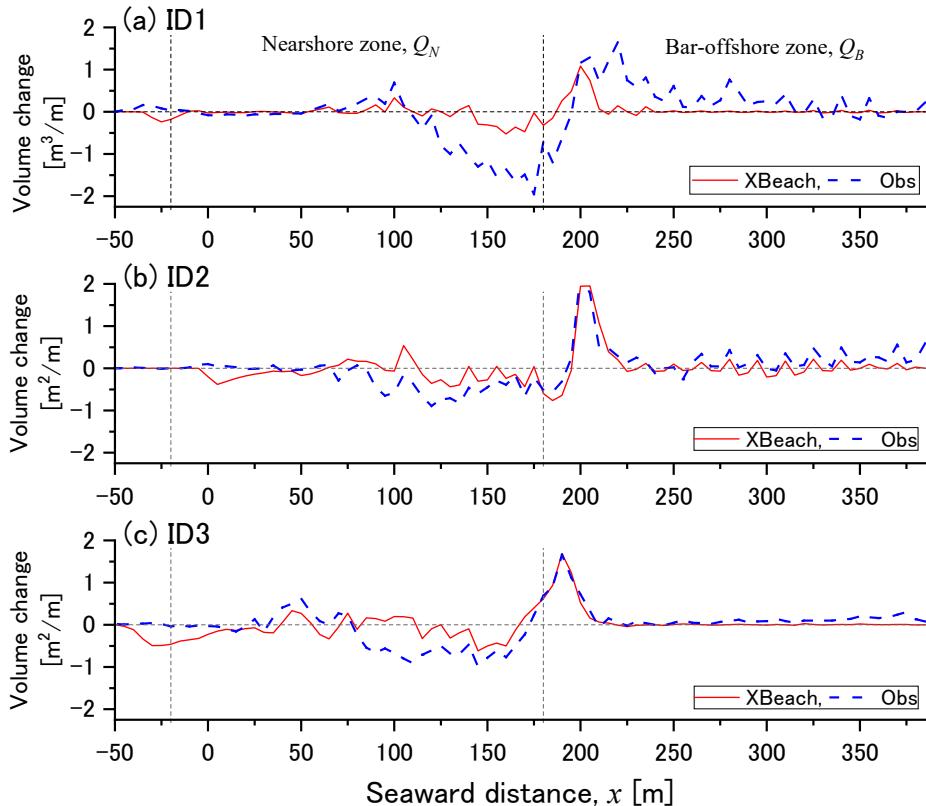
447

448 **Figure 8:** Sensitivity of nonlinearity parameter, f_{ua} , on beach profile prediction. (a)
449 nearshore zone, BSS_N , (b) bar offshore zone, BSS_B , (c) nearshore and bar-offshore
450 zones, BSS_{NB} .

451

452 **Table 7.** BSS of each cross-shore zone during extreme offshore-directed sediment
453 transport events.

454


ID	Nearshore zone, BSS_N	Bar-offshore zone, BSS_B	Nearshore and bar-offshore zones, BSS_{NB}
1	0.377	0.325	0.356
2	0.450	0.886	0.731
3	0.367	0.957	0.590

455

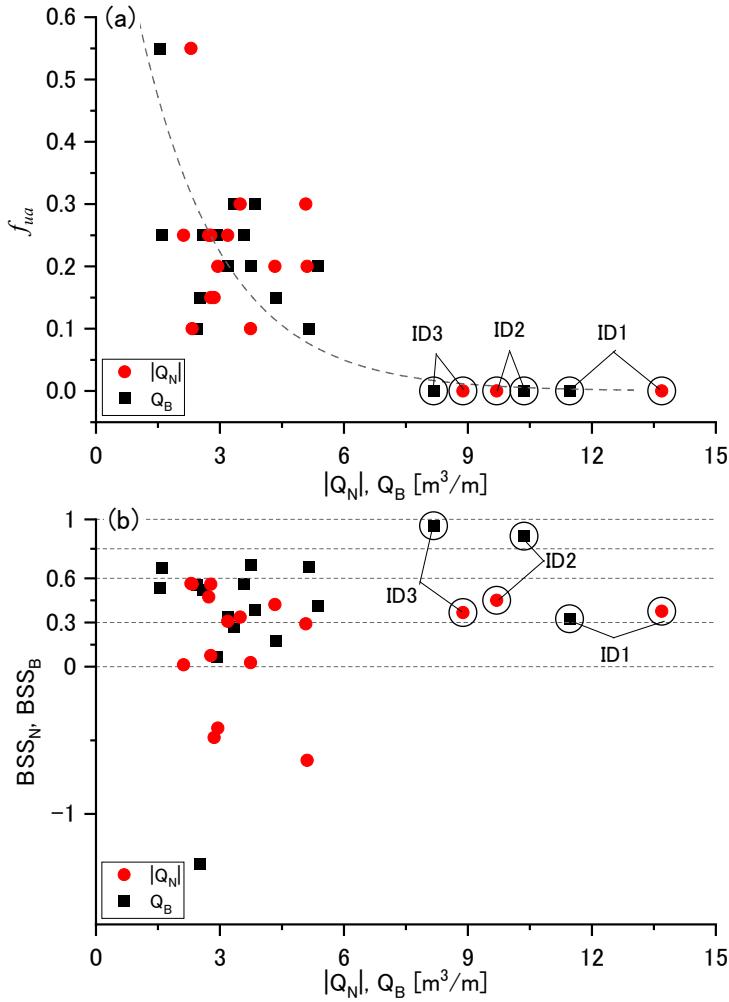
456 Here, using the $f_{ua} = 0.0$, the volume change of the observed (dashed line) and
457 calculated (solid line) results for ID1, 2, and 3 are depicted in Figures 9(a), (b), and (c),
458 respectively. In the nearshore zone, although all the events are underestimated, the
459 trends of the spatial distributions are similar to that of the observed results. The beach
460 profile near the shoreline area, observed results show small deposition or even;
461 however, calculated results show erosion for all the events. In the bar-offshore zone,
462 except for ID1, the peak of the volume change showed good agreement. For ID1, the
463 peak of the onshore end is the same as the observed results, XBeach could not simulate
464 the sediment movement at the offshore side of $x = 215$ m.

465 In this analysis, the JONSWAP spectrum was used for the incident wave. Therefore,
466 the role of infragravity waves was not taken into account in these simulations. It could
467 be considered that this is one of the reasons that the best fit $f_{ua} = 0$ and the mismatch
468 between the observed and simulated beach profile change.

469

470

471


472 **Figure 9:** Volume change of observed and calculated results. (a) ID 1, (b) ID2, and (c)
473 ID 3.

474

475

476 Figure 10 of panels (a) and (b) illustrate the correlation between the volume change
477 and f_{ua} , and volume change and BSS, respectively. In this figure, the selected 17
478 offshore dominant events are plotted, and three extreme events that is ID1-3, are marked
479 with open circles. The red circles and solid squares are the data of the nearshore zone
480 and bar-offshore zone, respectively. All the events, wave breaking parameters of
481 breaker indexes, and f_{ua} were tuned as the profile BSS indicated the highest value.

482

483

484

485 **Figure 10:** (a) correlation between volume change and f_{ua} , (b) correlation between
486 volume change and BSS. The selected 17 offshore dominant events are plotted and
487 three extreme events that are ID1-3, are marked with open circles. The red circles and
488 solid squares are the data of the nearshore zone and bar-offshore zone, respectively.

489

490 The correlation between Q_N and f_{ua} displays a negative correlation (panel (a) of red
491 circles). Although bad qualifications include a range of $2 < |Q_N| < 6$ (panel (b) of red

492 circles), the relation can be expressed as: $f_{ua} = e^{0.5Q_N}$ ($R^2 = 0.26$). Panels (a) and (b) of
493 solid squares present the comparison of Q_B . The parameter f_{ua} has a negative correlation
494 and can be estimated using Q_B as $f_{ua} = e^{-0.5Q_B}$ ($R^2 = 0.43$). The BSS value is slightly
495 better than that of the Q_N (panel (b) of solid squares). Although the correction
496 coefficients with volume changes and BSS_N , BSS_B are not high, we could see the
497 relation curve between the two. Thus, if we could expect the volume change at the
498 beach based on the past observed data, shoreline, etc., or find another parameter that
499 could estimate volume change, we can decide f_{ua} and may calculate the appropriate
500 beach profile change.

501 Elsayed et al. (2017) proposed the f_{ua} estimate equation using average beach slope
502 steepness, $S_s = \tan \beta$, and showed a good correlation, $R^2 = 0.77$. Following their
503 method, we also analyzed the correlation between the two, the averaged beach slope of
504 nearshore to bar-offshore zone, i.e., $x = -15$ m to 385 m, and f_{ua} . As a result, f_{ua} could
505 show the correction with the power function of $f_{ua} = 1.34 \times 10^6 S_s^{3.83}$ ($R^2 = 0.29$).
506 Compared to the Elsayed et al. cases, since we are using filed data, the beach profile is
507 much smaller (Elsayed et al.: $0.06 < S_s < 0.158$; present study: $0.013 < S_s < 0.019$),
508 maybe this is one of the reasons that the correction coefficient was low.

509 Moreover, earlier attempts to relate f_{ua} to wave energy flux and sediment fall
510 velocity (used Dean Number) were unsuccessful ($R^2 = 0.03$ and 0.02, respectively). This
511 is not surprising given that the wave heights and periods for the extreme events were not
512 out of the ordinary (Fig. 5). It could be said that short waves are not the main reason for
513 offshore-directed sediment transport for the three selected events. This suggests that,

514 perhaps, the antecedent profile conditions play a role or that the sediment transport
515 occurs at a time scale faster than what is being used to characterize the hydrodynamic
516 conditions.

517

518 **6. Conclusions**

519 The performance of the sediment transport model XBeach for predicting the profile
520 changes during extreme offshore-directed sediment transport events was investigated
521 using field observations at a dissipative beach in Japan. The data were carefully down-
522 selected to focus on events for which the majority of the sediment was primarily cross-
523 shore directed based on several criteria, resulting in data for 17 events. Moreover, from
524 these 17 events, the top three events were used to investigate the sensitivity of the
525 nonlinearity parameter, f_{ua} , on beach profile prediction. In addition, by using all 17
526 selected events, the correlation between f_{ua} and volume change is discussed. The
527 following conclusions can be drawn from this study.

528 For the extreme offshore-directed sediment transport events, $f_{ua} = 0.0$ is the best fit
529 for predicting the beach profile change. The trend of beach erosion and accretion could
530 be estimated well for all the events; however, in the nearshore zone, erosion tends to be
531 underestimated and the BSS displays lower values. In the bar-offshore zone, sediments
532 are transported from the nearshore zone, and peak sediment deposition occurs. In the
533 simulation, these peak depositions were well estimated. Considering the correlation
534 between volume change and the f_{ua} of the selected 17 offshore-directed sediment
535 transport events, although the model could not accurately predict some events, the f_{ua}
536 value may be estimated using the volume change.

537 In the future, other physical parameters such as the P -parameter or JA -predictor can
538 be investigated to determine if they can provide suitable guidance on setting f_{ua} for
539 offshore-directed sediment transport. The time-varying nature of these parameters
540 should be explored. Moreover, the value of f_{ua} may change, depends on the beach forms.
541 In this analysis, we used the data observed at the dissipative beach. Thus, we also need
542 to investigate the performance of f_{ua} using data of reflective or intermediate beaches.

543

544

545 **Acknowledgements**

546 We express our thanks to reviewers for their valuable comments and discussion. We
547 could improve by following the reviewer's suggestions. The authors also would like to
548 thank the Coastal and Estuarine Sediment Dynamics Group, and Marine Information
549 Group of Port and Airport Research Institute and Kashima Port and Airport
550 Construction Office, for allowing the use of beach profile and wave data at the Hazaki
551 Oceanographical Research Station and wave data from the Port of Kashima. This
552 research was funded by JSPS Grants-in-Aid No. 26709034 and No. 15KK0202. The
553 second author was supported by the National Science Foundation through OCE-
554 1756449.

555

556

557 **References**

558 Armaroli, C., Grottoli, E., Harley, M. D., & Ciavola, P. (2013). Beach morphodynamics
559 and types of foredune erosion generated by storms along the Emilia-Romagna

560 coastline, Italy. *Geomorphology*, 199, 22-35.

561 doi.org/10.1016/j.geomorph.2013.04.034

562 Bailard, J. A. (1981). An energetics total load sediment transport model for a plane
563 sloping beach. *Journal of Geophysical Research: Oceans*, 86(C11), 10938-10954.

564 doi.org/10.1029/JC086iC11p10938

565 Baldock, T. E., Alsina, J. A., Caceres, I., Vicinanza, D., Contestabile, P., Power, H., &
566 Sanchez-Arcilla, A. (2011). Large-scale experiments on beach profile evolution and
567 surf and swash zone sediment transport induced by long waves, wave groups and
568 random waves. *Coastal Engineering*, 58(2), 214-227.

569 doi.org/10.1016/j.coastaleng.2010.10.006

570 Berard, N. A., Mulligan, R. P., da Silva, A. M. F., & Dibajnia, M. (2017). Evaluation of
571 XBeach performance for the erosion of a laboratory sand dune. *Coastal
572 Engineering*, 125, 70-80. doi.org/10.1016/j.coastaleng.2017.04.002

573 Bolle, A., Mercelis, P., Roelvink, D., Haerens, P., & Trouw, K. (2010). Application and
574 validation of XBeach for three different field sites. *Proceedings of 32nd
575 International Conference on Coastal Engineering*, 1(32), 40.

576 doi.org/10.9753/icce.v32.sediment.40

577 Bugajny, N., Furmańczyk, K., Dudzińska-Nowak, J., & Paplińska-Swerpel, B. (2013).
578 Modelling morphological changes of beach and dune induced by storm on the
579 Southern Baltic coast using XBeach (case study: Dziwnow Spit). *Journal of Coastal
580 Research*, (65), 672-677. doi.org/10.2112/SI65-114.1

581 Callaghan, D. P., Ranasinghe, R., & Roelvink, D. (2013). Probabilistic estimation of
582 storm erosion using analytical, semi-empirical, and process based storm erosion
583 models. *Coastal Engineering*, 82, 64-75. doi.org/10.1016/j.coastaleng.2013.08.007

584 Deigaard, R., Fredsøe, J., & Hedegaard, I. B. (1986). Suspended sediment in the surf
585 zone. *Journal of Waterway, Port, Coastal, and Ocean Engineering*, 112(1), 115-
586 128. doi.org/10.1061/(ASCE)0733-950X(1986)112:1(115)

587 De Alegria-Arzaburu, A. R., Williams, J. J., & Masselink, G. (2010). Application of
588 XBeach to model storm response on a macrotidal gravel barrier. *Proceedings of*
589 *32nd International Conference on Coastal Engineering*, 1(32), 39.
590 doi.org/10.9753/icce.v32.sediment.39

591 De Vet, P. L. M., McCall, R. T., den Bieman, J. P., Stive, M. J., & van Ormondt, M.
592 (2015). Modelling dune erosion, overwash and breaching at Fire Island (NY) during
593 Hurricane Sandy. *Proceedings of Coastal Sediments*.
594 doi:10.1142/9789814689977_0006

595 De Winter, R. C., Gongrip, F., & Ruessink, B. G. (2015). Observations and modeling
596 of alongshore variability in dune erosion at Egmond aan Zee, the Netherlands.
597 *Coastal Engineering*, 99, 167-175. doi.org/10.1016/j.coastaleng.2015.02.005

598 De Winter, R. C., & Ruessink, B. G. (2017). Sensitivity analysis of climate change
599 impacts on dune erosion: case study for the Dutch Holland coast. *Climatic Change*,
600 141(4), 685-701. doi.org/10.1007/s11069-014-1417-8

601 Dissanayake, P., Brown, J., & Karunarathna, H. (2014). Modelling storm-induced
602 beach/dune evolution: Sefton coast, Liverpool Bay, UK. *Marine Geology*, 357, 225-
603 242. doi.org/10.1016/j.margeo.2014.07.013

604 Do, K., Shin, S., Cox, D., & Yoo, J. (2018). Numerical Simulation and Large-Scale
605 Physical Modelling of Coastal Sand Dune Erosion. *Journal of Coastal Research*, SI,
606 85, 196-200. doi.org/10.2112/SI85-040.1

607 Elgar, S., Gallagher, E. L., & Guza, R. T. (2001). Nearshore sandbar migration. *Journal*
608 *of Geophysical Research: Oceans*, 106(C6), 11623-11627.
609 doi.org/10.1029/2000JC000389

610 Elsayed, S. M., & Oumeraci, H. (2017). Effect of beach slope and grain-stabilization on
611 coastal sediment transport: An attempt to overcome the erosion overestimation by
612 XBeach. *Coastal Engineering*, 121, 179-196.
613 doi.org/10.1016/j.coastaleng.2016.12.009

614 Faraci, C., Scandura, P., & Foti, E. (2014). Bottom profile evolution of a perched
615 nourished beach. *Journal of Waterway, Port, Coastal, and Ocean Engineering*,
616 140(5), 04014021. doi.org/10.1061/(ASCE)WW.1943-5460.0000253

617 Figlus, J., Kobayashi, N., Gralher, C., & Iranzo, V. (2011). Wave overtopping and
618 overwash of dunes, *Journal of Waterway, Port, Coastal, and Ocean Engineering*,
619 137(1), 26-33. doi.org/10.1061/(ASCE)WW.1943-5460.0000060

620 Galappatti, G., & Vreugdenhil, C. B. (1985). A depth-integrated model for suspended
621 sediment transport. *Journal of Hydraulic Research*, 23(4), 359-377.
622 doi.org/10.1080/00221688509499345

623 Jamal, M. H., Simmonds, D. J., & Magar, V. (2014). Modelling gravel beach dynamics
624 with XBeach. *Coastal Engineering*, 89, 20-29.
625 doi.org/10.1016/j.coastaleng.2014.03.006

626 Jayaratne, M. P. R., Rahman, M. R., & Shibayama, T. (2014). A cross-shore beach
627 profile evolution model. *Coastal Engineering Journal*, 56(4), 1450020.
628 doi.org/10.1142/S057856341450020X

629 Kotah, K., & Yanagishima, S. (1988). Predictive model for daily changes of shoreline.
630 *Proceedings of 21st International Conference on Coastal Engineering*, 1(21).
631 doi.org/10.1061/9780872626874.094

632 Katoh, K., & Yanagishima, S. (1995). Changes of sand grain distribution in the surf
633 zone. *Proceedings of Coastal Dynamics*, 639-650.

634 Kelly, D. M., & Dodd, N. (2010). Beach-face evolution in the swash zone. *Journal of
635 Fluid Mechanics*, 661, 316-340. doi.org/10.1017/S0022112010002983

636 Kobayashi, N., & Farhadzadeh, A. (2008). Cross-shore numerical model CSHORE for
637 waves, currents, sediment transport and beach profile evolution. *Research Rep. No.*
638 *CACR-08-01*, Center for Applied Coastal Research, Univ. of Delaware, Newark,
639 Del. <https://hdl.handle.net/11681/7734>

640 Kuriyama, Y. (2002). Medium-term bar behavior and associated sediment transport at
641 Hasaki, Japan. *Journal of Geophysical Research: Oceans*, 107(C9), 15-1,
642 doi.org/10.1029/2001JC000899

643 Kuriyama, Y., Ito, Y., & Yanagishima, S. (2008). Cross-shore variation of long-term
644 average longshore current velocity in the nearshore zone. *Continental Shelf*
645 *Research*, 28(3), 491-502. doi.org/10.1016/j.csr.2007.10.008

646 Kuriyama, Y. (2012). Process-based one-dimensional model for cyclic longshore bar
647 evolution. *Coastal Engineering*, 62, 48-61.
648 doi.org/10.1016/j.coastaleng.2011.12.001

649 Larson, M., & Kraus, N. C. (1989). SBEACH: numerical model for simulating storm-
650 induced beach change. Report 1. *Empirical foundation and model development* (No.
651 CERC-TR-89-9). Coastal Engineering Research Center, Vicksburg, MS.

652 Larson, M., Kubota, S., & Erikson, L. (2004). Swash-zone sediment transport and
653 foreshore evolution: field experiments and mathematical modeling. *Marine*
654 *Geology*, 212(1-4), 61-79. doi.org/10.1016/j.margeo.2004.08.004

655 Lindemer, C. A., Plant, N. G., Puleo, J. A., Thompson, D. M., & Wamsley, T. V.
656 (2010). Numerical simulation of a low-lying barrier island's morphological response
657 to Hurricane Katrina. *Coastal Engineering*, 57(11-12), 985-995.
658 doi.org/10.1016/j.coastaleng.2010.06.004

659 McCall, R. T., De Vries, J. V. T., Plant, N. G., Van Dongeren, A. R., Roelvink, J. A.,
660 Thompson, D. M., & Reniers, A. J. H. M. (2010). Two-dimensional time dependent
661 hurricane overwash and erosion modeling at Santa Rosa Island. *Coastal*
662 *Engineering*, 57(7), 668-683. doi.org/10.1016/j.coastaleng.2010.02.006

663 Nederhoff, C. M., Lodder, Q. J., Boers, M., Den Bieman, J. P., & Miller, J. K. (2015).
664 Modeling the effects of hard structures on dune erosion and overwash: A case study

665 of the impact of Hurricane Sandy on the New Jersey coast. In The Proceedings of
666 the Coastal Sediments 2015. doi.org/10.1142/9789814689977_0219

667 Palmsten, M. L., & Splinter, K. D. (2016). Observations and simulations of wave runup
668 during a laboratory dune erosion experiment. *Coastal Engineering*, 115, 58-66.
669 doi.org/10.1016/j.coastaleng.2016.01.007

670 Pender, D., & Karunarathna, H. (2013). A statistical-process based approach for
671 modelling beach profile variability. *Coastal Engineering*, 81, 19-29.
672 doi.org/10.1016/j.coastaleng.2013.06.006

673 Puleo, J. A., Beach, R. A., Holman, R. A., & Allen, J. S. (2000). Swash zone sediment
674 suspension and transport and the importance of bore-generated turbulence. *Journal
675 of Geophysical Research: Oceans*, 105(C7), 17021-17044.
676 doi.org/10.1016/j.coastaleng.2013.06.006

677 Rafati, Y., Hsu, T. J., Elgar, S., Raubenheimer, B., Quataert, E., & van Dongeren, A.
678 (2021). Modeling the hydrodynamics and morphodynamics of sandbar migration
679 events. *Coastal Engineering*, 166, 103885.
680 doi.org/10.1016/j.coastaleng.2021.103885

681 Roelvink, D., Reniers, A., Van Dongeren, A. P., de Vries, J. V. T., McCall, R., &
682 Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands.
683 *Coastal Engineering*, 56(11-12), 1133-1152.
684 doi.org/10.1016/j.coastaleng.2009.08.006

685 Roelvink, D., McCall, R., Mehvar, S., Nederhoff, K., & Dastgheib, A. (2018).
686 Improving predictions of swash dynamics in XBeach: The role of groupiness and

687 incident-band runup. *Coastal Engineering*, 134, 103-123.

688 doi.org/10.1016/j.coastaleng.2017.07.004

689 Schambach, L., Grilli, A. R., Grilli, S. T., Hashemi, M. R., & King, J. W. (2018).

690 Assessing the impact of extreme storms on barrier beaches along the Atlantic

691 coastline: Application to the southern Rhode Island coast. *Coastal Engineering*, 133,

692 26-42. doi.org/10.1016/j.coastaleng.2017.12.004

693 Schweiger, C., Kaehler, C., Koldrack, N., & Schuettrumpf, H. (2020). Spatial and

694 temporal evaluation of storm-induced erosion modelling based on a two-

695 dimensional field case including an artificial unvegetated research dune. *Coastal*

696 *Engineering*, 161, 103752. doi.org/10.1016/j.coastaleng.2020.103752

697 Splinter, K. D., & Palmsten, M. L. (2012). Modeling dune response to an East Coast

698 Low. *Marine Geology*, 329, 46-57. doi.org/10.1016/j.margeo.2012.09.005

699 Splinter, K. D., Carley, J. T., Golshani, A., & Tomlinson, R. (2014). A relationship to

700 describe the cumulative impact of storm clusters on beach erosion. *Coastal*

701 *Engineering*, 83, 49-55. doi.org/10.1016/j.coastaleng.2013.10.001

702 Suzuki, T., Takeuchi, M., Tomoda, N., Yamaguchi, S., & Kuriyama, Y. (2007). Spatial

703 distribution of cross-shore sediment transport rate for berm formation and erosion.

704 *Proceedings of Coastal Sediments*, 7, 2037-2048. doi.org/10.1061/40926(239)160

705 Suzuki, T., Mori, N., & Cox, D. T. (2009). Statistical modeling of near-bed pressure

706 gradients measured on a natural beach. *Coastal Engineering Journal*, 51(02), 101-

707 121. doi.org/10.1142/S0578563409001965

708 Suzuki, T., Inami, Y., Yanagishima, S., Sakihama, S., & Cox, D. T. (2019). Sediment
709 particle movements observed using tracers under accretive wave conditions in the
710 nearshore zone. *Coastal Engineering Journal*.
711 doi:10.1080/21664250.2019.1629863.

712 Van Rijn, L.C., Grasmeijer, B.T., Ruessink, B.G., 2000, Measurement errors of
713 instruments for velocity, wave height, sand concentration and bed levels in field
714 conditions. *COAST3D Report*, Delft Hydraulics, Delft, The Netherlands, 47p.
715 <http://resolver.tudelft.nl/uuid:eb375d04-87e6-49f3-b04a-4b2a1a2046f3>

716 Van Rijn, L. C., Walstra, D. J. R., Grasmeijer, B., Sutherland, J., Pan, S., & Sierra, J. P.
717 (2003). The predictability of cross-shore bed evolution of sandy beaches at the time
718 scale of storms and seasons using process-based profile models. *Coastal
719 Engineering*, 47(3), 295-327. doi.org/10.1016/S0378-3839(02)00120-5

720 Verheyen, B., Gruwez, V., Zimmermann, N., Bolle, A., & Wauters, P. (2014). Medium
721 term time-dependent morphodynamic modelling of beach profile evolution in Ada,
722 Ghana. In ICHE 2014. *Proceedings of the 11th International Conference on
723 Hydroscience & Engineering*, 701-708. <https://hdl.handle.net/20.500.11970/99493>

724 Vousdoukas, M. I., Almeida, L. P., & Ferreira, Ó. (2011). Modelling storm-induced
725 beach morphological change in a meso-tidal, reflective beach using XBeach.
726 *Journal of Coastal Research*, SI, 1916-1920. <https://www.jstor.org/stable/26482510>

727 Williams, J. J., de Alegria-Arzaburu, A. R., McCall, R. T., & Van Dongeren, A. P.
728 (2012). Modelling gravel barrier profile response to combined waves and tides using

729 XBeach: Laboratory and field results. *Coastal Engineering*, 63, 62-80.

730 doi.org/10.1016/j.coastaleng.2011.12.010

731 Williams, J. J., Esteves, L. S., & Rochford, L. A. (2015). Modelling storm responses on

732 a high-energy coastline with XBeach. *Modeling Earth Systems and Environment*,

733 1(1-2), 3. doi 10.1007/s40808-015-0003-8

734 Yin, K., Xu, S., Huang, W., Li, R., & Xiao, H. (2019). Modeling beach profile changes

735 by typhoon impacts at Xiamen coast. *Natural Hazards*, 95(3), 783-804.

736 doi.org/10.1007/s11069-018-3520-8

737