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Modern Thermal Protection Systems (TPS) used for planetary exploration missions often
utilize lightweight porous materials as their outer isolating layer. Due to its stochastic nature,
such material exhibits a high level of material variability in various properties. Therefore, it is
of paramount importance to accurately estimate the uncertainty margin and to understand how
material response is affected. In this study, a well-established data-driven algorithm is used to
estimate the FiberForm conductivity by using real-time experimental data. By combining the
real-time experimental data and a high-fidelity simulation model, the inherent material property
is obtained via the proposed method - the retrospective adaptation algorithm. The results
also indicate that this methodology is of great potential and can be applied to a wide range of
engineering problems, including parameter evaluation, and experimental data processing.
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Nomenclature
Atyqapr = adaptation time step
Tadapt = positive integer
At = computation time step
N = number of measurement locations
n = adaptation time step
0 = adaptation closure coefficient matrix
o = standard deviation (closure coeflicient)
¢mi = measurement at the i/*¢*'"" location
bs.i = simulated value at the i/*¢*/*" Jocation
e = performance used to adapt closure coefficient matrix
f = feedback vector of simulated results
M;(n) = setof square matrices (6 X 6) at each adaptation time step
N;(n) = setof matrices (6 X f) at each adaptation time step
L(n) = setof column matrices (1 X ) at each adaptation time step
(0] = adaptive parameter
1 = column matrix composed of the feedback vector, closure coefficient matrix, and value 1
0 = optimization variable
I = retrospective performance
H; = jth impulse response parameter from 6 to ¢
q = stacked matrix of adaptive parameter Q
q = stacked matrix of optimization variable O
J = retrospective cost
Subscripts
m = measurement
S = simulated
r = retrospective
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I. Introduction

THE intense aerodynamic heating experienced by vehicles during hypersonic atmospheric entry necessitates the use

of thermal protection systems (TPS). In recent years, low-density ablative materials have been employed effectively
to mitigate the heating experienced by the vehicle through various processes such as charring, pyrolysis gas transport
and “surface” ablation [1]. To achieve lower density while maintaining mechanical strength, carbon fiber is used as a
substrate matrix for many popular TPS materials, such as phenolic impregnated carbon ablator (PICA). The random
nature of stacking or weaving fibers in those materials leads to variability at multiple length scales. Such unpredictability
is undesired but unavoidable. At the micro-scale, randomly stacked carbon fibers can form weak locations, such as a
small local cavity, that leads to localized thermal and structural loading [2]. At the macro-scale, that variability may
lead to non-uniform heating, thus creating a radical temperature gradient within the vehicle [3]. During the ground
testing stage, the material variability can lead to incorrect material margin policy [4]. Thus, estimating the variability
range of a candidate TPS material at an early stage is crucial.

Due to the lack of test or operational flight data, historical techniques for determining TPS material variability
have typically utilized the knowledge and insights of subject matter experts to assign uncertainty values to various
TPS aeroheating parameters or components [5]. Uncertainty estimation has also been conducted employing rigorous
approaches; however due to computational resource limitations, these studies have not fully achieved the requisite
non-linear multivariate analysis [6—8]. The composite aeroheating uncertainty is then determined by employing a
worst-on-worst case approach or via a root-sum-square (RSS) approach [9]. The worst-on-worst case approach can
be overly conservative, while the RSS approach is only valid for a small number of linearly independent variances[4].
Moreover, if the aeroheating component uncertainties are not properly set, the result can be non-conservative [6].

To address the aforementioned difficulties, presented in this paper is a data-driven adaptive real-time (DART)
approach to improve simulation accuracy by calculating and continuously iterating the closure coefficients of a physics
model. This approach was originally devised for adaptive control systems [10—12] but was then re-framed to adapt k-w
closure coefficients in turbulence modeling [13, 14]. By utilizing the retrospective cost adaptation (RCA) algorithm,
the k-w closure coefficients are automatically adapted to improve the agreement between the simulated flow field and
measured data, which are specified at spatial locations in the flow field. The RCA algorithm finds values for model
parameters that minimize the difference between the simulated flow field and measurements over a block of data from
the recent past. Then, this “re-optimized” value for the model parameter is used at the next time step. The stability
properties of the RCA algorithm are analyzed in Ref. [10].

In contrast to the data-driven approach in Ref. [13], the RCA-RANS k-w model presented is applicable not only to
steady turbulent flows but also to general multiphysics modeling. The RCA algorithm is implemented in combination
with a material response solver to model heat conduction and replicate experiments. This approach will automatically
retrieve the value of material properties and drive the simulation results to match the experiments. In the following
sections, the mathematical framework of the code will be reviewed along with the the details of the data-driven algorithm.
Details of the experiment design and setup will also be presented.

II. Numerical Framework and Formulations

A. Numerical framework

The material response and Retrospective adaptation codes have both been developed within the framework of
the Kentucky Aerothermodynamic and Thermal-response System (KATS) [15]. KATS is a multiphysics modeling
framework, capable of analyzing hypersonic flows [16], the trajectory of spallation particles [17], and low-speed
turbulent flows [13]. It is also a universal solver for fluid-solid-interaction modeling [18], material response [15] and
structural response as well as thermo-mechanical coupling problems [19, 20]. In KATS, a universal Finite Volume
Method framework is used, with second-order accuracy in space and first-order accuracy in time. More details of the
framework and governing equations can be found in the mentioned references.

B. Definition of a black-box model
To help better understanding the mathematics and framework, a very general black-box model will be introduced. A
black-box model can be described as an input-output system with a general function F, which can be treated as a data

processor, or a SOIVCI', as
®! = F(®!,0), 1)
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where ®! is the primitive variable set of this model output at the current time step. The subscript s denotes that this
variable is the result of a simulation, or a model, comparing to experimental measurements. The 8 can be a combination
of any model parameters, such as boundary conditions, model geometric information, material properties and even
some hyper-parameter such as time step size.

C. Retrospective cost adaptation algorithm

Experimental data consisting of N temperature measurements at specified locations are required for the retrospective
cost adaptation (RCA) algorithm. Within the context of this algorithm, the term measurement is defined as a priori
information about the temperature distribution at N locations. The measurements and the associated simulated values
are specified by

[ Gm.1(n)
®,, = : € Rle )
| Pm,N (n)
[ ¢s.1(n)
o, = : € Rl 3)
_¢s,N (n)
where ¢, ;(n) € R is the measurement value at the i™ location (matrix of real numbers length N), ¢s.i(n) € R% is the
simulated value at the i location (matrix real numbers length N),n e N,i =1,..., N, N is the number of measurement

locations, and /g = Z[Azll I;.
To adapt the closure coefficients, 8(n), performance is defined as

{(n) = @s(n) - Pp(n) “4)

The external driver or feedback for 6(n) is a vector of simulated field output (e.g. temperature), which is denoted by
f(n) € R, Therefore, for all n € N, the closure coefficients to be stated as an auto-regressive moving-average (ARMA)
model with feed-forward bias as given by

6n) = > Mym6(n—1)+ Y Ny(n)f(n =)+ L(n) )
i=1 i=1

where n.. is a positive integer (time step), M;(n) € R/¢*! is a set of square matrices (8 x 6) at each adaptation time step,
N;(n) € R*s is a set of matrices (6 X f) at each adaptation time step, and L(n) € R/¢ is a set of column matrices
(1 x 0) at each adaptation time step.

Note that M;(n) is the auto-regressive parameter as a function of time, N;(n) is the moving average as a function of
time, and L(n) is the feed-forward bias as a function of time and these values are updated according to the adaptive law
presented herein. The ARMA model is initialized with M;(0) = 0g X I, N;(0) = 09 X If, and L(0) =€ Rla. As an
example, 6(0) = L(0) can be the closure coefficients as proposed in Reference [21].

The ARMA model, Eq. (5), can be rewritten as

6(n) = Q(n)y(n) (6)
where Q(n) is the adaptive parameter given by
Q(n) = [N\ (n) - N (n) Mi(n) -+ My, (n) L(n)] € RIoxCrellytlo)sh )
and,
[ f(n=1)]
sy 2 |65 | € mettrr (®)
_H(n I nc)_
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Next, an update equation for Q(n), or the adaptation parameters, are expressed by setting O as the optimization
variable and defining retrospective performance as

&(Qm) 2 £(m)+ Y Hi[0 - Q(n = Py(n = J) ©)

J=1

where Q € RIo*ne(r+o)+1) and  is Q initially, n, is a positive integer, H; € R/*% is the ;" impulse-response
parameter from 6 to £.

The retrospective performance is calculated based on the true performance by assuming that the optimization
variable, O, was employed in place of prior adaptive parameters Q(n), ..., Q(n —n,). As a result, the retrospective
performance serves as a proxy for the actual performance. The adaptive parameter is deemed to have converged when
Q(n) is constant, indicating that Q (n — i) = Q(n) in which case £(Q(n), (n)) = £(n) as an outcome of the retrospective
performance equation.

Recalling that vec X is the vector created by stacking the columns of matrix X, the following two stack matrices can
be defined

g(n) £ vec Q(n) € R (10)

4(n) £ vec O(n) € Rl (11)

where l; £ lg(nc(If +1g) +1).
Therefore, retrospective performance can be rewritten as

&@m=¢my+ ) w =)@ H;G— ) Hif(n=j) (12)
7=0 7=0
or,
£r(@um) = () + ¥ (g = ) H,b(n~ ) (13)
j=0

where ® - is the Kronecker product and,
W(n) £ Y y(n-j)@H| e Rl (14)
J=0

Next, the retrospective cost is established from
n
J@.m) = 3 84088, + [ - ()] T[4 - g(0)] (15)
i=0

Note that T" € Rla*/a is symmetric and positive definite, meaning A,, = AY, and all eigenvalues are positive. Then for
each n € N, the unique global minimizer of the retrospective cost J is given by a recursive least squares algorithm as
follows

q(n+1) = q(n) = P()¥(M)Q" (n)¢ (n) (16)

where,

P(n+1)=Pn) - Pn)¥n)Q ' (n)¥T(n)P(n) (17)

By defining the following two parameters

& (n) £ & (q(n),m) + ¥ (m)q(n) = )" H;0(n - j) (18)
j=0
Q(n) = I, + ¥ (n)P(n)¥(n) (19)

and, P(0) = I'"!. Then Q(n + 1) is computed from
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O(n+1)=veclg(n+1) e Rlex(nels+e)+D) (20)

where, vec™! is the inverse operator, meaning vec™'vec Q(n) = Q(n). Also, the equations (16) and (19) are a recursive,
least-squares algorithm.

Parameter drift is a known issue in adaptation programs [22], since in reality, the RCA algorithm will not drive the
performance parameter, £ (1), exactly to zero. Consequently, there will be a residual difference between the measurement
values, ®,,(n), and the simulation values, ®(n), for a variety of reasons including noise in the measurements, noise in
the numerics, and the reality that simulation models do not match experimental data perfectly. So, since {(n) does
not converge exactly to zero, then per Eq. 16, £(n) will continue to adapt, which will cause the closure coefficients,
6(n), to continue to adapt, since £ (n) is used to update 6(n). Therefore, a deadzone approach is introduced to eliminate
parameter drift. A modified retrospective performance is defined as:

’ A gr (I’l), if d(”) = €0,
£r(n) = {0, if d(n) < €, @D
where,
Na
d(n) = Z|I|§r(n =DIP = 11g —i - 117 (22)
i=0

where €y > 0, and Ny is a nonnegative number.
In summary, the RCA algorithm employed in the code-base consists of equations (6), (14), (17) through (22) and

g(n+1)=gq(n) - P(n)¥(n)Q " (n)¢](n) (23)

IT1. Adaptation Demonstration Case
To illustrate the implementation details and verify the performance of the developed adaptive algorithm, an adaptation
test case is presented. A first-order differential equation system is chosen based on its simplicity,

X' =AX""'+Bo (24)

The differential function output a value, X!, based on its previous value, X' =1 and some constant parameters, A, B and
6. With respect to Eq. 1, the X! = <I)§. In this case, those terms are vectorized and set as

Xl -0.5 0.5 6, 0.5
x2 0.5 -0.5 0| |05
X = , A= , B= , 6= = . (25)
X3 -0.5 -0.5 o 0.5
X4 0.5 0.5 04/ \0.5

By using an initial value of X° = (0,0,0,0)7 and a simple forward time stepping, the solution can quickly reach
steady-state, shown in Fig. 1a. It can be observed that the solution is X0 = (0.1666, —0.5, —0.1666, O.S)T at time step
around 10. Once the solution reaches steady-state, the impulse can be applied to 6. To do so, the value of each 8 is
increased by 1 at the current time step and then changed back to its original value. This process can be viewed in
Fig. 1b, where each 6 has been impulsed at a certain time interval. It should be noted that once the impulse is applied,
the next impulse must wait until the solution reaches steady-state again. Due to a sudden change in 6, the solution shows
fluctuations in X, shown in Fig. la. Since each equation is independent, the changes in X only have a dependence in the
corresponding 6.
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Fig. 1 Demonstration test case of the adaptation algorithm.

To isolate the impacts of the impulses of 8 on the equation system, the values of the changing X are subtracted by its
steady-state values and then stored. Figure 2 shows the values of such operations. For each subfigure, one item of 6 is
impulsed and the absolute changes of X are recorded. It can be seen that for all cases, the solution quickly converges
back to its original values. The patterns in Figs. 2a and 2c are similar since the values are fluctuating around 0; while
Figs. 2b and 2d show a mono-directional decay to 0. Additionally, it can be clearly seen that each item of 8 only affects
its corresponding X.
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Fig. 2 Response of the impulse of the equation system.

To test the performance of the adaptation algorithm, the model parameter 6 is set to be 8 = (0.2,0.2,0.2,0.2), and
the measured solution is generated by setting 6 = (0.3,0.3,0.3,0.3). Figure 3a shows that the overall solution reaches
a steady state at time step 25. At time step 26, the adaptation starts. It can be seen that the values of each X start to
deviate from the steady-state solution, then quickly converges to new values, which are the measured values. Figure 3b
presents the evolution of 8. All four components of 6 starts at 0.2. At step 26, the values rapidly increase in two steps
and fall back into a stable curve. It should be noted that all components have been adapted at the same time, during
which the 8, and 03 share the same pattern of adaptation. This is because the responses of the impulse for these two
parameters deliver the same pattern, which has been discussed before. Another point is that the overall adaptation
process is very effective and quick - 6 quickly converges to the known measured value in less than 75 adaptation steps.
To better compare the fitting wellness of the results, an error is defined as,

N
L, error = Z((I)S(n) —®,,(n))2 (26)
n=0

The L, error is presented in Fig. 3c. The solution residual reaches 0 very quickly; after adaptation starts, it jumps in a
few steps, and then rapidly falls back to 0 again. The performance maintains a value when the solution reaches a steady
state. Once the adaptation starts, the error quickly decreases in a few steps and eventually reaches 0.
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Fig. 3 Adaptation of the first-order differential equation system.

In this case, the adaptation works very well, with the performance reaching 0 after tens of steps and all the 6 have
been adapted to exact values. One of the reasons is that the first-order differential equations are very simple and highly
linear. Secondly, although it is a four-equation system, each equation is independent so there is no interaction between
6. This test case demonstrates how the developed RCA algorithm works and the benefits it can provide for parameter
discovery processes using measured data.

IV. Experimental Setup
The experiment used to collect data is a comparative cut-bar apparatus as described in ASTM D5470 [23]. The
experiment is housed inside a thermal vacuum chamber such that the pressure and atmospheric composition that the
sample material is exposed to can be varied. Further details on the experiment can be found in Barrow et al. [24].

A. Experimental setup and layout

A diagram of the experimental setup is given in Figure 4. Heat is generated by resistance heaters embedded in
a copper heating block. The heat flows through a 0.0254 m (1 in) diameter top metering bar where the temperature
gradient is measured through five thermocouples spaced 0.0127 m (0.5 in) apart. The sample is placed between the two
metering bars and heat flows through the sample into the bottom metering bar with a temperature gradient measured
by embedded thermocouples mirroring the top bar. The location of the thermocouples and sample are illustrated in
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Figure 5.
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Fig. 5 Thermocouple and sample locations in experimental assembly

Heat is removed through a cooling coil utilizing either water or liquid nitrogen, allowing for variable control of
sample temperature. Insulation is wrapped around the metering bars along with radiation shielding that acts to create a
baffling region around the sample, retaining heat and reducing losses from the metering bars and sample. The top bar
assembly position is controlled by a linear actuator that sits below the experimental assembly. With the coupling of a
rotary encoder and load cell, the load and strain placed on the sample can be controlled to ensure consistent interfacial
resistance between the sample and metering bars which can be separated during data analysis.

B. Data acquisition

The primary data collected during the experiment is temperatures in the metering bar. Type K thermocouples are
embedded in the center of the metering bar, which are monitored by a data acquisition card that polls the thermocouples
every second. The linear actuator and load cell are monitored to ensure a consistent load is being applied to the sample.
The vacuum chamber pressure is monitored with a Pirani gauge.
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C. Data set

In this study, three experimental case results were selected. Key results are summarized in Table 1. The sample
names indicate the material, FiberForm, and relative sample length. AT is the temperature difference across the
sample. It should also be noted that the effective conductivity contains the contacting resistance between the sample

and the metering bar. Therefore, the intrinsic value of the FiberForm conductivity should be higher than the effective
conductivity.

Table 1 Experimental results on FiberForm

Sample name Length,in AT, K Effective conductivity, W/m-K

FF-2 0.145 108.66 0.570
FF-4 0.290 115.44 0.694
FF-long 0.435 146.78 0.795

Figure 6 shows the final temperature distribution of each case. It can be seen that as the sample length becomes
longer, the resultant temperature difference increases.

T ar {54.89 X T o 106.43 B T —i3.00 8
M e o o 450 e—e—e o o 8
100 | | 400 ", B ".
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! -| 400 - .
) AT = 108.66 K R =127 M AT =115.44K l" {R: = 20.94 3 M AT = 146.78 K l“ Ry = 27.43 1
& as0l ' . | = 350 ! : 1~ | W
0 " ' 350 |- ' ]
'. : '
i | \
: ' !
| o 300 e o o o 300 | e o oo o
300 L=0.Qfm 0408 K L=0.0krm 54.52 K L=0.0m 14.55 K
Il Il Il 1¢ Il 1 Il Il Il Il 1] Il Z Il Il Il Il 1 Ar — | =99 Il
-6 -4 =2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 =2 0 2 4 6
z [em] x [cm] x [cm]
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Fig. 6 Steady-state temperature distribution of the experiments.

V. Results
In this section, replicate modeling cases will be presented to show how temperature results and setup are obtained.
To capture the physics, an energy conservation equation is solved in a Finite Volume Method framework, without a

source term,
0
—/pc,,TdV:jl{kVT-ndA. @7
ot % A

where ¢ is time, V is cell volume, p is density, ¢, is heat capacity, T is the primitive variable, temperature, A is the local
cell face area, k is the thermal conductivity, and n is the face normal vector.

A. Boundary conditions and grid

Figure 7 displays the computational grid and boundary conditions of this case. To capture the full physics of the
experiment, the geometries of both the metering bar and sample are constructed as a quarter cylinder with the same
dimensions. The mesh is extensively refined for the sample so that the variability of the material properties can be
implemented. At the left front of the metering bar, a fixed temperature from TC1 is applied; and at the right end, a fixed
temperature from TC10 is applied. The two inner surfaces are symmetric, while the outer surface of the cylinder is

applied with an advection cooling heat flux. The simulation is setup to run until the steady-state solution is reached. For
each data set, three different grids are created to match the sample length and the boundary conditions.

Figure 8 displays the density contour of both the metering bar and the FiberForm sample. Firstly, the material model

assumes that there is no thermal resistance at the interface between the sample and the metering bar. Therefore the value

10
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Fig. 7 Boundary conditions and computational grid for data set FF-4

of the conductivity used on that face is the average of the metering bar material and the sample. Then, the interface
resistance will be modeled as a surface with a very low conductivity value.

Density, Kg/m’ NN | |

1000 5500 10000

Metering bar

Sample

Fig. 8 Density of the metering bar and sample.

The material properties of the metering bar are known and assumed to be isotropic and constant. The detailed values
are presented in figure 9.
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Fig. 9 Metering bar material properties.

The material properties of FiberForm are given in Table 2. In this study, all properties are assumed to isotropic and
constants. The effective conductivity, which includes the interfacial resistance, is the target parameter. Thus, the value
of 0.2 W/m - K is an initial guess, which will be adapted to seek a fitted value.

B. Modeling results
Figure 10a presents the steady-state temperature of the entire domain. It can be seen that the left metering bar is in
a high-temperature region. The sample, due to its very low conductivity, has effectively cut the energy conduction.
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Table 2 Material properties of FiberForm

Density Specific heat  Effective conductivity (Initial guess)
200, kg/m® 200, J/kg-K 0.2, W/m-K

Therefore, the right-part bar exhibits a low-temperature region. Figure 10b shows the temperature results extracted at
the center-line. Since the material is assumed to be constant and isotropic, the temperature is linear in both the metering
bar and sample region. Also due to the sharp differences in material properties, the slopes in these regions are different,
as would be expected. The FiberForm has a very low conductivity, which leads to a sharp temperature gradient between
the metering bars. Consequently, the sample acts as a thermal barrier, slowing down the energy propagation. Figure 10c
presents the temperature evolution of the 8 thermocouples. It can be seen that the simulation reaches steady-state quickly
around 200 seconds.
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(a) Steady-state temperature distribution over the whole domain.
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(b) Extracted results at center-line (c) thermocouple results

Fig. 10 Temperature results for the experimental case FF-4.

C. Adaptation of conductivity

To apply the RCA algorithm, the responses of the thermocouples are needed. To obtain the response, the effective
conductivity of the sample has been increased by 1 in one time step and changed back to the original at the following step.
Figure 11a shows the responses of the temperature in the form of absolute values. It can be seen that as TC 5 and TC 6
are the closest to the sample, they show large fluctuations immediately. In about 50 time steps, the system stabilized and
returned to the steady-state solution. Figure 11b presents the adaptation process of the effective conductivity. The initial
guess is 0.2 W/m-K. After 200 time steps, the adaptation starts to work. It can be observed that the algorithm moves the
value up and down in a range of [0~1], and it fluctuates within this interval in approximately 100 steps. After that, the
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amplitude decays and gradually falls into a smaller and smaller range. After about 1,000 steps, the adapted conductivity
value is achieved at approximately 0.523 W/m-K. Figure 11c shows the solution residual and performance history
over time. It can be seen that at the beginning, the solution reaches a steady state, while the performance maintains a
relatively high level. Once the adaptation begins to work, the performance decreases rapidly. The error of measurements
and simulation results reaches a low value when the solution reaches steady-state again. The error of the RCA algorithm
does not necessarily decrease to zero in the adaptation process since other factors could also affect the thermocouple
readings.
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Fig. 11 Adaptation results for data set FF-4.

The same process has been applied to the experiments FF-2 and FF-long. Figure 12a and 12¢ shows the response H
of the sample FF-2 and FF-long. It can be seen that there are some differences in the amplitude, but they do share the
same pattern compared with the FF-4. Figure 12b and 12d presents the adaptation process of these two cases. For FF-2,
the adaptation process is more intense and much shorter than FF-long. The adapted value starts from 0.2 W/m-K, and
quickly reaches 1.45 W/m-K, then it falls back and decays to a stable value. For FF-long, the adaptation takes more time
and reaches a lower value of 0.461 W/m-K.
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Fig. 12 Adaptation results for data set FF-2 and FF-long.

Table 3 shows a summary of the adapted effective conductivity compared with the experimental results. The adapted
effective conductivity shows some degree of similarity to the experimental results. At least the values are of the same
order of magnitude. It is, however, not promising to see that the adaptation fails to catch the increasing pattern as
the sample length increases. Two main reasons may cause this discrepancy. The first one is the advection heat flux.
Currently, it is modeled as negative heat flux, with a constant value over the entire outer surface. And the actual value
of this cooling flux in the experiments is very hard to quantify. The second one is the contacting thermal resistance.
FiberForm is a highly porous material. Different samples with different cutting locations from a bulk material may lead
to a very different surface roughness of the cut surface. Therefore, the contacting thermal resistance for each experiment
may differ.

D. Evaluation of the influential factors - advection strength

The results indicate the developed RCA algorithm can be used as a parameter-fitting method to explore material
properties. It thus can be used as a tool to evaluate how environmental conditions affect the results. Figure 13 shows the
results by varying the magnitude of advection. Each point is a single run of FF-4, with different values of advection flux
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Table 3 Comparison of the effective conductivity

Name Adaptation value, W/m-K  Experimental value, W/m-K

FE-2 0.523 0.570
FF-4 0.541 0.694
FF-long 0.461 0.795

applied on the outer surface. It can be observed that when advection is strong, the algorithm will deliver a smaller
conductivity. As the advection becomes smaller, the value of conductivity increases linearly and reaches a maximum
when advection is around -200 W/m?. This behavior can also be explained in an energy balance perspective of view - if
stronger advection occurs during the experiment, to maintain the same temperature difference, a lower conductivity of
the sample would be required.
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Fig. 13 Advection influences on adapted conductivity value for FF-4.

E. Evaluation of the influential factors - contacting thermal resistance

Based on the previous results, the RCA algorithm can be used as a tool to evaluate how one environmental condition
affects the targeted parameter. In this case, the model will be further refined to include the contacting resistance. The
contacting resistance, also known as interfacial thermal resistance, is due to the surface roughness of the sample and
the metering bar. During the experiment, asperities on the contacting surfaces lead to localized voids that inhibit
heat transfer. For each experimental test, the roughness of the sample may vary because of the cutting location, pore
distribution, and forces exerted on the metering bar. It difficult to quantify the true contacting thermal resistance between
the sample and the metering bar.

Based on Eq. 27, one way to model the contacting thermal resistance is to change the k on the interface to a
low value so that it becomes harder for energy to pass. To fully discover the impact of the contacting resistance, the
Kinterfacial Was sampled from [0.05~1.05] W/m-K, with a interval value of 0.01. Therefore, for each sample, 101 cases are
performed. Figure 14 presents the adapted conductivity value for all the cases. For all samples, the sample conductivity
discovered by the RCA decreases as the interfacial thermal resistance increases. For FF-2, because of the shortest
length, the adapted conductivity is very sensitive to interfacial resistance. As the kinerfacial becomes smaller, the adapted
conductivity increases exponentially and reaches an unrealistically high value. For FF-4 and FF-long, as the sample
length is increased, the adaptation value becomes less sensitive. Because for each test, the sample conductivity is a
constant, the results can also be used to evaluate the range of the targeting parameter by assuming the only changing
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parameter is the interface conductivity for all three tests. Comparing three curves, it can be observed that the overlapping
range, from [0.5~0.9], can be inferred as the intrinsic value of the FiberForm sample.
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Fig. 14 Influences of interfacial contacting thermal resistance on sample conductivity

F. Real-time property inference

Figure 15 shows the entire history data of the 10 thermal couples. In order to reach a steady-state solution, the
experiment lasts about 7.7 hours, which is not including the time spent on the cooling process. Near the end of the
experiment, it is also not very easy to call exactly if a steady-state is reached. It is notable that at the first 10,000
seconds, the rate change of the temperature is much larger than the rest of the time, for all the thermal couples. Thus,
the question raises - is there a way to discover the conductivity much earlier, during the data richness period, than the
end of experiment? It is clear that at early stage, the temperature difference between the metering bar is a dynamic
value - it increases as the metering bar and sample reaches a steady-state. At ¢ = 3000 s, the temperature differences is
approximately 88.15 K. Apparently, this value cannot be used to calculate the effective conductivity.
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Fig. 15 Temperature measurements of all time for case FF-4.
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Figure 16 shows the application of the developed RCA algorithm to discover the conductivity using the real-time
temperature measurements. The red line shows the evolution of the adapted conductivity value. Like the previous
case, an initial value of 0.2 W/m-K is used. The adapted value quickly drops to the lower bound, which is set to be
0.001 W/m-K. And followed by a rapid increasing to about 0.55 W /m-K. It is very surprising to see that at as early as
t = 1000 s, the solution starts to show some degree of convergence. As shown in the figure, during ¢ ~ [ 1000, 4000] s,
the average of adapted value is 0.564 W /m-K, with a standard deviation of 0.01. It should be noted that even at t = 4000
s, as shown in Fig. 15, the thermal couple readings are still increasing rapidly and very far from the steady-state solution.
The adaptation keeps working - the adaptation value fluctuates around an averaged value of 0.555. This is because the
measurement contains noises and disturbance from the environment. At the end of the experiment, the adaptation uses
the last points as steady-state and obtained a value of 0.553 W/m-K. The error also indicates that at the very early stage,
the algorithm adapts the conductivity of the sample to match the measurements very well. The error never exceeds one
after approximately ¢t = 500 s.
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Fig. 16 Real-time adaptation results for case FF-4.

The significance of the real-time adaptation offers a much earlier inference on the targeting model parameter. In this
FF-2 case, the early adaptation value, 0.564 W /m-K, is very close to the value inferred using the steady-state value, 0.553.
Figure 17a shows the real-time inference results on all three cases. In this figure, each point represents the half-hour
average value of the adapted conductivity. It can be seen that except the first half hour, the adapted value remains at a
level throughout the entire simulation. Figure 17b shows the percent error compared with the end-of-experiment result.
Except for the case FF-long, error remains less than 5 percent after the first half-hour. The evolution of the inferred
values also indicates that it is quite possible to obtain a value of conductivity with comparable accuracy at much less
time cost (10 hours Vs. 1 hour)., which could potentially greatly accelerate the experimental process.
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Fig. 17 Real-time material property inference on three FiberForm experimental cases.

VI. Conclusion and Future Work

This work proposed a new methodology to evaluate the material property by combining the experiment and
physics-based model. The demonstration test case proves that by using a data-driven approach, the parameters of a
system can be revealed in a fast and accurate way. Accurate measurement of the conductivity in TPS material is of great
importance. By using the retrospective adaptation algorithm, a physics-based parameter fitting methodology is achieved.
The obtained conductivity is in good agreement with the experimental value and by tuning the environmental parameter,
such as advection strength and contacting thermal resistance, a trustworthy range of the FiberForm conductivity is
obtained. This process can also be used to better understand the experimental results and help researchers to control the
most influential factors. Real-time inference is also achieved by using the on-the-run thermal couple data. The results
indicate that an acceptable model parameter can be obtained in one tenth of the original experiment time cost.

For the next stage of this application, the time series of thermocouple data will be used to explore more properties,
especially the material uncertainties of the FiberForm. Carbon fiber ablators, such as the ones used in TPS, have large
variability in their properties. Due to the random nature of stacking or weaving fibers, those materials display a certain
level of variability at different scales. The developed RCA algorithm can use the entire history of thermocouple data
to match the evolution of temperature. With more richness in the data used, a more in-depth understanding of the
parameters, including material variability, can be obtained.
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