Taylor & Francis
Journal of Taylor & Francis Group

NONLINEAR
Pivsice AL Journal of Nonlinear Mathematical Physics

Narbert Euler
Lutad thmray af Tactrnalogy, Smadvn

[SEERE £55

ISSN: 1402-9251 (Print) 1776-0852 (Online) Journal homepage: http://www.tandfonline.com/loi/tnmp20

A modified complex short pulse equation of
defocusing type

Shoufeng Shen, Bao-Feng Feng & Yasuhiro Ohta

To cite this article: Shoufeng Shen, Bao-Feng Feng & Yasuhiro Ohta (2017) A modified complex
short pulse equation of defocusing type, Journal of Nonlinear Mathematical Physics, 24:2, 195-209,
DOI: 10.1080/14029251.2017.1306946

To link to this article: http://dx.doi.org/10.1080/14029251.2017.1306946

ﬁ Published online: 22 Mar 2017.

N
CJ/ Submit your article to this journal &

||I| Article views: 13

A
h View related articles &'

P

(!) View Crossmark data ('

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=tnmp20

(Download by: [Tarleton State University] Date: 04 May 2017, At: 12:25 )



http://www.tandfonline.com/action/journalInformation?journalCode=tnmp20
http://www.tandfonline.com/loi/tnmp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14029251.2017.1306946
http://dx.doi.org/10.1080/14029251.2017.1306946
http://www.tandfonline.com/action/authorSubmission?journalCode=tnmp20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tnmp20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/14029251.2017.1306946
http://www.tandfonline.com/doi/mlt/10.1080/14029251.2017.1306946
http://crossmark.crossref.org/dialog/?doi=10.1080/14029251.2017.1306946&domain=pdf&date_stamp=2017-03-22
http://crossmark.crossref.org/dialog/?doi=10.1080/14029251.2017.1306946&domain=pdf&date_stamp=2017-03-22

Journal of Nonlinear Mathematical Physics, Vol. 24, No. 2 (2017) 195-209

A modified complex short pulse equation of defocusing type

Shoufeng Shen*

Department of Applied Mathematics, Zhejiang University of Technology
Hangzhou, 310023, China
mathssf@zjut.edu.cn

Bao-Feng Feng

School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley
TX, 78541, USA

Yasuhiro Ohta

Department of Mathematics, Kobe University
Rokko, Kobe 657-8501, Japan

Received 26 August 2016

Accepted 11 February 2017

In this paper, we are concerned with a modified complex short pulse (mCSP) equation of defocusing type.
Firstly, we show that the mCSP equation is linked to a complex coupled dispersionless equation of defocusing
type via a hodograph transformation, thus, its Lax pair can be deduced. Then the bilinearization of the defocus-
ing mCSP equation is formulated via dependent variable and hodograph transformations. One- and two-dark
soliton solutions are found by Hirota’s bilinear method and their properties are analyzed. It is shown that,
depending on the parameters, the dark soliton solution can be either smoothed, cusponed or looped one. More
specifically, the dark soliton tends to be evolved into a singular (cusponed or looped) one due to the increase
of the spatial wave number in background plane waves and the increase of the depth of the trough. In the last
part of the paper, we derive the defocusing mCSP equation from the single-component extended KP hierar-
chy by the reduction method. As a by-product, the N-dark soliton solution in the form of determinants for the
defocusing mCSP is provided.

Keywords: Short pulse equation; hodograph transformation; dark soliton; Hirota’s bilinear method.
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1. Introduction
The so-called short pulse (SP) equation

Uy = u—|—% (u3)xx , (1.1

was proposed by Schifer and Wayne to describe the propagation of ultra-short optical pulses in
nonlinear media [4, 30]. Here, u = u(x,t) is a real-valued function, representing the magnitude of
the electric field, the subscripts ¢ and x denote partial differentiation. Apart from the context of non-
linear optics, the SP equation has also been derived as an integrable differential equation associated
with pseudospherical surfaces [1,25]. The SP equation has been shown to be completely integrable
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possessing a Lax pair representation and bi-Hamiltonian structure [2,3,26]. The connection between
the SP equation and the sine-Gordon equation through the reciprocal transformation was firstly dis-
covered in [26], then was further clarified and used by to find two-loop and breather solutions in [27]
by the same authors. The general N-soliton solutions including multi-loop and multi-breather ones
were given in [19] by using Hirota’s bilinear method [14, 18]. The integrable discretization and the
geometric interpretation of the SP equation were given in [6,7].

Recently, a modified short pulse (mSP) equation

Uy = u—#—uui—{—uzum, (1.2)

was studied by Sakovich [28], in which the Lax pair and the soliton solutions were provided. The
mSP equation is a direct reduction (« = v) of a coupled short pulse equation [8] proposed by one of
the authors

1 1 1 1
Uy = U+ 6(u3)xx+ Evzuxx, Vg =V+ 6(v3)xx+ Euzvxx. (1.3)

Besides the above coupled short pulse equation (1.3), there is another coupled pulse equation pro-

posed by Miiller-Hoissen and Matsuno independently [5, 20]

1 1
Uy = U+ E(uvux)x, Vg =Vv+ E(uvvx)x. (1.4)

When v* = u, which means u is the complex conjugate of v, this leads to a complex short pulse
equation

1
Uy = U+ Eﬂulzux)x, (1.5)

which can be derived from the Maxwell equations for the propagation of ultra-short pulses [10, 16].
The geometric interpretation via the motion of space curves was given in [31]. Its various solutions
including the multi-bright soliton, multi-breather and multi-rogue wave solutions were investigated
by the Darboux transformation [17].

Quite recently, Matsuno presents a multi-component generalization of the mSP equation [21],
of which the two-component mSP equation takes the form

Uy = u+v(uy)y, vy =v+u(vy)y. (1.6)

Especially, imposing v* = u(= ¢), the two-component mSP equation reduces to a single equation
of complex version

v =q+q"(9qx)x, (1.7)

which can be called the modified complex short pulse (mCSP) equation. Similar to the complex
short pulse equation which admits both the focusing and defocusing type [11, 12], it is natural to
consider a modified complex short pulse equation of defocusing type

9xt = q—q (q9x)x- (1.8)
Note that the equation (1.8) is invariant under the following transformation
1
q—cq, Ox— —0dy, O — co,
c

therefore, without loss of generality, the amplitude of g can be fixed as x — d-co.
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The rest of the paper is organized as follows. In Section 2, the bilinearization of the defocusing
mCSP equation (1.8) is formulated via an appropriate hodograph transformation, and the Lax pair is
given based on its connection with the complex dispersionless equation of defocusing type. Then the
one- and two-dark soliton solutions are found and illustrated, their properties are analysed in details.
In Section 3, starting from a single-component extended KP hierarchy, along with its tau functions,
the defocusing mCSP equation is derived and its multi-dark soliton solution in determinant form is
provided. The paper is concluded by Section 4.

2. Integrability of the defocusing mCSP equation
2.1. Bilinearization

The defocusing mCSP equation (1.8) can be deduced by the following bilinear equations

(DyDgs+ixDs+iyDy)g - f =0, (2.1)
1 1
D>—Z ) f-f=—=gg" 2.2
by means of the dependent variable transformation
L g itkytys)
=== ; 23
1=5¢¢ ; (2.3)
and the hodograph transformation
1
x:—Kyy+Zs—(1nf)s, t=s, (2.4)

where D is the Hirota D-operator defined by

e (D AN (D A\ o
0tre= (5 50) (5 30) 090 hmvce

The proof is given as follows. Dividing f2 on both sides of (2.1) and (2.2), and referring to a bilinear
identity

DyDsg- f (g) g
222 = (8) +20nh),2,
f2 f s ( nf))’ f
we have
8 g . g . g
) +2(nf)S+ix( 2 ) +iy( 2 ) =0, 2.5
<f>w 0y <f>s W<f>y *)
(Inf)s = 1 |88 (2.6)
SS 4 fz . .
From the hodograph transformation (2.4) and Eq. (2.6), we have
ox

87)/ = —KY— (mf)ysa
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dx 1 _lggm o
5—4_(lnf)sx—4f2 = ||

which implies

ay:paxa aS: 8l+’q|28)“

by defining p = —xy — (In f),,. Next, we note that Eq. (2.5) can be rearranged as

(gei(KyHS)) = (—ky—2(Inf)ys) Eelltm),
f s f

which simply becomes
qys = (2p +K7)q.
Differentiating Eq. (2.6) with respect to y, one obtains
ps=(lal), -
From Egs. (2.9) and (2.10), one has
(avqy)s = (2p +k7) (9q"),
= (2p+K7)ps = % (@p+x7)),,

which implies a conserved quantity

1
12 +x1)’ =g,
for the defocusing mCSP equation (1.8). By setting boundary conditions
95| =0, p— —Ky
as y — oo, this conserved quantity is simply k>y>/4. Then we have
p*+xyp = gy,
namely,
1+ Kypil = ’%c|2'
Note that Eq. (2.9) can be rewritten into
p g =g+ (1+xyp g,
which can be converted into by the conversion relations (2.7).
o (0 +19*d)g=q+ (1+xyp")q.
Finally, we have
gv =q— (Jga:) .+ (1+xvp ") q
=q— (lq1*qx) .+ laxI*q,
which is exactly the defocusing mCSP equation (1.8).
Co-published by Atlantis Press and Taylor & Francis
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2.2. Lax pair

By scaling transformations

1
4549 2p+xy—=p,

Egs. (2.9)—(2.10) become a complex coupled dispersionless equation of defocusing type discussed
in [11]. Therefore, we can give the Lax pair for Egs. (2.9)—(2.10) as follows

¥, =U¥, ¥, =VY¥, (2.17)
with
L (2p+KY  2q >
U =il ( ) y , (2.18)
—2q5 —2p—xKy
V= ( ar, 1 > . (2.19)

Based on the hodograph transformation, the Lax pair for the defocusing mCSP equation (1.8) is
deduced as

¥ —PY, ¥, —=0Q%, (2.20)
_ . 1+‘C]x|2 2qx )
P=p U =il ( : , (2.21)
P —2q7 —1—|q:|*
i . 2 2 : 2
2 ax —iAlglP (T +g.?)  —2idlglPgr—q )

=—|g|"P+V = | 4 _. D , 2.22
0=-ld ( dAlglat— g gy + Al + gif?) @22)

whose compatibility condition gives Eq. (1.8).

2.3. One- and two-dark soliton solutions by Hirota’s bilinear method
Let us find the one-dark soliton solution satisfying the bilinear equations (2.1)—(2.2). To this end,
we assume

f=14" g=140ae’", gt =1+a*" (2.23)

where 21 = By + s, || = 1. A direct substitution of Eq. (2.23) into the bilinear equation (2.2)
yields

2

20°0=-2—a—a).

N =

Letting @ = e~ 2%, then we may choose ® = —sin ¢.
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Substituting Eq. (2.23) into the bilinear equation (2.2), one obtains
of(a+1)+iox(a—1)+iyf(a—1)=0,
thus

—iox(a—1) —Ksing
B = N = .
o(o+1)+iy(ec—1) cosp—7y

In summary, we have
f=1+€", g=1+n"19) (2.24)
where
. Ky
2n = — S A—
n Sln¢(s+cos¢y>
Thus, the single dark soliton can be expressed by

9=7 ((14+e72?) 4 (e 72 — 1) tanh7) el 7 (2.25)

1 sing@e®"

X:—K'yy—i-zs—i-m, r=s. (226)

The non-singularity condition for the single dark soliton is p # 0 for all (x,#) € R?. To analyze the
property of the one-soliton solution, we calculate out

an o (pyq SinPe Y\ on
ox ve + Y+ cosQ—y e+ Y
==k , (2.27)
dy (14 ¢2n)2

the non-singularity condition is determined by

) 2 ) )
sin sin” @(sin” @ +4y(cos @ —
<2y+ ¢ )_4y2: plsin” ¢ +4y(cosg =)

cosQ—y (cosp —7)
Therefore, we can define A = sin® @ + 47y(cos ¢ — 7) and classify this one-dark soliton solution as
follows:

e smooth soliton: when A < 0, the single dark soliton solution is smooth.

e cuspon soliton: when A = 0, then p attains zero at only one point, which leads to a
cusponed dark soliton.

e loop soliton: when A > 0, then p attains two zeros, which leads to a looped dark soliton.

The velocity can be found with the following relation and the hodograph transformation

_ sin @ _ _ )t—lt n
n_iy(cosq)—y) x—y(cosQ—y)— cy-

So the velocity of the dark soliton is

1
Vsp,1 = ’}/<COS ¢ — ’}/) + Z?

and the depth of the trough is 5 (1—|cos ¢)|). It should be emphasised here that the one-dark soliton
can be a right-moving, left-moving or a stationary one.
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-5 0 5
X

Fig. 2. A cusponed dark soliton with parameters k¥ = 1.0, y=0.25, ¢ = 27/3: solid line: £|g

; dashed line: Re(q).

os VANS

2 0 5
X

Fig. 3. A cusponed dark soliton with parameters k = 1.0, y = 0.5, ¢ = 7/2: solid line: +|q|; dashed line: Re(q).

It is worthy to give further analysis of one-dark soliton solution. Let us first consider how the
spatial wave number of background plane waves influences the dark soliton. For the sake of conve-
nience, let us fix the values of Kk = 1.0, ¢ = 27/3, then it can be easily verified that the one-dark
soliton solution is a smoothed one for y > 0.25, a cusponed one for ¥y = 0.25 and a looped one as
0 < 7 < 0.25. In other words, the localized dark solution has more tendency to become singular

(cusponed or looped one) as the spatial wave number of background plane wave increases.

Next, let us look at the influence for the depth of the dark soliton, which is determined by

3(1—|cos@l). To this end, we fix the value of k = 1.0, y = 0.25. When ¢ = 27/3, or the depth

of 0.25, the one-dark soliton is a smoothed one. However, when ¢ = 7/2, or the depth into the
maximum value of 0.5, the dark soliton becomes a cusponed one. So we may conclude that the
larger for the depth of the dark soliton, the easier for the formation of the singularity. To illustrate
all these fact, we display the profiles of single dark soliton for three set of parameters as in Figs.

1-3, respectively.
To find two-dark soliton solution, we assume

f=1+M 40 4 gppel?mtam)
g = 142Mm=ie) 4 2m=ie) 4 g 2(Mm+m—igi—igs)
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0.4]

0.3]

[al

0.2]

0.1

0 5 0 5 10
X
Fig. 4. Smooth-cuspon dark soliton interaction at t = —20
0.5
0.4
50.3
0.2
T R 0 5 10

Fig. 5. Smooth-cuspon dark soliton interaction at t = 0.

0.4]

0.3]

al

0.2]

0.1

Fig. 6. Smooth-cuspon dark soliton interaction at ¢ = 20.

where

o o—_— 1 . Ky
2n; = —sin @; <s+ P }’) . (2.28)

By substituting into the bilinear equation (2.2) and collecting the terms of > +7) | we obtain
2

i’ (252)
s ()

S

Fo

The collision processes between smooth-cuspon dark solitons are illustrated in Figs. 4-6 at r =
—20,0,20, respectively. The parameters are taken as k = 1.0, y = 0.5, ¢; = /2, ¢, = 27/3,thus,
one is a stationary cusponed soliton, the other is a smoothed soliton with velocity —0.25. It is seen
that the interactions between dark solitons are elastic, which is the same as the collision between
dark solitons in defocusing complex short pulse equation and the nonlinear Schrodinger (NLS)
equation. Moreover, it seems that if the parameters guarantees the smooth property of each dark
soliton, then two dark soliton remains smooth all the time.
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3. Reductions from the extended KP hierarchy

The KP-hierarchy reduction method was firstly developed by the Kyoto school [15,29], and later
was used to obtain soliton solutions in the NLS equation, the modified KdV equation, the Davey-
Stewartson equation and the coupled higher order NLS equations [13,23]. Recently, this method
has been applied to derive dark-dark soliton solution in two-coupled NLS equation of the mixed
type [24]. In compared to the Hirota’s bilinear method [14], the KP-hierarchy reduction method
starts with the general KP hierarchy including the two-dimensional Toda-hierarchy [22] and derives
the general soliton solution in either determinant or pfaffian form reduced directly from the tau
functions of the KP hierarchy. By applying this method, general dark-dark soliton solution was
derived in a two-component NLS equation with the focusing—defocusing coupling [24]. Recently,
one of the authors [9] has constructed general bright-dark N-soliton solution to the vector NLS
equation of all possible combinations of nonlinearities including all focusing, all-defocusing and
mixed types.

3.1. Bilinear equations for the extended KP hierarchy

Let us start with a concrete form of the Gram determinant expression of the tau functions for
extended KP hierarchy with negative flows

where
1
m = §;; + ——— @y
i L] PH‘ﬁj (Pz II/]
o = pl(pi—a)(pi—b)'eH, i = <‘1>n<— )l
1 1 1 1 9 J ﬁ] ﬁ]+a p_]+b Y
with
1 1 1
&= —x_1+pix1+ ta+ 1+ i,
pi pi—a pi—Db
LI S A A
j = —X—1 T PjX] - - b j0-
/ pDj J pj—i-au pj+b J

Here p;, pj, &ios E 0, a, b are constants. Based on the Sato theory for the KP hierarchy [15,29], the
above tau functions satisfy a set of bilinear equations

<;Dx1Dx1 - 1) Tkl * Tnkl = — Tnt-1,kd Tn— 1.kl 5 (3.2)
(aDy, = 1) Tyt Tkl = — Tt 1 k1,1 Tn k1,1 5 (3.3)
(Dy, (aDy, — 1) =2a) Tyt j1 - Takt = (Dx; —20) Tug1 1,0 - Tkt 1,0 » (34
(Dy, (bDy, — 1) = 2b) Ty g - Tkt = (D — 2b) T 1 k11 Tk 141 - (3.5)
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The proof is given below by referring to the Grammian technique [14, 22]. It is easily shown that

mift, o, yik satisty

nkl nkl nkl nkl n—1kl . n+1.kl
‘9x1mij =0 ‘I’7 ) axflmij =—0 ‘Ifj )

nkl __ nk—1,0 . nk+1,

atamij - _(pl lV; )
n+1.kl __  nkl nkl , n+1,kl nk+1,0 _  pkl nkl , nk+1,1
mip T =m+ g V’;’ , ij =m;; +¢; ‘I’;l .

Therefore the following differential and difference formulae hold for 7,

Ox, Tkl _‘ m?;d o O\ Tukt = m?}d o o
Xy tnkl =kl ’ X—1 "nkl — +1,kl ’
yi 0 v; 0
k—1,1
5| M agMh |t e
aoy, Tpkl = V/,,k_s_],l 0 y o Ttk = Lkl Bk
J J
;,}d in—l.,kl m?;d (Pinkl
Tn—1kl = | 5kl 1 v Tnk+1l = |kl e
L4 j
nkl nk—1, nkl n+1,kl
. _ | my; ag; o1 - mj; ;
n+1,k—1,0 — V’nﬂ’kl 1 ) x1 Yn+1,kl — _‘I/n+1,kl 0 )
J i
mﬂkl (pn—i-l,kl
i i
(axl +a)Tn,k+l,l - j(J,»Ll )
nkl n—1.kl _ nkl
mijl Y ¢; ¢;
_ +1,
(a)qax,l - 1)’rnkl - j 0 —1 )
—l//J’.”d 1 0
nkl nkl k=1,
m;; . ¢ ag;
+1,
(@d, — D)1 = |~ V] 1 -1 |,
J_,k+1,z 1 0
nkl n+1,kl nk—1,1
" 1,kl g “
+7
(0x,(ad, —1) —a)Tysr 0 = |~V 0 ~1

II/;l,k+l,l —a 0

(3.6)

(3.7

(3.8)

3.9)

(3.10)

3.11)

(3.12)

(3.13)

Applying the Jacobi identity of determinants to the bordered determinants (3.11)—(3.13), the three
bilinear equations (3.2)—(3.4) are satisfied. The bilinear equation (3.5) is proved in exactly the same

way.
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3.2. Reductions to the defocusing mCSP equation

In what follows, we briefly show the reduction processes of reducing bilinear equations of extended
KP hierarchy (3.2)—(3.5) to the bilinear equation (2.1)—(2.2). Firstly, we start with dimension reduc-
tion by noting that the determinant expression of T,;;,

1
61']' + — (plﬂkl ll’;lkl

Tnkl =

)

PitDj 1<i,j<N
can be alternatively expressed by
1
Tkt = | Oij + 7_(Pinkl ‘l/,'nkl )
PitDj 1<i,j<N
by dividing j-th column by y/*' and multiplying i-th row by y7*' for 1 <i, j <N. By taking
1 1
pj=—, b=—-, 3.14)
Dj a
we can easily check that for 1 <i <N
_ 1
pitpi=—+—,
l 1
’ ( 1 1 ) ( 1 1 >
_a — — N
pi—a pl+a pl_b pi+b
and
(47
pi\ pbita pi+b 7
which implies that 7, satisfies the reduction conditions
axl Tnkl = ax,l Tnkl 5 (315)
—a* 0y, Tut = Oy, Tk » (3.16)
Tn—1 k+1,0+1 = Tnkl - (3.17)
Therefore the bilinear equation (3.2) is reduced to
15
ED)“ — 1) Tt Tt = — T 1 Jd Tn—1,kd - (3.18)

Moreover, by referring to the bilinear equation (3.5) and the reduction conditions (3.16)—(3.17), we
have

1 1
<Dx1 (aDy, — 1) +2a) Tot 1kl * Tkl = <Dx1 +2a> Tt 1,0 Tntlk—1,0 - (3.19)
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Adding to (3.4), we have

<Dx1 (aDy, —1)—a+ 611) T+ 1.kl * Tnki = (—a—i— i) Tn+1,k—1,0Tnk+1,] (3.20)
By using (3.3), one obtains
<Dx| (aDy, —1)—a+ ;) Tt 1 k- Tnkl = (a— cll) (aDy, — 1) Tyt it~ Tk » (3.21)
or
(Dy, (aD;, — 1) — (a* = 1)Dy) Ty 1 40 - Tkt = 0. (3.22)

Next, we proceed to the reduction of complex conjugate, which turns out to be very simple. Specif-
ically, by taking a pure imaginary, |p;| =1 and §jo = & ]’.‘0, where * means complex conjugate, we
have p; = p; and

*

100 = T=n,00 -

Due to the relation (3.15) and (3.16), x_; = 0 and #, = 0 become dummy variables. Therefore, we

have
1 n
o0 = |Ojj+ ——— (‘pi) e5te ,
Pi+Pj pj 1<, j<N
with
1
Ei=pixi+——t,+&p.
pi—a
In summary, by defining
f = To00, &= T100,
we arrive at
1 1
<DX|Dl‘a — 7Dx1 — <a — > Dta) g f == 0, (323)
a a
1 *
<2D§. - 1) ff=-sgg". (3.24)

Finally, by setting a = ic, t, = kcy, x; = s/2 and (c? + 1) = —27c, the above bilinear equations
coincide with the bilinear equations (2.1)—(2.2). Therefore, the reduction process is complete. In
summary, we provide the determinant solution to the defocusing mCSP equation (1.8) by the fol-
lowing theorem.
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Theorem 3.1. The defocusing mCSP equation (1.8) admits the following determinant solution

lg ; 1
=3 %I(K"’””, x=—yy+ s—(logf)s 1=s, (3.25)
where
Fe |8+ — et 7
pi+p; i
<i,j<N
= |8+ (—”i) ———— 5] : (3.26)
D; Pz“‘Pj 1< j<N
with
Kc 1
lpil=1, &= —y+ > pis+&o, (3.27)
pi—ic 2
under a constraint
2
1
y=-S11 (3.28)
2c
By taking p; = —ie™'%, one can easily obtain the one- and two-dark soliton solutions to the

defocusing mCSP equation (1.8), which coincide the soliton solutions obtained in previous section
by Hirota’s perturbation method.

4. Comments and concluding remarks

In [11], a defocusing CSP equation was derived from physical context in nonlinear optics as an
analogue of the NLS equation in ultra-short pulse regime. Its geometric property and multi-dark
soliton solution via Hirota’s bilinear method was further studied in [12]. In the present paper, we
study a modified CSP equation of defocusing type via Hirota’s bilinear method. Firstly, we give its
bilinear form and found the one- and two-dark soliton solutions, whose properties are investigated
in details. Secondly, starting from a set of bilinear equations, along with their tau functions, of a
single-component extended KP hierarchy, we derive the defocusing mCSP equation based on the
KP-hierarchy reduction method. Meanwhile, its multi-soliton solutions is provided in determinant
form. We should comment here that, even if the dark soliton solutions look similar for the CSP and
the modified CSP equations, there are actually some fundamental differences between them. For
example, keeping all other parameters the same, a cusponed soliton (singularity) is developed for
the CSP equation with a background plane wave of amplitude 1.22, whereas, a background plane
wave of amplitude 0.5 leads to a cusponed solution. In other words, a singularity is easier to be
developed for the modified CSP equation than the CSP equation.

Even though various solutions to the focusing and defocusing mCSP equation have been con-
structed including the dark soliton solutions in the present paper [21], we should consider a coupled
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modified complex short pulse equation of mixed focusing and defocusing nonlinearity

q1x = 41 +QT(qu1q1,x + 02612612,x)x, 4.1)

q2.xt = qz+¢I§(61QI611,x+02612612,x)x, 4.2)

where 0; = £1 with 1 represents focusing case and —1 stands for defocusing case. To find all
kinds of solutions including the multi-bright, multi-dark soliton and multi-rogue wave solutions
and to compare with the results with the ones to the coupled complex short pulse equation will be
interesting.
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