N-DISE: NDN-based Data Distribution for Large-Scale
Data-Intensive Science

Yuanhao Wu Ran Liu
Faruk Volkan Mutlu liuranapply @gmail.com

Yuezhou Liu ~Google

Edmund Yeh Madison, WI, USA

wu.yuanh@northeastern.edu
mutlu.f@northeastern.edu
liu.yuez@northeastern.edu
eyeh@ece.neu.edu
Northeastern University
Boston, MA, USA

Sankalpa Timilsina

Susmit Shannigrahi
stimilsin43@tntech.edu
sshannigrahi@tntech.edu
Tennessee Technological
University
Cookeville, TN, USA

ABSTRACT

To meet unprecedented challenges faced by the world’s largest
data- and network-intensive science programs, we design and im-
plement a new, highly efficient and field-tested data distribution,
caching, access and analysis system for the Large Hadron Collider
(LHC) high energy physics (HEP) network and other major sci-
ence programs. We develop a hierarchical Named Data Networking
(NDN) naming scheme for HEP data, implement new consumer and
producer applications to interface with the high-performance NDN-
DPDK forwarder, and build on recently developed high-throughput
NDN caching and forwarding methods. We integrate NDN sys-
tems concepts and algorithms with the mainstream data distribu-
tion, processing, and management system of the Compact Muon
Solenoid (CMS) experiment. We design and prototype stable, high-
performance virtual LANs (VLANs) over a continental-scale wide
area network testbed. In extensive experiments, our proposed inte-
grated system, named NDN for Data-Intensive Science Experiments
(N-DISE), is shown to deliver LHC data over the wide area network
(WAN) testbed at throughputs exceeding 31 Gbps between Caltech
and StarLight, with dramatically reduced download time.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

ICN °22, September 19-21, 2022, Osaka, Japan

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9257-0/22/09...$15.00
https://doi.org/10.1145/3517212.3558087

Chengyu Fan
chengy.fan@gmail.com
Pure Storage
Mountain View, CA, USA

103

Catalin Iordache Michael Lo
Justas Balcas Sichen Song
Harvey Newman Jason Cong
Raimondas Sirvinskas Lixia Zhang
catalinn.iordache@gmail.com milo168@g.ucla.edu

jbalcas@caltech.edu
newman@hep.caltech.edu
raimis.sirvis@gmail.com
California Institute of
Technology
Pasadena, CA, USA

songsichen123@gmail.com
cong@cs.ucla.edu
lixia@cs.ucla.edu
UCLA
Los Angeles, CA, USA

Davide Pesavento
Junxiao Shi
Lotfi Benmohamed

davide.pesavento@nist.gov
junxiao.shi@nist.gov
lotfi.benmohamed@nist.gov
NIST
Gaithersburg, MD, USA

CCS CONCEPTS

+ Networks — Network architectures; Network protocols;
Network algorithms; Network performance evaluation.

KEYWORDS

named data networking, information centric networking, naming,
caching, forwarding, high energy physics, large hadron collider.

ACM Reference Format:

Yuanhao Wu, Faruk Volkan Mutlu, Yuezhou Liu, Edmund Yeh, Ran Liu,
Catalin Iordache, Justas Balcas, Harvey Newman, Raimondas Sirvinskas,
Michael Lo, Sichen Song, Jason Cong, Lixia Zhang, Sankalpa Timilsina,
Susmit Shannigrahi, Chengyu Fan, Davide Pesavento, Junxiao Shi, and Lotfi
Benmohamed. 2022. N-DISE: NDN-based Data Distribution for Large-Scale
Data-Intensive Science. In 9th ACM Conference on Information-Centric Net-
working (ICN °22), September 19-21, 2022, Osaka, Japan. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3517212.3558087

1 INTRODUCTION

In spite of network technology advances, the largest data- and
network-intensive science programs including the Large Hadron
Collider (LHC) [24] program, the Joint Genome Institute appli-
cations and the BioGenome project [7, 11], face unprecedented
challenges: in global data distribution, processing, access and anal-
ysis, in the coordinated use of massive but still limited computing,
storage and network resources, and in the operation and collabora-
tion within global scientific enterprises each comprised of hundreds
to thousands of scientists.

One of the most data-intensive programs is the LHC high energy
physics (HEP) program, which has an estimated 900 petabytes under

https://doi.org/10.1145/3517212.3558087
https://doi.org/10.1145/3517212.3558087

ICN ’22, September 19-21, 2022, Osaka, Japan

management at more than 170 sites in the US and around the world.
The corresponding network traffic, which already exceeded 1600
petabytes (1.6 exabytes) in 2019, is projected to grow by another
order of magnitude or more by the start of the upgraded High
Luminosity LHC (HL LHC) program beginning in 2027 [2].

The HEP community is not the only one facing these challenges.
Take, for example, human genome sequencing in the biology com-
munity. It is anticipated that around 1 exabyte of human genome
data exists [22] in institutional repositories, research labs, and in
the genome sequencing industry. Furthermore, these numbers are
only for human genome data—similar amounts of data exist for
plants [32], animals [31], viruses [13], and bacteria [33]. Finally, the
Earth Biogenome project [8] aims to sequence all known species in
the tree-of-life. The data volume for this project alone is expected
to exceed an exabyte [7].

To meet the sustained and peak needs of these data- and network-
intensive science fields within feasible resource constraints, more
efficient and less resource-intensive data access and distribution
methods are required. An effective approach for this is Named Data
Networking (NDN), a leading data-centric network architecture
with intuitive and efficient naming, security and provenance, data
access, caching, and forwarding methods and structures.

In this paper, we describe an innovative effort to meet unprece-
dented challenges faced by the world’s largest data- and network-
intensive science programs, by designing and implementing a new,
highly efficient and field-tested data distribution, caching, access
and analysis system for the LHC HEP network and other major
science programs. We name this system NDN for Data Intensive
Science Experiments (N-DISE). Our major contributions include the
following:

e We develop and prototype the first high-performance NDN-
based integrated data delivery system for large-scale data-
intensive science applications.

e We develop an NDN naming scheme for CMS data. To ad-
dress the incongruity where the names of the CMS data at
different granularity do not share the same prefix, we intro-
duce an additional name mapping scheme to associate data
objects used by workflows (e.g., blocks of CMS data) with
data units directly used in network requests (e.g., files of
CMS data).

e To achieve exceptional packet forwarding performance, we
develop consumer and producer applications that interface
with the multi-threaded high-throughput NDN-DPDK for-
warder [29]. We also develop the NDNc library which offers
APIs for these applications to efficiently communicate with
the NDN-DPDK forwarder using memif, a shared memory
packet interface providing high performance packet trans-
mission.

e To achieve outstanding caching and forwarding performance,
we integrate the VIP joint caching and forwarding algo-
rithm [34], which has leading throughput, delay, and cache
hit ratio performance, with the NDN-DPDK forwarder and
the new NDNc-based consumer and producer applications.

e We establish a high-bandwidth, long-range wide area net-
work testbed, with nodes at Northeastern (MGHPCC), UCLA,

104

Wu et al.

Tennesee Tech, and StarLight Chicago, with 100 Gbps con-
nections running from MGHPCC through StarLight to Cal-
tech.

e Working with many partners (Internet2, ESnet, CENIC), we
provision dedicated VLANs over which we can directly ex-
periment with NDN protocols and algorithms at layer 2.

o We extensively experiment with the NDNc-based consumer
and producer applications, the NDN-DPDK forwarder, and
VIP joint caching and forwarding. We carry out extensive
testing using LHC data files on the fully operational long-
range WAN testbed. We show that the deployed system
can reach a maximum throughput of 31 Gbps, and VIP joint
caching and forwarding can simultaneously increase through-
put and decrease download delay, relative to multiple base-
line algorithms.

The use of NDN-based data delivery systems for data-intensive
science applications has seen limited investigation thus far, in the
context of climate science [18, 25], high energy physics [9, 12],
and genomics [26]. In contrast to the cited works, the N-DISE
system presented in this paper aims to achieve significantly higher
throughput by effectively integrating a number of essential high-
performance system components, and to demonstrate performance
gains over WAN testbeds operating at link capacities exceeding
100 Gbps.

The rest of this paper is organized as follows. In Section 2, we dis-
cuss the NDN naming scheme for CMS data. In Section 3, we present
the details of our software implementation for the NDNc-based con-
sumer and producer applications, as well as the VIP joint caching
and forwarding algorithm. In Section 4, we give an overview of our
WAN testbed. In Section 5, we report the results of our experiments.
In Section 6, we discuss some of the major lessons we derived from
the development and experimentation of N-DISE. Finally, in Sec-
tion 7, we conclude the paper with a brief summary of our efforts
and provide future directions we will take with this work.

2 NAMING OF LHC DATA

The LHC CMS generates petabytes of data from experiments, anal-
ysis, and simulations each year and stores them in special data
formats. For example, CMS generates a large amount of physics
analysis data that gets stored in various Analysis Object Data (AOD)
formats such as MiniAOD and NanoAOD [19, 23]. This large vol-
ume of data is grouped into a hierarchical structure consisting of
three levels in increasing order of granularity: dataset, block and file.
A dataset contains several data blocks and a data block contains
several files.

The content names at each of these granularity levels are hierar-
chical. These names can be converted naturally into hierarchical
NDN names [28, 27] by removing the unnecessary components
(e.g., the first two components of the file name that describes the
filesystem location where the file is stored), reorganizing compo-
nents, and adding new components where necessary. Such an exam-
ple file name can be: "/store/data/Run2017F/SingleMuon/MINIAOD
/17Nov2017-v1/60000/C47DBE62-67E7-E711-B896-5065F37D51
B2.root".

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science

BT e i i s

Figure 1: Percentage of requests covered by data blocks
(February-March 2019, Caltech).

Although naming schemes at each of the granularity levels are
hierarchical, the file, dataset, and block names might follow differ-
ent naming hierarchies. For example, the file above may belong
to a block with the name "/SingleMuon/Run2017F-17Nov2017-v1
/MINIAOD#13f6ce2c-e734-11e7-af75-02163e01b396" and a dataset
with the name "/SingleMuon/Run2017F-17Nov2017-v1/MINIAOD".
Note that these names do not share the same prefix with the ac-
tual file name, which is used by the NDN network for in-network
forwarding and caching.

The CMS users can use these names to request desired data at
the file granularity. They can also request part of the files by spec-
ifying dynamic functions that can filter and create smaller data
from large files. For example, "/store/data/Run2017F/SingleMuon
/MINIAOD/17Nov2017-v1/60000/C47DBE62-67E7-E711-B896-5065
F37D51B2.root/<byte-range>" can be used to extract the specified
byte-range at the data source and transfer the extracted data. How-
ever, in most cases, the user requires all the files in a whole block or
dataset, since the files contained in a block or a dataset are always
strongly correlated.

To address the incongruity where users want to utilize data
blocks but request files by their names, we have built a name map-
ping hash table to record the relationships between files and blocks.
In our current design, each forwarder maintains a name mapping
hash table to allow caching and forwarding algorithms to operate
at the appropriate granularity (e.g. block level) while users still
utilize file names for content retrieval. The name mapping table
need not change frequently due to the relatively static nature of the
CMS data structure, and are assumed to be obtained and updated
through the control plane, as are routing updates.!

To further motivate the concept of name mapping between differ-
ent data granularities, we analyzed CMS workflow logs of February
and March 2019 and found that while the request frequency for
files is relatively flat, the request frequency for data blocks has
sharper decay. At the Caltech site, roughly 6000 blocks with unique
names were requested, but the 400 most requested blocks covered
roughly 80% of all requests, as Figure 1 shows. Therefore, in the
VIP caching and forwarding algorithm we describe in Section 3, in
order to achieve scalability implementation, we maintain control
state only over these most popular 400 data blocks.

In order to quantify the effect of the name mapping table in terms of delay, we
measured the delay incurred by the name mapping as a function of the table size. In
our test results, the additional delay is less than 0.2 milliseconds for table sizes up to
6000 entries and the total number of requested file names up to 60000. This indicates
that the delay effect of name mapping is negligible in terms of system performance.

105

ICN °22, September 19-21, 2022, Osaka, Japan

3 SOFTWARE IMPLEMENTATION

Software makes up a large part of the development of N-DISE. In par-
ticular, to achieve exceptional packet forwarding performance, we
build consumer and producer applications that interface effectively
with the multi-threaded high-throughput NDN-DPDK forwarder.
To achieve outstanding caching and forwarding performance, we
implement the VIP joint forwarding and caching algorithm [34]
aimed at optimizing usage of storage and bandwidth resources, and
integrate it with the NDN-DPDK forwarder. In this section, we
provide a detailed discussion of these software components.

3.1 NDNc Consumer and Producer

To deploy an end-to-end solution for data distribution using NDN
as the underlying architecture, we implement both a consumer and
a producer application, the two fundamental entities in any NDN
data transfer process. The consumer acts as a client that composes
NDN Interest Packets (analogous to a query) to request data from
the network, while the producer is the server with access to the
data on a file system and publishes it in the form of NDN Data
Packets (analogous to a response).

To achieve exceptional packet forwarding performance, we de-
sign our applications to communicate with the high-performance
NDN-DPDK forwarder developed by NIST [29], which has demon-
strated leading throughput performance using multi-threaded for-
warding. One challenge with this approach is the lack of any NDN
C++ library compatible with this new forwarder. We therefore
develop our own lightweight C++ library called NDNc [16] that
bridges the ndn-cxx library [21] with the NDN-DPDK forwarder,
while adding a small number of common features needed by the
consumer and producer applications. The NDNc library offers PIT
token support (required for interoperability with NDN-DPDK), a
memif-based face [1] capable of providing efficient packet transmit
and receive functions to and from a locally running forwarder, an
NDN packet encoder and decoder, Interest pipelining controlled
by either a fixed-window or a congestion-aware AIMD algorithm,
and a GraphQL [10] client that can configure the local forwarder
by creating and deleting faces and registering name prefixes.

Using NDNc, we have developed a file transfer consumer and
producer for benchmarking the performance characteristics of the
library. The consumer and producer are deployed using Docker
containers. Both entities follow a predefined naming scheme, and
use the same name prefix. There are two types of Data Packets that
can be requested: one for retrieving file information (or metadata)
and the other for retrieving the file contents. Upon receiving an
Interest Packet, the producer parses its name in order to extract the
file path and the type of data it requests. For file information, the
producer calls the POSIX stat system call on the file path and then
embeds the answer in a common Metadata structure in NDNc for
better encoding and decoding. In the case of Interests requesting
content from the file, the producer calls the POSIX read system
call to obtain the desired range of bytes from the file, as specified
by the segment number in the Interest name.

The producer application runs in the network indefinitely, con-
stantly waiting for new requests, while the consumer initiates a file
transfer and then terminates. On initialization, the consumer uses

ICN ’22, September 19-21, 2022, Osaka, Japan
~
Interest packets Interest packets
[enqueue] [send]
< Data packeis | " Data packets |
[dequeue] [receive] , .
ASRERN , S
S S. can , '
N [C++] '
N {NDN L2 packets 1
RN | v [send] '
.. \ v
) % AN ‘. NDN L2 packets }
File transfer consumer ', JSONs v \ [poll]
L .
NDNc based application] * lqueny] % . .
\ < L P
p N

Request file",
[command line]y
\

CMS User

[Person]

|nitiate file transfer 9 y

Figure 2: Component diagram for the NDNc¢ consumer appli-
cation.

the GraphQL client to configure a new interface with the local for-
warder and then requests metadata information about a file passed
as an input argument via the command line. If the requested file is
found, the consumer constructs two worker groups, one for sending
Interests and one for receiving Data Packets and assembling the
result. The Interest Packets are passed to the pipeline that manages
the congestion window and then to the local face that encodes the
Interest to NDN L2 packets and finally sends the packets to the
forwarder through the memif interface. The data is decoded from
L2 and then passed to the receiving worker group. The pipeline
takes care of NACK packets and timeouts. Once the file transfer is
complete, the consumer destroys its face with the forwarder. The
components of the consumer are shown in Figure 2.

3.2 VIP Joint Caching and Forwarding

To achieve outstanding caching and forwarding performance, we
build a single-threaded software implementation of the VIP caching
and forwarding algorithm, which has theoretically proven and nu-
merically demonstrated leading performance in throughput, delay,
and cache hit ratio [34]. We then integrate the VIP implementation
with the high-performance NDN-DPDK forwarder [29]. We refer
to this integrated caching and forwarding software suite as VIP-
NDN-DPDK. Before we present the details of this implementation,
we first give an overview of the VIP framework, as well as the
distributed joint caching and forwarding algorithm we implement.

The VIP framework employs a virtual control plane, in which
user demand rate for data objects in the network is measured
through Virtual Interest Packet (VIP) counts. When a request for a
data object enters the network at a given node, a corresponding VIP
for that object is generated at that node, and the corresponding VIP
count for the object is incremented at that node. Each node in the
network maintains a separate VIP counter for each object, periodi-
cally communicates its VIP counts with its neighbors, and updates
the same counters. The evolution of the VIP counters follows the
controlled queuing dynamics of the VIPs in the virtual plane. Thus,
when a node forwards VIPs for a data object to a neighboring node
according to the control algorithm, the sending node decrements
the VIP counter for the data object, and the receiving neighboring
node increments its VIP counter for the same object. At the source
node for a data object, the VIP counter for that object is fixed at 0.

106

Wu et al.

If a node is not the source node for a data object but is caching the
object, the corresponding VIP counter at that node is decremented
over time at a rate proportional to the readout rate of the node, i.e.,
the rate at which it can produce copies of the object.

At an intuitive level, one can better understand the principle
underlying the VIP framework by viewing VIP counts as potentials.
At the entry points of requests for a data object, the VIP count
(potential) for the data object is high, while at the caching node
and source node for the data object, the potential is low. In the
virtual plane, the VIPs for the data object follow a gradient from the
high-potential entry points to the low-potential caching and source
nodes, where they are removed from the network. By employing a
virtual control plane separate from the actual plane (where Interest
and Data Packets are transmitted), we can accurately measure and
track demand in the network, even in the presence of mechanisms
such as Interest aggregation.

The VIP joint caching and forwarding algorithm operates within
the VIP framework, and aims to control the flow of VIPs in the
virtual plane to achieve optimal network load balancing, thereby
maximizing the demand rate that can be satisfied by the network.
Forwarding in the virtual plane applies the backpressure algorithm
to VIP counts and allocates VIP transmissions to minimize VIP
count differences on each link. Caching in the virtual plane aims to
cache the objects with the highest VIP counts, subject to the cache
capacities of nodes. In this way, the algorithm efficiently drives
VIPs toward data source and caching nodes, while ensuring that
demand does not build up in any part of the network. In the actual
plane, forwarding and caching strategies observe the flow of VIPs
resulting from the virtual plane algorithm and use this information
to make forwarding and caching decisions for Interest and Data
Packets. The operation of this algorithm, along with the mechanics
of the VIP framework, are illustrated in Figure 3. For further details
regarding the VIP framework and the VIP algorithm, please see [34].

In VIP-NDN-DPDK, VIP control state is maintained for a selected
set of data objects, named registered data objects, where each data
object consists of a set of chunks (equivalently, packets). In the CMS
application, for example, the data objects can be chosen to be the
most frequently requested blocks (determined via e.g. statistical
estimation methods). The names of these data objects are stored
in a hash table called the Name Map Table, which also stores the
mapping between chunk names and their corresponding data ob-
ject names. In the CMS application, for example, the Name Map
Table contains the mapping between file chunk names and the
corresponding block names (as mentioned in Section 2). The VIP al-
gorithm is only applied to these registered data objects while other
data objects are not cached and are forwarded using the default
forwarding strategy provided by the NDN-DPDK forwarder.

At each node, VIP-NDN-DPDK updates VIP counts for (regis-
tered) data objects in the virtual plane periodically, asynchronous
of other nodes. Specifically, starting from the launch of VIP-NDN-
DPDK, each node runs its own timer, exchanges VIP control packets
with its neighbors every T seconds, and updates VIP related statis-
tics for each data object according to Algorithm 2 in [34]. At the
start of each period, each node n pulls a Data Packet containing the
VIP counts V,’,i(t) for all data objects k from each neighboring node
m, by sending an Interest Packet with the name "/ndn/vip/A" and a

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science

NDN-DPDK
Exch .
VIP control Virtual plane .
information Virtuaplane Virtual
forwardin, ke
= E Update VIP control caching
o information
U:,n- Control the actual plane
o Actual
2 packets Actual plane
forwarding Actual plane Actual plane
forwarding caching
Cache hit/evict/insert

Figure 3: VIP implementation diagram.

nonce. Any neighbor m sending back the VIP count information to
node n also sends back an Interest Packet with the name "/ndn/vip
/B" and a nonce to retrieve a Data Packet containing the number of
VIPs to transmit (in the virtual plane) ,ulrjm(t) from node n to node
m for data object k in this period. All VIP control information is
stored in a SipHash-based hash table called VIP Table.

In order to quickly populate the virtual plane with VIPs to form
nontrivial VIP count gradients, we use an amplification factor a,
e.g. a = 2, to scale up the consumer generated VIPs of data object
k at node n from Aﬁ(t) to (xAﬁ(t) [34]. That is, for each externally
arriving request at node n for data object k, we increment V¥ (t)
by a.

Virtual plane caching decisions are also performed periodically.
For simplicity, we assume all registered data objects have the same
size in bits. At the start of the ith period, i.e. time ¢;, we update
the VIP counts as in [34] and decrease V,{‘ (t) by ry, for all cached
data objects k, where ry, is the DRAM read out rate (in data objects
per time period). We then update the cache scores CSK(t) for all
data objects. In contrast to Algorithm 2 in [34], the cache score
CSﬁ(t) for data object k and node n is implemented as the expo-
nentially weighted cumulative received VIPs: CSK (t;) = €S (;_1)
exp (—f = (t;i — ti_l))+R],§(ti), where f is a parameter chosen empir-
ically, e.g. # = 0.000015, and RK (;) is the number of VIPs received
at node n for data object k from time #;_; to t;.

In the actual plane, we forward Interest Packets of data object k at
node n to the neighboring node m with the maximum exponentially
weighted cumulative VIP sending rate for data object k from node
n: 9K (t) = Ok L (tis) exp (=P = (ti — tizy)) + vE (1), where
vﬁ,m(ti) is the number of VIPs sent from n to m in the time period
from t;_1 to t;.

The VIP algorithm requires all chunks of a data object to be
forwarded and cached together. To achieve this, we implement a
forwarding direction lock with an associated timer. Initially, the
forwarding directions for all data objects are unlocked. For each
arriving Interest Packet for data object k arriving to a forwarder
n, if the forwarding direction for data object k is unlocked, the for-
warder n chooses a new forwarding direction for k corresponding
to the maximum exponentially weighted cumulative VIP sending
rate for data object k from node n, as described in the previous
paragraph. At the same time, forwarder n starts a timer with an
expiration sufficiently long to send the entire Interest Packet at the
corresponding link rate. Otherwise if the forwarding direction for

107

ICN °22, September 19-21, 2022, Osaka, Japan

data object k is locked, the forwarder restarts the corresponding
timer with the same expiration, and forwards the Interest in the
previously stored direction.

In the Content Store (CS) of the actual plane, the VIP algorithm
caches only the registered data objects. The objective of the caching
policy is to maximize the total cache score of the cached data ob-
jects, as described in detail in Algorithm 2 of [34]. While the original
NDN-DPDK controls cache space at the chunk level, the VIP al-
gorithm controls cache space at data object level. To achieve the
latter without changing the basic CS framework of NDN-DPDK,
we implement a hash table called the CS-VIP table. When a given
forwarder decides to cache a data object, it inserts the name of the
data object into the CS-VIP table and maps the name to a list of
names for all the data chunks belonging to the data object (which
arrives to the forwarder since Interest Packets for all chunks of a
given data object are forwarded in the same direction). When the
forwarder evicts a data object, it uses the CS-VIP table to evict all
data chunks belonging to the data object.

4 WIDE AREA NETWORK TESTBED

In order to evaluate the N-DISE system in a real-world wide area
network (WAN) setting, we build a high-bandwidth WAN testbed
that includes 7 high-performance servers. The testbed spans 5 sites:
Massachusetts Green High Performance Computing Center (MGH-
PCC), Caltech, StarLight Chicago, UCLA, and Tennessee Tech. The
MGHPCC server is owned by the Northeastern University group.
The Caltech and StarLight sites host two servers each, while all
other sites have one. Each of these servers is equipped with high-end
Intel Xeon or AMD EPYC CPUs to take advantage of modern ar-
chitectural features, large amounts of memory ranging from 96 GB
up to 512 GB, large pools of both HDD and NVMe SSD storage as
well as Mellanox ConnectX series of network interface cards (NICs)
supporting 100GbE. In general, our hardware choices are guided
by the list of hardware known to perform well with DPDK and
NDN-DPDK (20, 17].

The topology of the testbed and the connectivity among sites are
depicted in Figure 4, which shows the maximum theoretical band-
width and the measured round trip time (RTT) of each link. Note
that the servers at the Northeastern (MGHPCC) and the Caltech
sites are locally connected via 100GbE while those at the StarLight
site are connected via 40GbE.

All servers in the testbed are connected by tagged VLANs with
support from CENIC, NOC, Internet2, and individual server sites.
For these connections, we attempted to allocate capacities up to
the maximum bandwidth limits of the underlying links (as shown
in Figure 4). However, the results fell short of this goal due to
various issues such as the lack of quality of service (QoS) guarantees,
unexpected traffic interruptions, traffic blocking from unknown
middleboxes, server tuning problems, and the lack of high-speed
switches. In our measurements using iperf3, the capacity of the
MGHPCC-StarLight link was reported as only 16 Gbps and the
capacity of the StarLight1-Caltech1 link was reported as 31 Gbps.

5 EXPERIMENTAL RESULTS

We evaluate the performance of the N-DISE system by running
several experiments over the WAN testbed described in Section 4.

ICN ’22, September 19-21, 2022, Osaka, Japan

—— 10 Gbps link
40 Gbps link Northeastern/
== 100 Gbps link MGHPCC 95
S Xy
S 3
o Istarlight2 ™
E: <« T
UCLA P 97 ms enTr;i;see
Starlight1 S
3
1 w
N5 o
S «®
\)
& o
Caltechl | Caltech2 |
60 ms

Figure 4: Topology of the WAN testbed. The link capacities
are shown in the diagram. The RTTs are shown along the
connections.

In this section, we first discuss the results of a throughput test
conducted over the testbed. We then discuss the impact of VIP joint
caching and forwarding on system performance.

5.1 Throughput Evaluation

We conduct a throughput test between Caltechl (request node)
and StarLight1 (server node) to demonstrate the baseline poten-
tial of N-DISE. We report results on six scenarios with different
numbers (6, 9, 12) of concurrently running consumer applications
at the request node (Caltech1), with and without caching enabled
at the server node (StarLight1). For each scenario, the test is run
for 10 minutes. Note that caching is disabled at Caltech1 in all sce-
narios. While we employ 3 forwarding threads for the scenarios
with 6 and 9 consumers, we add another forwarding thread for
the 12-consumer scenario. Each consumer application requests a
particular file repeatedly for the duration of the test and measures
the throughput for each file transmission. Only the data payload
of transmissions is considered for these measurements, the over-
head of the packet header being small compared to the payload.
Immediately before this test, the IP throughput over this path was
measured to be 31.8 Gbps using iperf3, which serves as a reference
point for our results.

Figure 5 shows the average throughput (over 10 minutes) achieved
in each scenario in our test. Note that for each scenario, the through-
put value is aggregated across all consumer applications. We can
easily see that by increasing the number of consumers, we extract
more throughput from our network: the throughput is increased by
43% going from 6 to 9 consumers, and by 71% going from 6 to 12.
This improvement is sub-linear however, as the throughput per con-
sumer application slightly decreases with an increasing number of
consumer applications, since we approach the capacity of the path.
The effects of enabling caching at the server node are also seen: a
30%, 60% and 68% increase in throughput is achieved with 6, 9 and
12 consumers respectively. Finally, it should be noted that while

Wu et al.

26.26

Throughput (Gbps)
[ury = N N
o w o w o w
-
-
-
w
N
-
w
N
_N
N
o
N
-
w
o

6C/3F (NC) 6C/3F 9C/3F (NC) 9C/3F 12C/4F (NC) 12C/4F

Figure 5: Average throughput from Caltech1 to StarLight1.
On the x-axis, "XC/YF" denotes a test with X consumers and
Y forwarding threads. “(NC)” indicates that the result is from
a no-cache test, otherwise the result is from a test with files
cached at the server node (StarLight1).

Figure 5 shows average throughput values, the peak throughput
value achieved during the experiment was 31.14 Gbps.

5.2 VIP Caching and Forwarding Evaluation

We evaluate the performance of the VIP algorithm over the service
network and multi-path network topologies shown in Figure 6. The
service network consists of two consumer nodes, at UCLA and
StarLight respectively, two forwarder nodes, at Northeastern Uni-
versity (MGHPCC) and Tennessee Tech respectively, and one server
node at Caltech. The multi-path network has two consumer nodes,
at Northeastern University (MGHPCC) and Tennessee Tech respec-
tively, one server node at Caltech, and two paths going through the
forwarder nodes at UCLA and Tennessee Tech.

consumer
forwarder

UCLA forwarder producer
NEU/ Tennessee
consumer MGHPCC Tech Caltech2
Starlight1
forwarder
UCLA
Producer
NEU/
MGHPCC | consumer2 Caltech2
& forwarder

Tennessee
Tech

Figure 6: Network topologies used in the tests: service net-
work topology (top), multi-path topology (bottom).

For this performance evaluation, requests are generated for a
catalog of 30 registered data objects, each 4 GB in size, which are
randomly generated files with CMS file names. In both the ser-
vice and multipath network topologies, each forwarder is allocated
20 GB of cache space, which enables the caching of 5 data objects.?

2Due to cache capacity limits, only one block can be cached at each node. We therefore
run the VIP caching test at the file level. In this case, each file is considered as a whole

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science

At each request node, we launch one NDNc consumer applica-
tion. The consumer applications use a fixed window of 8192 packets
and a 2-second retransmission timeout (RTO). The window size is
chosen according to the bandwidth delay product without caching
and is fine tuned to obtain the optimal throughput. The RTO is
chosen according to the low-loss characteristics of the wireline
testbed. Each consumer application requests data objects sequen-
tially (where the next request is transmitted upon receipt of the
previous data response), where each requested data object is ran-
domly and independently chosen from the catalog according to a
Zipf distribution with parameter 1. The latter distribution is esti-
mated from the LHC request pattern data presented in Figure 1.

We conduct the test in the service topology for a duration of
1.5 hours and calculate the time-averaged total throughput and
average packet delay every 30 minutes. The total throughput is
defined as the total number of Data Packet bits retrieved at the
consumer nodes (UCLA and StarLight1) from the producer node
(Caltech?) or from any of the caching nodes, divided by the length
of each test period (i.e. 30x60 = 1800 seconds). The packet delay
is defined as the difference between the fulfillment time (i.e., time
of arrival of the requested Data Packet) and the creation time of
the Interest Packet request. The average delay is defined as the
packet delay averaged over all fulfilled Interest Packet requests at
the consumer nodes (UCLA and StarLight1) over the testing period
(30 minutes).

We investigate the performance of 3 different caching policies (no
caching, VIP, and adaptive replacement cache (ARC) [14], which is
improved from LRU) and track the cache contents at the forwarder
nodes. Note that forwarding is fixed in the service topology.

For VIP caching in the service topology, we use a 3-second time
slot and a VIP count amplification factor of 1, as described in sec-
tion 3.2. The VIP time slot length is chosen to be large enough so
that each node can build up a reasonably large VIP queue size for
every data type in each time slot. The amplification factor poten-
tially allows VIP counts to build up more quickly during the initial
transient period. We use small amplification factor and VIP time
slot length here since the service topology gathers all request flows
into the same path, implying we can readily obtain reasonably large
VIP queue sizes. In the case where the network does not generate
enough VIPs in each time slot, we have the option of choosing
larger amplification factor and VIP time slot length, as we do in the
following multi-path topology test.

The results show that the cache contents chosen by VIP at each
forwarder node are almost always optimal. The first forwarder (at
Northeastern/MGHPCC) always caches the 5 most popular files in
the last 30 minutes. The second forwarder (at Tennessee Tech) al-
most always caches files with popularity ranking 5 through 11. This
caching distribution leads to the VIP algorithm outperforming the
ARC algorithm, achieving both higher throughput and lower delay
per packet, at both the StarLight and UCLA servers. At StarLight,
the results during the last 30 minutes (in the format (throughput in
Gbps, delay in ms)) are as follows: nocache (2.7, 155.4); ARC (3.1,
87.5); VIP (3.8, 83.0). At UCLA, the results are as follows: nocache

block, and the file name is mapped to an artificial block name by the name mapping
table.

109

ICN °22, September 19-21, 2022, Osaka, Japan

(2.2, 198.3); ARC (2.2, 139.7); VIP (2.6, 138.4). The performance
comparison on throughput and delay is shown in Figure 7.

Throughput over Time
B nocache Barc HEvip
., 80
oy
5§60

ﬂ%l Bl il

30-60 60-90
time(minutes)

(a) Total throughput of the service network test over time.
Delay over Time

B nocache Earc Hvip

200.0 174.0 1716 173.9
élSOO 115. 5112 1 111. 81102 109. 01054
>100.0
3 500
0.0
30-60 60-90

time(minutes)

(b) Average packet delay of the service network test over time.

Figure 7: Total throughput and average packet delay for the
service network test over time.

We next conduct a test over the multipath network topology
shown in Figure 6. For the multipath topology, caching and forward-
ing must be jointly designed for optimal performance. In this test,
we have request nodes at Northeastern (MGHPCC) and Tennessee
Tech, each running one consumer application.

We test three algorithms: round robin paired with ARC, fast route
paired with ARC, and VIP. The round robin forwarding strategy
chooses the next forwarding hop by sequentially looping through
the interfaces in the Forwarding Information Base (FIB) entry cor-
responding to the requested data object. Under the fast route for-
warding strategy, any given forwarder multicasts the first Interest
to all possible next hops, observes which next hop replies first,
and forwards subsequent Interests to that hop. The forwarder then
periodically probes unused next hops, and switches to another next
hop if it has strictly lower delay than all others.

As before, we use a fixed window of 8192 packets and a retrans-
mission timeout of 2 seconds at the consumer applications. The
UCLA and Tennessee Tech servers can each cache up to 5 data
objects. The request process at each request node is the same as in
the service network test. For the multi-path test, the VIP algorithm
uses a 1 minute time slot length, and a VIP count amplification
factor of 2. Note that we use larger VIP time slot length and VIP
count amplification factor for this test as compared with the ser-
vice topology test. This is because the multi-path topology splits
requests between two paths, and we need to use sufficiently large
VIP count amplification factor and VIP time slot length to ensure
VIP queue sizes are reasonably large so that the VIP algorithm can
make accurate forwarding and caching choices. We run the test for
1.5 hours and record performance statistics every 30 minutes.

ICN ’22, September 19-21, 2022, Osaka, Japan

We run the test twice and report the averaged results for the
cache hit ratio, total throughput and average packet delay in Fig-
ures 8 and 9. A cache hit for a Data Packet (or equivalently data
chunk) is recorded when an Interest Packet reaches a node which
is not a data source node but which has the Data Packet in its cache.
The cache hit ratio is defined here as the total number of cache
hits at cache sites UCLA and Tennessee Tech divided by the total
number of Interest Packet requests arriving at those cache sites. The
total throughput and average packet delay are defined in the same
way as for the service topology test, with the consumer nodes now
being Northeastern and Tennessee Tech and the producer node
being Caltech2. The cache hit ratio during the last 30 minutes is
shown in Figure 8. The cache hit ratio of the VIP algorithm is seen to
be 10.1% larger than that for fast route paired with ARC, and 11.9%
larger than that for round robin paired with ARC. At Northeastern
(MGHPCC), the throughput and delay results during the last 30
minutes are as follows (in the format (throughput in Gbps, delay
in ms)): round robin paired with ARC (3.4, 93.3); fast route paired
with ARC (3.1, 88.3); VIP (3.9, 83.4). At Tennessee Tech, the results
are as follows: round robin paired with ARC (3.7, 52.0); fast route
paired with ARC (3.9, 48.5); VIP (4.0, 38.7). In Figure 9, we show
that VIP simultaneously achieves the highest total throughput and
the smallest average packet delay.

cache_hit_ratio
70.0%
60.0%

59.8%

50.0% 47.9% 49.7%

40.0%
30.0%
20.0%
10.0%

0.0%

round robin fast route VIP

Figure 8: Cache hit ratio in the multi-path test.

6 LESSONS LEARNED

The development and experimentation of N-DISE has pointed to
several important lessons, which we detail below.

Challenges in mapping application names to NDN names. As men-
tioned in Section 2, the naming structure of applications (e.g., CMS)
often does not correspond to the underlying hierarchical structure
of the data organization. This discrepancy presents difficulties in
directly translating application names to NDN names, the latter of
which must be designed for efficient network operation. To address
this issue, additional mappings must be developed to associate data
objects used by workflows (e.g., blocks of CMS data) with data units
directly used in network requests (e.g., files of CMS data).

Decoupling control-plane information from forwarding threads. For
network control algorithms like VIP, which require exchanging con-
trol information with neighboring nodes, transmission and parsing
of control packets may interrupt operations of forwarding threads.

110

Wu et al.

Throughput over Time

Err_arc Efr_arc Evip

. 80 77 7.8 7.8
Iy
075 7.2 72 71 7.1
= . 7.0
37.0 6.8
<
[T
36.5
£

6.0

0-30 31-60 61-90

time(minutes)

(a) Total throughput of the multi-path test over time.

71.9
66.3
%60.8

61-90

Delay over Time

Orr_arc Bfr_arc Evip

®7865.7

31-60
time(minutes)

75.0
» 70.0 68.869.7

S 65.4
E 65.0
8 60.0 I
55.0
0-30

(b) Average packet delay of the multi-path test over time.

Figure 9: Total throughput and average packet delay for the
multi-path test over time. “fr” stands for fast route paired
with ARC algorithm; “rr” stands for round robin paired with
ARC algorithm.

This interruption may increase the queuing delay of Interest and
Data Packets in forwarding threads, especially when a node has
many neighbors. To avoid this problem, such algorithms can be
allocated dedicated threads where control information is generated
and parsed.

Impact of middleboxes on NDN-based protocols. Our experimenta-
tion over the WAN testbed revealed the disruptive effects of in-
termediary network devices, i.e. middleboxes [3], on the expected
behavior of NDN-based protocols. In particular, we observed several
cases where middleboxes were corrupting NDN packets in transit.
For instance, we found that some network switches can misidentify
the EtherType of an NDN packet as a bare VLAN tag and will thus
insert an extra Tag Protocol Identifier before the NDN EtherType.
The resulting Ethernet frame is no longer a valid NDN packet, caus-
ing the next NDN router on the path to drop all traffic coming
from the faulty middlebox. This problem occurred on several paths
traversing the StarLight site in Chicago. Checking every switch on
these paths to fix the issue at its source was not possible. In order to
address the problem, we used the Virtual Extensible LAN (VXLAN)
encapsulation protocol to tunnel the NDN packets over UDP/IP.
While this method hides NDN packets from the middleboxes and
prevents corruption, it also leads to reduced throughput.

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science

System-dependent configuration and tuning. To reduce deployment
complexity in our WAN setting, we used Docker containers to pack-
age the forwarder, consumer and producer applications. While this
is helpful to an extent, such deployments inevitably interact with di-
verse server equipment, operating systems and network configura-
tions. Therefore, substantial manual effort is still required in config-
uring drivers, ensuring proper usage, and integrating these software
stacks into workflows. Through our experiments, we learned that
not all components operate well with each other, so we needed to
understand their interactions well and tune them manually, which
entailed a large amount of trial-and-error experience.

7 CONCLUSION AND FUTURE WORK

This paper describes the development and prototyping of N-DISE,
the first high-performance NDN-based integrated data delivery
system for some of the world’s largest data- and network-intensive
science programs. We have shown that the system successfully
combines a NDN naming scheme, new consumer and producer
applications, jointly optimal caching and forwarding algorithms,
integrated with the high-performance NDN-DPDK forwarder, to
achieve leading throughput (around 31 Gbps) and delay perfor-
mance in real-world WAN settings.

In spite of the impressive performance landmarks established
by N-DISE thus far, we believe that significant potential perfor-
mance gains remain, and can be realized by pursuing important
innovations on multiple fronts. We summarize some of these future
research directions below.

Integration of NDN with the mainstream data distribution systems at
the LHC experiments. Our goal is to integrate NDN with the main-
stream data distribution systems at the LHC experiments, starting
with CMS. One major component of this project is an NDN-based
XRootD Open Storage System (OSS) plugin [6, 5], instrumented
with an accelerated packet forwarder, able to deliver data at high
speeds. Learning from our previous experience of integrating NDN
at the CMS [12], our plan is to further improve the performance
capabilities of both the producer and consumer applications de-
scribed in Section 3 and to embed the latter in an XRootD OSS
plugin. The plugin is a C++ dynamic library, loaded at run-time
by the framework, that provides file system implementations for
different types of storage (CephFS, HDFS, POSIX) by extending
a C++ interface that replicates all related system calls (e.g., open,
close, read, fstat). Both applications will have a protocol in place to
encode and decode every filesystem call into NDN names and attach
them to Interest and Data Packets in order to serve the higher level
of the XRootD system. Users at the LHC write and run their own
scientific applications developed using the CMS Software Compo-
nents (CMSSW) [4]. Once submitted as jobs in the cluster at one
of the partner sites of the experiment, these applications request
byte-ranges within the events in HEP data files by calling the local
running XRootD service which uses the OSS plugin to natively
serve any kind of data.

Multi-threaded forwarding and hierarchical caching with VIP. We
plan to carry out a significant extension of the VIP joint caching and
forwarding algorithm, addressing two limitations of the current im-
plementation. First, our current implementation of the algorithm is

111

ICN °22, September 19-21, 2022, Osaka, Japan

single-threaded, meaning its performance is limited by the process-
ing power of a single CPU core (or hyperthread). In order to achieve
higher throughput, we will develop a multi-threaded implementa-
tion, which will synergize with the development of multi-threaded
consumer and producer applications. This implementation will
allow each forwarding thread to maintain its own VIP control in-
formation, and will balance traffic flows among forwarder threads
based on the VIP control information.

Second, the current implementation can only cache data in
DRAM, which severely limits cache spaces we can allocate. As
an example of potential cache size requirements, we estimate that a
10 TB cache is needed to cover the most popular 400 blocks compos-
ing roughly 80% of CMS requests at the block level over a typical
two-month period at Caltech. DRAM alone cannot support such
large caches. Therefore, we will extend the algorithm to enable hi-
erarchical caching that incorporates various types of memory and
storage, including DRAM and NVMe SSDs. The extended algorithm
will jointly optimize caching and forwarding while taking into ac-
count the read and write speeds of different hardware elements,
as well as the costs of migrating data from one type of cache to
another in the hierarchy.

Congestion control based on network feedback. NDN’s new features
of multipath forwarding and in-network caching can greatly im-
prove effective network throughput for end users. At the same time,
they also make consumers’ data fetching delay difficult to estimate,
which invalidates the well established congestion control solutions
which operate over end-to-end connections across a single path. Ex-
tensive simulation experimentation has taught us that congestion
control approaches purely based on end points measurement do not
perform well. Thus, future investigations should look into the direc-
tion of making use of network provided feedback. We are currently
working on an approach which lets network routers attach their
packet queue length information to Data Packets, enabling down
stream routers and end consumers to estimate the bottleneck capac-
ity along upstream paths towards data producers, and adjust their
Interest Packet forwarding rates accordingly. Preliminary results
show that this new approach can effectively control congestion
while maintaining high data throughput in the presence of caching
and multi-path forwarding [30].

FPGA acceleration. While FPGAs have been used for name lookup
in NDN, the challenges faced by NDN-DPDK are unique due to
the multi-threaded architecture of the forwarder. For instance, a
bottleneck in the forwarder occurs in the thread that handles input.
Upon receiving an Interest Packet, the input thread assigns it to
a forwarding thread by looking up the hash value of the name
prefixes in a data structure called the Name Dispatch Table (NDT).
Depending on the size of the NDT and the position of the name
component used for indexing, this lookup can become a bottleneck.
In addition, if the named identifier has a low length to components
ratio, hashing can involve significant delay. To address this bot-
tleneck, in our implementation, we will download the NDT to an
FPGA-assisted NIC and use the FPGA to accelerate hashing and
lookups in the NDT. Preliminary experimental results on a local
testbed show a 4x improvement in throughput over the current

ICN ’22, September 19-21, 2022, Osaka, Japan

CPU implementation. Moving forward, we will experimentally eval-
uate FPGA acceleration of the NDN-DPDK forwarder on the WAN
testbed.

Integration with genomics workflows. Learning from our experience
with CMS, we will pursue integration of our system and protocols
into the genomics use case. In preliminary work, we have utilized
our software stack to integrate NDN-based operations with ge-
nomics workflows. Specifically, we utilized the NDN-DPDK file
server to publish genomics data in containers, each of which held a
number of files based on their namespace. We then deployed these
containers using Kubernetes on Google Cloud to create a flexible
data lake that can be extended on demand. On the client side, we
used the NDNc consumer to integrate NDN-based data retrieval to
contemporary workflows. We plan to further integrate the tools and
framework developed as part of this project into genomics work-
flows. These will include upgraded clients with congestion control
algorithms and the ability to utilize multiple clients to retrieve data
in parallel.

Data integrity and provenance. Although scientific data may not
have strict confidentiality requirements, it is important to ensure
the data’s authenticity. We will use NDN to implement data origin
authentication. To make this feasible for large data volumes, we will
adopt an approach based on manifests, where each data producer
first computes the hash of each data segment, and then signs col-
lections of hashes (the manifest) instead of the raw data itself. The
consumers can retrieve the signed hashes in parallel with fetching
the raw data, then use the manifest to verify the data authenticity.

Integration with SENSE [15]. We will integrate the N-DISE system
with the SENSE platform, which provides dynamic multi-domain
circuits with bandwidth guarantees and allows applications to inter-
act with the network and cooperatively make scheduling and traffic
engineering decisions. We will leverage the layer 2 and 3 overlay
capability of SENSE as a long-term pathway for NDN to move from
prototyping and integration to production use. We will also actively
leverage P4 programmability available in the SENSE testbed. Specif-
ically, we will leverage the use of P4, a new source-based routing
approach, and the use of the Qualcomm GradientGraph decision
support software to provide agile path selection.

ACKNOWLEDGMENTS

This work is supported in part by National Science Foundation
grants OAC-2019012, OAC-1659403, OAC-2019163, and OAC-2126148.

DISCLAIMER

Any mention of commercial products or reference to commercial
organizations is for information only; it does not imply recommen-
dation or endorsement by NIST, nor does it imply that the products
mentioned are necessarily the best available for the purpose.

REFERENCES

[1] The Fast Data Project (FD.io). 2022. Shared memory packet interface (memif)

library. (2022). https://s3-docs.fd.io/vpp/22.06/interfacing/libmemif/index. htm
1

Giorgio Apollinari, O Briining, Tatsushi Nakamoto, and Lucio Rossi. 2017. High
luminosity large hadron collider hl-lhc. arXiv preprint arXiv:1705.08830.

(2]

112

[6]

[7]

8]

[9]

=
S

(12]

(13]

(14]

(15]

[16]

(17]

(18]

[23]

[26]

[27]

Wu et al.

B. Carpenter and S. Brim. 2002. Middleboxes: Taxonomy and Issues. RFC 3234.
RFC Editor, (Feb. 2002). http://www.rfc-editor.org/rfc/rfc3234.txt.

CERN. 2022. CMS software components. (2022). Retrieved May 25, 2022 from
https://cms-sw.github.io/.

CERN. 2022. Xrootd: open file system & open storage system configuration
reference. (2022). Retrieved May 25, 2022 from https://xrootd.slac.stanford.edu
/doc/dev53/ofs_config.htm.

Alvise Dorigo, P. Elmer, Fabrizio Furano, and A. Hanushevsky. 2005. Xrootd - a
highly scalable architecture for data access. WSEAS Transactions on Computers,
4, (Apr. 2005), 348-353.

2018. Earth BioGenome Project Aims to Sequence DNA From All Complex Life.
[Online; accessed 20. Jan. 2020]. (Apr. 2018). https://www.ucdavis.edu/news/ea
rth-biogenome-project-aims-sequence- dna- all-complex-life.

2018. Earth BioGenome Project Aims to Sequence DNA From All Complex Life.
[Online; accessed 20. Jan. 2020]. (Apr. 2018). https://www.ucdavis.edu/news/ea
rth-biogenome-project-aims-sequence-dna-all-complex-life.

Chengyu Fan, Susmit Shannigrahi, Steve DiBenedetto, Catherine Olschanowsky,
Christos Papadopoulos, and Harvey Newman. 2015. Managing scientific data
with named data networking. In Proceedings of the Fifth International Workshop
on Network-Aware Data Management, 1-7.

2022. Graphgql: a query language for your api. (2022). https://graphql.org/.
Igor V Grigoriev et al. 2011. The genome portal of the department of energy
joint genome institute. Nucleic acids research, 40, D1, D26-D32.

Catalin Iordache, Ran Liu, Justas Balcas, Raimondas Srivinskas, Yuanhao Wu,
Chengyu Fan, Susmit Shannigrahi, Harvey Newman, and Edmund Yeh. 2020.
Named data networking based file access for xrootd. In EPJ Web of Conferences.
Vol. 245. EDP Sciences, 04018.

Elliot J Lefkowitz, Donald M Dempsey, Robert Curtis Hendrickson, Richard
J Orton, Stuart G Siddell, and Donald B Smith. 2017. Virus taxonomy: the
database of the international committee on taxonomy of viruses (ictv). Nucleic
Acids Research, 46, D1, D708-D717.

Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: a Self-Tuning, low
overhead replacement cache. In 2nd USENIX Conference on File and Storage
Technologies (FAST 03). USENIX Association, San Francisco, CA, (Mar. 2003).
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-r
eplacement-cache.

Inder Monga. 2016. SENSE Project. https://www.es.net/assets/pubs_presos
/SENSE-Thomas-20160217-on-Web.pdf.

N-DISE. 2022. NDNc: a lightweight integration of ndn-cxx with ndn-dpdk to
achieve high throughput performance in scientific applications. (2022). https:
//github.com/cmscaltech/sandie-ndn/tree/master/NDNc.

NIST. 2022. Hardware Compatible with NDN-DPDK. (2022). Retrieved Aug. 26,
2022 from https://github.com/usnistgov/ndn-dpdk/blob/5bc92be0f3706142806
ddéa52c6ac7ec042c2c8c/docs/hardware.md.

Catherine Olschanowsky, Susmit Shannigrahi, and Christos Papadopoulos.
2014. Supporting climate research using named data networking. In 2014 IEEE
20th International Workshop on Local & Metropolitan Area Networks (LANMAN).
IEEE, 1-6.

Giovanni Petrucciani, Andrea Rizzi, Carl Vuosalo, CMS Collaboration, et al.
2015. Mini-AOD: a new analysis data format for CMS. In Journal of Physics:
Conference Series number 7. Vol. 664. IOP Publishing, 072052.

DPDK Project. 2022. DPDK supported hardware. (2022). Retrieved Jan. 28, 2022
from https://core.dpdk.org/supported.

The Named Data Networking Project. 2022. ndn-cxx: NDN C++ library with
eXperimental eXtensions. (2022). https://named-data.net/doc/ndn- cxx/current
/.
The Hutch Report. 2020. Genomics Report. [Online; accessed 20. Jan. 2020].
(Jan. 2020). https://www.preoncapital.com/wp- content/uploads/2018/06
/THR_Genomics.pdf.

Andrea Rizzi, Giovanni Petrucciani, and Marco Peruzzi. 2019. A further re-
duction in CMS event data for analysis: the nanoaod format. In EPJ Web of
Conferences. Vol. 214. EDP Sciences, 06021.

Lucio Rossi and Oliver Briining. 2012. High luminosity large hadron collider:
A description for the European strategy preparatory group. Tech. rep.

Susmit Shannigrahi, Chengyu Fan, and Christos Papadopoulos. 2017. Request
aggregation, caching, and forwarding strategies for improving large climate
data distribution with ndn: a case study. In Proceedings of the 4th ACM Confer-
ence on Information-Centric Networking, 54-65.

Susmit Shannigrahi, Chengyu Fan, Christos Papadopoulos, and Alex Feltus.
2018. Ndn-sci for managing large scale genomics data. In Proceedings of the 5th
ACM Conference on Information-Centric Networking, 204-205.

Susmit Shannigrahi, Chengyu Fan, and Craig Partridge. 2020. What’s in a
name? naming big science data in named data networking. In Proceedings of the
7th ACM Conference on Information-Centric Networking (ICN °20). Association
for Computing Machinery, Virtual Event, Canada, 12-23. 1sBN: 9781450380409.
DOI: 10.1145/3405656.3418717.

https://s3-docs.fd.io/vpp/22.06/interfacing/libmemif/index.html
https://s3-docs.fd.io/vpp/22.06/interfacing/libmemif/index.html
http://www.rfc-editor.org/rfc/rfc3234.txt
https://cms-sw.github.io/
https://xrootd.slac.stanford.edu/doc/dev53/ofs_config.htm
https://xrootd.slac.stanford.edu/doc/dev53/ofs_config.htm
https://www.ucdavis.edu/news/earth-biogenome-project-aims-sequence-dna-all-complex-life
https://www.ucdavis.edu/news/earth-biogenome-project-aims-sequence-dna-all-complex-life
https://www.ucdavis.edu/news/earth-biogenome-project-aims-sequence-dna-all-complex-life
https://www.ucdavis.edu/news/earth-biogenome-project-aims-sequence-dna-all-complex-life
https://graphql.org/
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://www.usenix.org/conference/fast-03/arc-self-tuning-low-overhead-replacement-cache
https://www.es.net/assets/pubs_presos/SENSE-Thomas-20160217-on-Web.pdf
https://www.es.net/assets/pubs_presos/SENSE-Thomas-20160217-on-Web.pdf
https://github.com/cmscaltech/sandie-ndn/tree/master/NDNc
https://github.com/cmscaltech/sandie-ndn/tree/master/NDNc
https://github.com/usnistgov/ndn-dpdk/blob/5bc92be0f3706142806dd6a52c6ac7ec042c2c8c/docs/hardware.md
https://github.com/usnistgov/ndn-dpdk/blob/5bc92be0f3706142806dd6a52c6ac7ec042c2c8c/docs/hardware.md
https://core.dpdk.org/supported
https://named-data.net/doc/ndn-cxx/current/
https://named-data.net/doc/ndn-cxx/current/
https://www.preoncapital.com/wp-content/uploads/2018/06/THR_Genomics.pdf
https://www.preoncapital.com/wp-content/uploads/2018/06/THR_Genomics.pdf
https://doi.org/10.1145/3405656.3418717

N-DISE: NDN-based Data Distribution for Large-Scale Data-Intensive Science

[28]

[29]

[30]

[31]

Susmit Shannigrahi et al. 2015. Named data networking in climate research
and hep applications. In Journal of Physics: Conference Series number 5. Vol. 664.
IOP Publishing, 052033.

Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed. 2020. NDN-DPDK:
NDN forwarding at 100 Gbps on commodity hardware. In Proceedings of the
7th ACM Conference on Information-Centric Networking, 30-40.

Sichen Song and Lixia Zhang. 2022. Effective NDN Congestion Control Based on
Queue Size Feedback. In Proceedings of the 9th ACM Conference on Information-
Centric Networking.

Dongmei Tian, Pei Wang, Bixia Tang, Xufei Teng, Cuiping Li, Xiaonan Liu,
Dong Zou, Shuhui Song, and Zhang Zhang. 2019. Gwas atlas: a curated resource

113

(32]

(33]

(34]

ICN °22, September 19-21, 2022, Osaka, Japan

of genome-wide variant-trait associations in plants and animals. Nucleic Acids
Research, 48, D1, D927-D932.

Elisabeth Veeckman, Tom Ruttink, and Klaas Vandepoele. 2016. Are we there
yet? reliably estimating the completeness of plant genome sequences. The Plant
Cell, 28, 8, 1759-1768.

Bjorn C Willige, Joanne Chory, and Marco Biirger. 2018. Next generation of
plant-associated bacterial genome data. Cell host & microbe, 24, 1, 10-11.
Edmund Yeh, Tracey Ho, Ying Cui, Michael Burd, Ran Liu, and Derek Leong.
2014. Vip: a framework for joint dynamic forwarding and caching in named
data networks. In Proceedings of the 1st ACM Conference on Information-Centric
Networking, 117-126.

	Abstract
	1 Introduction
	2 Naming of LHC data
	3 Software Implementation
	3.1 NDNc Consumer and Producer
	3.2 VIP Joint Caching and Forwarding

	4 Wide Area Network Testbed
	5 Experimental Results
	5.1 Throughput Evaluation
	5.2 VIP Caching and Forwarding Evaluation

	6 Lessons Learned
	7 Conclusion and Future Work
	Acknowledgments

