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Abstract—Driven by technologies such as IoT-enabled health
care, machine learning applications at the edge, and industrial
automation, mobile edge and fog computing paradigms have
reinforced a general trend toward decentralized computing,
where any network node can route traffic, compute tasks, and
store data, possibly at the same time. In many such computing
environments, there is a need to cache significant amounts of
data, which may include large data sets, machine learning models,
or executable code. In this work, we propose a framework for
joint computation scheduling, caching, and request forwarding
within such decentralized computing environments. We first
characterize the stability region of a ‘‘genie-aided” computing
network where data required by computation are instantly
accessible, and develop a throughput optimal control policy for
this model. Based on this, we develop a practically implementable
distributed and adaptive algorithm, and show that it exhibits
superior performance in terms of average task completion time,
when compared to several baseline policies.

Index Terms—Edge computing, fog computing, computation
scheduling, distributed computing, data-intensive computing,
caching.

I. INTRODUCTION

ENTRALIZED clouds have dominated IT service deliv-

ery over the past decade. Operation over the internet,
and the clouds’ low cost of operation [2] have made them
the primary means of achieving energy efficiency and com-
putation speed-up for resource-poor devices [3], [4]. Com-
putation offloading to the cloud for mobile users has been
studied extensively in the literature, and various software
platforms [5]-[8] and analytical models [9], [10] for optimal
offloading have been proposed. Recently, the cost efficiency
and scalability of the centralized cloud have been challenged
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by the emergence of Internet of Things (IoT) devices and
the predicted increase in services with ultra low latency
requirements (one millisecond or less) [2], [11]. This has
made paradigms such as fog computing [12] and mobile edge
computing more appealing. In this paper, we refer to the family
of such paradigms as dispersed computing.

In the fog computing paradigm, networking, computa-
tion, and storage resources are distributed at different hier-
archical levels from the core of the network to the edge.
In mobile edge computing, these resources are distributed
throughout the mobile edge close to users. As the number
of delay-sensitive applications increases, these platforms have
the potential to outperform centralized cloud architectures
in terms of request satisfaction delay [11]. The potential
benefits of such paradigms are accompanied by challenges
in distributed implementation and control. Another challenge
is the increased popularity of media-rich and data-intensive
applications where computations are often designed to be
performed on large pieces of data stored in the network.
Examples include IoT enabled health care and medical data
analytics [13]-[15], machine learning at the edge [16]-[19],
data intensive scientific computation [20], data processing for
wearable devices [21], intelligent driving and transportation
systems [22], in-network image/video processing [23]-[25].

A fundamental question in dispersed computing is how
to optimally utilize the processing, storage and bandwidth
resources in the network to accomplish data-intensive com-
putation with high throughput and low latency. Specifically,
how to forward computation requests, perform computations,
and move and store data in the network? For instance, should
the system bring data to the computation-requesting node for
computation or take the computation to the data server? How
can one provide a solution in a distributed and adaptive!
manner with general network topology and request patterns?

While previous work has addressed aspects of the question
raised above, the problem has not yet been solved in a coherent
manner. To the best of our knowledge, this paper is the first to
study joint computation scheduling, forwarding, and caching
within an adaptive and distributed setting.

In this paper, we consider a data-intensive dispersed com-
puting network with arbitrary topology and heterogeneous
processing, communication, and storage resources available at

By adaptive, we mean that control algorithms do not require prior
knowledge of computation request rates.

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on October 18,2022 at 19:34:51 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1145/3323679.3326509
https://orcid.org/0000-0002-4086-1038
https://orcid.org/0000-0002-9544-1567
https://orcid.org/0000-0001-6398-4949

KAMRAN et al.: DECO: JOINT COMPUTATION SCHEDULING, CACHING, AND COMMUNICATION

each node. Users issue computation requests for performing a
computation task on a required piece of data (e.g., inference
using a trained model saved in the network). This computation
request, along with input arguments (e.g., input data for
inference), is forwarded through the network until a node
decides to perform the task locally. This node can process
the computation only when it has the required data object,
either from its own cache or fetched from other nodes by
issuing a data request. After the data request arrives at a
data server or caching point, a copy of the data is sent back
to the data requester on the reverse path. Each node on the
path can optionally cache the data for future use. The data
requester then processes the task, and sends the result back
to the original computation requester on the reverse path (of
the computation request). The question is how nodes should
decide on computation request forwarding, data request for-
warding, computation scheduling, and caching in an adaptive
and distributed manner. High throughput and low latency are
both important performance metrics to consider in designing
computations, communication, and caching algorithms for
data-intensive computing networks. In this paper, our focus
is on designing algorithms to increase throughput, and we left
the problem of minimizing the latency for future work. It is
worth noting that low latency and high throughput are not
mutually exclusive. As we show through extensive simulations,
providing high throughput often leads to low latency.

We propose the DECO (Data-intEnsive COmputation)
framework. DECO utilizes the queue sizes of computation
interest packets and data interest packets to capture the mea-
sured demands for computations and data objects, respec-
tively.? In this framework, we first consider a “genie-aided”
version of the system where nodes have the ability to instantly
cache the data and compute the results, without waiting for the
data to come back. For the “genie-aided” system, we provide
a throughput optimal algorithm and we derive the stability
region, which is an outer bound for the stability region of the
original system. We then propose an implementable version
of the throughput optimal algorithm for handling computation
requests, data requests, data objects and computation results.
The superior performance of the DECO, compared to many
baseline algorithms, is shown through extensive simulations.

Our key contributions are summarized as follows:

o To our best knowledge, this is the first work pro-
viding outer bounds for the stability region of a
data-intensive computing network with an arbitrary topol-
ogy. We present a throughput optimal algorithm for a
“genie-aided” setting where nodes are allowed to cache
data and perform computation, without waiting for the
data to be fetched. The results are not straight forward
extensions of previous works on stability analysis due to
the internally generated traffic in the network.

o We provide implementable versions of the throughput
optimal algorithm and present an adaptive and dis-
tributed framework called DECO for joint computa-
tion scheduling, caching, and request forwarding in a

“Interest packets as a metric for measured demand was first introduced
in [26] for caching networks.
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data-intensive dispersed computing network. Our solution
handles arbitrary topology, data catalog, and task catalog
consisting of single-stage computations, and takes into
account the demand for both computation and data.

II. RELATED WORK

Computation scheduling and resource allocation in a het-
erogeneous computing platform have been studied in research
and practice. Topcuoglu et al. [27] studied the problem of
static task scheduling and proposed a centralized heuristic
called HEFT for scheduling tasks represented by a DAG
(Directed Acyclic Graph). Pegasus [28] and CIRCE [29] were
proposed as frameworks for mapping tasks to computers in
a dispersed computing system. Sakulkar er al. studied distrib-
uted assignment of tasks to computers [30]. More recently,
Krdl et al. [31] proposed a framework for distributed com-
puting which leverages knowledge about data location. These
works present frameworks for the task assignment problem,
but in contrast to our paper, they do not provide any optimality
guarantee or bounds on the performance of the computing
network.

Optimal in-network computation scheduling has been stud-
ied in different settings. Various works have studied the
optimal placement of network virtual functions [32]-[36].
Closer to our setting, Feng et al. [37] studied a computation
scheduling problem where computation services are modeled
as a chain of consecutive tasks, and there is a linear cost
associated with computation and communication resources in
the network. They propose a throughput optimal policy for task
scheduling and request forwarding based on Lyapunov drift
minimization. In a similar setting, Zhang et al. [38] proposed
a throughput optimal policy for computing networks with
uni-cast and multi-cast flows based on a layered graph model.
Yang et al. [39] generalized the chain-service model to DAG-
based service model, and proposed a throughput optimal policy
for it. However, these methods do not consider data placement
and caching.

Several works have studied joint processor and storage allo-
cation. Chen et al. [40] proposed a solution to joint caching
and computation at the mobile edge where caching is used
to store the final result of computations. Zeng et al. [41]
studied the problem of task scheduling and image place-
ment in order to minimize the request satisfaction delay.
Ndikumana et al. [42] consider the problem of minimizing
both bandwidth consumption and network latency in a mobile
edge computing platform. In addition to differences in the
problem objective, in contrast to our work, these works
study the problem in specific one-hop or two-hop topologies,
with request arrival rates known a prior. Several papers have
formulated the problem of joint computation scheduling and
service caching as an integer programming or mixed integer
programming [43]-[46], and proposed approximate solutions.
In contrast to this paper, these solutions are centralized, and
only consider one-hop and two-hop network topologies.

III. COMPUTATION NETWORK MODEL

Consider a network of computing nodes, each capable
of performing computation tasks, caching data objects, and
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TABLE I
NOTATION SUMMARY

V,€) Network graph with nodes V and edges £

F Catalog of available tasks

D Catalog of available data objects

R Set of available computation requests (R C F x D)

PCR(k) The queue of pending computation requests for data
object k at each node
P, Processor capacity at node v € V
Cly Cache capacity at node v € V
Cab Transmission capacity of link (a,b) € £
Ly, Size of data object k € D
Z(m,k) Size of the result for request (m, k) € R
) Computation load of request (m, k) € R
,\;m”c) Average arrival rate of request (m, k) € R
y,{mk) (t)  Computation interest queue count for (m, k) € R
in node n at the beginning of time slot ¢
V,f (t) Data interest queue count for k¥ € D in node n
at the beginning of time slot ¢
A;m'k) (t)  Number of exogenous arrivals at node n for
computation request (m, k) during time slot ¢
,u((;bn’k) (t)  Allocated transmission rate of computation interests

for (m, k) on link (a,b) during time slot ¢
Allocated transmission rate of data interests
for k € D on link (a, b) during time slot ¢

v (1)

ugm;fgc(t) Allocated processing rate of computation interests
for (m, k) at node n during time slot ¢
sk(t) Caching state for object k at node n during slot ¢

communicating with other computing nodes. We model the
network as a directed graph G(V, £) with VV and € representing
network nodes and links respectively. Assume that (b,a) € £
whenever (a,b) € £. Each node v € V is equipped with a
processor with capacity of P, (in instructions per second) and
a cache with capacity of C), (in bits). We let the transmission
capacity on link (a,b) € € be Cy, (in bits per second).
There is a catalog F of computation tasks available in
the network. These computation tasks operate on a set D
of data objects. We specify a computation request by a pair
(m,k) € R C F x D, indicating a request for performing the
m-th computation task on the k-th data object. Each request
is associated with unique user-specified inputs with negligible
size compared to the required data object. This makes each
computation result inherently unique. Since the cardinality
of the space of the user-specified inputs can be potentially
huge, we do not consider caching of the final results of the
computations here. We assume that the computation load and
the size of the result are determined by the computation task
and the data object. Let the size of the k-th data object be Ly,
(in bits) and let the size of the result of m-th task on k-th data
object be Z(;, 1) (in bits). The computation load of performing
task m on data object k is denoted by ¢y, ) (in number of
instructions). We assume that for each data object k € D, there
is a designated node denoted by src(k) € V which serves
as the permanent source of the data object.> Without loss of
generality, we assume that each designated source stores the
permanently stored data object(s) in excess memory outside
its cache. In addition, designated sources are equipped with

3This setting can be extended to a scenario where there are multiple
designated sources for each data object.
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an extra processing capacity equal to the processing power
needed for computing all tasks in F on the permanently stored
data object(s); this is not included in the processor capacities
at the designated sources (FP,..(x) for all k& € D).

We assume that the routing information* to the source
nodes, which is used to determine the output interfaces for
forwarding the packets, is already populated at every node.
Requests of type (m, k) arrive at node n € V according to a
stationary ergodic process A;m’k)gt) with the average arrival
rate AT 2 lim, o 1 St AlmR) (7). A node receiving
a computation request generates a computation interest packet
with negligible size (compared to the size of the data objects
and the computation results) containing the task identification
m, data identification k, as well as input arguments, to be
forwarded through the network. Each node receiving a com-
putation interest packet decides whether or not to perform
the computation request locally. In this paper, we differentiate
between performing a computation request and processing a
computation request. Specifically, processing a computation
request is a sub-step in performing the computation request.
The difference is explained in the procedure below:

Input: A computation request (m, k) € R
1: procedure PERFORMING COMPUTATION (m, k) AT NODE
n
2:  if data object k is stored at node n then send compu-
tation request to the processor queue for processing.
else
put computation request in pending computation
requests for data object k (PCR(k)) queue.
5: issue a request for fetching data object k by creating
a data interest packet.

o

6: if data object k arrives at node n then put the com-
putation requests in the PC'R(k) queue into the processor
queue in a first-come-first-served order.

If a node decides not to perform the computation locally,
it can forward the computation interest packets to its
neighbors. The receiving neighbor remembers the interface on
which it receives the interest packet. The node which performs
the computation puts the result into result packets and sends it
back on the reverse path (of the computation interest packet)
to the original requester.

A node issues a data interest packet whenever it decides
to perform a task but does not have the required data object
stored locally. As in the case for computation interest packets,
nodes receiving data interest packets remember the incoming
interface. When a node receives a data interest packet for an
object which is in its cache, it creates a copy of that data
object, puts it into data packets, and sends it back on the
reverse path (of the data interest packet) to the requester. The
satisfied data interest packet is then removed from the network.
Nodes receiving data objects on the reverse path have the

4We want to make an explicit distinction between the operations of routing
and forwarding. Routing is a network-wide process which determines possible
forwarding interfaces toward the data sources at each node; forwarding is the
action of transferring packets to the appropriate output interface.

Authorized licensed use limited to: Northeastern University. Downloaded on October 18,2022 at 19:34:51 UTC from IEEE Xplore. Restrictions apply.



KAMRAN et al.: DECO: JOINT COMPUTATION SCHEDULING, CACHING, AND COMMUNICATION

Computation Interest Packet
Data Interest Packet

Data Packets

Result Packets

Fig. 1. A data-intensive computing network. Step 1: A computation request
(1,2) € R arrives to Node 1. Step 2: Node 1 creates a computation interest
packet (dotted arrow) and forwards it toward the source of data object 2
(Node 3). Step 3: Node 2 receives the computation interest packet and decides
to perform it locally. Since it does not have data object 2 stored in the cache,
it puts the computation request in the PC'R(2) queue and generates a data
interest packet (dashed arrow) for data object 2 and forwards it toward the
source (Node 3). Step 4: Node 3 receives a data interest packet for data
object 2. It creates a copy of the data object 2 and forwards it on the reverse
path toward the requester of data (Node 2). Step 5: Node 2 receives data
object 2 and sends the pending computation request (1,2) to the processor.
Once it is processed, Node 2 sends the result on the reverse path to the original
requester (Node 1). Step 6: Node 1 delivers the result to the user.

Table of Pending Computation
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Fig. 2. Performing computation, caching, and forwarding. Computation
interest packets for (m1, k2), (m1, ka), (m1, ke), (m1, k7) are forwarded to
the node. The node decides to perform (m1, k2) and (m1, k4), and forwards
(m1,k7) and (m1,ke) to its neighbors. (m1,kq) is sent directly to the
processor queue, since k4 is already stored in the cache. Since kg is not
available in the cache, request (m1, k2) is put in the PC'R(k2) queue, and a
data interest packet for kg is generated and forwarded. At this time, k3 arrives
to the node, and the node sends all pending computation requests for k3
(e.g., (m1, k3)) to the processor.

option to cache them for future use. A graphical overview
of the described network is shown in Figure 1. A graphical
representation of the procedures discussed above is shown in
Figure 2. For brevity, we do not discuss the implementation
detail and the format of computation and data interest packets.
For more information on how these packets are formatted,
we refer the interested reader to the works on named-data
networking and named-computations [47], [48].

Several challenges need to be addressed in this setting.
These include how to forward the computation and data
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interest packets, how to decide on performing computations
and caching, and how to make these decisions in a distributed
and scalable manner. In the next section, we present the DECO
framework which presents a comprehensive solution to this
joint problem.

1V. DECO FRAMEWORK

In this section we introduce the DECO framework as a
solution for joint computation scheduling, caching, and request
forwarding in the computing network discussed in Section III.
We start by analyzing an idealized setting where nodes are
allowed to compute the results and cache the data objects
without waiting for the data objects to be fetched. We call
this setting a “genie-aided” network. We discuss the dynamics
through which interest packets are handled in genie-aided
network. We then find an outer bound for the stability region
of the data-intensive computing network by analyzing the
stability region of the genie-aided network. We then propose
a throughput optimal policy that can stabilize all the computa-
tion interest packet queues and data interest packet queues for
any computation request arrival rates inside the stability region
of the genie-aided network. Since the throughput optimal
policy cannot be directly implemented in the data-intensive
computing network, we propose implementable versions of
this policy which lead to a superior performance in terms of
request satisfaction delay compared to a number of baseline
schemes as shown in Section V.

A. Dynamics of Interest Packets in the Genie-Aided Network

In the genie-aided network, nodes are allowed to com-
pute the results and cache the data objects without waiting
for the data objects to be fetched. Consider time slots of
length 1 second (without loss of generality) indexed by t =
1,2,...,00, where time slot ¢ refers to the interval [t,¢ + 1).
Each node n € V keeps a separate queue for computation
interest packets corresponding to the request (m,k) € R.
The count of this queue at the beginning of time slot ¢ is
denoted by Y,Em’k)(t). Each node also keeps a separate queue
for data interest packets corresponding to data object k € D,
and its count is denoted by V¥(¢).> The packets in each
queue are served on a first-come-first-served basis. Initially
all queues are empty, i.e., Y}gm’k)(l) = VF1) = 0 for all
n,m, k. For each computation request (m,k) entering the
network, the count Yém’k) is increased accordingly at the entry
nodes. Nodes decrease their computation interest counts by
performing the corresponding computations and decrease their
data interest counts by caching the corresponding data object.
Nodes can also decrease their computation and data interest
counts by forwarding them to their neighbors. On the other
hand, performing a computation request in a node may result
in an interest for the required data object in that node. Let
A%m k) (t) be the number of exogenous computation request

5Note that in genie-aided networks, nodes are allowed to compute the results
and cache the data objects without waiting for the data objects to be fetched.
Here the purpose behind creating data interest packets and keeping track of
their counts is to capture the measured demands for the corresponding data
objects.
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Fig. 3. Interest packet dynamics at node a. Computation interests queues
and data interests queues evolve according to (1a)-(1b).

arrivals at node n for computation (m, k) during time slot .
For every computation request (m,k) arriving at node n,
a corresponding computation interest packet for (m,k) is
generated at n (i.e., y,{mok) (t) incremented by 1). The long-
term exogenous arrival rate at node n for computation (m, k)
is AU 2 im, it AP (7).

Let u(m k)( t) be the allocated transmission rate of computa-
tion interest packets (in number of interest packets per second)
for (m, k) on link (a,b) during time slot ¢. Also, let v/¥,(t)
be the allocated transmission rate of data interests (in number
of interest packets per second) for data object k on link (a, b)
during time slot ¢. We denote the allocated processing rate for
computation (m, k) at node n during time slot ¢ by u%%’fo)c(t)
(in number of computation interest per second). We assume
that for each performed computation on data object k, a data
interest packet for object k is generated. Let sk (¢) € {0,1}
represent the caching state for object k at node n during slot
t, where s¥ (t) = 1 if object k is cached at node n during slot
t, and s (t) = 0 otherwise. Note that even if s¥(¢) = 1, the
cache at node n can satisfy only a limited number of interests
during one time slot. This is because there is a maximum rate
ry, (in data objects per second) at which node n can produce
copies of cached object k. These dynamics can be written as

- pho)

Yém,k’)(t +1) < (Yém,k’)( ) — (m, k)

Mn,proc
bey
+) ) + AR (), (la)
acV
VA1) < (vﬁ )= st ()~ Y vk )
bey
YR+ D vk (), (1b)
meF acV

where (2)* £ maa{z,0}. Also, Vi . (t) = 0 for all ¢ >

1 and Y(:Z(I;))( ) =0 forall m € F and all t > 1. A graphical
representation of these dynamics is shown in Figure 3.

From (la) and (1b), we can see that the computation
interests for (m, k) are processed at rate MSL pm)c( t), and data
interests for data object k are decreased at rate 7, if node n
decides to cache the data object k (s%(t) = 1). The remaining

computation interests or data interests are transmitted to the
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neighbors with rate ), u%’k) (t) and >°, V¥, (t), respectively.
The exogenous arrivals ASLm’ )(t) and endogenous arrivals
Do u&yﬁ’k) (t) during time slot ¢ are added to the computation
interests queue at the end of time slot. The number of
computation interests processed corresponding to data object
k and the endogenous arrivals Y v (t) during time slot ¢
are added to the data interest queue at the end of time slot.
Note that (1a) is an inequality since the number of computation
interests for (m, k) arriving to node n during slot ¢ may be
less than ugﬂf’k)(t), if the neighboring nodes have little or
no computation interests to transmit. Also, (1b) is inequality
because the number of data interests for object k arriving
to node n during slot ¢+ may be less than Y, v¥ (), and
the number of data interests created due to the processing
of computation interests might be less than uﬁffp’fgc(t),
if node n has little or no computation interests to process.

B. Stability Region for Genie-Aided System

In this section we discuss the constraints on processing
rates, transmission rates, and caches, and provide the stability
region for genie-aided system. We assume

o Exogenous computation request arrival processes

{A%m’k)(t);t =1,2,...} are mutually independent with
respect to n, (m, k).
o {AP ()t =1,2,...
all n € V,(m,k) € R.
o Foralln € V,(m,k) € R, Asbm’k) (t) < A%"ﬁnlfl)x for all
t, where A&mm’z)x eR,.

During each time slot, a node cannot store more than its
cache capacity, and cannot process computation requests more
than processor capacity, i.e.,

} are i.i.d with respect to ¢, for

> Lisk(t) < Cn, YneV, )
keD
D dmppe(t) < Pay Yn eV, 3)

(m,k)ER

For each computation interest packet sent on a link, a result
comes back on the reverse link eventually, and for each data
interest packet sent on a link, a data object traverses back on
the reverse link. Since the size of interest packets are negligible
compared to results and data objects, when sending interest
packets on a link (a, b) we need to take into account the reverse
link capacity. Hence,

Z Lkl/ab Z Z(m k)u(m k)( ) < Cba; V(a,b) eé.
keD (m,k)
(4)

Before introducing the stability region, we first need to define
the stability of the queues.

Definition 1: Stability for computation interest and data
interest queues at node n is defined as

lim su 1 (m, — 0, as & — oo, 5
msup 4 Z Y (7)>¢] ¢ )
lim su 1 — 0, as & — o0, 6

m Sup Z [VE(r)>€] 13 (6)

where 17y is the mdlcator function.

Authorized licensed use limited to: Northeastern University. Downloaded on October 18,2022 at 19:34:51 UTC from IEEE Xplore. Restrictions apply.
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The stability region A is the closure of the set
of all computation arrival rates, defined as ,\52”"’” £
lim oo 2370 A AU™R) (7), for which there exists some fea-
sible computation scheduling, caching, and forwarding policy
which can stabilize all computation interest and data interest
queues. By feasible, we mean that at any time ¢ the caching

vectors (sy:(t)) . .p ey satisfy (2), the processing rate vector
( (m,k)

un,pmc) (mk)ER eV satisfy (3), and the forwarding rate vec-

tor (u((;lf k))(m BER.(ap)eE satisfy (4). The following theorem

characterizes the stability region of genie-aided.

Theorem 1: The stability region for computation and
data interests of the genie-aided network G(V,E) with
caching, computation, and transmission capacity constraints
given by (2)-(3)-(4) and queue dynamics (la)-(1b) is the
set A consisting of all computation request arrival rates
)\%m ’k), such that there exists computation flow variables
(fé;n’k))(m k)ER,(a,b)ELS dataﬂow variables (dab)keD (a,b)eLs
processing flow variables (fn7proc)(m’k)€R’neN, and caching
variables (Bn,i)nenicw, Satisfying

m,k’ m, m, k _
=0, fmh <o, fimd <o,

Va,b,n € N, (m,k) € R, (7a)
FomE — 0, Va,be N, (m,k) € R, (a,b) & L, (7b)
dy, >0, dy, =0, db. .y, Ya,b,n € N,k €D, (7c)
d¥ =0, VYa,be N,k e€D,(a,b)¢L, (7d)
0<5nz§1 Ze\:[ln; (76)
fimk) >0, VneN,(mk)€R, (7)

nm,k) < ny(gl,,k) . Z f(m k) + fv(LT;rkocv
bey a€Vy

Vn e N, (m,k) € R, (7g2)
Z d Z V(Ln;rkoc < Z dkb + Z ﬁn,il[kj € Bn,i]7
acV bev iev,

VneN( k) ER, (7h)

S Zow f("’ M43 Lidb, < Cha, Y(a,b) € L,
(m,k)ER keD
(71)
> Bui=1, Vnen, (7))
ieW,
> G f < Py VneEN. (7K)
(m,k)ER

Here, U,, is the set of feasible cache combination for node n.
Theorem 1 is proved in Appendix A. We show that if
the network is stabilized for arrival rates A by a feasible
computation scheduling, transmission, and caching policy,
then the variables defined in Theorem 1 exists. Conversely,
if such variables exist, then there is a randomized computation,
transmission, and caching policy that stabilizes the network.
To our knowledge, Theorem 1 is the first characterization
of the stability region of a data-intensive computing network
which incorporates the effect of computation, transmission,
and caching jointly. In the genie-aided system we assume that
the nodes have instant access to data. Hence the stability region
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defined in (7) is an outer bound for the stability region of the
original data-intensive computing network.

C. Throughput Optimal Policy in Genie-Aided System

In this section we introduce a distributed policy based on
Lyapunov drift minimization for throughput optimal decision
making in genie-aided system. The drift minimization problem
results in two different linear programming (LP) problems for
allocating processing and transmission rates. It also involves
solving a knapsack problem for caching. This is NP-hard in
general, but can be solved using approximation techniques
or dynamic programming at each node. In what follows we
introduce the joint computation scheduling, transmission, and
caching policy:

Algorithm 1: At the beginning of each time slot t, observe
the counts for computation interests (Yém’k) () nev,(m,k)er
and data interests (V¥ (t))ney kep and decide on processing,
transmission, and caching in the sequence described below.

Computation Scheduling: At each node n, choose process-
ing rates of computation interests by solving the following LP:

maximize E

(m,k)eER

Z Q(m k)'U’SL,pfo)c(t) S Pn-
(m,k)ER

) (1) (Yém”@ (t) - v <t>) (a)

subject to (8b)

Transmission: At each node n, choose transmission rate of
computation interests and data interests on each outgoing link
(n,b) € € by solving the following LP:

maximize Z u(m k)( )(Kgmk) (t) — YE)(m’k) (t)>

(m,k)eER
+ ) vt < VW)) (%a)
keD
subject to Z kafbb(t) + Z Z(m,k)u%’k)(t) < Cyn.
keD (m,k)eR

(9b)

Caching: At each node n, choose caching variables by
solving the following knapsack problem:

maximize Z VE(t)sh (t) (10a)
keD
subject to Z List(t) < C,,. (10b)
keD

Being distributed is an important characteristic of Algo-
rithm 1. Computation scheduling and caching decisions are
made at each node separately, and each node needs to
exchange the size of computation interest and data interest
queues only with its own neighbors. In the following theorem,
we show that Algorithm 1 stabilizes all computation interest
queues and data interest queues in the network for any A
€ int(A), without knowledge of A. As a result, Algorithm 1 is
throughput optimal in the sense of adaptively maximizing the
throughput of computation interests. The proof of Theorem 2
is provided in Appendix B.
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Theorem 2 (Throughput Optimality): If there exists € =
(e%m’k))nevﬁ(m}k)eR > 0 such that X\ + € € A, then there
exists (65[””"’ Inev,(m.k)eRs (¥ Vney kep = 0 such that the

network of interest queues under Algorithm 1 satisfies:

t
. 1 NB
hmsupgz:( Z E[Y,Sm’k)(T)]—i-ZE[Vf(T)])g—,,
t—oo €
7=1 n,(m,k) n,k
(11
where B < v nevbnen  + Hnpree
TR (a4 e, + AR A
. k) ’
min{ (e{™ ))nEV,(m,k)ERa (X )nevken)  mer,. £
Py max 4 b Con max 4
min{‘l(m,k)}’unvfmt - min{Zm ), Lk}’ F'n.in -
20 Cna

max A max A (m,k)
min{Z(m ky,Lr}’ Tn - Tn|D|, An - Z(m,,k) An,ma17 and
’

(e%m’k) Jnev,(m,k)eRs (€¥)nev.kep are variables depending
on network topology and parameters.

It is worth noting that in a network with equal-sized data,
the knapsack caching problem (10) reduces to a max-weight
problem which is solvable in linear time at each node. In a
scenario where computation result sizes are also equal, the LP
for transmission rates (9) turns into a backpressure algorithm
on each link. Finally in a scenario where computation loads
are equal, the LP problem for processing rates (8) turns into a
backpressure-like algorithm between computation interest and
data interest queues at each node. Consider a network where
all data sizes are equal (L = L, Vk € D), all result sizes
are equal (Z(,, ) = Z, Y(m,k) € R) and all computation
loads are equal (q(;,, 1) = ¢, V(m,k) € R). In this situation,
Algorithm 1 reduces to the following simple backpressure and
sorting algorithm which we call Algorithm 2.

Algorithm 2: In a network with Ly = L, Zuup =
Z, q(m,k) = @, at the beginning of each time slot t, observe

the counts for computation interests (Kgm’k)(t))nevy(m’k)en
and data interests (V,F(t))ney kep and decide on computa-
tion scheduling, transmission, and caching in the sequence
described below.

Computation Scheduling: At each node n, for each

(m,k) € R, choose:
Py

m — W;; roct >0, (mvk):(mak*
pim) (=< q proc(l) " 12
0 otherwise.
where
k A m,k k
WimR () £ Y, () — Vi (t) (13a)
(m, k)" & argmax WT(L’Z,"’Z)C(t) (13b)
(m,k) :
Wi proc(t) & (WRE (6)* (13¢)

Transmission: At each node n, for each (m,k) € R and
each k € D, choose:

n - (t ot

CL Wnb( ) > an( )’ :b(t) >0,
(mk) fpy Z Z L

oy (8) = m, k) = (m, k)**

0 otherwise,
(14a)
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con Grp(t) (1)
k > ’
vp(t)=q L L Z
0 otherwise,

() > 0,k =k

(14b)
where

WE () 27,0 (1) v, (1), G (1) 2 VR - VR,

(152)
(m, k)™ £ argmax Wy(bzn’k)(t), k* & argmax G, (1),
(m,k) k
(15b)
WOEW O, G £ (@) a5

Caching: at each node n, let (dy,ds, . . .,dk) be a permuta-
tion of D such that VI > V&2 > ... > VI Leti, = S|,
then choose

1
so-{3

In Algorithm 2, each node n at each time slot ¢ allocates
the entire normalized processor capacity (IZ) to process the
computation interests of (m,k)* which has the maximum
difference between its computation interest count and data
interest count for the required data object k£ as shown in
(12)-(13). The intuition behind this is the following. The opti-
mal policy allocates the processing capacity to the computation
request for which there is relatively high local computation
demand (i.e., large computation interest count) and low local
demand for the required data object (i.e., low data interest
count, often due to the data object being cached or perma-
nently stored in close vicinity).

At each time ¢, each node n chooses for transmission on
outgoing link (n,b) € & the computation interest or data
interest that has the maximum backlog difference on the link
normalized by size (Z for computation interests and L for
data interests), and allocates the entire normalized reverse link
capacity (normalized by Z if the chosen count is a computation
interest and by L if the chosen count is a data interest) to
it, as shown in (14)-(15). For caching, each node n with
capacity to cache i, = L%J data objects, chooses the i,
data objects with the highest data interest counts to be cached.
We note that in Algorithm 2, at each node the computational
complexity is O(]F| x |D|) for computation scheduling policy,
O(|V| x |F| x |D|) for transmission policy, and O(|D|) for
caching policy.

ke {kl,kg,...
otherwise.

K, } (16)

D. An Implementable Policy for Joint Computation,
Caching, and Request Forwarding

Algorithm 1 cannot be implemented directly for the system
introduced in Section III. As described in Section III and in
Figure. 2, when a node decides to perform a computation
request (m, k), it sends the computation to the processor if
it is the source of data object k or has k stored in its cache.
Otherwise it puts the computation request in the PCR(k)
queue and issues a data interest packet for k. When data
object k returns to the node, that node sends all computation
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requests in the PC'R(k) queue to the processor on a first-
come-first-served basis. As for caching, nodes can only cache
data objects when they are traversing back on the reverse path
to the data requester. Our goal in this section is to design an
implementable version of Algorithm 1. Although we do not
prove theoretical optimality of the performance of algorithms
discussed in this section and Section IV-E, they show excellent
performance gains in the simulation experiments. At each time
slot, each node decides on performing computation scheduling,
request forwarding, and caching in the sequence described
below.

1) Performing Computation Requests: At each time slot ¢,
each node n performs computation requests of (m,k) € R
with rate u;mr’z’c (t) where ugn,fg; (t) is the optimal process-
ing rate at node n in time slot ¢ obtained by solving (8a), (§b).
That is, at each time slot ¢, each node n takes un%’fo)c (t)
computation interest packets of type (m, k) out of its corre-
sponding queue and sends them to the processor if n = src(k)
or has the data object k in its cache. Otherwise, it puts them
in the PCR(k) queue and generates u%fgc (t) data interest
packets for data object k. When data object k reaches node n
on the reverse path (of the data interest packet), node sends
all the pending computation requests in the PC'R(k) queue to
the processor on a first-come-first-served basis. The procedure
is described as follows:

Input: Y\ (), VE(), gy, Po V(m, k) €R, k€
D.
1: procedure PERFORMING COMPUTATION IN NODE n AT
TIME t .
2:  calculate u%%’fgc (t) by solving (8a), (8b).
if data object k is stored at node n then send p%}?c (t)
computation requests of type (m, k) from the correspond-
ing queue to the processor queue in a first-come-first-served
basis.

else
5: put u%%’fgc (t) computation requests of type (m, k)
in PCR(k) queue.
6: issue u%%’fgc (t) data interest packets for fetching

data object k.

7. if data object k arrives at node n then put the com-
putation requests in the PC'R(k) queue into the processor
queue in a first-come-first-served order.

2) Transmission of Computation and Data Interest chk-
ets: At each time slot ¢, each node n transmits u%’k) (t)
computation interest packets of request (m, k), and transmits
1/7’3; (t) data interest packets of data object k on each outgoing
link (n,b) € &, where u7"""(t) and v*;(t) are optimal
transmission rates at node n in time slot ¢ obtained by
solving (9a), (9b). The procedure is described below.

3) Caching Data Objects: A node can only cache data
objects when the data objects are traversing back on the reverse
path to the requester. We propose a caching policy based
on the policy described in Algorithm 1 for the genie-aided

system. That is, when new data objects arrive at the node, the
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Input: Y, (t), VE(t), L, Zomiys Cons ¥(m k) €

R, k€D, (n,b) k.

1: procedure TRANSMISSION OF COMPUTATION AND DATA
INTEREST PACKETS IN NODE n AT TIME ¢

2. calculate transmission rate vectors ), (t) and v, (t) by
solving (9a), (9b).*

3:  transmit u%’k) (t) of computation interest packets of
request (m, k) on each outgoing link (n,b) € £. If there is
not enough computation interest packets in node n, transmit
all of them.

4 transmit ¥, (t) of data interest packets of data object k
on each outgoing link (n,b) € . If there is not enough
data interest packets in node n, it transmits all of them.

combination of newly arrived and existing data objects that
solves (10) is cached. The procedure is described as follows:

Input: V*(t), Ly, C,, for all k € D.
: procedure CACHING DECISIONS IN NODE 1 AT TIME ¢
when node n receives a data object Ky ep:
if data object k is stored at node n then do nothing.
else
if cache of node n has sufficient space to store ke,
then cache k¢ .

AN

6: else

7: let KCp, 014 be the set of objects that are currently
cached at node n.

8: cache a subset K, ne € Ky 010 Uknew that solves
(10).

Since the interest count for a data object is decremented by
ry, immediately after node n caches the data object, we notice
that this policy leads to oscillatory caching behaviour, whereby
the cached data objects are shortly after removed from the
cache again because other data objects’ interest counts are
now larger. In what follows we propose a method that has
more stable caching behaviour.

E. Stable Caching Policy

In this section, we describe a policy that implements a stable
solution in which the cache contents do not oscillate. The
stable caching policy leads to significant performance gains
in simulation experiments.

Within this policy, the performing of computation requests
and transmission of packets coincide with the computation
and forwarding scheme described in the implementable policy
in Section IV-D. As for the caching policy, suppose that at
time slot ¢, node n receives the data object k¢, Which is not
currently cached at node n. If there is sufficient unused space
in the cache of node n to accommodate k., then node n
proceeds to cache the kj¢,. Otherwise, the node compares the
cache scores (as calculated below) for k,,¢,, and the currently
cached objects. For a given window size T, the cache score
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TABLE 11
EXPERIMENTAL PARAMETERS AND SETUP

Abilene Fog GEANT LHC
F 100 200 100 100
D 100 200 100 500
Ly 3GB 500MB 3GB 60GB
Z (k) 300MB 50MB 1.5GB 6GB
A(m,k) 5 x 107 5 x 107 5 x 107 10°
Interest
Packets’ 60KB 10KB 60KB 60KB
Size
MIT, WSC
Source Seattle 3 10, 11 PRD, FNL
Nodes Sunnyvale 21 | VND, UFL
Los Angles e NBR. ,UCSD
MIT, WSC
Requesting | Atanta |5y o || pRp FNL
Nodes Washington > Ul i R D) VND’ UFL
New York | "’ NBR. ’UCSD

for object k at node n at time ¢ is calculated as

Yo i)+ D ulpm)]

(a,n)€€ meF

1 t
CSx(t) = T Z
r=t—T+1
(17)

i.e., the average number of data interests for k£ received by
node n over a window of size T prior to time slot .

Let KC,, o1q be the set of objects that are currently cached
at node n. Assuming all data objects are of equal size, let
kmin € Kn,o1a be the data object with the smallest cache
score in KCy, o1q. If kpneyw has a larger cache score than kpip,
then object ki, is evicted and replaced with object kjeq-
Otherwise, the cache contents are unchanged. If objects have
different sizes, the optimal set of objects is chosen to maximize
the total cache score under the cache space constraint. This is
a knapsack problem for which low complexity heuristics exist.

As a data object is cached at node n, the data interest count
for that data object is decreased at the node. This attracts data
interest packets for each object £ € K, ¢ to node n, where
K, new denotes the new set of cached objects. As a data object
is evicted, data interest count for the evicted data object would
begin to build up. As the count goes higher, the back-pressure
forwarding policy would lead the data interests away from the
node n to other parts of the network.

V. NUMERICAL EVALUATION

This section presents our experimental evaluation of the
DECO framework. The simulations are performed on four
different network topologies: Abilene topology shown in Fig-
ure 4(a), a fog computing topology shown in Figure 4(b),
the GEANT topology shown in Figure 4(c), and the LHC
topology, shown in Figure 4(d), for the Large Hadron Collider
high energy physics network, one of the largest data-intensive
computing networks in the world.

Experiment Setup. In Abilene, the cache capacity is 30GB
and the processor capacity is 5 x 10° instructions/sec for all

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 3, JUNE 2022

nodes. The link capacity (in both directions) is 240 Gbps for all
links. In Fog, the cache capacity is SGB fornodes U1, U2, ...,
U12, 25GB for B1, B2, B3, B4, and 50GB for nodes S1,
52, $3. The processor capacity is 10 instructions/sec for U1,
U2, ..., U12, 5 x 108 instructions/sec for B1, B2, B3, B4,
and 107 instructions/sec for S1, S2, S3. The link capacity (in
both directions) is 40 Gbps for the links between the bottom
layer to the second layer (U1, B1), (U2, B1), ..., (U11, B4),
(U12,B4), 200 Gbps for (Bl,B2), (B2,B3), (B3, B4),
(B1,S1), (B2,51), (B3,52), (B4,52), and 400 Gbps for
(51,52), (S1,53), (52,53). In GEANT, the cache capacity
is 30GB, and the processor capacity is 25x 10° instructions/sec
for all the nodes. The link capacity (in both directions)
is 240 Gbps for all the links. In LHC, for “MIT”, “WSC”,
“PRD”, “FNL”, “VND”, “UFL”, “NBR” and “UCSD”, the
cache capacity is 3TB and processing capacity is 3000, 5000,
5000, 2000, 1000, 1000, 3000, and 2000 instructions/sec,
respectively. The cache and processor capacity are zero for
all other nodes. The link capacity (in both directions) is
480 Mbps for all links. Other simulation parameters are shown
in Table II for each topology. The designated source for
each data object is chosen uniformly at random among the
source nodes mentioned in Table II. At each requesting node,
computation requests arrive according to a Poisson process
with an overall rate A (in request/node/sec). Each arriving
request selects from the set of available tasks (independently)
uniformly at random. In Abilene, Fog and GEANT topologies,
we pair the 7th computation task with ith data object to form
a computation request. In LHC, the data objects are chosen
according to a Zipf distribution with parameter 1, and pair the
selected task and data to form a computation request.

We calculate shortest paths from each node to the source
for each data object, and populate the forwarding tables of the
nodes with this information, beforehand. In all topologies, the
buffers holding the computation interest packets, data interest
packets, data packets, and result packets are assumed to have
infinite size. Data packets and result packets share the same
queue on the reverse paths, and are served on a first-come-
first-served basis.

Policies and Measurements. We compare DECO with
stable caching policy described in Section IV-E and five
baseline policies in terms of computation request satisfaction
delay. In the RD-LRU policy, RD stands for “Retrieve Data”;
each computation request is performed at the entry node of
the request, and if needed, a data interest packets is generated
according to the procedure discussed already. All data interest
packets in each node share one queue, and are forwarded to
the source on a first-come-first-served basis. Each node caches
the data objects when they travel back on the reverse path to
the requesting node, if its cache is not full. If the cache is
full, the nodes use LRU as the cache eviction policy. RD-LFU
is similar to the RD-LRU policy but uses LFU as its cache
eviction policy. In the STS policy, STS stands for “Send To
Source”; each computation request (m, k) is forwarded to the
source of the data object k. All computation requests share
the same queue at each node and are forwarded on a first-
come-first-served basis. When the computation requests reach
the source, they are sent to the processor queue directly. Since
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Fig. 5. Computation request satisfaction delay.

the data objects do not move in this policy, there is no caching
decision made by individual nodes. In the CBP-LRU policy,
CBP stands for “Computation Backpressure”. There is a sepa-
rate queue for the computation interest packets of type (m, k)
at each node. We use backpressure-based algorithms on the
computation interest packets for performing computations and
forwarding, similar to the approach introduced in [37]. Since
all the result sizes and computation loads are equal, the policy
performs the most backlogged computation request at each
node. Also, the forwarding is done by simple backpressure
on each outgoing link subject to the reverse link capacity
normalized by the result size. The data interest packets all
share the same queue and are forwarded on a first-come-first-
served basis toward the sources of the data objects. Each node
uses LRU as its cache eviction policy. CBP-LFU is similar to
CBP-LRU, but uses LFU.
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The simulator finest granularity time step is 2usec for
Abilene, Fog, and GEANT, and is 1msec for LHC. In DECO,
decisions are carried out in the slots of length 10* time steps
and the averaging window size is 10° time steps. In CBP-
LRU and CBP-LFU, backpressure algorithms for performing
computations and forwarding are carried out in the slots of
length 10* time steps. The average window size in all policies
that utilize LFU is 105 time steps. The simulator gener-
ates computation requests for 100 seconds in Abilene, Fog,
and GEANT, and 50000 seconds in LHC. After generating
requests, simulator waits for all computation requests to be
satisfied. The delay of each computation request is calculated
as the difference between the fulfillment time (i.e., time of
arrival of the last result packet) and the creation time of
the computation interest packet. We sum over all the delays,
and normalize it by the total number of generated requests
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and the number of requesting nodes. The computation request
satisfaction delay (in second per request per node) is plotted
for different arrival rates (in number of requests per node per
second) for each topology in Figure 5.

We see that DECO outperforms all other schemes by a large
margin. For instance, at arrival rate of A = 45, DECO has
around 80% delay improvement in Abilene and 90% delay
improvement in GEANT compared to the policy with the
closest performance.

VI. CONCLUSION

We address the problem of joint computation scheduling,
caching, and request forwarding in a distributed data-intensive
computing network where users issue requests for performing
a computation task on a piece of data. With no prior knowledge
on request rates, our framework utilizes computation interest
counts and data interest counts to characterize the demand
for computation and data. Although the policies discussed in
this work are designed to increase the throughput, they lay
the foundation for future research directions on minimizing
the latency, cost, and prioritizing request deadlines. There
are several methods proposed for minimizing the delay for
back-pressure policies [49], [50]. Applying such methods to
the policies discussed in this paper is a promising future
research direction. In addition, cost and delay minimization in
caching networks [51], [52] can be extended to data-intensive
computation networks with arbitrary typologies using the
computation and data model discussed in this paper.

APPENDIX A
PROOF OF THEOREM 1

We need to show that A € A is necessary for stability and
A € int(A) is a sufficient condition for stability. First we prove
the necessary condition. Assume the network is stabilized
for arrival rates A by a feasible computation scheduling,
transmission, and caching policy. Let F(m k)( t) be the amount
of computation interests for (m, k) sent on link (a, b) over time
slot ¢. Similarly, we define D, (¢) for data interests for object
k sent on link (a, b) over time slot ¢. Also, we define Fr(fzrll)c( t)
to be the number of computation interests for (m, k) processed
over time slot ¢. Hence,

EP(t) > 0, Fimb () =0, FI) (1) =0,
Va,b,n € N, (m,k) € R, (18a)
F"M(t) =0, VYa,beN,(m,k) € R,(a,b) ¢ L, (18b)
Dsb(t) > 0’ D'Zn( ) = O D];rc( )n(t) = 07
Ya,b,n € N,k € D, (18c¢)
DF.(t) =0, Ya,beN,keD,(ab)¢L, (18d)
m,k
EmE) (1) >0, VneN,(mk)€ER, (18e)
> Zm iy F5E (1) '+§:l¢D ) < Cha,
(mvk)ER keD
V(a,b) € L (18f)
> G FmRL () < P., YneN. (18g)
(m,k)ER
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By Lemma 6 of [53], if the network is stable, there exists a
finite M such that ¥;\""*(t) < M and V*(t) < M for all
n, m, k holds infinitely often. Given an arbitrarily small value
€ > 0, there exists a slot  such that

YR (F) < M, VEE) < Mj\gé (19)
t
Ak
T M)y <. o)

Assuming all queues are initially empty, we can write the
queue length as the difference between the interests that have
arrived and departed (and drained):

t
y,(mk) (¢ ZZF(’” ) (7) + ZA;W’“(T) 1)
=1 a =
t
> Y E ZF#;’,/ZL 22)
=1 b
t
VED =D > DE(m)+ Z S FEmB (1) (23)
7-:1 a =1 m
t
- Z YD () —ra Y sh(r) (24
=1 b =1
We know that = Zf—:l Ak (1) > AR e, %Yém’k) (t) <e,

and Vk( ) < e Thus,

Z F(m k)

)+ AR —

T

| =
| M*,

E
—%}jF%ﬁuﬂ (25)
1 t
S D TR ) Wt
=1 7=1 m
t
%Z; rn~Zs (26)

1

3
Il

We define f(m ka1 ZT 1 F(m g (7)s d];b 2

127 , Dk, (7), and fnn;r]f))c é 127 B %rko)c(r). Then
by (18a), (18b),(18¢),(18d), (18e), (ISf) and (18g) we can

prove (7a), (7b),(7¢),(7d),(7f), (7i), and (7k). Let 7,, ; = { T €

{1,...,t} : sk(7) = 1 Vk € Bi,sk(r) = 0 Vk ¢ Bn,z}»
and 3, ; = |T’; il . Thus, we can prove (7e) and (7j). Finally,

from (25) and (26) we can write

wwssz—Zﬂwwm&we
b

Dodba Y féf;;’stde +7n . Baillk € Bl te.

€W,

27)

(28)

By letting ¢ — 0, we can prove (7g) and (7h).
Now we show that A € int(A) is a sufficient con-
dition for stability. A € int(A) means that there exists
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€ = (e%m )), where €™" = 0 such that A + € € A.
(m,k)

Let (f(m k)) (d%,), (frproc), and (B3,,) be the transmission,
processing, and caching variables associated with A + €.
So all (7a), (7b),(7¢),(7d),(7e),(71), (71),(7j), and (7k) are true
for these values as well as

)\(m k)_|_6(mk <Zf(m k) mek)—'—f'r(lrzrkocv (29)
> dan +Z é’ZT’ZC<Zd’“ 70 > Bnillk € Bnl.
a v,

i€ (30)

First, we introduce new processing and transmission vari-
ables fn";r]f))c, (m,k)’ dab as defined in Appendix C. Then
we propose a randomlzed policy for computation scheduling,
transmission, and caching that makes service rates strictly
larger than input rates in all computation and data interest
queues, thus stabilizes all of them.

Algorithm 3: Computation Scheduling: Choose a com-
putation interest (M, k) which is chosen randomly to be
SN

d(m,k)Jn, proz,
k)
m,k d(m, k)fn proc

{ s a5 if (o, k) = (1, F)

(m, k) with probability Then set ﬂ%n;)fgc =

4(m,k)
0 0therw1se

f(m k) N
0, pick a computation interest (1, k‘) which is chosen ran-

m k)
domly to be (m,k) with probability —= BYA . Then

m /
RS
(m,k)
_mk) {Z-m,k Z(m k) Jap

Transmission: For every link (a,b) such that

m,k

set /‘l’(l,b — Z(m, k) lf‘ (m7 k) - (ﬁl; k) AISO,
0 otherwise.

For every link (a,b) such that 3", d¥, > 0, pick a data interest

~ k!

k which is chosen randomly to be k with probability Lﬂbk,.

> Lrdgy
S Ledby o

Then set ﬁfb = T rifk=k
0 otherwise.

Caching: For every node n, cache the single combination B,

where B, is chosen randomly to be B ; with probability

- lifkeB
Bl Ez‘e‘lfn Bn.i- Then set 5k (t) = { i m

0 otherwise.
Proposition 3: Algorithm 3 makes all service rates strictly

larger than input rates in all computation and data interest
queues, thus stabilizes all of them.
We prove Proposition 3 in Appendix D.

APPENDIX B
PROOF OF THEOREM 2

We define the quadratic Lyapunov function as
5 0 o) + 5 )

n,m,k
Hence, the Lyapunov drift at time slot ¢ is defined
by A(Y (1), V(t) = E[LY({t + 1),V + 1) —
L(Y(t),V(1))|Y(t),V(t)]. By taking square on both sides
of (1a), (1b) we have

LY (1), V(t) =

YR (¢ 4 1)2

1069

< (0000 =3 0 -
Z k) (¢

+2Y<m B () AR (1)

Pk (1))

)+ AL (1)) 4 27, (1) § pulmek) ()

a

n
2
< Y(m k) 2 + ( u m k) + /'[/s:;)'r]‘vgc( ))
2Y(m k) Z Koty m k) QY(m k)( )Mszn;)fgc(t)
b

)+ AT (1))? 4 2y, R (¢

Z‘umk)

+2Yém'k)( )AL (1)

Z‘umk)

VRt +1)?
2
- Z vy (t) s (t))
b
X 2
H(D ) + Y vk (1)) + 2V () Z PR (t)
+2VE (1)

> vt

< V) (zum Frask(®) =270 vty
o) (Zu&fﬁc >+Zu§n<t>)
+2VE(t Zun";,fgc £+ 2V Y vk (1)

We remove the expectation and condition signs for simplicity,
and we write Lyoponov drift as

E(t L1 - L)
< 20 (i O+ )
n,m,k ,
_,_Z(Zlumk) +A(mk()>

n,m,k

+Z<Zunb + 78 ())2
+X (S + ko) 2
nk N om o

+ 3 2P AL 0

n,m,k
12 Y ) ( (1) —Yémv“(t))
oS VE(@)rash (1)
n,k

n,m,k
£ 3D A CRIORARIT)

(a,b) m,k

123 Sk (0) (v;f (1) - vk <t>)

(a,b) k
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<B4 Y AHOATIG)

n,m,k

12 3 i) (V’“() Y,smf’”(t))
n,m,k

=2 VI (Orasi(t)
n,k
42 Z Z (m, k)

(a,b) m,k

+2) 0 k(@)

(a,b) k

(¥ - i)

(v - viw).

Algorithm 1 minimizes the RHS subject to conditions in
(2),(3),(4). So the policy that minimizes the drift is

maxinize Y 2500V 0) - V)

n,m,k

+ Y Vi )rash(t)
n,k
+ Z Z M(m k)

o (vimom - v )
(a,b) m,k

PN, (vEo - vko).

(a,b)

subject to conditions in (2)-(3)-(4), which is

Algorithm 1. Thus,

exactly

A(Y(1), V(t))
<2NB+ Y 2vmR AR (¢)

-25{ z;w

n,m,k
—2E{ S v Or o).V )}
—ZE{ Z Zu(m k)

(a,b) m,k

(v - x, (t)) X0,V
26{ 3 Sk (v - vt ) v, v |

(a,b) k
We know that Algorithm 1 has the smallest RHS among all
policies including Algorithm 3 in Appendix A. As a result,

A(Y(t), V(1))
<2NB+ > 2v MR )ALk ()

n,m,k
—ZE{

> alm()
26 S vk onstve. v}
n,k

(v - v ) YoV |

(v 0w - v )iy, vo |

n,m,k
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26{ Sl

(a,b) m,k

(i) - v <t>) 0.V
~25{ 5 Skl (VEO - v ) YO, v<t>}

(a,b) k
<2NB+ Y 2vmR AR () -2 Y vimh

n,m,k n,m,k
~ k m m,
E{ o - XA g,,focum)}

{Zl/nb )+ (1)
-S| i)

Since in Algorithm 3 service rates are strictly larger than
arrival rates, we have

SANB+ 3 VOO

—2Zv,f(t)
n,k
- Zﬂsn

n,m,k
2 3 v A+ b 2 vt
n,m,k n
Therefore,
A(Y(t), V() <2NB —2¢ Y vimH (1) - 2¢ ZV’“
n,m,k
where ¢ £ mm{(ézm’k) )nev,(m,k)en, (Eﬁ/)nev,kel)}-

By lemma 4.1 in [54], we conclude the proof.
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