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In this paper, we are concerned with a semi-
discrete complex short-pulse (sdCSP) equation of
both focusing and defocusing types, which can
be viewed as an analogue to the Ablowitz–Ladik
lattice in the ultra-short-pulse regime. By using a
generalized Darboux transformation method, various
soliton solutions to this newly integrable semi-
discrete equation are studied with both zero and
non-zero boundary conditions. To be specific, for the
focusing sdCSP equation, the multi-bright solution
(zero boundary conditions), multi-breather and high-
order rogue wave solutions (non-zero boundary
conditions) are derived, while for the defocusing
sdCSP equation with non-zero boundary conditions,
the multi-dark soliton solution is constructed. We
further show that, in the continuous limit, all the
solutions obtained converge to the ones for its
original CSP equation (Ling et al. 2016 Physica D
327, 13–29 (doi:10.1016/j.physd.2016.03.012); Feng
et al. 2016 Phys. Rev. E 93, 052227 (doi:10.1103/
PhysRevE.93.052227)).

1. Introduction
Optics and photonics are key enabling technologies
that impact society in a multitude of areas, including
information and communications, imaging and sensing,
healthcare, energy, manufacturing and national security.

2021 The Author(s) Published by the Royal Society. All rights reserved.
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Building upon impressive progress in fundamental optical science and in nanotechnology
in recent years, optics and photonics have become drivers for technological innovation and
economic growth. The most recent advances in nonlinear optics include the generation and
applications of ultra-short optical pulses, whose time duration is from the order of femtoseconds
(10−15) to the order of attoseconds (10−18), which led to the Nobel Prize in Chemistry in 1999
[1] and the Nobel Prize in Physics in 2018 [2]. It is an important topic to study the mathematical
models of optical pulse propagation in nonlinear media [3–5]. When the range of short-pulse
widths is from femtoseconds to attoseconds, both dispersive and nonlinear effects influence their
shape and spectrum.

The following full-wave equation is usually a starting point for mathematical models:

∇2E − 1
c2 Ett = μ0Ptt, (1.1)

which originates directly from Maxwell’s equation. If we assume a local medium response and
only a third-order nonlinear effect, the so-called Kerr effect, which is the induced polarization,
consists of linear and nonlinear parts, P(r, t) = PL(r, t) + PNL(r, t).

Under the assumption of quasi-monochromatic light and a one-dimensional harmonic
oscillator, one can derive the nonlinear Schrödinger (NLS) equation,

iqz + α1qττ + α2|q|2q = 0, (1.2)

to govern the slowly varying envelop of optical waves in weakly nonlinear dispersive media
[6,7] by assuming E= (1/2)e1(q(z, t)e−i(ω0t−k0z) + c.c.), where ω0 and k0 represent the central
frequency and central wavenumber, respectively, and e1 stands for the direction of polarization.
Here α1 represents the effect of group velocity dispersion (α1 > 0 corresponds to the anomalous
dispersion, or the focusing case, and α1 < 0 corresponds to the normal dispersion, or the
defocusing case) and α2 > 0 represents the self-phase modulation due to the Kerr effect.

Upon switching the spatial and temporal variables and normalization, the NLS equation can
be put into a standard form

iqt + 1
2

qxx + σ |q|2q = 0, (1.3)

where σ = ±1, which has become a generic model equation, describes the evolution of small
amplitude and slowly varying wave packets in weakly nonlinear media [3–5,8,9]. This arises
in a variety of physical contexts, such as the nonlinear optics mentioned above, Bose–Einstein
condensates [10], water waves [11] and plasma physics [12]. The integrability, as well as the
bright soliton solution in the focusing case (σ = 1), was found by Zakharov & Shabat [13]. The
dark soliton solution was found in the defocusing NLS equation (σ = −1) [7] and was observed
experimentally in 1988 [14,15]. Recently, rogue (freak) waves were discovered and the Peregrine
soliton was found in the focusing NLS equation [16].

When the width of optical pulses is less than 1 ps, higher-order nonlinear effects have to be
taken into account and the NLS equation should be modified. As a result, a generalized NLS
(gNLS) equation [4]

iqz + 1
2

qττ + σ |q|2q + i(β1qτττ + β2σ |q|2qτ + β3σq(|q|2)τ ) = 0 (1.4)

can be derived where β1, β2 and β3 are the parameters related to the third-order dispersion, self-
steepening and stimulated Raman scattering, respectively. Because of its complexity, the study of
the gNLS equation is mainly restricted to numeric solutions. However, in some special cases, the
gNLS equation becomes integrable and is available for rigorous analysis. To be specific, when β1 =
β3 = 0, the gNLS equation is called the derivative NLS equation, which is integrable. In addition,
there are two other integrable cases, i.e. β1 : β2 : β3 = 1 : 6 : 0 (the Hirota equation [17]) and β1 : β2 :
β3 = 1 : 6 : 3 (the Sasa–Satsuma equation [18]).

However, when the width of the optical pulse is of the order of sub-femtoseconds (less than
10−15 s), then the width of its spectrum is of the order of greater than 1015 s−1, being comparable
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to the spectral width of the optical pulses, and the quasi-monochromatic assumption is not valid
anymore. Therefore, compared with the NLS-related models, we need different approaches to
derive the mathematical models of ultra-short pulses. To this end, by using the Kramers–Kronig
relation of the response function, two groups of Russian researchers obtained a normalized model
equation

Ezz − Ett = E + (|E|2E)tt, (1.5)

as well as a non-integrable model equation

2Ezτ = E + (|E|2E)ττ , (1.6)

where τ = t − z. The solitary-wave solutions and their interactions for the above models were
studied in detail in [19–22]. Similarly, Schäfer & Wayne [23] proposed a so-called short-pulse
equation to describe the propagation of ultra-short optical pulses in a silicon fibre,

uxt = u + 1
6

(u3)xx. (1.7)

Here, u = u(x, t) is a real-valued function, representing the magnitude of the optical field. It is
completely integrable [24], possessing periodic and soliton solutions [25]. The wave-breaking
phenomenon was studied in [26]. The integrable discretization of the short-pulse equation and
its geometric formulation was studied in [27,28].

Similar to the NLS equation, the complex representation has advantages for the description
of optical waves since a single complex-valued function can contain information about the
amplitude and phase of a wave packet simultaneously. Consequently, a complex short-pulse
(CSP) equation,

qxt + q + 1
2
σ (|q|2qx)x = 0, (1.8)

was proposed by [29,30]. Here q = q(x, t) is a complex-valued function, representing the optical
wave packets in the ultra-short-pulse regime σ = ±1, where +1 represents the focusing case and
−1 represents the defocusing case. The CSP equation (1.8) can be viewed as an analogue of the
NLS equation in the ultra-short-pulse regime.

For the focusing CSP equation, its multi-bright solition solution was found firstly in Pfaffian
form in [29] by Hirota’s bilinear method, and soon after in determinant form in [31] by the
Kadomtsev–Petviashvili (KP) hierarchy reduction method. In addition to the above multi-bright
soliton solution, the multi-breather and the higher-order rogue wave solutions were constructed
via the Darboux transformation (DT) method [32]. The gauge transformation of the CSP equation
was recently studied in [33]. By formulating the Riemann–Hilbert problem, the inverse scattering
transform (IST) for the CSP equation was investigated in [34] and the long-time asymptotic
behaviour was analysed in [35].

For the defocusing CSP equation, its multi-dark soliton solution was constructed by the
generalized DT method [30] and the KP hierarchy reduction method [36], respectively. Periodic
and soliton solutions for both the focusing and defocusing CSP equation were studied in [37].
In [31,36], a geometric formulation of the complex coupled dispersionless (CCD) equation and
a geometric interpretation for the hodograph transformation were given for the focusing and
defocusing CSP equation, respectively. It is noted that, if we interchange the spatial variable
x and the temporal variable t, the CCD equation becomes the complex sine-Gordon equation
[38] or the AB system [39], which is the first negative flow of the Ablowitz–Kaup–Newell–Segur
system.

Much attention has been paid to the study of discrete integrable systems [40]. This can be
traced back to the mid-1970s, when Hirota discretized various famous soliton equations such
as the Korteweg–de Vries, modified Korteweg–de Vries and sine-Gordon equations through
Hirota’s bilinear method [41]. In the past two decades, the field of discrete systems has grown
to prominence as an area in which numerous breakthroughs have taken place, inspiring new
developments in other areas of mathematics and physics. Among integrable discrete systems, a
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complex-valued equation, the so-called Ablowitz–Ladik (AL) lattice equation,

iqn,t =
(

1 + σ |qn|2
) (

qn+1 + qn−1
)

, (1.9)

originally derived by Ablowitz & Ladik [42,43], plays an important role in driving the study
of discrete systems. This is the integrable discretization of the NLS equation. Similar to its
continuous counterpart, it is known that the AL lattice equation admits the bright soliton solution
for the focusing case (σ = 1) [44,45] and the dark soliton solution for the defocusing case (σ = −1)
[46]. The IST has been developed by several authors [47–50]. The rogue wave solutions to the
AL lattice and coupled AL lattice equations were constructed by the DT method [51,52] and
by Hirota’s bilinear method [53]. The geometric construction of the AL lattice equation was
given by Doliwa & Santini [54]. Besides being used as the basis for numerical schemes for its
continuous counterpart, the AL lattice equation also has numerous physical applications, related
to the dynamics of anharmonic lattices [55], self-trapping on a dimer [56], Heisenberg spin chains
[57], etc.

A question naturally arises: what is the integrable discretization of the CSP equation as an
analogue of the AL lattice equation? As a matter of fact, an answer to this question has been given
and a semi-discrete CSP (sdCSP) equation, which can be written in a coupled two-component
system

d
dt

(qn+1 − qn) = 1
2

(xn+1 − xn)(qn+1 + qn)

and
d
dt

(xn+1 − xn) + 1
2
σ (|qn+1|2 − |qn|2) = 0,

⎫⎪⎪⎬⎪⎪⎭ (1.10)

has been proposed by one of the authors [58,59]. This lattice equation is a semi-discrete analogue
of the CSP equation, where the spatial variable is discretized and the time variable remains
continuous. It is noted that the above sdCSP equation can also be written as a single equation

d
dt

qn+1 − qn

�xn
+ 1

2
(qn+1 + qn) + σ

2
1

�xn

(
|qn+1|2 qn+2 − qn+1

�xn+1
− |qn|2 qn+1 − qn

�xn

)
= 0, (1.11)

where qn = q(xn, t), �xn = xn+1 − xn.
As an analogue to the AL lattice equation in the ultra-short-pulse regime, it is imperative

to study this new integrable sdCSP equation because of its potential applications in physics.
However, compared with the results for the continuous CSP equation and the AL lattice equation,
the sdCSP equation has been studied much less. As far as we are concerned, only the bright soliton
solution was derived through Hirota’s bilinear method [59]. Are there dark, breather and rogue
wave solutions to this newly integrable semi-discrete equation? On the other hand, this sdCSP
equation is the first example of the integrable discrete systems with both the complex dependent
variable and hodograph transformation involved. What are the differences and similarities
between this sdCSP equation and other integrable discrete systems including the AL lattice
equation?

The motivation for the present work is to answer the above questions. To this end, we intend
to construct various soliton solutions with vanishing and non-vanishing boundary conditions
via the generalized DT method. The remainder of the paper is organized as follows. In §2, a
generalized DT of the sdCSP equation was derived through the loop group method [60]. Based
on the generalized DT, we obtain the general solitonic formula for the sdCSP equation. Moreover,
together with the reciprocal transformation, we will construct the general solitonic formula for
the sdCSP equation in terms of the determinant representation. More specifically, starting from
the zero seed solution, the N-bright soliton solution for the focusing case with a zero boundary
condition is constructed in §3, while, from the non-zero seed solution, the general N-dark soliton
solution for the defocusing case is derived with a non-zero boundary condition in §4. In §5,
the multi-breather solution with a non-zero boundary condition is constructed for the focusing
sdCSP equation. Further, it is shown that multi-breather solutions for the focusing sdCSP equation
converge to the ones for the continuous counterpart by taking the spatial mesh to zero. Based on
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the multi-breather solution, we further derive general high-order rogue wave solutions in §6.
Section 7 is devoted to the conclusion and discussions.

2. Generalized Darboux transformation for the semi-discrete complex short-
pulse equation

The DT, originating from the work of Darboux in 1882 on the Sturm–Liouville equation, is a
powerful method for constructing solutions for integrable systems [61]. However, the classical
DT cannot be iterated with the same spectral parameters to obtain the multi-dark, breather and
higher-order rogue wave solutions. To overcome this difficulty, one of the authors generalized
the classical DT by using a limit technique [62], which can be used to yield these solutions. It
is noted that, in 2019, various soliton solutions were found for the non-local NLS equation [63].
In this paper, we aim to find soliton solutions for the sdCSP equation (1.11) by the generalized
DT. It should be pointed out that the DT and soliton solutions for the semi-discrete coupled
dispersionless equation were constructed by [64].

As mentioned in [58], the sdCSP equation can be constructed in a very direct way. It is shown
in [30,36] that the CSP equation is related to the CCD equation,

qys = ρq, ρs + 1
2
σ (|q|2)y = 0, (2.1)

by a reciprocal (hodograph) transformation in the form dx = ρdy − (1/2)σ |q|2 ds, dt = −ds. The
CCD equation [30,32] admits a Lax pair of the form

Ψy = U(ρ, q; λ)Ψ , Ψs = V(q; λ)Ψ , (2.2)

where

U(q, ρ; λ) = 1
λ

[
−iρ −σq∗

y
qy iρ

]
, V(q; λ) = i

4
λσ3 + i

2
Q, Q =

[
0 −σq∗
q 0

]
, (2.3)

with ∗ representing the complex conjugate, σ3 = diag(1, −1) being the third Pauli matrix.
Replacing the forward-difference with the first-order derivative in the spatial part of the Lax
pair, i.e.

Ψn+1 − Ψn

a
= λ−1

⎡⎢⎢⎣ −iρn −σ
q∗

n+1 − q∗
n

a
qn+1 − qn

a
iρn

⎤⎥⎥⎦Ψn,

one yields the Lax pair for the semi-discrete CCD equation

Ψn+1 = UnΨn, Ψn,s = VnΨn, (2.4)

where

Un =

⎡⎢⎢⎣ 1 − iaρn

λ
−σ

q∗
n+1 − q∗

n

λ

qn+1 − qn

λ
1 + iaρn

λ

⎤⎥⎥⎦ , Vn = i
4
λσ3 + i

2
Qn, Qn =

[
0 σq∗

n

qn 0

]
. (2.5)

The compatibility condition gives exactly the semi-discrete CCD equation. Replacing aρn by
xn+1 − xn, one obtains the sdCSP equation (1.10).

Based on the Lax pair of the sdCSP equation (2.4), we derive the DT by the following
proposition.
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Proposition 2.1. The Darboux matrix

Tn = I + λ∗
1 − λ1

λ − λ∗
1

Pn, Pn = |y1,n〉〈y1,n|J
〈y1,n|J|y1,n〉 , J = diag(1, σ ), (2.6)

can convert system (2.4) into a new one,

Ψ
[1]
n+1 = Un(ρ[1]

n , q[1]
n ; λ)Ψ [1]

n , Ψ
[1]
n,s = Vn(ρ[1]

n , q[1]
n ; λ)Ψ [1]

n ,

where |y1,n〉 = (ψ1,n, φ1,n)T is a special solution for system (2.4) with λ = λ1, |y1,n〉† = 〈y1,n|. The Bäcklund
transformations between (ρ[1]

n , q[1]
n ) and (ρn, qn) are given through

ρ
[1]
n = ρn − 2

a
lns

(
E(〈y1,n|J|y1,n〉)
〈y1,n|J|y1,n〉

)

and q[1]
n = qn +

(λ∗
1 − λ1)ψ∗

1,nφ1,n

〈y1,n|J|y1,n〉 and |q[1]
n |2 = |qn|2 + 4σ lnss

( 〈y1,n|J|y1,n〉
λ∗

1 − λ1

)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.7)

and the symbol E denotes the shift operator n → n + 1.

Assume that we have N different solutions |yi,n〉 = (ψi,n, φi,n)T at λ = λi (i = 1, 2, . . . , N), then we
can construct the N-fold DT and drive the following generalized Darboux matrix. For simplicity,
we have omitted the subscript in |yi,n〉 and 〈yi,n|.
Proposition 2.2. The general Darboux matrix can be represented as

Tn,N = I + YM−1
n D−1Y†J, (2.8)

where the first subscript, n, in Tn,N represents the number of eigenvalues in the matrix, the second one, N,
stands for the N-fold DT,

Y =
[∣∣∣y[0]

1

〉
,
∣∣∣y[1]

1

〉
, . . . ,

∣∣∣y[n1−1]
1

〉
, . . . ,

∣∣∣y[0]
r

〉
,
∣∣∣y[1]

r

〉
, . . . ,

∣∣∣y[nr−1]
r

〉]
, N =

r∑
j=1

nj,

Mn =

⎡⎢⎢⎢⎢⎣
M11 M12 · · · M1r

M21 M22 · · · M2r
...

...
. . .

...
M21 M22 · · · M2r

⎤⎥⎥⎥⎥⎦ , Mij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M[1,1]
ij M[1,2]

ij · · · M
[1,nj]
ij

M[2,1]
ij M[2,2]

ij · · · M
[2,nj]
ij

...
...

. . .
...

M[ni,1]
ij M[ni,2]

ij · · · M
[ni,nj]
ij

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

D = diag (D1, D2, · · · , Dr) , Di =

⎡⎢⎢⎣
D[0]

i · · · D[ni−1]
i

0
. . .

...
0 0 D[0]

i

⎤⎥⎥⎦ ,

and

|yi(λi + αiεi)〉 =
ni−1∑
k=0

|y[k]
i 〉εk

i + O(εni
i ),

1
λ − λ∗

i − αiε
∗
i

=
ni−1∑
k=0

D[k]
i ε∗k

i + O(ε∗ni
i ),

〈yi(λi + αiεi)|J|yj(λj + αjεj)〉
λ∗

i − λj + α∗
i ε∗

i − αjεj
=

ni∑
k=1

nj∑
l=1

M[k,l]
ij ε∗k−1

i εl−1
j + O(ε∗ni

i , ε
nj

j ),

where the parameters αi are the non-zero complex numbers. The general Bäcklund transformations are

ρ
[N]
n = ρn − 2

a
lns

(
det(Mn+1)
det(Mn)

)
and q[N]

n = qn + det(Gn)
det(Mn)

and |q[N]
n |2 = |qn|2 + 4σ lnss(det(Mn)),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.9)

where Gn = [ M Y†
1

−Y2 0

]
, Yk represents the kth row of matrix Y.
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The proof of propositions 2.1 and 2.2 can be carried out by following the same steps as in
[32]. With the aid of the generalized DT, one can construct more general analytical solutions from
the trivial solution of the original equation. Departing from the zero seed solution, single and
multi-bright soliton solutions can be constructed for the focusing sdCSP equation. Starting from
the plane-wave seed solution, the multi-breather and high-order rogue wave solutions can be
derived for the focusing sdCSP equation, while one-, two- and multi-dark soliton solutions can
be obtained for the defocusing sdCSP equation. The detailed results and the explicit expressions,
as well as dynamics for these solutions, are presented in the following two sections.

On account of (2.7), the coordinate transformation between x[N]
n and xn can be represented as

x[N]
n = xn − 2 lns(det(Mn)), (2.10)

where xn represents the original coordinates. The second equation in (2.7) and the discrete
hodograph transformation (2.10) constitute the solutions for the sdCSP equation (1.11).

3. Single and multi-bright solutions
In this section, we construct the exact solution through formula (2.9) as the application of DT. The
general bright soliton will be constructed for the focusing CSP equation (σ = 1). To this end, we
start with a seed solution ρ

[0]
n = γ /2, q[0]

n = 0, γ > 0. The coordinates for the sdCSP (1.11) can be
obtained as xn(s) = γ

2 na, t = −s. Solving the Lax pair equation (2.4) with (ρn, qn; λ) = (ρ[0]
n , q[0]

n ; λi =
αi + iβi), βi > 0, one obtains a special solution

|yi,n〉 =
[

eθi,n

1

]
, θi,n = i

2
λis + n ln

(
λi − (iaγ /2)
λi + (iaγ /2)

)
+ ai, (3.1)

where ai are complex parameters. Then one can obtain the single-soliton solution through the
formula (2.9)

ρ
[1]
n = γ

2
+ β1

a
[tanh(θR

1,n+1) − tanh(θR
1,n)], q[1]

n = β1sech(θR
1,n) exp

(
−iθ I

1,n − π

2
i
)

,

x[1]
n = γ

2
na + β1 tanh(θR

1,n), t = −s,

where the superscripts R, I represent the real part and imaginary part, respectively,

θR
1,n = n

2
g1 − β1

2
s + aR

1 ,

θ I
1,n = α1s

2
+ narg

(
λ1 − iaγ

2

λ1 + iaγ
2

)
+ aI

1,

g1 = ln

(
4α1

2 + (2β1 − aγ )2

4α12 + (2β1 + aγ )2

)
,

where 4α1
2 + (2β1 − aγ )2 �= 0. The soliton |q[1]

n |2 propagates along the line θR
1,n = 0. The peak

|q[1]
n |2max = β2

1 is located at (x, t) = (n, (1/β1)(ng1 + 2aR
1 )). To obtain the smooth bright soliton for

the sdCSP equation, we require that ρ
[1]
n > 0 for all n ∈Z and t ∈R. Otherwise, the bright soliton

will be either a cusp-type or loop-type soliton solution.
If ρ

[1]
n > 0 we have the smooth soliton; if ρ

[1]
n < 0 we have the loop soliton while ρ

[1]
n = 0

corresponds to the cuspon solution. For small enough a, n can be viewed as an approximately
continuous variable. Then in the single-soliton case

ρ
[1]
n ≈ ∂

∂n
(x[1]

n ) = γ

2
a +

β1sech2(θR
1,n)g1

2
≥ γ

2
a + β1g1

2
(3.2)

under the condition g1 < 0. Thus solving the equation (γ /2)a + β1g1/2 = 0 will yield the parameter
condition for the cuspon or loop bright soliton.
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Figure 1. (a) Regular bright soliton, (b) cuspon and (c) loop soliton, and (d) two bright soliton. (Online version in colour.)

A regular bright soliton is plotted in figure 1a with parameters γ = 1, a = 2, α1 = 2, β1 = 1,
a1 = 0, a cuspon-type solution is illustrated in figure 1b with parameters γ = 1, a = 1/10, α1 =
0.499, β1 = 1/2, a1 = 0 and a loop soliton is shown in figure 1c with parameters γ = 1, a = 1/10,
α1 = 0, β1 = 1, a1 = 0.

Inserting equation (3.1) into formula (2.9), we can deduce the multi-bright soliton solution as
follows:

ρ
[N]
n = γ

2
− 2

a
lns

(
det(Mn+1)
det(Mn)

)
, q[N]

n = det(Gn)
det(Mn)

and x[N]
n = γ

2
na − 2 lns det(Mn), t = −s,

⎫⎪⎪⎬⎪⎪⎭ (3.3)

where

Mn =
(

eθ∗
i,n+θj,n + 1
λ∗

i − λj

)
1≤i,j≤N

, Gn =
[

Mn Y†
1,n

−Y2,n 0

]
,

Y1,n =
[
eθ1,n , eθ2,n , . . . , eθN,n

]
, Y2,n =

[
1, 1, . . . , 1

]
,

and the expression for θi,n is given in (3.1).
In what follows, we will prove that the multi-bright soliton solution of the sdCSP equation

converges to the multi-bright soliton solution of the continuous CSP equation obtained in [31,32].
Referring to the Taylor expansion

ln(1 ± x) = ±x + o(x2), (3.4)

we have

n ln
(

λi − (iaγ /2)
λi + (iaγ /2)

)
≈ −n

iaγ
λi

= − iγ
λi

y (3.5)

by letting na = y in the continuous limit a → 0. Therefore, θi,n agrees with eqn (32) in [32] by
noticing the correspondence θi,n → 2θi,n and γ → −γ .
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In particular, we give the two-soliton solution explicitly through the above general formula
(3.3),

ρ
[2]
n = γ

2
− 2

a
lns

(
det(M[2]

n+1)

det(M[2]
n )

)
, q[2]

n = det(G[2]
n )

det(M[2]
n )

and x[2]
n = γ

2
na − 2 lns det(M[2]

n ), t = −s,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.6)

where

M[2]
n =

(
eθ1,n+θ∗

1,n + 1
) (

eθ2,n+θ∗
2,n + 1

)
4β1 β2

−
(

eθ2,n+θ∗
1,n + 1

) (
eθ1,n+θ∗

2,n + 1
)

(α2 − α1)2 + (β1 + β2)
2 ,

G[2]
n =

(
eθ2,n+θ∗

1,n + 1
(β1 + β2) + i(α1 − α2)

− eθ1,n+θ∗
1,n + 1

2β1

)
eθ∗

2,n

+
(

eθ1,n+θ2,n + 1
(β1 + β2) + i(α2 − α1)

− eθ2,n+θ∗
2,n + 1

2β2

)
eθ∗

1,n .

The profile of the two regular soliton solution is shown in figure 1d with parameters γ = 2,
a = 2, α1 = 2, β1 = 1, a1 = 0, α2 = 1, β2 = 1, a2 = 0. It can be seen that the two regular solitons coexist
in a fixed time. Actually, they will interact with each other elastically as time goes on.

4. Single and multi-dark soliton solutions
In this section, we construct the single and multi-dark soliton solutions for the defocusing sdCSP
equation (σ = −1). Generally, the DT cannot apply to derive the dark solitons directly since the
spectral points of dark solitons are located in the real axis and the Darboux matrix is trivial if
λ1 = λ∗

1. One of the authors [65] developed a method to yield the dark soliton and multi-dark
solitons through a limit technique based on [66]. In what follows, we derive the single dark and
multi-dark solitons for the sdCSP equation by following the steps in [65].

Starting from the seed solution in the form of a plane wave

ρ
[0]
n = γ

2
, q[0]

n = β

2
eiθn , θn = bn + c

2
s, c = aγ

2
sin(b)

cos(b) − 1
, γ > 0, β ≥ 0, b �= kπ , k ∈ Z, (4.1)

we can derive the solution vector for the Lax pair equation (2.4) with (qn, ρn; λ) = (q[0]
n , ρ[0]

n ; λi)

|yi,n〉 = KLiEi = K

[
φ̂i,n

βψ̂i,n

]
, K = diag

(
e−(i/2)θn , e(i/2)θn

)
, λi �= −c + iβ, (4.2)

where |yi,n〉 is a special solution of the Lax pair with a non-zero seed solution by discarding a
function,

Li =

⎡⎢⎢⎢⎣
1 1
β

c + χ+
i

β

c + χ−
i

⎤⎥⎥⎥⎦ , Ei =
[

eωi,n

αi(λ̄i − λi)e−ωi,n

]

and

ωi,n = i
4
ξis + n

2
ln
(

sin(b/2) ((1/2)iaγ − ξi) + i cos(b/2)λi

sin(b/2) ((1/2)iaγ + ξi) + i cos(b/2)λi

)
+ ai

and χ±
i = λi ± ξi, ξi =

√
(λi + c)2 − β2,

⎫⎪⎪⎬⎪⎪⎭ (4.3)

where αi’s are appropriate complex parameters and ai’s are real parameters. In order to derive the
single dark soliton solution, we consider only λ1 and reparametrize χ±

1 and ξ1 in (4.3) by

χ±
1 = β[cos(ϕ1) ± i sin(ϕ1)], ξ1 = iβ sin(ϕ1), (4.4)
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Figure 2. (a) Regular dark soliton, (b) cuspon and (c) loop dark soliton, and (d) two dark soliton. (Online version in colour.)

with 0 < ϕi < π , ai ∈ R. By taking a limit process λ1 → λ̄1 similar to the one in [65], the single dark
soliton solution can be obtained as follows:

ρ
[1]
n = γ

2
+ β

2a
sin(ϕ1)(tanh(Z1,n+1) − tanh(Z1,n)),

q[1]
n = β

2

[
1 − i sin(ϕ1)e−iϕ1 − i sin(ϕ1)e−iϕ1 tanh(Z1,n)

]
eiθn

and x[1]
n = γ

2
an + β2

8
s + β

2
sin(ϕ1) tanh(Z1,n), t = −s,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.5)

where

Z1,n(ϕ1, a1) = n
2

ln(A) − β

4
sin(ϕ1)s + a1, A = aγ + 2β sin((1/2)b) cos((1/2)b + ϕ1)

aγ + 2β sin((1/2)b) cos((1/2)b − ϕ1)
(4.6)

and a1 is a real parameter, A > 0.
Similar to the bright case, the single dark soliton becomes a cuspon if ρ

[1]
n = 0 or a loop type

if ρ
[1]
n < 0. The cuspon and loop-type dark solitons can be defined by the sign of ρ

[1]
n ≈ (∂/∂n)x[1]

n
with a small enough. For the single dark soliton, it follows from

∂

∂n
x[1]

n = aγ
2

+ β

4
sin(ϕ1) ln(A)sech2(Z1,n) ≥ aγ

2
+ β

4
sin(ϕ1) ln(A) (4.7)

that the condition aγ /2 + (β/4) sin(ϕ1) ln(A) = 0 determines the types of dark solitons.
As examples, we plot cuspon- and loop-type dark solitons in figure 2b,c, respectively. The

parameters for the cuspon-type solution are a = 1/10, b = π/2, γ = 5, β = 1, ϕ1 = 0.802, a1 = 0,
while for the loop-type solution the parameters are a = 1/10, b = π/2, γ = 5, β = 1, ϕ1 = 1, a1 = 0.
In figure 2a, we illustrate a regular dark soliton with parameters a = 1, b = π/2, γ = 2, β = 1,
ϕ1 = arcsin(4/5), a1 = 0.
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Next, we proceed to find N-dark soliton solutions. Based on the N-soliton solution (2.9) to the
defocusing sdCSP equation, it then follows that

q[N]
n = β

2

[
1 + Ŷ2,nM−1

n Ŷ1,n
†
]

eiθn = β

2

[
det(Hn)
det(Mn)

]
eiθn

and xn = γ

2
an + β2

8
s − 2 lns(det(Mn)), t = −s,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.8)

where

Mn =
(

〈yi,n|σ3|yj,n〉
2(λ̄i − λj)

)
1≤i,j≤N

, Hn = Mn + Y†
1,nY2,n,

Ŷ1,n = [
φ̂1,n, φ̂2,n, . . . , φ̂N,n

]
, Ŷ2,n =

[
ψ̂1,n, ψ̂2,n, . . . , ψ̂N,n

]
.

In general, the above N-soliton solution (4.8) is singular. In order to derive the N-dark soliton
solution through the DT method, we need to take a limit process λi → λ̄i (i = 1, 2, . . . , N). By
a tedious procedure which is omitted here, we finally have the N-dark soliton solution to the
defocusing sdCSP equation (1.11) as follows.

Proposition 4.1.

ρ
[N]
n = γ

2
− 2

a
lns

det(Gn+1)
det(Gn)

, q[N]
n = β

2

[
det(Hn)
det(Gn)

]
eiθn

and x[N]
n = γ

2
an + β2

8
s − 2 lns det(Gn), t = −s,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.9)

where Gn = (gi,j)1≤i,j≤N, Hn = (hi,j)1≤i,j≤N,

gi,j = δij + eZi,n+Zj,n

exp(−iϕi) − exp(iϕj)
, hi,j = δij + e(Zi,n−iϕi)+(Zj,n−iϕj)

exp(−iϕi) − exp(iϕj)
, (4.10)

and Zi,n = Z1,n(ϕi, ai) and δi,j is the standard Kronecker delta.

By taking N = 2 in (4.9) and (4.10), the determinants corresponding to the two-dark soliton
solution can be calculated as

|Gn| = 1 + e2Zi,n + e2Z2,n + a12 e2(Z1,n+Z2,n) (4.11)

and

|Hn| = 1 + e2(Zi,n−iϕ1) + e2(Z2,n−iϕ2) + a12 e2(Z1,n+Z2,n−iϕ1−iϕ2), (4.12)

where

a12 = sin2 ((ϕ2 − ϕ1)/2)

sin2 ((ϕ2 + ϕ1)/2)
. (4.13)

Asymptotic analysis can be easily performed for two-soliton interactions, which shows that the
collision is always elastic.

On the other hand, if we choose a = 1, γ = β = 1, ϕ1 = 1.31859, ϕ2 = 1, a1 = 0, a2 = 0, we then
have the interaction between a regular dark and a cuspon-type dark soliton (figure 2d). However,
in either case, the interaction between two dark solitons is always elastic, which is verified by the
asymptotic analysis.

Before concluding this section, let us prove that the multi-dark solution converges to its
counterpart of the continuous CSP equation obtained in [30]. In the continuous limit, we assume
that a = b → 0; it then follows that c → −γ . Referring to the Taylor expansion (3.4), Zi,n turns out
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to be

n
2

ln
(

aγ + 2β sin((1/2)b) cos((1/2)b + ϕi)
aγ + 2β sin((1/2)b) cos((1/2)b − ϕi)

)
− β

4
sin(ϕi)s + ai

≈ −2nβ sin(b/2) sin(ϕi)
2β cos(b/2) cos(ϕi) + aγ

− β

4
sin(ϕi)s + ai. (4.14)

Note that, between the present paper and [30], γ → −γ . As a result Zi,n → ωi in [30] by letting
nb = y and the proof is complete.

5. Single-breather and multi-breather solutions
The single-breather and multi-breather solutions for the focusing sdCSP equation (1.11) (σ =
1) can be constructed from the seed solution/plane-wave solution through formula (2.9).
We depart from the seed solution

ρ
[0]
n = γ

2
, q[0]

n = β

2
eiθn , θn = bn + c

2
s, c = aγ

2
sin(b)

cos(b) − 1
, γ > 0, β ≥ 0. (5.1)

The coordinates for sdCSP (1.11) can be obtained as xn(s) = (γ /2)na − (β2/8)s, t = −s. Then we
have the solution vector for the Lax pair equation (2.4) (σ = 1) with (qn, ρn; λ) = (q[0]

n , ρ[0]
n ; λ1),

|y1,n〉 = KL1E1, K = diag
(

e−(i/2)θn , e(i/2)θn
)

, λ1 �= −c + iβ, (5.2)

where

L1 =
⎡⎣ 1 1

β

c + η1

β

c + χ1

⎤⎦ , Ei =
[

eθ1,n

1

]

and

θ1,n = i
2
ξ1s + n ln

(
sin(b/2) ((1/2)iaγ − ξ1) + i cos(b/2)λ1

sin(b/2) ((1/2)iaγ + ξ1) + i cos(b/2)λ1

)
+ a1

and η1 = λ1 + ξ1, χ1 = λ1 − ξ1, ξ1 =
√

β2 + (λ1 + c)2.

⎫⎪⎪⎬⎪⎪⎭ (5.3)

The single-breather solution can be constructed from formula (2.9) with the elementary identity
introduced in [65],

ρ
[1]
n = γ

2
− 2

a
lns

(
cosh(θR

1,n+1) cosh(ϕR
1 /2) − sin(θ I

1,n+1) sin(ϕI
1/2)

cosh(θR
1,n) cosh(ϕR

1 /2) − sin(θ I
1,n) sin(ϕI

1/2)

)
,

q[1]
n = β

2

[
cosh(θR

1,n − iϕI
1) cosh(ϕR

1 /2) + sin(θ I
1,n + iϕR

1 ) sin(ϕI
1/2)

cosh(θR
1,n) cosh(ϕR

1 /2) − sin(θ I
1,n) sin(ϕI

1/2)

]
eiθn

and x[1]
n = γ

2
na − β2

8
s − 2 lns

(
cosh(θR

1,n) cosh

(
ϕR

1
2

)
− sin(θ I

1,n) sin

(
ϕI

1
2

))
, t = −s,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.4)

where

ξi = β cosh
[

1
2

(ϕR
i + iϕI

i )
]

, ηi + c = βe(1/2)(ϕR
i +iϕI

i ), χi + c = −βe−(1/2)(ϕR
i +iϕI

i ),

θR
1,n = ln(g1)

2
n − β

2
sinh

(
ϕR

1
2

)
sin

(
ϕI

1
2

)
s − ϕR

1
2

+ aR
1 ,

θ I
1,n = h1n + β

2
cosh

(
ϕR

1
2

)
cos

(
ϕI

1
2

)
s − ϕI

1
2

+ aI
1
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Figure 3. (a,b) Cuspon and (c,d) loop Kuznetsov–Ma breather. (Online version colour.)

and

g1 =
β2 cosh2 (ϕR

1 /2
)

sin2 (b/2 + ϕI
1/2

) +
[
β sinh

(
ϕR

1 /2
)

cos
(
b/2 + ϕI

1/2
) + aγ

2 sin(b/2)

]2

β2 cosh2 (ϕR
1 /2

)
sin2 (b/2 − ϕI

1/2
) +

[
β sinh

(
ϕR

1 /2
)

cos
(
b/2 − ϕI

1/2
) + aγ

2 sin(b/2)

]2 ,

h1 = arg

(
sin(b/2)

(
(1/2)iaγ − β cosh

[
(1/2)(ϕR

1 + iϕI
1)
]) + i cos(b/2)(β sinh

[
(1/2)(ϕR

1 + iϕI
1)
] − c)

sin(b/2)
(
(1/2)iaγ + β cosh

[
(1/2)(ϕR

1 + iϕI
1)
]) + i cos(b/2)(β sinh

[
(1/2)(ϕR

1 + iϕI
1)
] − c)

)
.

A technique to fix the maximum peak at the origin is to choose the parameters aR
1 = ϕR

1 /2 and
aI

1 = ϕI
1/2 + π/2, which are useful in determining the types of breathers. We should comment here

that, depending on ρ
[1]
n , the breather solution may be of regular (ρ[1]

n > 0), cuspon (ρ[1]
n = 0) or

loop type (ρ[1]
n < 0). For the single breather, we will find the parameter condition with the value

at the origin. Similar to the above sections, we can determine the condition of the cuspon or loop
breather by ρ

[1]
n ≈ (∂/∂n)x[1]

n with a small enough.
As examples, we show a cuspon breather with parameters β = 1, γ = 18.29, a = 1/10,

b = π
2 , ϕ1R = 0, ϕ1I = 2 arcsin(3/5), a1 = i arcsin(3/5) + i(π/2) in figure 3a,b and a loop breather

in figure 3c,d with parameters β = 1, γ = 12, a = 1/10, b = π/2, ϕ1R = 0, ϕ1I = 2 arcsin(3/5), a1 =
i arcsin(3/5) + i(π/2).

Furthermore, by using the N-fold DT, we derive the N-breather solution through formula (2.9)
and some tedious algebraic calculations, as shown in the following proposition.

Proposition 5.1. The multi-breather solution for the sdCSP equation (1.11) can be represented as

ρ
[N]
n = γ

2
− 2

a
lns

(
det(Mn+1)
det(Mn)

)
, q[N]

n = β

2

[
det(Gn)
det(Mn)

]
eiθn

and x[N]
n = γ

2
an − β2

8
s − 2 lns det(Mn), t = −s,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.5)
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where

Mn =
(

eθ∗
m,n+θk,n

η∗
m − ηk

− eθ∗
m,n

η∗
m − χk

− eθk,n

χ∗
m − ηm

+ 1
χ∗

m − χk

)
1≤m,k≤N

,

Gn =
(

eθ∗
m,n+θk,n

η∗
m − ηk

η∗
m + c

ηk + c
− eθ∗

m,n

η∗
m − χk

η∗
m + c

χk + c
− eθk,n

χ∗
m − ηm

χ∗
m + c

ηk + c
+ 1

χ∗
m − χk

χ∗
m + c

χk + c

)
1≤m,k≤N

and the parameters θk,n, ηi, χi are given in equations (4.3).

Finally, we give a proof that the above multi-breather solution converges to the multi-breather
solution to the CSP equation obtained in [32]. To this end, we assume a = b → 0 in the continuous
limit and notice that γ → −γ compared with the breather solution in [32]. By using the Taylor
expansion (3.4), θi,n becomes

i
2
ξis + n ln

⎛⎝ sin(b/2)
(

1
2 iaγ − ξi

)
+ i cos(b/2)λi

sin(b/2) ((1/2)iaγ + ξi) + i cos(b/2)λi

⎞⎠ + ai (5.6)

≈ i
2
ξis − 2n sin(b/2)ξi

i cos(b/2)λi + (1/2)iaγ sin(b/2)
+ ai (5.7)

= i
2
ξis + iξi

λi
y + ai (5.8)

by letting nb = y in the continuous limit b → 0. This shows how the multi-breather solution to the
sdCSP equation converges to the multi-breather solution of the CSP equation in the continuous
limit.

6. Fundamental and high-order rogue wave solutions
In this section, we proceed to the construction of the general rogue wave solution for the focusing
sdCSP equation based on the general breather solution obtained in the previous section. It is
inconvenient to start off the calculation in the same way as the previous one since the solution
vectors involve the square root of a complex number. To avoid this difficulty, we introduce the
following transformation:

λi + c = β sinh
[

1
2

(ϕR
i + iϕI

i )
]

, (ϕR
i , ϕI

i ) ∈ Ω ,

where Ω = {(ϕR, ϕI)|0 < ϕI < π , and 0 < ϕR < ∞, or ϕR = 0, and π/2 ≤ ϕI < π}, then

ξi = β cosh
[

1
2

(ϕR
i + iϕI

i )
]

, ηi + c = βe(1/2)(ϕR
i +iϕI

i ), χi + c = −βe−(1/2)(ϕR
i +iϕI

i ).

Actually, we can obtain the rogue wave and high-order rogue wave solutions at this special
point. The general procedure to yield these solutions was proposed in [62]. The rogue wave
solution and the corresponding modulational instability analysis for the vector NLS equations
are analysed in [67,68]. If we solve the linear system (2.4) with (qn, ρn, λ) = (q[0]

n , ρ[0]
n , −c + iβ),

where q[0]
n and ρ

[0]
n are given in equations (4.1), then the quasi-rational solution vector is obtained.

With this solution vector, we could construct the first-order rogue wave solution but fail to obtain
the high-order rogue wave solutions. To obtain the general high-order rogue wave solution in a
simple way, we must solve the linear system (2.4) with (qn, ρn, λ) = (q[0]

n , ρ[0]
n , −c + iβ cos(ε)), where

ε is a small parameter.
Lemma 6.1 is useful in obtaining the general high-order rogue wave solution. Denote

λ1 = −c + iβ cos(ε), ξ1 = β sin(ε), η1 = λ1 + ξ1 = −c + iβe−iε , c = −1
2

aγ cot
(

b
2

)
. (6.1)
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Lemma 6.1. The following parameters can be expanded with ε, where ε is a small parameter:

μ1 =
∞∑

n=0

μ
[n]
1 ε2n+1,

β

i(η∗
1 − η1)

= 1
eiε∗ + e−iε =

∞,∞∑
i=0,j=0

F[i,j]ε∗iεj,

where

μ
[n]
1 = β (−1)n

(2n + 1)!
, F[i,j] = 1

i!j!
∂ i+j

∂ε∗i∂εj

([
eiε∗ + e−iε

]−1
)

|ε∗=0,ε=0

.

With the aid of lemma 6.1, we obtain the following expansion:

Z1,n ≡ iβ
4

sin (ε) s + n
2

ln
(

β sin ((3/2)b − ε) + β sin ((1/2)b + ε) − 2i cos ((1/2)b) aγ
β sin ((3/2)b + ε) + β sin ((1/2)b − ε) − 2i cos ((1/2)b) aγ

)

− iε
2

+
∞∑

i=1

(ei + ifi)ε
2i−1

= iε
∞∑

k=0

Z[2k+1]
1,n ε2k, Z[2k+1]

1,n = d2k+1

dε2k+1
Z1,n|ε=0.

Furthermore, we have

eZ1,n =
∞∑

i=0

Si(Z1,n)εi, Z1,n =
(

Z[1]
1,n, Z[2]

1,n, . . .
)

, Z[2k]
1,n = 0, k ≥ 1,

where the explicit expression of these polynomials can be given by the elementary Schur
polynomials

S0(Z1,n) = 1, S1(Z1,n) = Z[1]
1,n, S2(Z1,n) = Z[2]

1,n +
(Z[1]

1,n)2

2
,

S3(Z1,n) = Z[3]
1,n + Z[1]

1,nZ[2]
1,n +

(Z[1]
1,n)3

6
, . . .

Si(Z1,n) =
∑

l1+2l2+···+klk=i

(Z[1]
1,n)l1 (Z[2]

1,n)l2 · · · (Z[k]
1,n)lk

l1!l2! · · · lk!
.

Since KE1,n(ε) satisfies the Lax equation (2.4), then KE1,n(−ε) also satisfies the Lax equation (2.4).
To obtain the general high-order rogue wave solution, we choose the general special solution

|y1,n〉 = K
2ε

[
E1,n(ε) − E1,n(−ε)

]≡ K

[
ϕ1,n

βψ1,n

]
, E1,n =

⎡⎢⎣ eZ1,n

βeZ1,n

η1 + c

⎤⎥⎦ .

Finally, we have

β〈y1,n|y1,n〉
2i(λ∗

1 − λ1)
= β

4i

[
eZ∗

1,n+Z1,n

η∗
1 − η1

− eZ∗
1,n−Z1,n

η∗
1 − χ1

− e−Z∗
1,n+Z1,n

χ∗
1 − η1

+ e−Z∗
1,n−Z1,n

χ∗
1 − χ1

]

=
∞,∞∑

m=1,k=1

M[m,k]
n ε∗2(m−1)ε2(k−1) (6.2)

and
iβ〈y1,n|y1,n〉
2(λ∗

1 − λ1)
+ iβϕ1,nψ1,n

= iβ
4

[
eZ∗

1,n+Z1,n

η∗
1 − η1

η∗
1 + c

η1 + c
− eZ∗

1,n−Z1,n

η∗
1 − χ1

η∗
1 + c

χ1 + c
− e−Z∗

1,n+Z1,n

χ∗
1 − η1

χ∗
1 + c

η1 + c
+ e−Z∗

1,n−Z1,n

χ∗
1 − χ1

χ∗
1 + c

χ1 + c

]

=
∞,∞∑

m=1,k=1

G[m,k]
n ε∗2(m−1)ε2(k−1), (6.3)
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where χ1 = η1(−ε),

M[m,k]
n =

2m−1∑
i=0

2k−1∑
j=0

F[i,j]S2k−i−1(Z1,n)S2m−j−1(Z∗
1,n)

and G[m,k]
n =

2m−1∑
i=0

2k−1∑
j=0

F[i,j]S2k−i−1(Z1,n + ε)S2m−j−1(Z∗
1,n + ε)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(6.4)

and ε = (1, 0, 0, . . .).
Based on the expansion equations (6.2) and (6.3), and formulae (2.9) and (2.10), we can obtain

the general rogue wave solution, as follows.

Proposition 6.2. The general high-order rogue wave solution for the sdCSP equation (1.11) can be
represented as

ρ
[N]
n = γ

2
− 2

a
lns

(
det(Mn+1)
det(Mn)

)
, q[N]

n = β

2

[
det(Gn)
det(Mn)

]
eiθn

and x[N]
n = γ

2
an − β2

8
s − 2 lns det(Mn), t = −s,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.5)

where
Mn =

(
M[m,k]

n

)
1≤m,k≤N

, Gn =
(

G[m,k]
n

)
1≤m,k≤N

;

the expressions M[m,k]
n and G[m,k]

n are given in (6.4).

Specially, the first-order rogue wave solution can be written explicitly through formula (6.5)

ρ
[1]
n = γ

2
− 2

a
lns

⎛⎝ (1/4) + (Z[1]
n+1,R)2 + (Z[1]

n+1,I + (1/2))2

(1/4) + (Z[1]
n,R)2 + (Z[1]

n,I + (1/2))2

⎞⎠ ,

q[1]
n = β

2

⎡⎣1 −
1 − 2iZ[1]

n,R

(1/4) + (Z[1]
n,R)2 + (Z[1]

n,I + (1/2))2

⎤⎦ eiθ ,

x[1]
n = γ

2
an − β2

8
s − 2 lns

(
1
4

+
(

Z[1]
n,R

)2 +
(

Z[1]
n,I + 1

2

)2
)

, t = −s,

where

Z[1]
n,R = 4β2 sin3(b/2) cos(b/2)n

a2γ 2 + 2β2 sin2(b)
, Z[1]

n,I = β

(
2aγ sin2(b/2)n

a2γ 2 + 2β2 sin2(b)
+ s

4

)
− 1

2
. (6.6)

Moreover, the general second-order rogue wave solution can be represented by

ρ
[2]
n = γ

2
− 2

a
lns

(
F1,n+1 + iF2,n+1

F1,n + iF2,n

)
, q[2]

n = β

2

[
1 + Gn

F1,n + iF2,n

]
eiθn ,

x[2]
n = γ

2
an − β2

8
s − 2 lns

(
F1,n + iF2,n

)
, t = −s,

where

F1,n =
(

− 1
72

Z[1]
n − 1

12
Z[3]

n + 1
36

Z[1]
n

3)
(Z[1]

n )3 +
(

1
8

Z[1]
n

2
− 1

64

)
(Z[1]

n )2 + 1
4

Z[3]
n Z[3]

n

+
(

− 1
72

Z[1]
n

3
+ 1

24
Z[3]

n + 29
288

Z[1]
n

)
Z[1]

n − 1
12

Z[3]
n Z[1]

n

3
− 1

64
Z[1]

n

2
+ 1

24
Z[1]

n Z[3]
n + 1

64
,

F2,n = 1
24

Z[1]
n

2
Z[1]

n

3
+ 1

8
Z[1]

n

2
Z[3]

n − 1
24

Z[1]
n

2
Z[1]

n
3 − 1

8
Z[1]

n
2
Z[3]

n

+ 1
12

Z[1]
n Z[1]

n

2
− 1

12
Z[1]

n
2
Z[1]

n + 1
32

Z[1]
n − 1

32
Z[1]

n ,
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Figure 4. (a) Cuspon and (c) loop rogue waves and (b,d) second-order rogue waves. (Online version in colour.)

Gn = 1
12

iZ[1]
n

2
Z[1]

n
3 +

(
1

12
iZ[1]

n − 1
4

Z[1]
n

2
− 1

4
iZ[3]

n + 1
12

iZ[1]
n

3)
Z[1]

n
2 − 1

12
iZ[1]

n

+
(

1
2

Z[3]
n − 1

6
Z[1]

n

3
− 1

6
iZ[1]

n

2
− 1

6
Z[1]

n

)
Z[1]

n − 1
4

iZ[1]
n

2
Z[3]

n + 1
4

iZ[3]
n − 1

12
iZ[1]

n

3
,

where Z[1]
n = Z[1]

n,R + iZ[1]
n,I , the symbol overbar denotes the complex conjugation and

Z[3]
n =

(2/3)iβ sin2((1/2)b)
(

2aβγ sin(b) + ia2γ 2 + 8iβ2 sin2((1/2)b)
)

2βa2γ 2 sin(b) − β3 sin3(b) − ia3γ 3 + 3iaβ2γ sin2(b)

n
2

− iβs
24

+ (e1 + if1).

As for the breather solution, the rogue wave solution may become singular if ρ
[1]
n ≈ ∂

∂n x[1]
n ≤ 0

as a → 0. The dynamics of a regular rogue wave is similar to that of the regular rogue wave in
the CSP equation. The cuspon-type rogue wave is shown in figure 4a with parameters a = 1/10,
b = π/2, β = 1, γ = 10

√
79, while the loop-type rogue wave is shown in figure 4c with parameters

a = 1/10, b = π/2, β = 1, γ = 50.
For the second-order regular rogue waves, we firstly choose the parameters a = 2, b = π/2,

β = 1, γ = 5/2, e1 = f1 = 0, then the standard second-order rogue waves are shown in figure 4b. To
exhibit the other dynamics for the second-order regular rogue waves, we choose the parameters
a = 2, b = π/2, β = 1, γ = 3/2, e1 = 10, f1 = 0. It can be seen that the temporal–spatial distribution
exhibits a triangular shape, as shown in figure 4d.

We remark here that, since the higher-order rogue wave solution is obtained from the multi-
breather solution to the sdCSP equation, which converges to its counterpart in the continuous
CSP equation, the high-order rogue wave solution for the sdCSP equation should converge to the
one for the CSP equation in the continuous limit.

7. Conclusion and discussions
In the present paper, we firstly derive the generalized DT for the sdCSP equation (1.11) with the
aid of the discrete hodograph transformation. Based on formulae derived from the generalized
DT, we then construct the multi-bright soliton solution for the focusing CSP equation with zero
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boundary condition, whose results have been obtained by Hirota’s bilinear method [58,59]. On the
other hand, starting from the non-zero seed solution, we further construct the multi-dark soliton
solution for the defocusing sdCSP equation and multi-breather solution for the focusing sdCSP
equation. Moreover, based on the multi-breather solution, we derive the general high-order rogue
wave solution. As far as we know, the multi-dark, multi-breather and general high-order rogue
wave solutions are obtained for the first time in the literature for this new sdCSP equation.

Over the past half-century, the single most important driving factor in the advance of
optics and photonics has been the impact of the laser in providing coherent electromagnetic
waves over an increasingly wide spectral range. Theoretical and experimental studies at the
femtosecond level not only permitted dramatic new insights into the dynamics of materials and
non-equilibrium properties but also allowed the development of the fibre-optic communication
backbone of the modern economy. As an analogue of the AL lattice in the ultra-short regime,
it is expected that the solutions obtained will help scientists to better understand the coherent
dynamics of nonlinear ultra-short pulses.

It is found that the condition ρn > 0 is required to keep the non-singularity or the smooth
property of the solution. Otherwise, the cusp-type solution occurs if ρn = 0 and the loop-type
soliton appears if ρn < 0 for either bright, dark, breather or rogue wave solutions. The occurrence
of the singularity of the solution is different from that of the AL lattice equation, which is a new
finding in this semi-discrete model. We have illustrated, in the present paper, cuspon-type and
loop-type bright, dark, breather and rogue wave solutions to the sdCSP equation.

In [69], we have constructed various solutions to the NLS equation with an elliptic function
boundary condition; a natural extension would be the study of dark breather solutions to the CSP
equation and its semi-discrete analogue with an elliptic function boundary. Moreover, a robust IST
method was recently proposed for the NLS equation by appropriately setting up and solving the
Riemann–Hilbert problem [70,71]. It is imperative to study the IST and Riemann–Hilbert problem
for the sdCSP equation.

In conclusion, we should point out that the following coupled sdCSP equation:

d
dt

(q1,n+1 − q1,n) = 1
2

(xn+1 − xn)(q1,n+1 + q1,n),

d
dt

(q2,n+1 − q2,n) = 1
2

(xn+1 − xn)(q2,n+1 + q2,n)

and
d
dt

(xn+1 − xn) + 1
2

2∑
j=1

σj

(
|qj,n+1|2 − |qj,n|2

)
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7.1)

has been shown to be integrable [59]. Beside the multi-bright soliton solution implied in [59], how
about its general initial value problem and other types of soliton solutions?

The method provided in this paper is also useful for the coupled sdCSP equation. We expect
to obtain and report the results in the near future. Finally, the semi-discrete equations obtained
can be used as superior numerical schemes: the so-called self-adaptive moving mesh schemes for
the CSP and coupled CSP equations.
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