Physica D 439 (2022) 133360

Contents lists available at ScienceDirect

v [

Physica D

journal homepage: www.elsevier.com/locate/physd

General breather and rogue wave solutions to the complex short pulse = |

Check for

equation
Bao-Feng Feng **, Ruyun Ma®, Yujuan Zhang”

2 School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, United States of America
b School of Mathematics and Statistics, Xidian University, Xi'an 710126, China

ARTICLE INFO ABSTRACT

Article history: In the present paper, we attempt to construct both the breather and rogue wave solutions to the
Received 30 December 2021 focusing complex short pulse (fCSP) equation via the KP-Toda reduction method. Following a procedure
Received in revised form 27 April 2022 of reducing the bilinear equations satisfied by tau functions of Kadomtsev-Petviashvili (KP)-Toda

Accepted 16 May 2022
Available online 2 June 2022
Communicated by Jingsong He

hierarchy to the ones of the fCSP equation with nonzero boundary condition, we first deduce the
general breather solution of the fCSP equation starting from a specially arranged tau-function of the
KP-Toda hierarchy, then we construct and prove the Nth order rogue wave solutions of the fCSP

Keywords: equation and express them in two different but equivalent forms of determinants. The dynamical
Defocusing complex short pulse equation behaviors of both the breather and rogue wave solutions are illustrated and analyzed.

Breather © 2022 Published by Elsevier B.V.
Rogue wave

KP-Toda hierarchy

1. Introduction

Rogue waves, which are initially used for the description of the spontaneous and monstrous ocean surface waves have recently
attracted considerable attention on both experimentally and theoretically [1]. Rogue waves have been observed in a variety of physical
contexts including optical systems [2-4], Bose-Einstein condensates [5,6], superfluids [7], plasma [8,9], capillary waves [10]. Compared
with the stable solitons, rogue waves are the localized structures with the instability and unpredictability [11,12]. A typical model
for characterizing the rogue wave is the celebrating nonlinear Schrodinger (NLS) equation. The fundamental rogue wave of the NLS
equation is described by Peregrine soliton [13], which is the first-order rogue wave expressed by a rational form with quadratic
functions. This rational solution has localized behavior in both space and time, and its maximum amplitude attains three times the
constant background. The Peregrine soliton is the limiting case of a breather solution when the period approaches infinity. Since the
higher-order rogue waves were discovered by Akhmediev et al. [ 14], many papers have been devoted to the study of higher-order rogue
waves via different methods [ 15-39]. The higher-order rogue waves were also excited experimentally in a water wave tank [40,41]. In
fact, higher-order rogue waves can be treated as the nonlinear superposition of fundamental rogue wave and they are usually expressed
in terms of complicated higher-order rational polynomials. These higher-order waves were also localized in both coordinates and could
exhibit higher peak amplitudes or multiple intensity peaks.

Recently, a complex short pulse (CSP) equation [42,43]

1
Gu+q+ 50 (lgl°gx), =0, (1)

was proposed by one of the authors as an improvement for the (real-valued) short pulse (SP) equation proposed by Schifer and
Wayne [44] to describe the propagation of ultra-short optical pulses in nonlinear media. Here g = q(x, t) is a complex-valued function.
In contrast with the short pulse equation, the complex short pulse equation has both the focusing case (o = 1) and the defocusing case
(0 = —1) which admits the bright and dark soliton solutions, respectively. The CSP equation can be viewed as an analogue of the NLS
equation in the ultra-short regime when the width of optical pulse is of the order 10~'> s. As the width of optical pulse is in the order
of femtosecond (10~ s), the width of spectrum of this ultra-short pulse is approximately of the order 10°s~!, the monochromatic
assumption to derive the NLS equation is invalid anymore.
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Mathematically, the CSP equation can also be viewed as a reduction of a two-component short pulse equation proposed by Dimakis
and Miiller-Hoissen [45] and Matsuno [46] independently. It is shown that the CSP Eq. (1) is integrable in the sense that it admits
Lax pair, bilinear form and bright-soliton solution form [26,42,47]. It has been shown that the fCSP equation also admits double pole,
breather and rogue wave solutions by Darboux transformation method [26,48]. The gauge transformation of the focusing cSPE equation
was recently studied in [49]. By formulating the Riemann-Hilbert problem, the inverse scattering transform for the focusing cSPE
equation was investigated in [50] and the long-time asymptotic behavior was analyzed in [51]. The multi-dark soliton solution to the
defocusing CSP equation was constructed by the generalized Darboux transformation method [43] and the KP hierarchy reduction
method [52].

Since the seminal work by Ohta and Yang [22], the KP reduction method has become one of the most effective methods in con-
structing rogue wave, especially higher order rogue wave solutions. It has been used to find rogue wave solutions to the Ablowitz-Ladik
(AL) equation [31], Davey-Stewartson I and II equation [53,54], the Yajima-Oikawa equation [28,55], the derivative long-wave-short-
wave interaction model of Newell type [56], the derivative Schrédinger (NLS) equation [57], the three-wave equation [58], Boussinesq
equation [59] and the coupled NLS equation (Manakov system) [60].

In the present paper, we are concerned with the general breather and rogue wave solutions of the focusing complex short pulse
(fCSP) equation (o = 1). Based on the previous work for the dark soliton of the defocusing CSP equation, we are able to construct the
general breather and rogue wave solutions to the fCSP equation, which are the main results of this paper. The remainder of this paper
is organized as follows. In Section 2, we firstly bilinearize the fCSP equation under nonzero boundary condition and show how a set of
bilinear equations of the KP-Toda hierarchy can be reduced to the bilinear equations of the fCSP equation. In Sections 3 and 4, starting
from specially arranged tau-functions of exponential type and rational type, we show step by step that how the general breather and
rogue wave solutions of the fCSP equation can be reduced. Section 5 is devoted to concluding remarks.

2. Reduction of the KP-Toda hierarchy to the CSP equation
2.1. Bilinearization of the CSP equation
The bilinearization of the fCSP equation is established by the following proposition.

Proposition 1. By means of the dependent variable transformation

B & iy+ys/2)
= —-—e , 2

17327 2)

and the hodograph (reciprocal) transformation
,32

x=—2y—"os—2ogf). =, 3)
the CSP equation (1) with o = —1 is bilinearized into

(D,D; + iD; + %iDy)g f=0, (4)
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where D is the Hirota D-operator defined by [61]
a N[0 a\" ,
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Proof. From the hodograph (reciprocal) transformation and bilinear equations, we could have
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by using the bilinear equation (5). This implies
1
Oy = poy, 0s=—0; — 5|Q| Ox

by define % =p.
Dividing both sides of bilinear equation (4) by f2, one arrives at
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Above equation can be written as

p s =4, (8)
or can be converted into
1
By <_3t - 5|Q|23x> q=q, (9)

which is nothing but the focusing CSP equation. O
2.2. The bilinear equations of the KP-Toda hierarchy related to the CSP equation

In this subsection, we first present and prove a set of bilinear equations satisfied by the t functions of the KP-Toda hierarchy [62]
by the following lemma.

Lemma 1. Let 7,y be a N x N determinant defined by

T = det (m™) = Nkl nkl e , 10
nkl 15i,jsN( i) @ Yy dxy - (10)
where gol."k’ and wj”k’ are functions of the variables x1, x_1 t,, t, and satisfy the following differential and difference relations:
3X1(p;1k1 _ goin+l,kl, 3X71g0inkl _ §0;1—1,kl’ (1
8tu(plnkl — (pin,kfl,l’ atb(plnkl — (pin,k,lfl’ (12)
k41,1 1.k 1 1.k
(pin' +11 (p;‘Hr _ a(plpkl g0'(1 +1 _ (pinJr _ bgﬂinkl (-13)
By, wjnkl _ _wjn—l,kl, By, jnkl _ _wjn+1,kl’ (14)
k1,1 Na!
g = —y ML g g = g (15)
wjn,k—l.l — 1)ijn—l,k + awjnkl, an'k'l_l _ wjn—l,k + b‘/’jnk[- (16)
Then tyy satisfies the following bilinear equations:
1
<§Dx1Dx,1 - 1) Tokl * Tkl = —Tnt 1,k Tn—1,kl » (17)
(aDg, — DTttt - Tnkl = —Tnt1k—10Tn k41,0 » (18)
(Dy,(aDy, — 1) = 20) Tygr g - Tt = (Dxy — 20)Tnget k=11 * Tnk1.1 (19)
(Dx(bDyy — 1) = 2b) Tag 14 - Tnkt = (Dyy — 2D)Tag1,01—1 * Takol1 - (20)

The proof is given in Appendix A by referring to the Grammian technique [61,63].
2.3. Reduction to the fCSP equation

In what follows, we briefly show the procedure of reducing the bilinear equations of extended KP hierarchy (17)-(20) to the bilinear
equations (4)-(5). To be specific, if 7, satisfies the reduction conditions

(axl + ax_1 )Tnkl = Ci1Tm » (2])
(a®3, — 3y, )Tt = CoTrkt » (22)
Tn—1.k+1.014+1 = Tnki 5 (23)

then the bilinear equation (17) is reduced to

1
<2D>2<1 + 1) Tnkt * Takl = Tnt1,kiTn—1,kl- (24)

Moreover, let b = 1/a, referring to the bilinear equation (20) and the reduction conditions (22)-(23), we have

2 2
(Dxl(aDta -1)- E) Tnt+-1,kl * Tnkl = <Dx1 - E) Tnk+1,1 * Tnt1,k—1,15

thus using (18) and (19) we get

1 1
<Dx1(aDta -1)—-a- a) Tnt1,kl ° Tnkl = <—a - E) Tn1,k—1,1Tn,k+1,1

1
= (a + a) (aDy, — 1)Toy1,10 * Toki » (25)
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ie.,

(Dx,(aDy, — 1) — (@* + 1)De, ) Tns 1,0 - Tnkt = 0. (26)
Next, if we require

Ta00 = T-n.00-
and define

f =700, &= Ti00.

we arrive at

1 1
(DxlDta - anl - (a + a) Dta) g-f=0, (27)
1 2 *
Finally, by setting a = i, t; = ay, x; = Bs/4 and B(a? — 1) = —2y«, the above bilinear equations coincide with the bilinear

equations (4)—(5).
3. Breather solution to the CSP equation
3.1. Derivation of the general breather solution

To derive the breather solution to the fCSP equation, we give the following two lemmas, whose proofs are given in Appendix B and
C, respectively.

Lemma 2. The generalized tau function t,y for the KP-Toda hierarchy defined by

Tokl = |m"kl 1<ij<N (29)
where
a Pim \" Dim — @ k Dim — b ! _
mj! ZZ s <—ﬂ> <—L ) (——”" ) efimtEir, (30)
i 1p1m+QJr qjr gjr +a er+b
with
1 1 1
&im = —X_1 + DimX1 + ta + ty + im0,
Pim pm—a pim —b
_ 1 1 _
r = —X_1+ QX1+ ——tg+ ty +§;
Eir P qjrX1 ora g 4p” Ejr0
satisfies the bilinear equations (17)-(20).
Lemma 3. By imposing the conditions
pnwpe=1, qugn =1, ab=1, (31)

then all three reduction relations (21)-(23) are satisfied.

The complex conjugate condition can be achieved by taking qi1 = pj;, qio = P}y, b}, = aim(m =1, 2) and a = i« purely imaginary.
In summary, we have the following theorem for the general-breather solution to the fCSP equation.

Theorem 1. The multi-breather solution of the fCSP equation is given by a parametric form

q=PEvrrs
27°
vy, B
——y—gs—z(logf) t=—s.
whereg =1, f =1,y = —g(a — o~ ") and 1, is defined as
2 * n
aimajr Dim Eim+EE
S
m,r=1 m p]r p}r

NxN

Here * denotes complex conjugation, py1, pi are complex wave numbers satisfying the constraint pupp = 1, &m = 4 1pinBs + —2¥_ p ﬂa + &im.o,
i=1,
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3.2. One- and two-breather solutions
Since piip12 = 1, let us take pi; = Aje"1, then pi = A 'e ™1, gy = Aje™, then g, = A 'e®1. The tau function for one-breather
solution can be expressed by

fe 2A4(sinh(L;) + cosh(Ly)) cos(Ly — &1) N sec(81)(sinh(K7) + cosh(K7))
- AT 41 244

1
+ 5A1 sec(d1)(sinh(K>) + cosh(K3)),

g = ((A7 + 1) cos(281) sec(81) cosh(K;) + 2 (AT + 1) cosh(Ly) cos(L, — 81)+

1
2 (4 + A1)

cos(81) (A% + 1) cos(281) sec’(81) sinh(K7) + A} tan®(8; )(— sinh(K;))

— A tan’(8;) sinh(K3) + (A7 + 1) A7 cos(281) sec*(81) cosh(K>)

+ A7 sinh(K,) + A? sinh(K;) + 2A7 tan(8;) sinh(L, ) sin(L)

+2A7 sinh(L;) cos(Ly) + 2 tan(81) sinh(L; ) sin(L,) + 2 sinh(Ly) cos(L)))

+ AL] (A7 sin(8;) sinh(K>) + A7 sin(81) cosh(K;) — AT sinh(Ly) sin(L — 81)

— (A} — 1) cosh(Ly) sin(L, — 8;) — sin(8) sinh(K;)
— sin(87) cosh(K7) + sinh(L;) sin(L, — 81)) ,
and

A = cos(81), B =sin(é7),

K, = AA 20y + 55 4 2Re(en)
P A2 4 (0 —ABR T 2 107
1
K, = (4A*A1Re(£10) + 4A1Re(&10)(@A; + B)?

2A; (A% + (xA; + B)
+ABs + A (eAj(afs + 4y) + 2aA1 BBs + BB%s))

L =A(aA ! + ! + AP L PS Y | oRe(n)
= (0% A ’
! ¥ AA2 4 (« —ABR? A%+ (aA; + B)? 4 ' 4A 10

1 4oy 4oy
L =-(AB(- - + Bs
2 4( ! < A2A% 4+ (0 — AB? A2+ (aA; + B 5)

N 402y 3 40%A%y BBs

A2A? + (@ —AB)2 A2+ (aA1+BP A )

Several examples are shown in Fig. 1: (a)-(b) is a typical breather solution, (c)-(d) is the Akhmediev breather where p;; and p, are
real and (e)-(f) is the Kuznetsov-Ma soliton.

The tau functions to two-breather solution is of the form

2 n

o= |2t (o) e e
ma=1 Pim Py Pir 1<ij<2

with

1 ay

sim = *pim,35+ . “I‘Sim,Os
4 Dim — o

— 1 oy

&, = -piBs+ —— “rf'*,o

o gnr p; +aie 7"

with parameters: p;; = A;e"1, then p1; = A7 'e 1, py; = Aye'®2, then py, = Ay le™ %2,
A typical example of two breather solution is shown in Fig. 2 witho = 1,8 = 2,6, = 7/3, 5, = 0 A; = 1, A, = 2.0, in which a
regular breather interacts with a Akhmediev breather.

4. General rogue wave solution to the CSP equation
To derive general rogue wave solution, let us introduce
n k 1
- ) (50 (e
p+q q q+a q+b
¢ = p"(p — a)(p — b)'é*, (35)
Y™ = (—q)"[—(g + @] (g + bl 'e", (36)
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Fig. 1. One-breather solutions to the fCSP equation (a)-(b): « = 1, 8 = 2,8, = 7 /3, A1 = 1; (c)-(d): Kuznetsov-Ma soliton with « = —0.35, 8 = 2, §; = 1.0472, A, =
2; (e)-(f): Akhmediev breather with « = 1,8 =2,8; =0, A; = 2.

Fig. 2. Interaction between Akhmediev breather in Fig. 1(e) and the breather in Fig. 1(a). (a) profile; (b) contour plot.

with

1 1 1
E=—Xx_1+px1+ —ta+ ——tp + &, (37)
p p—a p—>b

1 1
n= +qx1+ ——t+ ty + No, (38)

q+a q+b
where p, q, &, 10, a, b are complex constants. It is easy to find that these functions satisfy differential and difference rules (11)-(16)
without indices i and j.
Then, we define the elements

mg”‘” — AB mk), golgnkl) = A 1/,j(nkz) s (kD) (39)
where 4; and B; are differential operators with respect to p and g respectively as
1 i 1 j
A = i (pap) , Bi= ]—| (qaq> ) (40)
Since operators .A; and B; commute with operators dy,, d_,, 9, and 9;,, these functions mgjnkl)’ (plgnkl) and 1/fj(nkl) still obey the differential
and difference rules (11)-(16). From Lemma 1, it is known that for an arbitrary sequence of indices (i, iz, ..., iN; j1,j2, - - - » jN), the

6
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determinant

tw = det (m(."",”) , (41)

1<vusn N
satisfies the bilinear equations (17)-(20).
4.1. Dimensional reduction
To realize the dimension reduction, we introduce the following linear differential operators
Dy, x_y = 0x; +0x_ys Digry = (123t,1 — O, - (42)

It is straightforward to see that

Dyyx gy = A (p +-+aq+ ) (e, (43)
p q
2 1 a? 1
D nkl) — AB; < a + _ )m(nkl)’ 44
ot "\p—a p-b gq+a q+b (44
and
; 1 1
o) (p+ =) =p+(-1)=, (45)
p p
. 1 1
@) (a+ - ) =a+(-1)-. (46)
q q
Using the Leibnitz rule, one has
L1 U 1
(nkl) ( ki) (nkl)
o 5 o ) o (o )
n=0 v=0
which leads to
J
1
(nkl) (nkl (nkl)
D m. =2 2 —m;; 47
X1.X—1"1%j p=1,g=1 /LXO: l W.j p=1,g=1 + ; \)! 1,j—v p=1,g=1 ( )
even vieven
by taking p = 1, ¢ = 1. Next, we restrict the general determinant (41) to
~ _ (n,k,I)
Thkl = ]S(%%N <m21 1,2j— 1‘)p:q:],b:l . (48)
By using the relations (45) and (46) as in Ref. [22], we obtain
Dxl,x_l %nkl = 4N%nkl . (49)
We proceed to prove the second dimension reduction condition (22). For the sake of convenience, we define
1 1
Pp)=p+-, Qa)=q+ -, (50)
p q
a? 1 a? 1
Gi(p; a, b) = — ——, Gyq;a,b)= - —. 51
prab)= o= Glaab)= - (51)
Notice that G{(p; a, b), G»(q; a, b) can be expressed as
2a? 2
Gi(p; a, b) = - = F1(P),
! P—2atvP?—4 P-2btVP?>—-4 !
Galg a0y = ——2 2 = K(Q)
T 9 a+ VP4 oQ+i2btJE—4
then by using the Faa di Bruno formula we obtain
dFy (P) T i mj
I d;& : [T [(po,yP]™
(Pdy) F1(P) = Z D=1 TT ma(itymi (52)
My 42y +--Imy=l ()T T; mid(itym
where m = ZL] m;. Moreover, under the conditions p = ¢ = 1, one has
I .
(pdp) Fy [P(P)]‘ _, =0, (lis odd), (53)
b:_%
I .
(P3p) Fi[P(P)I| | =Cri(Fi[P(p=1)D), (Lis even). (54)
b

Sl
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By applying the conditions (45) and (46). Similarly, one has

(a3,) FalQ@)| =0, (Lis odd), (55)

q
b

= —

(a90) Balo@)]l| = oy (Ralo(g= 1)), (Lis even). (56)

S
Il

1
1
a

By referring above formulas (53)-(56), it follows that

3
1l

i

nkl) CrulGi(p)] e Cy, v[GZ e
Drg i Z ! M+ Z M- : (57)
e ;f:e:vgn veuen p= qT

a

Since C1,0[G1(p = 1)] = G1(p = 1) and C2,0[G2(q = 1)] = G2(q = 1), we obtain
4Na?

e T ™ 8

_1
b=7

Dy, Tui

by using the contiguity relation (57).
4.2. Index reduction

We need to prove the index reduction

- - 1—a
Ttk = KN T, K = TTa (59)
To this end, we define
(p—a)p—b) - —q
Hp)= —, H(Q)= ———, 60
(p) » (9) CETCEY) (60)
it then follows
i LRELEED) (J) ( ) (P - b) (k)
Y p/\a+a)\qg+b
_ H(p)H(q)m™
i Jj
1 ]
= Z Z @R @m (61)
s
where functions H,(p) and Hy(q) are defined as
H:(p) = (p3) H(p), Hs(@) = (43¢’ H(q)- (62)
Introducing two generators
o {r X 4
L= %), L= —(ad), (63)
r=0 s=0

since

ab
L1H(p) = H(e’p) =€¢‘p — (a+b) + ;e—f,

LoH(q) = H(e*q) =
2H(q) = H(e"q) ekq+(a+b)+%’e—’\

we can show that £1H(p) and £2ﬁ(q) are even functions of ¢ and A under the condition p = q = 1,b = 1/a, respectively. Thus
Hy_1(p) = Hys_1(q) =0 for all r > 1. Utilizing these results, we have the relation

(n 1k+1,14+-1) (nkl)
m; |p =q=1,b=1/a = Z Z (Q)mi,r'j,5|p:q:l,b:1/a~

r=0, r:even s=0, s:even

which leads to
~ (n—1,k+1,1+1) (nkl)
<m2i—1.2j—1 |p:q:1«,b:1/0)1<”<N L (m21 1.2 i|p:q:l.b:1/a) U, (64)

where L is a certain lower triangular matrix with Ho(p) = H(p)|p=g=1,0=1/0 On the diagonal and U is a certain upper triangular matrix
with Ho(q) = H(q)|p=q=1,b=1/a ON the diagonal. Taking determinants to above equation, one obtains

To_1kr1ie1 = [Ho(P)Ho(@)IN Furt = KN Topa. (65)
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4.3. Rogue wave solutions to the dCSP equation
Based on the previous results, the general rogue wave solution to the fCSP equation is given by the following theorem

Theorem 2. The general rogue wave solution of the fCSP equation is given by g = 74, f = 7o where 7, is defined as

~=dt(”<"? ) , 66
Tn 1§i5§N Myi_1,2j-1 pgm1.b=1/a (66)
where the element of the determinant is defined as
i = Agm™, (67)
with A; and B; are defined in (40) and
n
m — 1 (_B> eﬁ(p+q>5+(p ,a+q+1ia)ay+so+sg . (68)
p+q q
Therefore, the rogue wave solution is of the parametric form
q=PEvrrs
27°
vy, B
——y——s—z(logf) t=-—s.
where y = _,(O{ —a ).

The rogue waves of the fCSP equation can also be expressed in terms of Schur polynomials by the following theorem. The elementary
Schur polynomials S;j(x) are defined via the generating function

o] (o]
Zsj(x)kf = exp ijkf ,
=0 j=1

or more explicitly,
1
S =1, Sim=x, SE=_x+x,
and

sw- ¥ (11

1142l +-+mlp=j

where ¥ = (X1, X2, ...).

Theorem 3. The tau functions for the general rogue waves of the fCSP equation can also be expressed by g = 1,, f = 7o where

= (n)
T = é}%N (mzr;—l,zjq) (69)
with
min(2i—1,2j—1) 1
Mg = D, ST vESy o (a(n) + ve), (70)
v=0

where vectors xt(n) = (xli(n), xzi(n), .. ) are defined by

+ B o +
xi(n)=—-s——y+n, x. =0, 71
1= 7 eI o (71)
X3pi1 = 02r415 + Bars1y + Garp, (72)
Xopyq = 027415 + Borp1y + Qor41 5 (73)

with a;, By (r > 1) and ¢ = (0, {2, 0, &4, . . .) are coefficients from the following expansions

1 5 it o o it
—Ber —1)= A — = AT
4'3( ) for e —iax 1—ia Zﬂr

r=1
(/\ et + 1) Zmr

and ay,41 (r = 1, 2, ...) are arbitrary complex parameters.

The proof can either be given from the expression in Theorem 1 or a delicate limiting process from the general breather solution.
In Appendix D, we provide a proof from the breather solution.
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2 .
E’l
0

Fig. 3. (a) First-order rouge wave solution with parameter values (¢« = 1, 8 = 2); (b) is the corresponding contour plot.

4.4. Dynamics of rogue waves

The fundamental rogue wave solution can be expressed by

= g % 0 7s/2) _g (1 n %) 0 Hys/2) (74)
where

G = —16a* — 320 — 16 + i64ay,

Fi = (@ + 1) (87 — 4Bs+8) + 8 («® — 1) ay(Bs — 2) + 16a%y? .
where y = —4(a — o).

One typical example is illustrated in Fig. 3.
The second order rogue wave solution can be expressed as
q= P& _ Burs (11122 (75)
2f 2 F,

Here we omit the complicated expressions for G, and F,. Instead,two examples of second-order wave solution are shown in Fig. 4(a)-(d).
In Fig. 4(a)-(b), we have single peak and the maximum value of |q| is 5 times the one of plane wave background. In (c)-(d) we observe
a triangle pattern. Three examples of second-order wave solution are shown in Fig. 5(a)-(f). When the third order rogue wave forms
one peak, the maximum amplitude is 7 times the background wave (see (a)-(b)). Depending on the choices of parameters, the pattern
can exhibit either triangle type for large a(30) (see (c)-(d)) or pentagon type for large a(SO) (see (e)-(f)).

5. Concluding remarks

The CSP equation is an analogue of the NLS equation in ultra-short pulse regime and is linked to the complex sine-Gordon equation
through a hodograph transformation. In the present work, we constructed general breather and rogue wave solutions to the focusing
CSP equation via the KP reduction method. The expressions for the first- and second-rogue wave solutions are given and illustrated in
detail. The maximum value of the 1st- and 2nd-order rogue waves are 3 and 5 times of the background, respectively. Different types
of the third order rogue waves are plotted, which follows the universal pattern of rogue waves of soliton equations revealed by Bo
Yang and Jianke Yang [60] even there is a hodograph transformation involved. In other words, it exhibits triangle, pentagon and other
geometric patterns based on the roots of the Yablonskii-Vorob’ev polynomial.

In addition to the CSP equation, we have also proposed semi-discrete CSP (sd-CSP) equation [64,65] and coupled complex short
pulse (CCSP) equation [42], which have attracted attention recently. Various soliton solutions including the rogue wave solution to the
sd-CSP equation have been studied by Darboux transformation method in [66]. Soliton solutions and inverse scattering transform for
the CCSP equation were investigated in [67-69]. It is interesting to investigate the general rogue wave solutions in the sd-CSP and CCSP
equations which are analogues of AL equation and Manakov system via the KP reduction method.
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Fig. 4. Second-order rouge wave solutions with parameter values « = 1, 8 = 2 and (a) a3 = —0.5, (c) a3 = 50, (b), (d) are the corresponding density plots of (a),

(c) respectively.
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Fig. 5. Third-order rouge wave solutions with parameter values « = 1, 8 = 2 and (a) a3 = —10.0, as = —0.5; (c) a3 = 1000, as = 0.0; (e) a3 = 0.0, as = 2000,
(b), (d), (f) are the corresponding contour plots of (a), (c) and (e) respectively.
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Appendix A

Proof of Lemma 1:

nkl  nkl nkl H
Proof. It is easily shown that mi, ¢, W satisfy
nkl nkl nkl nkl n—1,kl_, n+1,kl
Oy, =g ,  Ox_ My —@; 1// ,
nkl __ nk—1,1_, n,k+1,1
O,y = —¢; v )
n+1.kl _ nkl nkl , n+1, kl nk+1l nkl nkl j n,k+1, l
m;; + oY m;; +o Y

Therefore the followmg differential and difference formulae hold for 7,

nkl gankl nkl gg."_l’kl
— i i _ i i
ax1 Tnkl = _,(/}ﬁkl 0 ) ax,1 Tnkl = w'H!Lkl 0 )
] i
nkl n,k—1,1 nkl nkl
ade, Trig = | ) ad T = M i
tq tnkl = n,k+1,1 5 n+1,kl = n+1,kl 1 5
v; 0 —¥;
nkl n—1,kl nkl nkl
— mij @i m i
Tn—1,kl = |, nki 1 s Tnk+1,0 = n I<+1 ! 1|
1/’j 1/0
mnk! awﬂ,k—l,l mnk! QD'n-H’kl
— ] 1 J 1
Tnt k1,0 = |, nitkd s O Tkl = 1kl ,
v 1 - 0
nkl ?H—Lkl
(axl + a)tn.k+l,l = nl,]k+l,l ' s
_'(//] a
nkl n—1,kl nkl
mijl kl “ “
n+1,
(axl ax,l = Dy = 1//1 0 -1], (76)
_ ]’nkl 1 0
nkl nkl n,k—
i 1,kl “ a“r
n+1,
(ady, — Dtpyr0 = _V/j 1 -1 , (77)
1pjn,k+l,l -1 0
nkl n+1,kl n,k—1,1
i 1.kl “ i
n+1,ki
(0, (ady — 1) — @)t = |~ 0 -1 1. (78)
1)[’n,k+1,l —a 0

J
Applying the Jacobi identity of determinants to the bordered determinants (76)-(78), the three bilinear equations (17)-(19) are satisfied.
The bilinear equation (20) can be proved exactly in the same way as Eq. (19). O
Appendix B

The proof of Lemma 2

Proof. By defining

2
61" = 3 anply(pim — ) (o — bl

"k, 1) = Zb,r — ) "(—(qir + @) (—(gjr + b)) e,

then it is easy to verify that ‘fgo (k, l)z//(")(k )dxl‘ e is nothing but 7, defined above. Moreover, go,")(k ) and 1// ")(k 1) satisfy
the linear dispersion relations (11)-(16). Therefore, it follows that 7, satisfies the bilinear equations (17)-(20). O

Appendix C

The proof of Lemma 3
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Proof. Notice that 7, can be alternatively expressed as
N —
T = C ]‘[ e5iz i | mi(nkl)|

i=1

where

C_ﬁﬁ apbjp (_PQ)”(_Piz—fI)k(_Piz—b)’
Pi2 + qp2 dj dp +a Gz+b)’

i=1 j=1

and

airbj1 pi2 + qj2
aibj pin + qjn
bj1 pi2 + 42 _nu T
o= —g™(g1, qp)et R +
b2 pi2 + gj1 o ap pi1 + qp2

my(nkl) = 1+

i1 Pi2 + gj2
with
nkl pn\" (P —a\* (pa — b\
f (pi17 piz) = - )
pi2 po—a pp—b

—-n —k -1
qj gp+a gir+b

g™(gj1, qp2) = <*ﬂ> < /L ) < L ) ,
i dp +a pi2+b

X_ 1 1
En — En = (pin — P)Xs — ——) + < — )ta + (
Di1Pi2 bii—a pip—a

_ — X_1 1 1
&1 — & = (i1 — p)(x1 — )+< - >t+<
n 2 Il 22 gj14;2 gh+a gp+a ‘

So if we impose the reduction condition p;; = ﬁ and gp = ﬁ then
1 1

1 1 1 1
— —— ) == —pr), |———)=-(a1— )
Di1  Di2 gin  Qi2

Obviously
(8x, + x_,)mj(nkl) = 0
which implies
(0%, + 0x_, )Tkt = C1Tnki »
b=1give

Moreover, the conditions pjp = ﬁ, g = ﬁ
1 1

(1 1 1 1
a - = —_— s
pi—a pp—a pn—b pp—b

az( 1 B 1 )_( 1 B 1 )
gi+a (gp+a g1+b dgp+b)’

thus
(a*, — 0y, Jmj(nkl) =0

and

which implies
(azatu - atb Yo = CoToia

In the last, the conditions p;, = i g = -, b=1imply

(5r) (i=2) (e=s) =

pin/) \p2—a) \po —b '

<q£> (qn +a> ((In +b> g
g/ \q+a/ \po+b

which leads

1
g1’

fnkl _fn—l,k+1,l+1 gnkl _ gn—l,k+l,l+l
- 9 - bl

Thus, the reduction relation (23)t;—1 k41,141 = Tak, also holds. O

13

F™ (i1, p2)g™ gy, gy et 52 i —4

™ (i1, pip)esit 52,

1 1
pin—b po—>b
1 1
gi+b qp+b

)
)o
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Appendix D

Proof of Theorem 3:

Proof. The breather solution to the fCSP equation can be written into a slight different form

n = ’m?fylgi,jgN (87)
where
2 2 n
) I e 59
S — Pim + qjr djr
under the conditions p;1pi, = 1, gim = pj;, (M = 1, 2) with
1 ay .
&im = —DimBS + —, i=1,...,N.
4 Pim — 1@

The rogue wave solutions can be obtained by taking limit of py1, p12 = 1, p21, p22 — 1 etc. The detailed procedure is as follows. Let

Inpy =2, Inpp = —A;, (89)
since
(pn+ Dgn+1) 1
2(pi1 + qj1) - 1— (pi1—1)(gj1—1)

(Pin+1)(gj1+1)
_ i ((Pn — (g — 1))“
(pin + g + 1)

= i ()‘f)‘}k)v 4 (pn— g - DY
4 Aidf (o + 1)@+ 1))

1 = 1 ay
(=1 *(E+E)7 — , I
T R (L e

which will not affect the solution, we can expand the first term in mij by

(pin + 1)(gj + 1) (p“)n pfn—E+Ej—¢
2(pi1 + qj1) dj1

then, by multiplying

min(k,1) 1 v
B Z ( 2. <*> Sk (&7 (1) + VOIS (2 (0 )+vC)> 1o

k,I=0 v=0
Similarly, we have

(p12+ qn +1 (Pa) 512 5*%1 £

2(pi2 + qj1) i

mm(kl
_Z( ( Skon(®F () + VOIS (X (n)+vc)>( Moy

k,I=0

Z(Pn + qj2) 2

mm(kl v
= ( ( ) Sk—u(XT (1) + vE)SI_y (& n)+vc)> A=A

k,I=

(Pzz + 1 12 + 1
2(piz + qu

(pin + 1)(q + 1) (Pﬂ> ot —E+Ep—E

IB) pbin—6+Ep—E
j2

mm(kl v
= ( ( ) Sk—v(X" (1) + vE)S1- (% (n)+v1;)> (=2) (=2
k,1=0
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Adding all four terms up, we have

So(x3) 0
Si(x5)  So(x7)
(di aisi A3 ads o) | S2(%) Six) Sox;)
S3(xy)  Saxy) Si(xy)  So(x3)
! 0
1/4
x (1/47
(1/4y
0
So®%) Si(xg) Saxg)  Si(xy) A
So(®7)  So(x7)  Sa(xy) - Ast
% So(x,) Sixy) - | | A%dr
So(x3) Ast

0

Here a;; — ap = Aid; and a;; + a; = s; and we use the abbreviations Sj(x] )= Si(x*(n) + v¢), Si(x; )= S;(x~(n) + v&). Therefore 7, can be
expressed by

+
A1d1 A1Sq )»?d] )\.?Sl SO(XE)'_) + O
)»zdz XSy )\gdz }»352 S](XQ) SO(xl) +
. . . K Sl(xo ) 51 (X1 ) SO(XZ )

: : : : S3(x5)  Sa*7) Si(x))  So(x3)
)\NdN ANSN )\%dN )\’%SN . . .
1 0) /Soxy) Si(x5) Sa%,) S3(x;)
1/4 So(x7)  So(x7) Sa(x7)
« (1/4) So(*;)  Si(xy)
(1/4) So(x3)
0 J\0
Mdp o agdy e gy
)\};s’]‘ )»g;sj e )»,’(,35,’3
x | M ATdy e ARTdy
AP s

Now let us take

1 i 2v—1 1 i 2v—1
ail=5<1+;pi )7 ai2=5(1_;pi )

Then we have d; = Z:zl piz“’2 and s; = 1. Therefore, the above 7, is O(AAJA2A - - AyAY) as A; — 0 for 1 < i < N. In order to take
the lowest order in A4, we consider the limit, T(n) := lim,,_o t(n)/(A1A]). In this limit, the leading order becomes O((A,A3 - - - ANA;*V)3),
thus for picking up the lowest order in A;, we take the limit, lim;,_,o %(n)/(k2A§)3. So the leading order becomes O((A3Aj - - - ANA,’Q)S).
Repeating this procedure, finally we obtain the 7, function of rogue wave solution from that of the breather solution. O
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