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a b s t r a c t

In the present paper, we attempt to construct both the breather and rogue wave solutions to the
focusing complex short pulse (fCSP) equation via the KP–Toda reduction method. Following a procedure
of reducing the bilinear equations satisfied by tau functions of Kadomtsev–Petviashvili (KP)–Toda
hierarchy to the ones of the fCSP equation with nonzero boundary condition, we first deduce the
general breather solution of the fCSP equation starting from a specially arranged tau-function of the
KP–Toda hierarchy, then we construct and prove the Nth order rogue wave solutions of the fCSP
equation and express them in two different but equivalent forms of determinants. The dynamical
behaviors of both the breather and rogue wave solutions are illustrated and analyzed.

© 2022 Published by Elsevier B.V.

1. Introduction

Rogue waves, which are initially used for the description of the spontaneous and monstrous ocean surface waves have recently
ttracted considerable attention on both experimentally and theoretically [1]. Rogue waves have been observed in a variety of physical
ontexts including optical systems [2–4], Bose–Einstein condensates [5,6], superfluids [7], plasma [8,9], capillary waves [10]. Compared
ith the stable solitons, rogue waves are the localized structures with the instability and unpredictability [11,12]. A typical model

or characterizing the rogue wave is the celebrating nonlinear Schrödinger (NLS) equation. The fundamental rogue wave of the NLS
quation is described by Peregrine soliton [13], which is the first-order rogue wave expressed by a rational form with quadratic
unctions. This rational solution has localized behavior in both space and time, and its maximum amplitude attains three times the
onstant background. The Peregrine soliton is the limiting case of a breather solution when the period approaches infinity. Since the
igher-order rogue waves were discovered by Akhmediev et al. [14], many papers have been devoted to the study of higher-order rogue
aves via different methods [15–39]. The higher-order rogue waves were also excited experimentally in a water wave tank [40,41]. In

act, higher-order rogue waves can be treated as the nonlinear superposition of fundamental rogue wave and they are usually expressed
n terms of complicated higher-order rational polynomials. These higher-order waves were also localized in both coordinates and could
xhibit higher peak amplitudes or multiple intensity peaks.
Recently, a complex short pulse (CSP) equation [42,43]

qxt + q +
1
2
σ
(
|q|2qx

)
x = 0 , (1)

as proposed by one of the authors as an improvement for the (real-valued) short pulse (SP) equation proposed by Schäfer and
ayne [44] to describe the propagation of ultra-short optical pulses in nonlinear media. Here q = q(x, t) is a complex-valued function.

n contrast with the short pulse equation, the complex short pulse equation has both the focusing case (σ = 1) and the defocusing case
σ = −1) which admits the bright and dark soliton solutions, respectively. The CSP equation can be viewed as an analogue of the NLS
quation in the ultra-short regime when the width of optical pulse is of the order 10−15 s. As the width of optical pulse is in the order
f femtosecond (10−15 s), the width of spectrum of this ultra-short pulse is approximately of the order 1015s−1, the monochromatic
ssumption to derive the NLS equation is invalid anymore.
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Mathematically, the CSP equation can also be viewed as a reduction of a two-component short pulse equation proposed by Dimakis
and Müller-Hoissen [45] and Matsuno [46] independently. It is shown that the CSP Eq. (1) is integrable in the sense that it admits
ax pair, bilinear form and bright-soliton solution form [26,42,47]. It has been shown that the fCSP equation also admits double pole,
reather and rogue wave solutions by Darboux transformation method [26,48]. The gauge transformation of the focusing cSPE equation
as recently studied in [49]. By formulating the Riemann–Hilbert problem, the inverse scattering transform for the focusing cSPE
quation was investigated in [50] and the long-time asymptotic behavior was analyzed in [51]. The multi-dark soliton solution to the
efocusing CSP equation was constructed by the generalized Darboux transformation method [43] and the KP hierarchy reduction
ethod [52].
Since the seminal work by Ohta and Yang [22], the KP reduction method has become one of the most effective methods in con-

tructing rogue wave, especially higher order rogue wave solutions. It has been used to find rogue wave solutions to the Ablowitz–Ladik
AL) equation [31], Davey–Stewartson I and II equation [53,54], the Yajima–Oikawa equation [28,55], the derivative long-wave–short-
ave interaction model of Newell type [56], the derivative Schrödinger (NLS) equation [57], the three-wave equation [58], Boussinesq
quation [59] and the coupled NLS equation (Manakov system) [60].
In the present paper, we are concerned with the general breather and rogue wave solutions of the focusing complex short pulse

fCSP) equation (σ = 1). Based on the previous work for the dark soliton of the defocusing CSP equation, we are able to construct the
eneral breather and rogue wave solutions to the fCSP equation, which are the main results of this paper. The remainder of this paper
s organized as follows. In Section 2, we firstly bilinearize the fCSP equation under nonzero boundary condition and show how a set of
ilinear equations of the KP–Toda hierarchy can be reduced to the bilinear equations of the fCSP equation. In Sections 3 and 4, starting
rom specially arranged tau-functions of exponential type and rational type, we show step by step that how the general breather and
ogue wave solutions of the fCSP equation can be reduced. Section 5 is devoted to concluding remarks.

. Reduction of the KP–Toda hierarchy to the CSP equation

.1. Bilinearization of the CSP equation

The bilinearization of the fCSP equation is established by the following proposition.

roposition 1. By means of the dependent variable transformation

q =
β

2
g
f
ei(y+γ s/2) , (2)

nd the hodograph (reciprocal) transformation

x = −
γ

2
y −

β2

8
s − 2(log f )s , t = −s , (3)

he CSP equation (1) with σ = −1 is bilinearized into

(DyDs + iDs +
γ

2
iDy)g · f = 0 , (4)(

D2
s +

β2

8

)
f · f =

β2

8
gg∗ , (5)

here D is the Hirota D-operator defined by [61]

Dn
sD

m
y f · g =

(
∂

∂s
−

∂

∂s′

)n (
∂

∂y
−

∂

∂y′

)m

f (y, s)g(y′, s′)|y=y′,s=s′ .

Proof. From the hodograph (reciprocal) transformation and bilinear equations, we could have
∂x
∂y

= −
γ

2
− 2(log f )ys

nd
∂x
∂s

= −
β2

8
− 2(log f )ss = −

β2

8
|g|

2

f 2
= −

1
2
|q|2,

y using the bilinear equation (5). This implies

∂y = ρ∂x, ∂s = −∂t −
1
2
|q|2∂x

y define ∂x
∂y = ρ.

Dividing both sides of bilinear equation (4) by f 2, one arrives at(
g
f

)
ys

+ 2(log f )ys
g
f

+ i
(
g
f

)
s
+ i
γ

2

(
g
f

)
y
= 0 . (6)

r (
g
)

+ i
(
g
)

+ i
γ
(
g
)

−
γ g

=

(
−
γ

− 2(log f )ys
) g

. (7)

f ys f s 2 f y 2 f 2 f

2
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bove equation can be written as

ρ−1qys = q , (8)

r can be converted into

∂x

(
−∂t −

1
2
|q|2∂x

)
q = q , (9)

hich is nothing but the focusing CSP equation. □

.2. The bilinear equations of the KP–Toda hierarchy related to the CSP equation

In this subsection, we first present and prove a set of bilinear equations satisfied by the τ functions of the KP–Toda hierarchy [62]
y the following lemma.

emma 1. Let τnkl be a N × N determinant defined by

τnkl = det
1≤i,j≤N

(mnkl
ij ) =

⏐⏐⏐⏐∫ ϕnkl
i ψ

nkl
j dx1

⏐⏐⏐⏐
1≤i,j≤N

, (10)

where ϕnkl
i and ψnkl

j are functions of the variables x1, x−1 ta, tb and satisfy the following differential and difference relations:

∂x1ϕ
nkl
i = ϕ

n+1,kl
i , ∂x−1ϕ

nkl
i = ϕ

n−1,kl
i , (11)

∂taϕ
nkl
i = ϕ

n,k−1,l
i , ∂tbϕ

nkl
i = ϕ

n,k,l−1
i , (12)

ϕ
n,k+1,l
i = ϕ

n+1,k
i − aϕnkl

i ϕ
n,k,l+1
i = ϕ

n+1,k
i − bϕnkl

i (13)

∂x1ψ
nkl
j = −ψ

n−1,kl
j , ∂x−1ψ

nkl
j = −ψ

n+1,kl
j , (14)

∂taψ
nkl
j = −ψ

n,k+1,l
j , ∂tbψ

nkl
j = −ψ

n,k,l+1
j , (15)

ψ
n,k−1,l
j = ψ

n−1,k
j + aψnkl

j , ψ
n,k,l−1
j = ψ

n−1,k
j + bψnkl

j . (16)

Then τnkl satisfies the following bilinear equations:(
1
2
Dx1Dx−1 − 1

)
τnkl · τnkl = −τn+1,klτn−1,kl , (17)

(aDta − 1)τn+1,kl · τnkl = −τn+1,k−1,lτn,k+1,l , (18)(
Dx1 (aDta − 1) − 2a

)
τn+1,kl · τnkl = (Dx1 − 2a)τn+1,k−1,l · τn,k+1,l , (19)(

Dx1 (bDtb − 1) − 2b
)
τn+1,kl · τnkl = (Dx1 − 2b)τn+1,k,l−1 · τnk,l+1 . (20)

The proof is given in Appendix A by referring to the Grammian technique [61,63].

.3. Reduction to the fCSP equation

In what follows, we briefly show the procedure of reducing the bilinear equations of extended KP hierarchy (17)–(20) to the bilinear
quations (4)–(5). To be specific, if τnkl satisfies the reduction conditions

(∂x1 + ∂x−1 )τnkl = C1τnkl , (21)

(a2∂ta − ∂tb )τnkl = C2τnkl , (22)

τn−1,k+1,l+1 = τnkl , (23)

hen the bilinear equation (17) is reduced to(
1
2
D2
x1 + 1

)
τnkl · τnkl = τn+1,klτn−1,kl. (24)

oreover, let b = 1/a, referring to the bilinear equation (20) and the reduction conditions (22)–(23), we have(
Dx1 (aDta − 1) −

2
a

)
τn+1,kl · τnkl =

(
Dx1 −

2
a

)
τn,k+1,l · τn+1,k−1,l,

hus using (18) and (19) we get(
Dx1 (aDta − 1) − a −

1
a

)
τn+1,kl · τnkl =

(
−a −

1
a

)
τn+1,k−1,lτn,k+1,l

=

(
a +

1
)
(aDta − 1)τn+1,kl · τnkl , (25)
a
3
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(Dx1 (aDta − 1) − (a2 + 1)Dta )τn+1,kl · τnkl = 0 . (26)

Next, if we require

τ ∗

n00 = τ−n,00.

and define

f = τ000, g = τ100,

we arrive at(
Dx1Dta −

1
a
Dx1 −

(
a +

1
a

)
Dta

)
g · f = 0 , (27)(

1
2
D2
x1 + 1

)
f · f = gg∗ . (28)

Finally, by setting a = iα, ta = αy, x1 = βs/4 and β(α2
− 1) = −2γα, the above bilinear equations coincide with the bilinear

equations (4)–(5).

3. Breather solution to the CSP equation

3.1. Derivation of the general breather solution

To derive the breather solution to the fCSP equation, we give the following two lemmas, whose proofs are given in Appendix B and
C, respectively.

Lemma 2. The generalized tau function τnkl for the KP–Toda hierarchy defined by

τnkl =
⏐⏐mnkl

ij

⏐⏐
1≤i,j≤N

(29)

where

mnkl
ij =

2∑
m=1

2∑
r=1

aimbjr
pim + qjr

(
−

pim
qjr

)n (
−

pim − a
qjr + a

)k (
−

pim − b
qjr + b

)l

eξim+ξ jr , (30)

with

ξim =
1
pim

x−1 + pimx1 +
1

pim − a
ta +

1
pim − b

tb + ξim,0,

ξ jr =
1
qjr

x−1 + qjrx1 +
1

qjr + a
ta +

1
qjr + b

tb + ξ jr,0

satisfies the bilinear equations (17)–(20).

Lemma 3. By imposing the conditions

pi1pi2 = 1, qi1qi2 = 1, ab = 1 , (31)

then all three reduction relations (21)–(23) are satisfied.

The complex conjugate condition can be achieved by taking qi1 = p∗

i1, qi2 = p∗

i2, b
∗

im = aim(m = 1, 2) and a = iα purely imaginary.
n summary, we have the following theorem for the general-breather solution to the fCSP equation.

heorem 1. The multi-breather solution of the fCSP equation is given by a parametric form

q =
β

2
g
f
ei(y+γ s/2) ,

x = −
γ

2
y −

β2

8
s − 2(log f )s , t = −s .

here g = τ1, f = τ0, γ = −
β

2 (α − α−1) and τn is defined as

τn =

⏐⏐⏐⏐⏐
2∑

m,r=1

aima∗

jr

pim + p∗

jr

(
−

pim
p∗

jr

)n

eξim+ξ∗
jr

⏐⏐⏐⏐⏐
N×N

. (32)

Here ∗ denotes complex conjugation, pi1, pi2 are complex wave numbers satisfying the constraint pi1pi2 = 1, ξim =
1
4pimβs +

αy
pim−iα + ξim,0,

i = 1, . . . ,N .
4
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.2. One- and two-breather solutions

Since p11p12 = 1, let us take p11 = A1eiδ1 , then p12 = A−1
1 e−iδ1 , q11 = A1e−iδ1 , then q12 = A−1

1 eiδ1 . The tau function for one-breather
solution can be expressed by

f =
2A1(sinh(L1) + cosh(L1)) cos(L2 − δ1)

A2
1 + 1

+
sec(δ1)(sinh(K1) + cosh(K1))

2A1

+
1
2
A1 sec(δ1)(sinh(K2) + cosh(K2)),

g = −
1

2
(
A3
1 + A1

) ((A2
1 + 1

)
cos(2δ1) sec(δ1) cosh(K1) + 2

(
A4
1 + 1

)
cosh(L1) cos(L2 − δ1)+

cos(δ1)
((
A2
1 + 1

)
cos(2δ1) sec2(δ1) sinh(K1) + A4

1 tan
2(δ1)(− sinh(K2))

− A2
1 tan

2(δ1) sinh(K2) +
(
A2
1 + 1

)
A2
1 cos(2δ1) sec

2(δ1) cosh(K2)

+ A4
1 sinh(K2) + A2

1 sinh(K2) + 2A4
1 tan(δ1) sinh(L1) sin(L2)

+2A4
1 sinh(L1) cos(L2) + 2 tan(δ1) sinh(L1) sin(L2) + 2 sinh(L1) cos(L2)

))
+

i
A1

(
A2
1 sin(δ1) sinh(K2) + A2

1 sin(δ1) cosh(K2) − A2
1 sinh(L1) sin(L2 − δ1)

−
(
A2
1 − 1

)
cosh(L1) sin(L2 − δ1) − sin(δ1) sinh(K1)

− sin(δ1) cosh(K1) + sinh(L1) sin(L2 − δ1)) ,

nd

A = cos(δ1), B = sin(δ1),

K1 = AA1

(
2αy

A2A2
1 + (α − A1B)2

+
βs
2

)
+ 2Re(ξ10),

K2 =
1

2A1
(
A2 + (αA1 + B)2

) (4A2A1Re(ξ10) + 4A1Re(ξ10)(αA1 + B)2

+A3βs + A
(
αA2

1(αβs + 4y) + 2αA1βBs + βB2s
))
,

L1 = A
(
αA1y

(
1

A2A2
1 + (α − A1B)2

+
1

A2 + (αA1 + B)2

)
+

A1βs
4

+
βs
4A1

)
+ 2Re(ξ10),

L2 =
1
4

(
A1B

(
−

4αy
A2A2

1 + (α − A1B)2
−

4αy
A2 + (αA1 + B)2

+ βs
)

+
4α2y

A2A2
1 + (α − A1B)2

−
4α2A2

1y
A2 + (αA1 + B)2

+
βBs
A1

)
.

Several examples are shown in Fig. 1: (a)–(b) is a typical breather solution, (c)–(d) is the Akhmediev breather where p11 and p12 are
real and (e)–(f) is the Kuznetsov–Ma soliton.

The tau functions to two-breather solution is of the form

τn =

⏐⏐⏐⏐⏐
2∑

m,r=1

1
pim + p∗

jr

(
−

pim
p∗

jr

)n

eξim+ξ jr

⏐⏐⏐⏐⏐
1≤i,j≤2

(33)

with

ξim =
1
4
pimβs +

αy
pim − iα

+ ξim,0,

ξ jr =
1
4
p∗

jrβs +
αy

p∗

jr + aiα
+ ξ ∗

jr,0

ith parameters: p11 = A1eiδ1 , then p12 = A−1
1 e−iδ1 , p21 = A2eiδ2 , then p22 = A−1

2 e−iδ2 .
A typical example of two breather solution is shown in Fig. 2 with α = 1, β = 2, δ1 = π/3, δ2 = 0 A1 = 1, A2 = 2.0, in which a

regular breather interacts with a Akhmediev breather.

4. General rogue wave solution to the CSP equation

To derive general rogue wave solution, let us introduce

m(nkl)
=

1
p + q

(
−

p
q

)n (
−

p − a
q + a

)k (
−

p − b
q + b

)l

eξ+η, (34)

ϕ(nkl)
= pn(p − a)k(p − b)leξ , (35)

ψ (nkl)
= (−q)−n

[−(q + a)]−k
[−(q + b)]−leη, (36)
5
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w

a

Fig. 1. One-breather solutions to the fCSP equation (a)–(b): α = 1, β = 2, δ1 = π/3, A1 = 1; (c)–(d): Kuznetsov–Ma soliton with α = −0.35, β = 2, δ1 = 1.0472, A1 =

; (e)–(f): Akhmediev breather with α = 1, β = 2, δ1 = 0, A1 = 2.

Fig. 2. Interaction between Akhmediev breather in Fig. 1(e) and the breather in Fig. 1(a). (a) profile; (b) contour plot.

ith

ξ =
1
p
x−1 + px1 +

1
p − a

ta +
1

p − b
tb + ξ0, (37)

η =
1
q
x−1 + qx1 +

1
q + a

ta +
1

q + b
tb + η0, (38)

where p, q, ξ0, η0, a, b are complex constants. It is easy to find that these functions satisfy differential and difference rules (11)–(16)
without indices i and j.

Then, we define the elements

m(nkl)
ij = AiBjm(nkl), ϕ

(nkl)
i = Aiϕ

(nkl), ψ
(nkl)
j = Bjψ

(nkl), (39)

where Ai and Bj are differential operators with respect to p and q respectively as

Ai =
1
i!

(
p∂p
)i
, Bj =

1
j!

(
q∂q
)j
, (40)

Since operators Ai and Bj commute with operators ∂x1 , ∂x−1 , ∂ta and ∂tb , these functions m(nkl)
ij , ϕ(nkl)

i and ψ (nkl)
j still obey the differential

nd difference rules (11)–(16). From Lemma 1, it is known that for an arbitrary sequence of indices (i , i , . . . , i ; j , j , . . . , j ), the
1 2 N 1 2 N

6
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eterminant

τnkl = det
1≤ν,µ≤N

(
m(nkl)

iν ,jµ

)
, (41)

atisfies the bilinear equations (17)–(20).

.1. Dimensional reduction

To realize the dimension reduction, we introduce the following linear differential operators

Dx1,x−1 = ∂x1 + ∂x−1 , Dta,tb = a2∂ta − ∂tb . (42)

t is straightforward to see that

Dx1,x−1m
(nkl)
ij = AiBj

(
p +

1
p

+ q +
1
q

)
m(nkl), (43)

Dta,tbm
(nkl)
ij = AiBj

(
a2

p − a
−

1
p − b

+
a2

q + a
−

1
q + b

)
m(nkl), (44)

and

(p∂p)i
(
p +

1
p

)
= p + (−1)i

1
p
, (45)

(q∂q)j
(
q +

1
q

)
= q + (−1)j

1
q
. (46)

Using the Leibnitz rule, one has

Dx1,x−1m
(nkl)
ij =

i∑
µ=0

1
µ!

[(
p∂p
)µ (p +

1
p

)]
m(nkl)

i−µ,j +

j∑
ν=0

1
ν!

[(
q∂q
)ν (q +

1
q

)]
m(nkl)

i,j−ν,

hich leads to

Dx1,x−1m
(nkl)
ij

⏐⏐⏐
p=1,q=1

= 2
i∑

µ=0,
µ:even

1
µ!

m(nkl)
i−µ,j

⏐⏐⏐
p=1,q=1

+ 2
j∑

ν=0,
ν:even

1
ν!

m(nkl)
i,j−ν

⏐⏐⏐
p=1,q=1

(47)

y taking p = 1, q = 1. Next, we restrict the general determinant (41) to

τ̃nkl = det
1≤i,j≤N

(
m(n,k,l)

2i−1,2j−1

⏐⏐⏐)
p=q=1,b= 1

a

. (48)

By using the relations (45) and (46) as in Ref. [22], we obtain

Dx1,x−1 τ̃nkl = 4N τ̃nkl . (49)

We proceed to prove the second dimension reduction condition (22). For the sake of convenience, we define

P(p) = p +
1
p
, Q(q) = q +

1
q
, (50)

G1(p; a, b) =
a2

p − a
−

1
p − b

, G2(q; a, b) =
a2

q + a
−

1
q + b

. (51)

otice that G1(p; a, b),G2(q; a, b) can be expressed as

G1(p; a, b) =
2a2

P − 2a ±
√
P2 − 4

−
2

P − 2b ±
√
P2 − 4

≡ F1(P),

G2(q; a, b) =
2a2

Q + 2a ±
√
Q2 − 4

−
2

Q + 2b ±
√
Q2 − 4

≡ F2(Q),

then by using the Faà di Bruno formula we obtain

(
p∂p
)l F1(P) =

∑
m1+2m2+···+lml=l

dm̂F1(P)
dPm̂

∏l
j=1

[
(p∂p)jP

]mj

(l!)−1
∏l

i mi!(i!)mi
(52)

where m̂ =
∑l

i=1 mi. Moreover, under the conditions p = q = 1, one has(
p∂p
)l F1[P(p)]

⏐⏐⏐⏐ p=1
b= 1

a

= 0, (l is odd), (53)

(
p∂p
)l F1[P(p)]

⏐⏐⏐⏐ p=1
= C1,l (F1[P(p = 1)]) , (l is even). (54)
b= 1
a

7
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B

B

w
H

y applying the conditions (45) and (46). Similarly, one has(
q∂q
)l F2[Q(q)]

⏐⏐⏐⏐ q=1
b= 1

a

= 0, (l is odd), (55)

(
q∂q
)l F2[Q(q)]

⏐⏐⏐⏐ q=1
b= 1

a

= C2,l (F2[Q(q = 1)]) , (l is even). (56)

y referring above formulas (53)–(56), it follows that

Dta,tbm
(nkl)
ij

⏐⏐⏐⏐ p=q=1
b= 1

a

=

⎛⎜⎝ i∑
µ=0,
µ:even

C1,µ[G1(p)]
µ!

m(nkl)
i−µ,j +

j∑
ν=0,
ν:even

C2,ν[G2(q)]
ν!

m(nkl)
i,j−ν

⎞⎟⎠
p=q=1
b= 1

a

. (57)

Since C1,0[G1(p = 1)] = G1(p = 1) and C2,0[G2(q = 1)] = G2(q = 1), we obtain

Dta,tb τ̃nkl

⏐⏐⏐⏐ p=q=1
b= 1

a

=
4Na2

1 − a2
τ̃nkl (58)

by using the contiguity relation (57).

4.2. Index reduction

We need to prove the index reduction

τ̃n−1,k+1,l+1 = K 2N τ̃nkl, K =
1 − a
1 + a

. (59)

To this end, we define

H(p) =
(p − a)(p − b)

p
, H̃(q) =

−q
(q + a)(q + b)

, (60)

it then follows

m(n−1,k+1,l+1)
i,j = AiBj

(
−q
p

)(
p − a
q + a

)(
p − b
q + b

)
m(nkl)

= AiBjH(p)H̃(q)m(nkl)

=

i∑
r=0

j∑
s=0

1
r!

1
s!
Hr (p)H̃s(q)m

(nkl)
i−r,j−s (61)

where functions Hr (p) and H̃s(q) are defined as

Hr (p) = (p∂p)rH(p), H̃s(q) = (q∂q)sH̃(q). (62)

Introducing two generators

L1 =

∞∑
r=0

ζ r

r!
(p∂p)r , L2 =

∞∑
s=0

λs

s!
(q∂q)s, (63)

since

L1H(p) = H(eζp) = eζp − (a + b) +
ab
p
e−ζ ,

L2H̃(q) = H̃(eλq) =
−1

eλq + (a + b) +
ab
q e

−λ
,

e can show that L1H(p) and L2H̃(q) are even functions of ζ and λ under the condition p = q = 1, b = 1/a, respectively. Thus
2r−1(p) = H̃2s−1(q) = 0 for all r ≥ 1. Utilizing these results, we have the relation

m(n−1,k+1,l+1)
i,j |p=q=1,b=1/a =

i∑
r=0, r:even

j∑
s=0, s:even

1
r!

1
s!
Hr (p)H̃s(q)m

(nkl)
i−r,j−s|p=q=1,b=1/a.

which leads to(
m̃(n−1,k+1,l+1)

2i−1,2j−1 |p=q=1,b=1/a

)
1≤i,j≤N

= L
(
m̃(nkl)

2i−1,2j−1|p=q=1,b=1/a

)
U, (64)

where L is a certain lower triangular matrix with H0(p) = H(p)|p=q=1,b=1/a on the diagonal and U is a certain upper triangular matrix
with H̃0(q) = H̃(q)|p=q=1,b=1/a on the diagonal. Taking determinants to above equation, one obtains

τ̃ = [H (p)H̃ (q)]N τ̃ = K 2N τ̃ . (65)
n−1,k+1,l+1 0 0 nkl nkl

8
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.3. Rogue wave solutions to the dCSP equation

Based on the previous results, the general rogue wave solution to the fCSP equation is given by the following theorem

heorem 2. The general rogue wave solution of the fCSP equation is given by g = τ̃1, f = τ̃0 where τ̃n is defined as

τ̃n = det
1≤i,j≤N

(
m̃(n)

2i−1,2j−1

)
p=q=1,b=1/a

, (66)

where the element of the determinant is defined as

m̃(n)
ij = AiBjm(n), (67)

with Ai and Bj are defined in (40) and

m(n)
=

1
p + q

(
−

p
q

)n

e
β(p+q)

4 s+
(

1
p−iα+

1
q+iα

)
αy+ξ0+ξ∗

0 . (68)

Therefore, the rogue wave solution is of the parametric form

q =
β

2
g
f
ei(y+γ s/2) ,

x = −
γ

2
y −

β2

8
s − 2(log f )s , t = −s .

here γ = −
β

2 (α − α−1).

The rogue waves of the fCSP equation can also be expressed in terms of Schur polynomials by the following theorem. The elementary
chur polynomials Sj(x) are defined via the generating function

∞∑
j=0

Sj(x)λj = exp

⎛⎝ ∞∑
j=1

xjλj

⎞⎠ ,
or more explicitly,

S0(x) = 1, S1(x) = x1, S2(x) =
1
2
x21 + x2,

and

Sj(x) =

∑
l1+2l2+···+mlm=j

⎛⎝ m∏
j=1

x
lj
j

lj!

⎞⎠ ,
here x = (x1, x2, . . .).

Theorem 3. The tau functions for the general rogue waves of the fCSP equation can also be expressed by g = τ̃1, f = τ̃0 where

τ̃n = det
1≤i,j≤N

(
m(n)

2i−1,2j−1

)
(69)

with

m(n)
2i−1,2j−1 =

min(2i−1,2j−1)∑
ν=0

1
4ν

S2i−1−ν(x+(n) + νζ)S2j−1−ν(x−(n) + νζ), (70)

here vectors x±(n) =

(
x±

1 (n), x
±

2 (n), . . .
)
are defined by

x±

1 (n) =
β

4
s −

α

(1 ∓ iα)2
y ± n , x±

2r = 0 , (71)

x+

2r+1 = α2r+1s + β2r+1y + a2r+1, (72)

x−

2r+1 = α2r+1s + β̄2r+1y + ā2r+1 , (73)

with αr , βr (r ≥ 1) and ζ = (0, ζ2, 0, ζ4, . . .) are coefficients from the following expansions

1
4
β(eλ − 1) =

∞∑
r=1

αrλ
r ,

α

eλ − iα
−

α

1 − iα
=

∞∑
r=1

βrλ
r ,

ln
(
2
λ

eλ − 1
eλ + 1

)
=

∞∑
r=1

ζrλ
r ,

nd a2r+1 (r = 1, 2, . . .) are arbitrary complex parameters.

The proof can either be given from the expression in Theorem 1 or a delicate limiting process from the general breather solution.
n Appendix D, we provide a proof from the breather solution.
9
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Fig. 3. (a) First-order rouge wave solution with parameter values (α = 1, β = 2); (b) is the corresponding contour plot.

.4. Dynamics of rogue waves

The fundamental rogue wave solution can be expressed by

q =
β

2
g
f
ei(y+γ s/2) = −

β

2

(
1 +

G1

F1

)
ei(y+γ s/2) . (74)

where

G1 = −16α4
− 32α2

− 16 + i64α2y,

F1 =
(
α2

+ 1
)2 (
β2s2 − 4βs + 8

)
+ 8

(
α2

− 1
)
αy(βs − 2) + 16α2y2 .

here γ = −
β

2 (α − α−1).
One typical example is illustrated in Fig. 3.
The second order rogue wave solution can be expressed as

q =
β

2
g
f
ei(y+γ s/2) =

β

2
ei(y+γ s/2)

(
1 + 12

G2

F2

)
. (75)

Here we omit the complicated expressions for G2 and F2. Instead,two examples of second-order wave solution are shown in Fig. 4(a)–(d).
n Fig. 4(a)–(b), we have single peak and the maximum value of |q| is 5 times the one of plane wave background. In (c)–(d) we observe
triangle pattern. Three examples of second-order wave solution are shown in Fig. 5(a)–(f). When the third order rogue wave forms
ne peak, the maximum amplitude is 7 times the background wave (see (a)–(b)). Depending on the choices of parameters, the pattern
an exhibit either triangle type for large a(0)3 (see (c)–(d)) or pentagon type for large a(0)5 (see (e)–(f)).

. Concluding remarks

The CSP equation is an analogue of the NLS equation in ultra-short pulse regime and is linked to the complex sine–Gordon equation
hrough a hodograph transformation. In the present work, we constructed general breather and rogue wave solutions to the focusing
SP equation via the KP reduction method. The expressions for the first- and second-rogue wave solutions are given and illustrated in
etail. The maximum value of the 1st- and 2nd-order rogue waves are 3 and 5 times of the background, respectively. Different types
f the third order rogue waves are plotted, which follows the universal pattern of rogue waves of soliton equations revealed by Bo
ang and Jianke Yang [60] even there is a hodograph transformation involved. In other words, it exhibits triangle, pentagon and other
eometric patterns based on the roots of the Yablonskii–Vorob’ev polynomial.
In addition to the CSP equation, we have also proposed semi-discrete CSP (sd-CSP) equation [64,65] and coupled complex short

ulse (CCSP) equation [42], which have attracted attention recently. Various soliton solutions including the rogue wave solution to the
d-CSP equation have been studied by Darboux transformation method in [66]. Soliton solutions and inverse scattering transform for
he CCSP equation were investigated in [67–69]. It is interesting to investigate the general rogue wave solutions in the sd-CSP and CCSP
quations which are analogues of AL equation and Manakov system via the KP reduction method.
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(

Fig. 4. Second-order rouge wave solutions with parameter values α = 1, β = 2 and (a) a3 = −0.5, (c) a3 = 50, (b), (d) are the corresponding density plots of (a),
c) respectively.

Fig. 5. Third-order rouge wave solutions with parameter values α = 1, β = 2 and (a) a3 = −10.0, a5 = −0.5; (c) a3 = 1000, a5 = 0.0; (e) a3 = 0.0, a5 = 2000,
(b), (d), (f) are the corresponding contour plots of (a), (c) and (e) respectively.
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A
ppendix A

Proof of Lemma 1:

Proof. It is easily shown that mnkl
ij , ϕnkl

i , ψnkl
j satisfy

∂x1m
nkl
ij = ϕnkl

i ψ
nkl
j , ∂x−1m

nkl
ij = −ϕ

n−1,kl
i ψ

n+1,kl
j ,

∂tam
nkl
ij = −ϕ

n,k−1,l
i ψ

n,k+1,l
j ,

mn+1,kl
ij = mnkl

ij + ϕnkl
i ψ

n+1,kl
j , mn,k+1,l

ij = mnkl
ij + ϕnkl

i ψ
n,k+1,l
j .

Therefore the following differential and difference formulae hold for τnkl,

∂x1τnkl =

⏐⏐⏐⏐ mnkl
ij ϕnkl

i
−ψnkl

j 0

⏐⏐⏐⏐ , ∂x−1τnkl =

⏐⏐⏐⏐⏐ mnkl
ij ϕ

n−1,kl
i

ψ
n+1,kl
j 0

⏐⏐⏐⏐⏐ ,
a∂taτnkl =

⏐⏐⏐⏐⏐ mnkl
ij aϕn,k−1,l

i

ψ
n,k+1,l
j 0

⏐⏐⏐⏐⏐ , τn+1,kl =

⏐⏐⏐⏐ mnkl
ij ϕnkl

i

−ψ
n+1,kl
j 1

⏐⏐⏐⏐ ,
τn−1,kl =

⏐⏐⏐⏐mnkl
ij ϕ

n−1,kl
i

ψnkl
j 1

⏐⏐⏐⏐ , τn,k+1,l =

⏐⏐⏐⏐ mnkl
ij ϕnkl

i

−ψ
n,k+1,l
j 1

⏐⏐⏐⏐ ,
τn+1,k−1,l =

⏐⏐⏐⏐⏐ mnkl
ij aϕn,k−1,l

i

ψ
n+1,kl
j 1

⏐⏐⏐⏐⏐ , ∂x1τn+1,kl =

⏐⏐⏐⏐⏐ mnkl
ij ϕ

n+1,kl
i

−ψ
n+1,kl
j 0

⏐⏐⏐⏐⏐ ,
(∂x1 + a)τn,k+1,l =

⏐⏐⏐⏐⏐ mnkl
ij ϕ

n+1,kl
i

−ψ
n,k+1,l
j a

⏐⏐⏐⏐⏐ ,

(∂x1∂x−1 − 1)τnkl =

⏐⏐⏐⏐⏐⏐
mnkl

ij ϕ
n−1,kl
i ϕnkl

i

ψ
n+1,kl
j 0 −1

−ψnkl
j −1 0

⏐⏐⏐⏐⏐⏐ , (76)

(a∂ta − 1)τn+1,kl =

⏐⏐⏐⏐⏐⏐⏐
mnkl

ij ϕnkl
i aϕn,k−1,l

i

−ψ
n+1,kl
j 1 −1

ψ
n,k+1,l
j −1 0

⏐⏐⏐⏐⏐⏐⏐ , (77)

(∂x1 (a∂ta − 1) − a)τn+1,kl =

⏐⏐⏐⏐⏐⏐⏐
mnkl

ij ϕ
n+1,kl
i aϕn,k−1,l

i

−ψ
n+1,kl
j 0 −1

ψ
n,k+1,l
j −a 0

⏐⏐⏐⏐⏐⏐⏐ . (78)

Applying the Jacobi identity of determinants to the bordered determinants (76)–(78), the three bilinear equations (17)–(19) are satisfied.
The bilinear equation (20) can be proved exactly in the same way as Eq. (19). □

Appendix B

The proof of Lemma 2

Proof. By defining

ϕ
(n)
i (k, l) =

2∑
m=1

aimpnim(pim − a)k(pim − b)leξim ,

ψ
(n)
j (k, l) =

2∑
r=1

bjr (−qjr )−n(−(qjr + a))−k(−(qjr + b))−leξ̄jr ,

then it is easy to verify that
⏐⏐⏐∫ ϕ(n)

i (k, l)ψ (n)
j (k, l)dx1

⏐⏐⏐
1≤i,j≤N

is nothing but τnkl defined above. Moreover, ϕ(n)
i (k, l) and ψ (n)

j (k, l) satisfy
the linear dispersion relations (11)–(16). Therefore, it follows that τnkl satisfies the bilinear equations (17)–(20). □

Appendix C
The proof of Lemma 3

12
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roof. Notice that τnkl can be alternatively expressed as

τnkl = C
N∏
i=1

eξi2+ξ i2
⏐⏐m′

ij(nkl)
⏐⏐

here

C =

N∏
i=1

N∏
j=1

ai2bj2
pi2 + qj2

(
−

pi2
qj2

)n (
−

pi2 − a
qj2 + a

)k (
−

pi2 − b
qj2 + b

)l

,

nd

m′

ij(nkl) = 1 +
ai1bj1
ai2bj2

pi2 + qj2
pi1 + qj1

f nkl(pi1, pi2)gnkl(qj1, qj2)eξi1−ξi2+ξ j1−ξ j2

+
bj1
bj2

pi2 + qj2
pi2 + qj1

gnkl(qj1, qj2)eξ j1−ξ j2 +
ai1
ai2

pi2 + qj2
pi1 + qj2

f nkl(pi1, pi2)eξi1−ξi2 ,

ith

f nkl(pi1, pi2) =

(
pi1
pi2

)n (pi1 − a
pi2 − a

)k (pi1 − b
pi2 − b

)l

,

gnkl(qj1, qj2) =

(
qj1
qj2

)−n (qj1 + a
qj2 + a

)−k (qj1 + b
pj2 + b

)−l

,

ξi1 − ξi2 = (pi1 − pi2)(x1 −
x−1

pi1pi2
) +

(
1

pi1 − a
−

1
pi2 − a

)
ta +

(
1

pi1 − b
−

1
pi2 − b

)
tb,

ξ j1 − ξ j2 = (qj1 − qj2)(x1 −
x−1

qj1qj2
) +

(
1

qj1 + a
−

1
qj2 + a

)
ta +

(
1

qj1 + b
−

1
qj2 + b

)
tb.

o if we impose the reduction condition pi2 =
1
pi1

and qi2 =
1
qi1

then(
1
pi1

−
1
pi2

)
= −(pi1 − pi2),

(
1
qi1

−
1
qi2

)
= −(qi1 − qi2). (79)

bviously

(∂x1 + ∂x−1 )m
′

ij(nkl) = 0 (80)

hich implies

(∂x1 + ∂x−1 )τnkl = C1τnkl , (81)

oreover, the conditions pi2 =
1
pi1

, qi2 =
1
qi1

, b =
1
a give

a2
(

1
pi1 − a

−
1

pi2 − a

)
=

(
1

pi1 − b
−

1
pi2 − b

)
, (82)

and

a2
(

1
qi1 + a

−
1

qi2 + a

)
=

(
1

qi1 + b
−

1
qi2 + b

)
, (83)

thus

(a2∂ta − ∂tb )m′

ij(nkl) = 0 (84)

which implies

(a2∂ta − ∂tb )τnkl = C2τnkl , (85)

In the last, the conditions pi2 =
1
pi1

, qi2 =
1
qi1

, b =
1
a imply(

pi2
pi1

)(
pi1 − a
pi2 − a

)(
pi1 − b
pi2 − b

)
= 1,(

qi2
qi1

)(
qi1 + a
qi2 + a

)(
qi1 + b
pi2 + b

)
= 1

which leads

f nkl = f n−1,k+1,l+1, gnkl
= gn−1,k+1,l+1, (86)

Thus, the reduction relation (23)τ = τ also holds. □
n−1,k+1,l+1 n,k,l

13
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ppendix D

Proof of Theorem 3:

Proof. The breather solution to the fCSP equation can be written into a slight different form

τn =
⏐⏐mn

ij

⏐⏐
1≤i,j≤N

(87)

here

mn
ij =

2∑
m=1

2∑
r=1

aimbjr (pim + 1)(qjr + 1)
pim + qjr

(
−

pim
qjr

)n

eξim+ξ jr , (88)

under the conditions pi1pi2 = 1, qim = p∗

im (m = 1, 2) with

ξim =
1
4
pimβs +

αy
pim − iα

, i = 1, . . . ,N.

he rogue wave solutions can be obtained by taking limit of p11, p12 → 1, p21, p22 → 1 etc. The detailed procedure is as follows. Let

ln pi1 = λi, ln pi2 = −λi , (89)

since

(pi1 + 1)(qj1 + 1)
2(pi1 + qj1)

=
1

1 −
(pi1−1)(qj1−1)
(pi1+1)(qj1+1)

=

∞∑
ν=0

(
(pi1 − 1)(qj1 − 1)
(pi1 + 1)(qj1 + 1)

)ν
=

∞∑
ν=0

(
λiλ

∗

j

4

)ν ( 4
λiλ

∗

j

(pi1 − 1)(qj1 − 1)
(pi1 + 1)(qj1 + 1)

)ν
,

hen, by multiplying

1
2
(−1)n e−(ξ+ξ ) , ξ =

1
4
βs + +

αy
1 − iα

, ξ =
1
4
βs +

αy
1 + iα

,

hich will not affect the solution, we can expand the first term in mn
ij by

(pi1 + 1)(qj1 + 1)
2(pi1 + qj1)

(
pi1
qj1

)n

eξi1−ξ+ξ j1−ξ̄

=

∞∑
k,l=0

(min(k,l)∑
ν=0

(
1
4

)ν
Sk−ν(x+(n) + νζ)Sl−ν(x−(n) + νζ)

)
λki (λ

∗

j )
l .

imilarly, we have

(pi2 + 1)(qj1 + 1)
2(pi2 + qj1)

(
pi2
qj1

)n

eξi2−ξ+ξ j1−ξ̄

=

∞∑
k,l=0

(min(k,l)∑
ν=0

(
1
4

)ν
Sk−ν(x+(n) + νζ)Sl−ν(x−(n) + νζ)

)
(−λi)k(λ∗

j )
l

(pi1 + 1)(qj2 + 1)
2(pi1 + qj2)

(
pi1
qj2

)n

eξi1−ξ+ξ j2−ξ̄

=

∞∑
k,l=0

(min(k,l)∑
ν=0

(
1
4

)ν
Sk−ν(x+(n) + νζ)Sl−ν(x−(n) + νζ)

)
λki (−λ

∗

j )
l

(pi2 + 1)(qj2 + 1)
2(pi2 + qj2)

(
pi2
qj2

)n

eξi2−ξ+ξ j2−ξ̄

=

∞∑(min(k,l)∑ (
1
4

)ν
Sk−ν(x+(n) + νζ)Sl−ν(x−(n) + νζ)

)
(−λi)k(−λ∗

j )
l .
k,l=0 ν=0
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A

t

R

dding all four terms up, we have

(
λidi λisi λ3i di λ3i si · · ·

)
⎛⎜⎜⎜⎜⎜⎝
S0(x+

0 ) 0
S1(x+

0 ) S0(x+

1 )
S2(x+

0 ) S1(x+

1 ) S0(x+

2 )
S3(x+

0 ) S2(x+

1 ) S1(x+

2 ) S0(x+

3 )
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎝
1 0

1/4
(1/4)2

(1/4)3

0 . . .

⎞⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎝
S0(x−

0 ) S1(x−

0 ) S2(x−

0 ) S3(x−

0 ) · · ·

S0(x−

1 ) S0(x−

1 ) S2(x−

1 ) · · ·

S0(x−

2 ) S1(x−

2 ) · · ·

S0(x−

3 )

0 . . .

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
λ∗

j d
∗

j
λ∗

j
2s∗j

λ∗

j
3d∗

j
λ∗

j
3s∗j
...

⎞⎟⎟⎟⎟⎟⎠ .
Here ai1 − ai2 = λidi and ai1 + ai2 = si and we use the abbreviations Sj(x+

ν )= Sj(x+(n) + νζ), Sj(x−
ν )= Sj(x−(n) + νζ). Therefore τn can be

expressed by⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

⎛⎜⎜⎜⎝
λ1d1 λ1s1 λ31d1 λ31s1 · · ·

λ2d2 λ2s2 λ32d2 λ32s2 · · ·

...
...

...
...

λNdN λN sN λ3NdN λ3N sN · · ·

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
S0(x+

0 ) 0
S1(x+

0 ) S0(x+

1 )
S2(x+

0 ) S1(x+

1 ) S0(x+

2 )
S3(x+

0 ) S2(x+

1 ) S1(x+

2 ) S0(x+

3 )
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎝
1 0

1/4
(1/4)2

(1/4)3

0 . . .

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
S0(x−

0 ) S1(x−

0 ) S2(x−

0 ) S3(x−

0 ) · · ·

S0(x−

1 ) S0(x−

1 ) S2(x−

1 ) · · ·

S0(x−

2 ) S1(x−

2 ) · · ·

S0(x−

3 )

0 . . .

⎞⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎝
λ∗

1d
∗

1 λ∗

2d
∗

2 · · · λ∗

Nd
∗

N
λ∗

1s
∗

1 λ∗

2s
∗

2 · · · λ∗

N s
∗

N
λ∗

1
3d∗

1 λ∗

2
3d∗

2 · · · λ∗

N
3d∗

N
λ∗

1
3s∗1 λ∗

2
3s∗2 · · · λ∗

N
3s∗N

...
...

...

⎞⎟⎟⎟⎟⎠
⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
.

Now let us take

ai1 =
1
2

(
1 +

i∑
ν=1

p2ν−1
i

)
, ai2 =

1
2

(
1 −

i∑
ν=1

p2ν−1
i

)
.

Then we have di =
∑i

ν=1 p
2ν−2
i and si = 1. Therefore, the above τn is O(λ1λ∗

1λ2λ
∗

2 · · · λNλ
∗

N ) as λi → 0 for 1 ≤ i ≤ N . In order to take
the lowest order in λ1, we consider the limit, τ̃ (n) := limλ1→0 τ (n)/(λ1λ∗

1). In this limit, the leading order becomes O((λ2λ∗

2 · · · λNλ
∗

N )
3),

hus for picking up the lowest order in λ2, we take the limit, limλ2→0 τ̃ (n)/(λ2λ∗

2)
3. So the leading order becomes O((λ3λ∗

3 · · · λNλ
∗

N )
5).

Repeating this procedure, finally we obtain the τ̃n function of rogue wave solution from that of the breather solution. □
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