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a b s t r a c t

The Darboux transformation (DT) for the coupled complex short pulse (CCSP) equation is constructed
through the loop group method. The DT is then utilized to construct various exact solutions including
bright-soliton, dark-soliton, breather and rogue wave solutions to the CCSP equation. In case of
vanishing boundary condition (VBC), we perform the inverse scattering analysis. Breather and rogue
wave solutions are constructed under non-vanishing boundary condition (NVBC). Moreover, we
conduct a modulational instability (MI) analysis based on the method of squared eigenfunctions, whose
result confirms the condition for the existence of rogue wave solution.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear Schrödinger (NLS) equation plays a crucial role in nonlinear waves since it can be used to describe the evolution of
lowly varying packets of quasi-monochromatic waves in weakly nonlinear dispersive media. Since the NLS equation is an integrable
quation, various exact solutions can be derived through some well-known methods such as the inverse scattering transform, Hirota’s
ilinear method and Darboux transformation method. In case of the vanishing boundary condition (VBC), the NLS equation admits
ulti-bright [1], breather, higher order soliton [2] and infinite order type solitonic solutions [3–7]. In the framework of the inverse
cattering transform, the long time asymptotic behavior of solutions can be analyzed by the nonlinear steepest descent method, or
he so-called Deift–Zhou method, [8,9] or D-bar method [10]. In other words, for arbitrary initial data in suitable functional space
ithout the appearance of spectral singularity [11], the solutions will evolve into multi-solitons and the additional dispersive waves
the breather and higher order soliton solutions are asymptotic unstable), i.e. the soliton resolution conjecture [12]. For non-vanishing
oundary condition (NVBC), the NLS equation admits breather [13–16], rogue wave solutions [17] in the focusing case and dark soliton
olution in the defocusing case. The rogue wave and Akhmediev breather in the focusing case are related to the modulational instability
MI) [18,19]. For the defocusing case with NVBC, the plane wave is modulational stable, so the defocusing NLS equation does not admit
ogue wave or Akhmediev breather solutions.

The coupled NLS (CNLS) equation also known as Manakov system [20], can be used as a model in nonlinear birefringent optics
nd for two modes of Bose–Einstein condensate [2]. The localized wave solutions in the coupled NLS equation are more complicated
nd richer than the scalar one [21–24]. There are some differences when compared with the scalar one. In the focusing case of VBC, in
ddition to the bright solitons, there exists double-hump soliton solution [25,26]. If one component has a VBC and the other component
ossesses NVBC, there exist bright-dark soliton, rogue wave, breather solutions and the combinations thereof. When both components
ave NVBCs, there are two distinct cases. If they share the same wave-number, the plane wave background can be removed by a
alilean shift and in this case the breather, rogue wave and their superposition, all degenerate into solutions of the scalar NLS equation.
he other case is that the two plane waves have distinct wave-numbers, in which there exist genuinely coupled breather and rogue
ave solutions. In regard to the modulational instability, there exist two different branches which correspond to two different types
f Akhmediev breather or rogue wave solutions. In addition to the dark–dark and bright-dark solitons, the defocusing coupled NLS
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lso admits Akhmediev breather and rogue wave solutions for special choices of the wave-number and frequency, and in this case the
ackground is modulationally unstable because of the effect of cross-phase modulation [27]. However the MI has only one branch.
In the regime of ultra-short pulses where the width of the optical pulse is of the order of femtoseconds (10−15s), the propagation

f ultra-short wave packets can be described by the complex short pulse (CSP) equation, which was proposed for the focusing and
efocusing case [28,29]. A coupled complex short pulse (CCSP) equation

q1,xt + q1 +
κ

2
((|q1|2 + |q2|2)q1,x)x =0,

q2,xt + q2 +
κ

2
((|q1|2 + |q2|2)q2,x)x =0,

(1)

as also proposed to describe the propagation of ultra short pulses in the birefringent fibers, where the symbol κ = ±1 corresponds
o the focusing or defocusing case respectively. In the original paper [28], the author only considered the focusing case. The defocusing
ase can be naturally derived following the way in [29]. As for the derivation of short pulse equation without reductions from the
ntegrability, the readers could refer to the Refs [30,31]. As far as we know, the study of the CCSP equation has only a few. Most
ecently, an inverse scattering analysis is done for the CCSP equation with only the vanishing boundary condition [32]. Therefore, there
s no systematic analysis for various soliton solutions for the CCSP equation, which motivates the present study.

The CCSP equation (1) admits the following Lax pair

Ψx =X(x, t; λ)Ψ , X(x, t; λ) =
1
λ

[
−iI2 −κQ†

x

Qx iI2

]
, Q =

[
q1(x, t) q2(x, t)
q∗

2(x, t) −q∗

1(x, t)

]
,

Ψt =T(x, t; λ)Ψ , T(x, t; λ) =

[
−

i
4λI2 +

iκ
2λQQ

†
−
κ
2Q

†
+

1
2λQ

†QQ†
x

−
i
2Q −

κ
2λQQ

†Qx
i
4λI2 −

iκ
2λQ

†Q

]
,

(2)

here I2 denotes the 2 × 2 identity matrix. Eq. (1) has an alternative form in conservation law(
ρ−1)

t +
κ

2

(
(|q1|2 + |q2|2)ρ−1)

x = 0 , (3)

here ρ−1
=

√
1 + κ|q1,x|2 + κ|q2,x|2. Thus we can define a hodograph transformation

dy = ρ−1dx −
κ

2
ρ−1(|q1|2 + |q2|2)dt, ds = −dt, (4)

hich converts the Lax pair (2) into Φ(y, s) = Ψ (x, t):

Φy = U(y, s; λ)Φ, U(y, s; λ) = −i
ρ(y, s)
λ

Σ3 −
1
λ
Σ3V0,y,

Φs = V(y, s; λ)Φ, V(y, s; λ) =
i
4
λΣ3 +

i
2
V0,

(5)

here

Σ3 = diag(1, 1,−1,−1), V0 =

[
0 κQ†

Q 0

]
, Q =

[
q1(y, s) q2(y, s)
q∗

2(y, s) −q∗

1(y, s)

]
.

he compatibility condition gives a two-component coupled complex dispersionless (TCCD) equation:
qi,ys = ρqi, i = 1, 2

ρs = −
κ

2
(|q1|2 + |q2|2)y.

(6)

onversely, by the third equation of (6), we define the following inverse hodograph transformation:

dx = ρ dy −
κ

2
(|q1|2 + |q2|2)ds, dt = −ds, (7)

hich converts the Lax pair (5) and Eqs. (6) into Lax pair (1) and Eqs. (2) respectively. Thus the CCSP equation (1) is equivalent to the
TCCD equation (6) through the hodograph transformation (4) and (7), provided that ρ > 0.

We illustrate below how to derive the hodograph transformation (4) by the formal scattering and inverse scattering analysis. From
the Lax pair (2), we can suppose the matrix solutions of Lax pair (2) possess the following form:

Ψ (x, t; λ) = m(x, t; λ)e−i(f (x,t)λ−1
+
λ
4 t)Σ3 (8)

here m(x, t; λ) is an invertible analytic matrix solution with respect to λ in the neighborhood of ∞ and 0, i.e.,

m(x, t; λ) = m∞(x, t) + m−1(x, t)λ−1
+ O(λ−2), λ → ∞,

and

m(x, t; λ) = m0(x, t) + m1(x, t)λ+ O(λ2), λ → 0.

Inserting the ansatz (8) into the Lax pair (2) and expanding at λ = 0, we obtain

−ifxΣ3 =[m0(x, t)]−1
[
−iI2 −κQ†

x

Qx iI2

]
m0(x, t),

−iftΣ3 = −
κ

2
[m0(x, t)]−1

[
−iQQ†

−κQ†QQ†
x

† †

]
m0(x, t).

(9)
QQ Qx iQ Q

2
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aking the determinant of previous two Eqs. (9), we have

f 2x = 1 + κ(|q1,x|2 + |q2,x|2), f 2t =
κ2

4
(|q1|2 + |q2|2)2

[
1 + κ(|q1,x|2 + |q2,x|2)

]
(10)

hich shows that the function f (x, t) is consistent with y in (7), i.e. f (x, t) = y. Thus we know that the hodograph transformation (4)
s necessary in the procedure of solving the CCSP equation (1). On the other hand, the solution of Eq. (1) can be represented as the
olutions of Eqs. (6) and the inverse hodograph transformation (7):

x =

∫ (y,s)

(y0,s0)
ρ(y′, s′)dy′

−
κ

2
(|q1(y′, s′)|2 + |q2(y′, s′)|2)ds′, t = −s.

If |q1(y, s)|2 + |q2(y, s)|2 →
1
4 (α

2
1 + α2

2) and ρ(y, s) →
δ
2 as y → ±∞, then the above curvilinear integration can be simplified as:

x =
δ

2
y −

κ

8
(α2

1 + α2
2)s +

∫ y

−∞

[
ρ(y′, s) −

δ

2

]
dy′, t = −s. (11)

Localized wave solutions can be constructed by using vector solutions of the Lax pair. By choosing different vector solutions, we
an obtain different localized wave solutions. The key is to analyze the structure of localized wave solutions and their mechanism
f formation. Thus, for the focusing CCSP equation (1) on a zero background, we firstly use the scattering and inverse scatterings to
nalyze the spectral problem (5). On one hand, by using the ansatz of the Darboux matrix, we are able to obtain compact formulas for
he soliton solutions. On the other hand, the inverse scattering method provides a complete spectral classification of the solutions.

For NVBC, since the spectral problem is 4 × 4 which involves genus one algebraic curve, it is difficult to perform the scattering/inverse
cattering analysis. Thus, we only construct the localized wave solutions. Especially, we establish a relation between rogue wave solution
nd modulational instability. Moreover, we apply a method to conduct the linear stability analysis based on the squared eigenfunctions
nd vector solutions of Lax pair. This analysis reveals the connection between the existence of the rogue waves and the modulational
nstability.

This paper is organized as follows. In Section 2, the Darboux transformation [33] and Bäcklund transformation for the system (5) are
onstructed through the loop group method. In Section 3, we firstly analyze the Lax pair (5) by the Riemann–Hilbert approach. Exact
olutions are constructed both by means of the Riemann–Hilbert approach, and Darboux transformation, which include the single
oliton, SU(2) soliton, double-hump, breather, multi-soliton and high order soliton solutions. In Section 4, a modulational instability
nalysis method based on the squared eigenfunctions is applied for Eq. (6). Rogue wave solutions are constructed exactly by the Darboux
ransformation, and their formation is elucidated by the MI analysis. Besides the rogue waves, other types of localized wave solution
re also constructed by the Darboux transformation. Section 5 is devoted to concluding remarks.

. Darboux Transformation

Firstly, we need to understand the structure of the Lax pair (5), which is the first negative flow for the matrix nonlinear Schrödinger
ierarchy. To this end, we review the relevant theory in the literature [34]. Let

sl(4)Σ3 = {y ∈ sl(4,C)| [Σ3, y] = 0} ,

sl(4)⊥Σ3
=
{
y ∈ sl(4,C)|tr(zy) = 0 for all z ∈ sl(4)Σ3

}
,

enote the centralizer of Σ3 and its orthogonal complement in sl(4,C). Furthermore, we consider the reality condition. It is easy to see
hat the Lax pair (5) satisfies the symmetry conditions su(4)–reality condition ([A(λ∗)]† + A(λ) = 0 for all λ ∈ C) or su(2, 2)–reality
ondition ([A(λ∗)]† + Σ3A(λ)Σ3 = 0 for all λ ∈ C) for choosing different sign, where A(λ) =

∑
k≤n0

Akλ
k. Then we consider the su(4)

r su(2, 2)-reality condition twisted by σ : [A(−λ∗)]∗ → Λ[A(−λ∗)]∗Λ−1, i.e. σ ([A(−λ∗)]∗) = A(λ). In other words, the matrices U(λ)
nd V(λ) in the system (5) satisfy the following symmetry conditions:

[U(y, s; λ∗)]† +ΣU(y, s; λ)Σ = 0, [V(y, s; λ∗)]† +ΣV(y, s; λ)Σ = 0,

Λ[U(y, s; −λ∗)]∗Λ−1
− U(y, s; λ) = 0, Λ[V(y, s; −λ∗)]∗Λ−1

− V(y, s; λ) = 0,
(12)

here

Σ = diag(1, 1, κ, κ), Λ = diag(σ2, σ2), σ2 =

[
0 1

−1 0

]
.

Suppose we have a fundamental matrix solution Φ(y, s; λ) which is normalized at the point (y, s) = (0, 0) by taking Φ(0, 0; λ) = I.
y the symmetry conditions (12), we have the following symmetry conditions for the fundamental solution matrix

[Φ†(y, s; λ∗)]−1
= ΣΦ(y, s; λ)Σ, ΛΦ(y, s; λ)Λ−1

= Φ∗(y, s; −λ∗),

respectively. Meanwhile, the symmetry for the vector solutions is helpful to construct the Darboux matrix. If Φ1(y, s; λ1) is a vector
solution for the Lax pair at λ = λ1, so is ΛΦ∗

1 (y, s; λ1) at λ = −λ∗

1.
Suppose there exists a Darboux matrix T(y, s; λ) which converts the wave functionΦ(y, s; λ) into a new wave functionΦ[1](y, s; λ) =

T(y, s; λ)Φ(y, s; λ)T−1(0, 0; λ) which is normalized at (y, s) = (0, 0) to the identity matrix. Through the symmetry relation (12) and the
existence and uniqueness theorem for ordinary differential equations, we have[

Φ[1]†(y, s; λ∗)
]−1

= ΣΦ[1](y, s; λ)Σ, ΛΦ[1](y, s; λ)Λ−1
= Φ[1]∗(y, s; −λ∗),

which induce the following symmetry relations for the Darboux matrix:

[T†(y, s; λ∗)]−1
= ΣT(y, s; λ)Σ, ΛT(y, s; λ)Λ−1

= T(y, s; −λ∗). (13)
3
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T
he first symmetry relation in (13) follows from the su(4) or su(2, 2)-reality condition, and the second one is from the twisted symmetry
σ . By the loop group construction of Darboux transformation theory [34] and the first symmetry in (13), the elementary Darboux matrix
can be represented by

T(y, s; λ) = I4 − [Φ1,Φ2]M−1diag(λ− λ∗

1, λ− λ∗

2)
−1
[
Φ

†
1

Φ
†
2

]
Σ (14)

where Φi = Φ(y, s; λi)vi (i = 1, 2) are vector solutions for the Lax pair (5) at λ = λi, and

M =

⎡⎢⎣Φ
†
1ΣΦ1
λ1−λ∗

1

Φ
†
1ΣΦ2
λ2−λ∗

1

Φ
†
2ΣΦ1
λ1−λ∗

2

Φ
†
2ΣΦ2
λ2−λ∗

2

⎤⎥⎦ .
The above Darboux matrix (14) is uniquely determined by the kernel conditions

T(y, s; λi)Φ(y, s; λi)vi = 0 (15)

and residue conditions

Res
λ=λ∗

i

(T(y, s; λ)Φ(y, s; λ)ΣΣwi) = 0 (16)

where v†
iΣwi = 0 and rank(vi) = 1, rank(wi) = 3, i = 1, 2. We can observe that the residue conditions are determined by the su(4)

or su(2, 2) symmetry.
To keep the second symmetry in Eq. (13), we merely need to set Φ2 = ΛΦ∗

1 (y, s; λ1) with λ2 = −λ∗

1. Thus the kernel conditions for
the Darboux matrix are: Ker(T(s, y; λ1)) = span{Φ1} and Ker(T(s, y; −λ∗

1)) = span{ΛΦ∗

1 }.
Recall that L+,0(GL(n,C)) is the group of holomorphic maps from C\{0} to GL(n,C), L−,0(GL(n,C)) is the group of holomorphic maps

h from O∞ ∪ O0 to GL(n,C) such that h(∞) = I, L(GL(n,C)) is the group of holomorphic maps from S1
= {z ∈ C : |z| = 1} to GL(n,C),

where O∞ and O0 represent the neighborhood of ∞ and 0 on the compact Riemann surface S2
= C ∪ {∞} respectively. We know that

Φ(y, s; λ) ∈ L−,0(SU(4)) [or Φ(y, s; λ) ∈ L−,0(SU(2, 2))] and T(y, s; λ) ∈ L+,0(SU(4)) [or T(y, s; λ) ∈ L+,0(SU(2, 2))].
For the linear system (5), the above results for the Darboux matrix can be summarized in the following theorem:

Theorem 1. Let Φ(y, s; λ) be a holomorphic matrix function for λ ∈ S2
\ {0,∞} with Φ(0, 0; λ) = I. The Darboux matrix

T(y, s; λ) = I −
[
Φ1,ΛΦ

∗

1

] (Φ†
1ΣΦ1

λ1 − λ∗

1

)−1
⎡⎣ Φ

†
1

λ−λ∗
1

−
ΦT
1Λ

λ+λ1

⎤⎦Σ, (17)

whereΦ1 = Φ1(y, s) =

[
Θ1
Ψ1

]
= Φ(y, s; λ1)v1 is a special solution for the linear system (5) at λ = λ1, and v1 is a constant vector independent

of y and s, converts the Lax pair (5) into a new one by replacing the old potential function Q with the new one:

Q[1] = Q −

(
Φ

†
1ΣΦ1

λ1 − λ∗

1

)−1 (
Ψ1Θ

†
1 − σ2Ψ

∗

1Θ
T
1σ2

)
,

ρ[1] = ρ − 2 lny,s

(
Φ

†
1ΣΦ1

λ1 − λ∗

1

)
,

|q1[1]|2 + |q2[1]|2 = |q1|2 + |q2|2 + 4κ lnss

(
Φ

†
1ΣΦ1

λ1 − λ∗

1

)
.

(18)

Remark 1. When λ1 ∈ R and κ = −1, we obtain(
Φ

†
1 (y, s; λ1)Σ3Φi(y, s; λ)

)
y
=
λ− λ1

λλ1
Φ

†
1 (y, s; λ1)

(
iρ(y, s)I4 + V0,y

)
Φi(y, s; λ),(

Φ
†
1 (y, s; λ1)Σ3Φi(y, s; λ)

)
s
=

i
4
(λ− λ1)Φ

†
1 (y, s; λ1)Φi(y, s; λ),

(19)

where Φi(y, s; λ) = Vi(y, s; λ)ei(ξi(λ)y+ηi(λ)s), ξ2(λ) = ξ ∗

1 (λ), η2(λ) = η∗

1(λ), (λ ∈ R; i = 1, 2), Vi(y, s; λ) are bounded vector functions. Thus(
Φ

†
1 (y, s; λ1)Σ3Φi(y, s; λ1)

)
y
=

(
Φ

†
1 (y, s; λ1)Σ3Φi(y, s; λ1)

)
s
= 0,

which implies

Φ
†
1 (y, s; λ1)Σ3Φ1(y, s; λ1) = 0, Φ

†
1 (y, s; λ1)Σ3Φ2(y, s; λ1) = κ(λ1), (20)

where κ(λ1) is a parameter merely depending on λ1. The Darboux matrix given in Theorem 1 should be modified in the following form:

T(y, s; λ) = I −
[
Φ1,ΛΦ

∗

1

]⎡⎣ Φ
†
1

λ−λ1

ΦT
1Λ

⎤⎦ Σ3

Ω1(y, s)
, (21)
−
λ+λ1

4
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here

Ω1(y, s) ≡ lim
λ→λ1

Φ
†
1 (y, s; λ1)Σ3 [Φ1(y, s; λ) + τ (λ− λ1)Φ2(y, s; λ)]

(λ− λ1)
= Φ

†
1 (y, s; λ1)Σ3Φ

′

1(y, s; λ1) + τκ(λ1)

= Φ
†
1 (y, s; λ1)Σ3Φ

′(y, s; λ1)v1 +Ω1(0, 0), Ω1(0, 0) = v†
1Σ3v′

1 + τκ(λ1) .

ere the prime denotes the derivative with respect to λ at λ = λ1, τ is an appropriate parameter to keep the non-singularity ofΩ1(y, s),
nd Ω1(y, s)∗ = −Ω1(y, s). Meanwhile, the matrix Ω1(y, s) can also be derived by the equations:

lim
λ→λ1

Φ
†
1 (y, s; λ1)Σ3Φ1(y, s; λ)

λ− λ1

=

∫ (y,s)

(y0,s0)

i
4
Φ

†
1 (y

′, s′; λ1)Φ1(y′, s′; λ1)ds′ + λ−2
1 Φ

†
1 (y

′, s′; λ1)
(
iρ(y′, s′)I4 + V0,y′

)
Φ1(y′, s′; λ1)dy′ .

(22)

Recently, Rybkin considered the binary Darboux transformation for the KdV equation to remove or add the discrete spectrum in the
framework of Riemann–Hilbert representation [35].

Remark 2. Let C be a contour in the complex plane that satisfies the Schwartz symmetry (for instance [5], C = (−∞,−r) ∪ {z : |z| =

r} ∪ (r,∞)) and suppose Φ(y, s; λ) is an analytic matrix on S2
\ ({0} ∪ {∞} ∪ C), which satisfies the jump condition Φ+(y, s; λ) =

Φ−(y, s; λ)V(λ) across the contour C. The derivative of Φ±(y, s; λ) with respect to y and the one with respect to s satisfies the same
jump condition as Φ , so ∂

∂yΦ(y, s; λ)Φ−1(y, s; λ) and ∂
∂sΦ(y, s; λ)Φ−1(y, s; λ) are holomorphic functions on S2

\ {0,∞}. Thus, from the
proof of Theorem 1, we can see that the normalized condition for the wave function Φ(y, s; λ) with Φ(0, 0; λ) = I is not necessary. It
is also an obvious fact from the viewpoint of Riemann–Hilbert problems.

For the Darboux matrix, we have the following proposition:

Proposition 1.

• The determinant of Darboux matrix is det(T(y, s; λ)) =
(λ−λ1)(λ+λ∗

1)
(λ−λ∗

1)(λ+λ1)
.

• Suppose the Darboux matrix is expanded in the neighborhood of infinity as: T(y, s; λ) = I + T1(y, s)λ−1
+ O(λ−2); then we have

Tr(T1(y, s)) = 2(λ∗

1 − λ1).

Next, we consider the multi-fold Darboux matrix and the higher order Darboux matrix, which are iterations of the elementary
Darboux matrix in Theorem 1. Suppose there are N different vector solutions Φi(y, s) = Φ(y, s; λi)vi and λi, the multi-fold Darboux
matrix can be constructed as follows:

T[N](y, s; λ) = TN (y, s; λ)TN−1(y, s; λ) · · · T1(y, s; λ) (23)

where

Ti(y, s; λ) = I −
[
Φi[i − 1],ΛΦi[i − 1]∗

] (Φi[i − 1]†ΣΦi[i − 1]
λi − λ∗

i

)−1
⎡⎣ Φi[i−1]†

λ−λ∗
i

−
Φi[i−1]TΛ
λ+λi

⎤⎦Σ
and

Φi[i − 1](y, s; λi) = Ti−1(y, s; λi)Ti−2(y, s; λi) · · · T1(y, s; λi)Φi(y, s; λi), i ≥ 2,

Φ1[0](y, s; λ1) = Φ1(y, s). The Darboux matrix T[N](y, s; λ) can be decomposed in the following form:

T[N](y, s; λ) =

N∑
i=1

⎛⎝ 1
λ− λ∗

i

1
2π i

∮
γλ∗i

T[N](y, s; λ)dλ+
1

λ+ λi

1
2π i

∮
γ−λi

T[N](y, s; λ)dλ

⎞⎠ (24)

here γλ∗
i
, γ−λi denote a small circle around the point λ∗

i and −λi respectively, with anti-clockwise orientation. The residue can be
iven explicitly:

1
2π i

∮
γλ∗i

T[N](y, s; λ)dλ

=(λ∗

i − λi)TN (λ∗

i )TN−1(λ∗

i ) · · · Ti+1(λ∗

i )
Φi[i − 1]Φi[i − 1]†Σ
Φi[i − 1]†ΣΦi[i − 1]

Ti−1(λ∗

i ) · · · T1(λ∗

i )

(25)

and
1

2π i

∮
γ−λi

T[N](y, s; λ)dλ

=(λi − λ∗

i )TN (−λi)TN−1(−λi) · · · Ti+1(−λi)
ΛΦi[i − 1]∗Φi[i − 1]TΛΣ

Ti−1(−λi) · · · T1(−λi),

(26)
Φi[i − 1]†ΣΦi[i − 1]
5
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oth of which have rank one. Then the multi-fold Darboux matrix T[N](y, s; λ) can be rewritten in the following form:

T[N](y, s; λ) = I4 −

N∑
i=1

(
|x2i−1⟩⟨y2i−1|

λ− λ∗

i
+

|x2i⟩⟨y2i|
λ+ λi

)
Σ . (27)

The inverse Darboux matrix can be rewritten as

T[N]
−1(y, s; λ) = ΣT[N]

†(y, s; λ∗)Σ = I4 −

N∑
i=1

(
|y2i−1⟩⟨x2i−1|

λ− λi
+

|y2i⟩⟨x2i|
λ+ λ∗

i

)
Σ, (28)

here |yk⟩† = ⟨yk| and |xk⟩† = ⟨xk|, k = 1, 2, . . . , 2N . Since T[N](y, s; λ)T[N]
−1(y, s; λ) = I4, we know that

1
2π i

∮
γλi

T[N](y, s; λ)T[N]
−1(y, s; λ)dλ = T[N](y, s; λi)|y2i−1⟩⟨x2i−1|Σ = 0,

1
2π i

∮
γ
−λ∗i

T[N](y, s; λ)T[N]
−1(y, s; λ)dλ = T[N](y, s; −λ∗

i )|y2i⟩⟨x2i|Σ = 0.
(29)

It is easy to show

T[N](y, s; λi)|y2i−1⟩ = 0, T[N](y, s; −λ∗

i )|y2i⟩ = 0, i = 1, 2, . . . ,N. (30)

On the other hand, we know the kernel of the multi-Darboux matrix is such that Ker(T(s, y; λi)) = span{Φi} and Ker(T(s, y; −λ∗

i )) =

pan{ΛΦ∗

i }. Thus the vectors |y2i−1⟩ and |y2i⟩ can be chosen as Φi and ΛΦ∗

i respectively. By using Eq. (30), one obtains

[|x1⟩, |x2⟩, . . . , |x2N−1⟩, |x2N⟩] =
[
Φ1,ΛΦ

∗

1 , . . . ,ΦN ,ΛΦ
∗

N

]
M−1

N , (31)

where MN is the block matrix

MN =

⎛⎜⎝
⎡⎢⎣ Φ

†
i ΣΦj
λj−λ

∗
i

Φ
†
i ΛΣΦ

∗
j

−λ∗
j −λ∗

i

−ΦT
i ΛΣΦj
λj+λi

ΦT
i ΣΦ

∗
j

−λ∗
j +λi

⎤⎥⎦
⎞⎟⎠

1≤i,j≤N

. (32)

Finally, the N-fold Darboux matrix T[N](y, s; λ) is given by the following theorem:

Theorem 2. The N-fold Darboux matrix

T[N](y, s; λ) = I4 − YM−1
N (λI2N − D2N )−1Y†Σ (33)

converts the system (5) into the system with new potential functions ρ[N](y, s) and Q[N], where

Y =
[
Φ1,ΛΦ

∗

1 , . . . ,ΦN ,ΛΦ
∗

N

]
=

[
Y1
Y2

]
, D2N = diag

(
λ∗

1,−λ1, . . . , λ
∗

N ,−λN
)
,

Y1 and Y2 are 2× (2N) matrices, the matrix MN is given in (32). The Bäcklund transformation between old potential functions and new ones
is given by

Q[N] = Q − Y2M−1
N Y†

1,

ρ[N] = ρ − lny,s (det(MN )) ,

|q1[N]|
2
+ |q2[N]|

2
= |q1|2 + |q2|2 + 2κ lnss (det(MN )) .

(34)

Proof. The multi-fold Darboux matrix T[N](y, s; λ) can be derived from the theory of standard Darboux transformation. Here we just
prove the Bäcklund transformation (34). By the theory of the Darboux matrix, we know that

T[N]y + T[N]U = U[N]T[N], T[N]s + T[N]V = V[N]T[N].

If we expand the multi-fold Darboux matrix T[N](y, s; λ) in the neighborhood of ∞

T[N] = I4 + T[N]
[1](y, s)λ−1

+ O(λ−2), T[N]
[1](y, s) = −YM−1

N Y†Σ,

we then have

Q[N] = Q − Y2M−1
N Y†

1,

ρ[N] = ρ + i
(
T[N]

[1]
1,1

)
y
,

(35)

where T[N]
[1]
1,1 represents the (1, 1) element of the matrix T[N]

[1]. Actually, from the symmetry relation σ3Y1M−1
N Y†

1σ3 = Y1M−1
N Y†

1 and
−σ2Y1M−1

N Y†
1σ2 = Y1M−1

N Y†
1, where σ3 = diag(1,−1), it follows that −Y1M−1

N Y†
1 = T[N]

[1]
1,1I2. Suppose there exists a matrix solution,

hich can be expanded in the deleted neighborhood of ∞ on S2:[
Θ

Ψ

]
=

([
I2
0

]
+

∞∑
Φi

)
e

i
4 λsI2 . (36)
i=1

6
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ubstituting (36) into (5), one obtains(
Q†ΨΘ−1)

s = Q†
sΨΘ

−1
+

i
2
(|q1|2 + |q2|2)I2 −

iλ
2
Q†ΨΘ−1

−
iκ
2
(Q†ΨΘ−1)2,

which yields the following expansion

Q†ΨΘ−1
= (|q1|2 + |q2|2)I2λ−1

+ O(λ−2).

From the Lax pair (5), we have

Θs =

(
i
4
λI2 +

iκ
2
(|q1|2 + |q2|2)I2λ−1

+ O(λ−2)
)
Θ. (37)

nserting the asymptotic expansion

Θ =

(
I2 +

∞∑
i=1

Θ [i]λ−i

)
e

i
4 λsI2

n (36) into Eq. (37), one arrives at
iκ
2
(|q1|2 + |q2|2)I2 =

[
Θ

[1]
1,1I2

]
s

where Θ [1]
1,1 represents the (1, 1) element of matrix Θ [1]. If we apply the multi-fold Darboux matrix on the matrix solution (36), a similar

result can be obtained:
iκ
2
(|q1[N]|

2
+ |q2[N]|

2)I2 =

[(
T[N]

[1]
1,1 +Θ

[1]
1,1

)
I2

]
s
.

Thus we have
iκ
2
(|q1[N]|

2
+ |q2[N]|

2)I2 =
iκ
2
(|q1|2 + |q2|2)I2 +

[
T[N]

[1]
1,1I2

]
s
.

he next step is to prove that the expression T[N]
[1]
1,1 can be rewritten in a compact form. Due to the fact that

Φi,s = V(y, s; λi)Φi, −Φ
†
j,sΣ = Φ

†
j ΣV(y, s; λ∗

j ),

e have

−4i

(
ΦiΣΦ

†
j

λi − λ∗

j

)
s

= ΦiΣΣ3Φ
†
j .

Together with Proposition 1, we have[
T[N]

[1]
1,1

]
s
=

1
4

[
2T[N]

[1]
1,1 − 2T[N]

[1]
3,3

]
s
=

1
4

[
−Y1M−1

N Y†
1 + κY2M−1

N Y†
2

]
s
= i lnss det(MN ).

Similarly, we can derive[
T[N]

[1]
1,1

]
y
= i lnys det(MN ),

which completes the proof. □

Prior to considering the higher order Darboux matrix and the general one, we rewrite the matrix MN (32) in the following form

MN = KNSNK†
N (38)

where

KN =

⎡⎢⎢⎢⎢⎢⎣
Φ

†
1 0 0 0 · · · 0 0
0 −ΦT

1Λ 0 0 · · · 0 0
...

...
...

... · · ·
...

...

0 0 0 0 · · · Φ
†
N 0

0 0 0 0 · · · 0 −ΦT
NΛ

⎤⎥⎥⎥⎥⎥⎦ , SN =

⎛⎝⎡⎣ Σ
λj−λ

∗
i

Σ
−λ∗

j −λ∗
i

Σ
λj+λi

Σ
−λ∗

j +λi

⎤⎦⎞⎠
1≤i,j≤N

.

uppose we have the following expansion

Φk =

∞∑
i=0

Φ
[i]
k (λ− λk)i, k = 1, 2, . . . , l, (39)

through the standard limit technique for the multi-fold Darboux matrix [33], the general Darboux matrix can be obtained:

T[N](y, s; λ) = I4 − YM−1
N D2NY†Σ, (40)

where

Y =
[
Y[1],Y[2], . . . ,Y[l]]

=

[
Y1
]
, Y[k]

=

[
Φ

[0]
k ,ΛΦ

[0]∗
k , . . . ,Φ

[sk]
k ,ΛΦ

[sk]∗
k

]
, (41)
Y2

7
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D2N = diag (D1,D2, . . . ,Dl) , Dk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
λ−λ∗

k
0 · · · 0 0

0 1
λ+λk

· · · 0 0

· · ·

1
(λ−λ∗

k )
sk+1 0 · · ·

1
(λ−λ∗

k )
0

0 (−1)sk
(λ+λk)sk+1 · · · 0 1

λ+λk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

MN = K̂NSN K̂†
N . (42)

Here
∑l

k=1 sk = N , and

K̂N =

⎡⎢⎢⎣
K1 0 · · · 0
0 K2 · · · 0
...

... · · ·
...

0 0 · · · Kl

⎤⎥⎥⎦ , SN =
(
Si,j
)
1≤i,j≤l ,

Kk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ
[0]†
k 0 · · · 0 0

0 −Φ
[0]T
k Λ · · · 0 0

...
... · · ·

...
...

Φ
[sk−1]†
k 0 · · · Φ

[0]†
k 0

0 −Φ
[sk−1]T
k Λ · · · 0 −Φ

[0]T
k Λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Si,j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0
0

)
Σ

λj−λ
∗
i

(0
0

)
Σ

−λ∗
j −λ∗

i
· · ·

(sj−1
0

) (−1)sj−1
Σ

(λj−λ∗
i )

sj

(sj−1
0

)
Σ

(−λ∗
j −λ∗

i )
sj(0

0

)
Σ

λj+λi

(0
0

)
Σ

−λ∗
j +λi

· · ·
(sj−1

0

) (−1)sj−1
Σ

(λj+λi)
sj

(sj−1
0

)
Σ

(−λ∗
j +λi)

sj

...
...

. . .
...

...(si−1
si−1

)
Σ

(λj−λ∗
i )

si

(si−1
si−1

)
Σ

(−λ∗
j −λ∗

i )
si · · ·

(si+sj−2
si−1

) (−1)sj−1
Σ

(λj−λ∗
i )

si+sj−1

(si+sj−2
si−1

)
Σ

(−λ∗
j −λ∗

i )
si+sj−1(si−1

si−1

) (−1)si−1Σ
(λj+λi)si

(si−1
si−1

) (−1)si−1Σ
(−λ∗

j +λi)si
· · ·

(si+sj−2
si−1

) (−1)si+sj−2
Σ

(λj+λi)
si+sj−1

(si+sj−2
si−1

) (−1)si−1Σ

(−λ∗
j +λi)

si+sj−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

he Bäcklund transformation has the same form as in (34) with new matrices Y1, Y2 and MN given in (41) and (42).
For the nonsingular finite gap solution [36], there exists an analytic matrix solution Φ(y, s; λ) normalized Φ(0, 0; λ) = I4 by the

roposition 2.1 [5]. So we can construct the localized wave solutions on the background of finite gap solutions. In this work, we merely
onsider the background of zero and plane wave solutions.
Therefore, through the above theorems and analysis, the regular solutions of the CCSP equation (1) can be represented as

Q[N] = Q − Y2M−1
N Y†

1,

ρ[N] = ρ − lny,s (det(MN )) > 0,

x =

∫ (y,s)

(y0,s0)
ρ(y′, s′)dy′

−
κ

2
(|q1(y′, s′)|2 + |q2(y′, s′)|2)ds′ − lns (det(MN )) , t = −s,

(43)

where Yi (i = 1, 2) and MN are given in (41) and (42), respectively.

3. Soliton solution under vanishing boundary condition

In this section, we consider how to derive the soliton solution under VBC. Since the exact solution is singular in the defocusing case,
we only consider the focusing case κ = 1. Exact solutions can be constructed directly by the Darboux transformation, and the soliton
interaction can be analyzed directly from the multi-soliton solution. In order to get a better understanding for the solutions from a
spectral viewpoint, we give a simple inverse scattering analysis for this problem [1].

3.1. Scattering and inverse scattering analysis

Consider the spectral problem

Φy =
1
[
−iρI2 −Q†

y
]
Φ, (44)
λ Qy iρI2

8
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ith the boundary condition ρ →
δ
2 > 0, Q → 0 as y → ±∞. Suppose the potential functions satisfy the following conditions∫

R

⏐⏐⏐⏐ρ −
δ

2

⏐⏐⏐⏐ dy < ∞,

∫
R

(⏐⏐q1,y⏐⏐+ ⏐⏐q2,y⏐⏐) dy < ∞. (45)

Performing a simple transformation Φ = m exp
[
−i δ2λΣ3y

]
into the spectral problem (44), we obtain

my = −
iδ
2λ
(Σ3m − mΣ3)+

1
λ
∆Um, ∆U(y) =

[
−i(ρ −

δ
2 )I2 −Q†

y

Qy i(ρ −
δ
2 )I2

]
, (46)

hich yields the following integral equations

m±(y; λ) = I4 +
1
λ

∫ y

±∞

e
iδ
2λ (y

′
−y)Σ3∆U(y′)m±(y′

; λ)e−
iδ
2λ (y

′
−y)Σ3dy′. (47)

By the standard Neumann series method, mup
= (m1,−,m2,+) is analytic in the upper half plane C+; mlw

= (m1,+,m2,−) is analytic
n the lower half plane C−, where m±,1, m±,2 are the first two and last two columns of the matrices m± respectively. Φ+ and Φ− are
fundamental solutions of the linear system of differential equations (44), and therefore we can define the scattering matrix S(λ):

Φ+(y, s; λ) = Φ−(y, s; λ)S(λ), Φ±(y, s; λ) = m±(y; λ) exp
[
−i

δ

2λ
Σ3y

]
, (48)

which yields det(S(λ)) = 1.
The symmetry relations for the solution Φ±(x, t; λ) can be obtained by the symmetries of the solutions Φ±. Since

Φ±(y, s; λ)Φ
†
±(y, s; λ

∗) = I4, (49)

and

ΛΦ±(y, s; λ)Λ−1
= Φ∗

±
(y, s; −λ∗) (50)

the scattering matrix satisfies

S(λ)S†(λ∗) = I4, (51)

and

ΛS(λ)Λ−1
= S∗(−λ∗). (52)

The above symmetry relations (51) and (52) allow us to write

S(λ) =

[
a(λ) c(λ)
b(λ) d(λ)

]
, S−1(λ) = S†(λ∗) =

[
a†(λ∗) b†(λ∗)
c†(λ∗) d†(λ∗)

]
(53)

where

a(λ) =

[
a1(λ) −a∗

2(−λ
∗)

a2(λ) a∗

1(−λ
∗)

]
, b(λ) =

[
b1(λ) −b∗

2(−λ
∗)

b2(λ) b∗

1(−λ
∗)

]
,

c(λ) =

[
c1(λ) −c∗

2 (−λ
∗)

c2(λ) c∗

1 (−λ
∗)

]
, d(λ) =

[
d1(λ) −d∗

2(−λ
∗)

d2(λ) d∗

1(−λ
∗)

]
.

(54)

ext, we derive the jump condition and the scattering data. To this end, we assume that the determinant det(a(λ)) on the real line is
onzero. If the determinant det(a(λ)) is zero somewhere on the real line, the corresponding point is called a spectral singularity [9].
hus, the purpose of this assumption is to avoid spectral singularities.
Taking the limit x → −∞ in (48), we obtain that

a(λ) = lim
y→−∞

m1,1,+(y, s; λ), d(λ) = lim
y→−∞

m2,2,+(y, s; λ) (55)

here m1,1,+(y, s; λ) denotes the first two rows of m1,+(y, s; λ), m2,2,+(y, s; λ) denotes the last two rows of m2,+(y, s; λ). Then Eq. (55)
hows that a(λ) is analytic in the lower half plane, and d(λ) is analytic in the upper half plane. We then normalize the analytic matrices
up or mlw with unimodular:

m ≡ m+
= mupdiag

(
I2, [d(λ)]−1)

=
(
m1,−,m2,−

) [I2 c(λ)[d(λ)]−1e−
δi
λ
yI2

0 I2

]
, λ ∈ C

+ (56)

and

m ≡ m−
= mlwdiag

(
[a(λ)]−1, I2

)
=
(
m1,−,m2,−

) [ I2 0
b(λ)[a(λ)]−1e

δi
λ
yI2 I2

]
, λ ∈ C

−. (57)

Thus, the jump condition on the real line is

m+
= m−

[
I2 c(λ)[d(λ)]−1e−

δi
λ
yI2

−1 δi
λ
yI2 −1 −1

]
, λ ∈ R. (58)
−b(λ)[a(λ)] e I2 − b(λ)[a(λ)] c(λ)[d(λ)]
9
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oreover, due to the symmetry relation S†(λ∗)S(λ) = I4, we obtain a†(λ∗)c(λ) + b†(λ∗)d(λ) = 0, which implies c(λ)d−1(λ) =

(b(λ∗)a−1(λ∗))†. Thus the jump condition can be simplified as

m+
= m−

[
I2 r†(λ)e−

δi
λ
yI2

r(λ)e
δi
λ
yI2 I2 + r(λ)r†(λ)

]
, λ ∈ R, (59)

here

r(λ) = −b(λ)a−1(λ) =

[
r1(λ) −r2(−λ)
r2(λ) r1(−λ)

]
.

ere r(λ) is called the matrix reflection coefficient.

.2. Scattering data and scattering map

To proceed to the case of the discrete spectrum, we assume the elements of scattering matrix a(λ) and d(λ) can be analytically
xtended to the corresponding complex plane. Since

det(S(λ)) = det(ad) det
(
I2 − ba−1cd−1)

= det(a(λ)a†(λ∗)) det
(
I2 + r(λ)r†(λ∗)

)
,

rom the fact of S(λ) = 1, one has |α(λ)|2 = [det
(
I2 + r(λ)r†(λ∗)

)
]
−1, where α(λ) = det(a(λ)).

In what follows, we consider the discrete scattering data following the ideas in [37]. Since the scattering matrix a(λ) is 2 × 2, there
re two different cases: one is single zeros of α(λ); the other one is double zeros of α(λ). Firstly we consider the single zeros of det(a(λ)).
ssume that the determinant of det(a(λ)) has the simple zeros λ1 and −λ∗

1 located in the lower half plane, since

det
([
Φ1,+(y, s; λ),Φ2,−(y, s; λ)

])
= α(λ) ≡

(λ− λ1)(λ+ λ∗

1)
(λ− λ∗

1)(λ+ λ1)
α̂(λ),

he eigenfunctions satisfy the relation

Φ1,+(y, s; λ1)
[
α1(s; λ1)
α2(s; λ1)

]
= Φ2,−(y, s; λ1)

[
α3(s; λ1)
α4(s; λ1)

]
,

Φ1,+(y, s; −λ∗

1)
[
−α∗

2 (s; λ1)
α∗

1 (s; λ1)

]
= Φ2,−(y, s; −λ∗

1)
[
−α∗

4 (s; λ1)
α∗

3 (s; λ1)

]
,

(60)

where αi, i = 1, 2, 3, 4 are the coefficients of proportionality. In order to get a closed form, we need another linear relation which
comes from the degenerate property of the matrix a(λ). We consider the meromorphic function

Φ−(y, s; λ) =

[
Φ1,+(y, s; λ)adj(a(λ))

det(a(λ))
,Φ2,−(y, s; λ)

]
which can be expanded by

Φ−(y, s; λ) =

[
K[−1]

1 (y, s), 0
]

λ− λ1
+

[
K[0]

1 (y, s),K[0]
2 (y, s)

]
+

[
K[1]

1 (y, s),K[1]
2 (y, s)

]
(λ− λ1) + · · · .

ince det(Φ−(y, s; λ)) = 1, we have

det
([

K[−1]
1 (y, s),K[0]

2 (y, s)
])

= Res
λ=λ1

(
1
α(λ)

)
det

([
Φ1,+(y, s; λ1),Φ2,−(y, s; λ1)

])
det (adj(a(λ1)))

= Res
λ=λ1

(
1
α(λ)

)
det (a(λ1)) det (adj(a(λ1))) = 0,

(61)

which implies that
[
K[−1]

1 (y, s),K[0]
2 (y, s)

]
has a second order zero at the point λ = λ1. The second order zero is a consequence of the

atrix a(λ) being degenerate. The corresponding linear relations are

K[−1]
1 (y, s)

[
β1(λ1)
β2(λ1)

]
= 0,

nd

K[−1]
1 (y, s)

(
a(λ1)

[
α1(λ1)
α2(λ1)

])
= K[0]

2 (y, s)
[
α3(s; λ1)
α4(s; λ1)

]
here the nonzero property of vector a(λ1)

[
α1(λ1)
α2(λ1)

]
̸= 0 can be derived from the asymptotic behavior of Φ1,+(y, s; λ). We have a

imilar relation at the point λ = −λ∗

1.
Secondly, we consider the double zeros of α(λ), i.e.

α(λ) =
(λ− λ1)2(λ+ λ∗

1)
2

2 ∗ 2 α̂(λ).
(λ+ λ1) (λ− λ1)
10
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he matrix function a(λ) can be decomposed in the following form

a(λ) =
(λ− λ1)(λ+ λ∗

1)
(λ+ λ1)(λ− λ∗

1)
â(λ),

here â(λ) is a non-degenerate matrix in the lower half plane. In this case, there are two eigenfunctions at λ = λ1, which satisfy the
following relations

Φ1,+(y, s; λ1)
[
α1(s; λ1)
α2(s; λ1)

]
= Φ2,−(y, s; λ1)

[
α3(s; λ1)
α4(s; λ1)

]
,

Φ1,+(y, s; λ1)
[
β1(s; λ1)
β2(s; λ1)

]
= Φ2,−(y, s; λ1)

[
β3(s; λ1)
β4(s; λ1)

]
,

Φ1,+(y, s; −λ∗

1)
[
−α∗

2 (s; λ1)
α∗

1 (s; λ1)

]
= Φ2,−(y, s; −λ∗

1)
[
−α∗

4 (s; λ1)
α∗

3 (s; λ1)

]
,

Φ1,+(y, s; −λ∗

1)
[
−β∗

2 (s; λ1)
β∗

1 (s; λ1)

]
= Φ2,−(y, s; −λ∗

1)
[
−β∗

4 (s; λ1)
β∗

3 (s; λ1)

]
,

(62)

here αi, βi, i = 1, 2, 3, 4 are the coefficients of proportionality, and the vectors (α1, α2, α3, α4) and (β1, β2, β3, β4) are linear
ndependent. To find a closed form, we need another linear relation which comes from the degeneracy of the matrix a(λ). In this
ase, we consider the meromorphic function

Φ−(y, s; λ) =

[
Φ1,+(y, s; λ)â(λ)

−1 (λ+ λ1)(λ− λ∗

1)
(λ− λ1)(λ+ λ∗

1)
,Φ2,−(y, s; λ)

]
hich can be expanded by

Φ−(y, s; λ) =

[
K[−1]

1 (y, s), 0
]

λ− λ1
+

[
K[0]

1 (y, s),K[0]
2 (y, s)

]
+

[
K[1]

1 (y, s),K[1]
2 (y, s)

]
(λ− λ1) + · · · .

ince det(Φ−(y, s; λ)) = 1, one has

det
([

K[−1]
1 (y, s),K[0]

2 (y, s)
])

=
2λ1(λ1 − λ∗

1)
λ1 + λ∗

1

(
det

(
â(λ1)

))−1
det

([
Φ1,+(y, s; λ1),Φ2,−(y, s; λ1)

])
=

2λ1(λ1 − λ∗

1)
λ1 + λ∗

1

(
det

(
â(λ1)

))−1
det (a(λ1)) = 0,

(63)

hich implies that
[
K[−1]

1 (y, s),K[0]
2 (y, s)

]
still possesses a second order zero at the point λ = λ1. The double zero point is a consequence

f the degeneracy of the matrix a(λ). The corresponding linear relations between them are

λ1 + λ∗

1

2λ1(λ1 − λ∗

1)
K[−1]

1 (y, s)
(
â(λ1)

[
α1(λ1)
α2(λ1)

])
= K[0]

2 (y, s)
[
α3(s; λ1)
α4(s; λ1)

]
nd

λ1 + λ∗

1

2λ1(λ1 − λ∗

1)
K[−1]

1 (y, s)
(
â(λ1)

[
β1(λ1)
β2(λ1)

])
= K[0]

2 (y, s)
[
β3(s; λ1)
β4(s; λ1)

]
.

Similar relations exist at the point λ = −λ∗

1, which are omitted here.
To establish the symmetry relation, we rewrite the relation of scattering matrix in the following form to find the discrete spectrum:

[
Φ±(y, s; λ∗)

]†
Φ∓(y, s; λ) = I4, Φ±(y, s; λ) = m±(y, s; λ) exp

[
−i

δ

2λ
Σ3y

]
. (64)

By the way, we obtain the determinant relation det(d(λ)) = det(a†(λ∗)). At the points λ = λ∗

1,−λ1, there are coefficients of
roportionality between Φ1,− and Φ2,+. It is easy to see that the meromorphic solution Φ+(y, s; λ) in the upper half plane can be

determined from the symmetry relation
[
Φ−(y, s; λ∗)

]†
Φ+(y, s; λ) = Φ+(y, s; λ)

[
Φ−(y, s; λ∗)

]†
= I4. The matrix functions Φ+(y, s; λ)

and
[
Φ−(y, s; λ∗)

]† can be expanded at the singular point λ = λ1 by

Φ+(y, s; λ) =
[
Φ+

0 (y, s; λ∗

1) +Φ+

1 (y, s; λ∗

1)(λ− λ∗

1) + · · ·
]
diag

(
I2,

I2

λ− λ∗

1

)
[
Φ−(y, s; λ∗)

]†
=diag

(
I2

λ− λ∗

1
, I2

)[[
Φ−

0 (y, s; λ1)
]†

+
[
Φ−

1 (y, s; λ1)
]† (λ− λ∗

1) + · · ·

] (65)

hich implies

Φ+

0 (y, s; λ∗

1)
[
Φ−

0 (y, s; λ1)
]†

=
[
Φ−

0 (y, s; λ1)
]†
Φ+

0 (y, s; λ∗

1) = 0,

Φ+

0 (y, s; λ∗

1)
[
Φ−

1 (y, s; λ1)
]†

+Φ+

1 (y, s; λ∗

1)
[
Φ−

0 (y, s; λ1)
]†[

−
]† + ∗

[
−

]† + ∗

(66)
= Φ0 (y, s; λ1) Φ1 (y, s; λ1) + Φ1 (y, s; λ1) Φ0 (y, s; λ1) = I4.

11
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rom (66), we have

Im
([
Φ−

0 (y, s; λ1)
]†)

= Ker
(
Φ+

0 (y, s; λ∗

1)
)
, Ker

([
Φ−

0 (y, s; λ1)
]†)

= Im
(
Φ+

0 (y, s; λ∗

1)
)
. (67)

Similarly, we obtain

Im
(
Φ−

0 (y, s; λ∗

1)
)

= Ker
([
Φ+

0 (y, s; λ1)
]†)

, Ker
(
Φ−

0 (y, s; λ1)
)

= Im
([
Φ+

0 (y, s; λ∗

1)
]†)

. (68)

We conclude that Ker
(
Φ−

0 (y, s; λ1)
)

⊥ Ker
(
Φ+

0 (y, s; λ∗

1)
)
. Actually, for arbitrary vectors u ∈ Ker

(
Φ−

0 (y, s; λ1)
)

and v ∈

Ker
(
Φ+

0 (y, s; λ∗

1)
)
, on account of Eq. (67), we obtain v†u = w†Φ−

0 (y, s; λ1)u = 0. On the other hand

dim
(
Ker

(
Φ−

0 (y, s; λ1)
))

+ dim
(
Im
(
Φ−

0 (y, s; λ1)
))

= dim
(
Ker

(
Φ−

0 (y, s; λ1)
))

+ dim
(
Im
([
Φ−

0 (y, s; λ1)
]†))

= dim
(
Ker

(
Φ−

0 (y, s; λ1)
))

+ dim
(
Ker

(
Φ−

0 (y, s; λ∗

1)
))

= 4

(69)

which implies

Ker
(
Φ−

0 (y, s; λ1)
)
⊕ Ker

(
Φ+

0 (y, s; λ∗

1)
)

= C
4. (70)

he spaces Ker
(
Φ−

0 (y, s; λ1)
)
and Ker

(
Φ+

0 (y, s; λ∗

1)
)
represent the discrete scattering data.

Before the discussion of multiple zeros case, we introduce the generalized eigenfunctions. For i = 1, . . . , n, functions φi ∈ L2(R)
satisfying the equations

(L − λ1)φ = 0,
(L − λ1)φ1 = φ,

· · ·

(L − λ1)φn = φn−1

(71)

are called generalized eigenfunctions. Actually, it is obvious to see that generalized eigenfunctions can be obtained by taking derivatives
of an eigenfunction φ with respect to λ, i.e.

φi =
diφ

dλi
|λ=λ1 ∈ L2(R). (72)

In general, under the assumption

α(λ) =

n∏
i=1

(λ− λi)ki (λ+ λ∗

i )
ki

(λ+ λi)ki (λ− λ∗

i )ki
α̂(λ), ki = νi + τi

the generalized eigenfunctions can be determined by the following relations:

djiΦ1,+(y, s; λ)
dλji

[
α1(s; λ)
α2(s; λ)

] ⏐⏐
λ=λi

=
djiΦ2,−(y, s; λ)

dλji

[
α3(s; λ)
α4(s; λ)

] ⏐⏐
λ=λi

,

dliΦ1,+(y, s; λ)
dλli

[
β1(s; λ)
β2(s; λ)

] ⏐⏐
λ=λi

=
dliΦ2,−(y, s; λ)

dλli

[
β3(s; λ)
β4(s; λ)

] ⏐⏐
λ=λi

,

(73)

where ji = 1, 2, . . . , νi−1; li = 1, 2, . . . , τi−1; αν(s; λi), βν(s; λi) and their derivative with respect to λ, ν = 1, 2, 3, 4 are the coefficients
of proportionality. The relations (73) imply that the functions

dkΦ1,+(y, s; λ)
dλk

⏐⏐
λ=λi

,
dkΦ2,−(y, s; λ)

dλk
⏐⏐
λ=λi

end to zero as y → ±∞. So they are generalized eigenfunctions. The other generalized eigenfunctions can be defined by the symmetry
elationships (49) and (50).

Thus, in the absence of the spectral singularities, the scattering map can be represented as

(q1(y, 0), q2(y, 0)) →

{
r(λ), λ ∈ R; ±λi,±λ

∗

i ,
dji

dλji
αl(0; λ)|λ=λi ,

dji

dλli
βl(0; λ)|λ=λi

}
, (74)

= 1, 2, . . . , n, l = 1, 2, 3, 4, ji = 0, 1, . . . , νi − 1, li = 0, 1, . . . , τi − 1.

.3. Evolution of scattering data

We consider the evolution of scattering data. Suppose we have the Jost functions Φ±(y, s; λ) for each s and the potential function
Q decaying to zero when y → ±∞, then W±(y, s; λ) = Φ±(y, s; λ) exp

( i
4λsΣ3

)
satisfies the Lax pair (5). Actually, since Φ±(y, s; λ)

atisfies the spectral problem (44), we can write W±(y, s; λ) = Φ±(y, s; λ)C±(s; λ). Inserting W±(y, s; λ) into evolution part of the
Lax pair (5), we obtain C±

s (s; λ) =
i
4λΣ3C±(s; λ) by the decay properties of the potential functions Q, which implies that C±(s; λ) =

exp
( i
4λΣ3s

)
to keep the normalization at ±∞. Thus

d
Φ±(y, s; λ) = −

i
λΦ±(y, s; λ)Σ3 + V(y, s; λ)Φ±(y, s; λ),
ds 4

12



B.-F. Feng and L. Ling Physica D 437 (2022) 133332

w

r
e

T

i

c

3

m

R
p
A
P

J

N

hich yields the evolution of the scattering matrix
d
ds

S(s; λ) =
d
ds

(
Φ−1

−
(y, s; λ)Φ+(y, s; λ)

)
=

i
4
λ [Σ3, S(s; λ)]

i.e. a(s; λ) = a(0; λ), d(s; λ) = d(0; λ), b(s; λ) = exp(− i
2λsI2)b(0; λ) and c(s; λ) = exp( i

2λsI2)c(s; λ). So the reflection coefficients
(s; λ) = exp(− i

2λsI2)r(0; λ) and the zeros of determinants a(λ) and d(λ) are invariant since the matrix a(λ) and d(λ) can be analytically
xtended in the lower/upper half plane respectively.
Now we consider the evolution of the coefficients of proportionality. Firstly, we have

d
ds
Φ1,+(y, s; λ) = −

i
4
λΦ1,+(y, s; λ) + V(y, s; λ)Φ1,+(y, s; λ),

and
d
ds
Φ2,−(y, s; λ) =

i
4
λΦ2,−(y, s; λ) + V(y, s; λ)Φ2,−(y, s; λ).

aking the derivative of (60) with respect to s, we have
d
ds

[
α1(s; λi)
α2(s; λi)

]
= 0,

d
ds

[
α3(s; λi)
α4(s; λi)

]
= −

i
2
λi

[
α3(s; λi)
α4(s; λi)

]
, (75)

.e. [
α1(s; λi)
α2(s; λi)

]
=

[
α1(0; λi)
α2(0; λi)

]
,

[
α3(s; λi)
α4(s; λi)

]
= e−

i
2 λis

[
α3(0; λi)
α4(0; λi)

]
. (76)

In general, we obtain the evolution of generalized scattering data:

djiΦ1,+(y, s; λ)
dλji

[
α1(0; λ)
α2(0; λ)

] ⏐⏐
λ=λi

=
djiΦ2,−(y, s; λ)e−

i
2 λs

dλji

[
α3(0; λ)
α4(0; λ)

] ⏐⏐
λ=λi

,

dliΦ1,+(y, s; λ)
dλli

[
β1(0; λ)
β2(0; λ)

] ⏐⏐
λ=λi

=
dliΦ2,−(y, s; λ)e−

i
2 λs

dλli

[
β3(0; λ)
β4(0; λ)

] ⏐⏐
λ=λi

,

(77)

where ji = 1, 2, . . . , νi − 1; li = 1, 2, . . . , τi − 1; αν(0; λi), βν(0; λi) and their derivative with respect to λ, ν = 1, 2, 3, 4 are the
oefficients of proportionality.

.4. Inverse scattering

Now we consider the inverse scattering transform to obtain the solutions of Eqs. (6). Firstly, we represent the above well-defined
eromorphic function m(y, s; λ) in Eqs. (56) and (57) together with the evolved scattering data as a Riemann–Hilbert problem [38]:

iemann-Hilbert Problem 1. Let (y, s) ∈ R2 be arbitrary parameters. The meromorphic function m(y, s; λ) possesses the following
roperties:
nalyticity The meromorphic functionm(y, s; λ) = (m1(y, s; λ),m2(y, s; λ)) is analytic in λ for λ ∈ C\

(
R ∪ {±λi,±λ

∗

i |i = 1, 2, . . . , n}
)
;

oles The principal part of m1(y, s; λ) in the lower half plane can be represented as

m1(y, s; λ) =

n∑
i=1

ji∑
k=0

(
m[k]

1 (y, s; λi)
(λ− λi)k+1 +

m[k]
1 (y, s; −λ∗

i )
(λ+ λ∗

i )k+1

)
+ m1a(y, s; λ); (78)

and the principal part of m2(y, s; λ) in the upper half plane can be represented as

m2(y, s; λ) =

n∑
i=1

ji∑
k=0

(
m[k]

2 (y, s; λ∗

i )
(λ− λ∗

i )k+1 +
m[k]

2 (y, s; −λi)
(λ+ λi)k+1

)
+ m2a(y, s; λ); (79)

where ji = max{νi, τi}, m1a and m2a are the analytic part of m1 and m2 respectively; the principal part of m1 and m2 are linked
by Eqs. (77) and their symmetric equations with the aid of Eqs. (49) and (50).

ump condition The jump conditions on the real line

m+(y, s; λ) = m−(y, s; λ)v(y, s; λ), v(y, s; λ) =

[
I2 r†(λ)e−i( δ

λ
y− λs

2 )I2

r(λ)ei(
δ
λ
y− λs

2 )I2 I2 + r(λ)r†(λ)

]
, λ ∈ R, (80)

ormalization The normalization condition m(y, s; λ) → I4, as λ → ∞.
The above Riemann–Hilbert problem can be solved by the following algebraic–integral equations

m(y, s; λ) = I4 (81)

+

n∑
i=1

ji∑
k=0

⎛⎝
(
m[k]

1 (y, s; λi), 0
)

(λ− λi)k+1 +

(
m[k]

1 (y, s; −λ∗

i ), 0
)

(λ+ λ∗

i )k+1 +

(
0,m[k]

2 (y, s; λ∗

i )
)

(λ− λ∗

i )k+1 +

(
0,m[k]

2 (y, s; −λi)
)

(λ+ λi)k+1

⎞⎠
+

1
∫

m−(y, s; ζ )(v(y, s; ζ ) − I4)dζ
,

2π i R ζ − λ

13
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he algebraic equations are given in Eqs. (77) and their symmetry equations is given in the Riemann-Hilbert Problem 1. Insert the
xpansion

m(y, s; λ) = I4 + M1(y, s)λ−1
+ O(λ−2) (82)

nto Eq. (46), the potential function can be recovered as[
−i(ρ −

δ
2 )I2 −Q†

y

Qy i(ρ −
δ
2 )I2

]
=

d
dy

M1(y, s). (83)

In general, the algebraic–integral equations (81) do not have a closed form. However, in a special case, i.e. the reflectionless case
(λ) = 0, the potential functions can be obtained explicitly from Eqs. (77) and their symmetric equations.
To solve the linear system, we use the ansatz from the Darboux transformation given in Section 2. Since the reflection coefficient

(λ) = 0, the jump condition on the line is the identity matrix. The meromorphic function m(y, s; λ) is an analytic function with poles
ocated at the points ±λi and ±λ∗

i , i = 1, 2, . . . , n. From Eqs. (81), we see that the first two columns of the matrix m(y, s; λ) are
ifferent from the last two columns of matrix m(y, s; λ). Thus, we redefine a new analytic matrix

m̃(y, s; λ) = m(y, s; λ)diag (a(λ), I2) (84)

hich is analytic in the lower half plane and has the poles in the upper half plane. Actually, the new analytic matrix m̃(y, s; λ) is
onsistent with the general Darboux matrix T[N](y, s; λ) (40) with the seed solution q1 = q2 = 0. In the following, we give the exact
olutions and their dynamics.

.5. Single soliton solutions

As shown in previous analysis, there are two different types of eigenvalues: simple zero of det(a(λ)); and double zeros of det(a(λ)).
ndeed, each simple zero corresponds to a su(2)-type soliton, and each double zero corresponds to a breather solution.

To find single soliton solution through the formula (18), we need to give a special solution Φ1 of the Lax pair at λ = λ1 = a1 + ib1,
1 < 0 and q1 = q2 = 0, ρ = δ/2:

Φ1 =

⎡⎢⎣θ1χ1
φ1
ψ1

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
c1e

i
(
λ1
4 s− δ

2λ1
y+ϑ1

)
c2e

i
(
λ1
4 s− δ

2λ1
y+ϑ2

)
d1e

−i
(
λ1
4 s− δ

2λ1
y+φ1

)
d2e

−i
(
λ1
4 s− δ

2λ1
y+φ2

)

⎤⎥⎥⎥⎥⎥⎦ . (85)

For the sake of convenience, we rewrite the Bäcklund transformation in the following form:

q1[1] = q1 − (λ1 − λ∗

1)
φ1θ

∗

1 + ψ∗

1χ1

|θ1|
2
| + χ1|

2
+ |φ1|

2
+ |ψ1|

2 ,

q2[1] = q2 − (λ1 − λ∗

1)
φ1χ

∗

1 − ψ∗

1 θ1

|θ1|
2
| + χ1|

2
+ |φ1|

2
+ |ψ1|

2 ,

ρ[1] = ρ − 2 lny,s

(
|θ1|

2
+ |χ1|

2
+ |φ1|

2
+ |ψ1|

2

λ1 − λ∗

1

)
.

(86)

Inserting (85) into (86), we obtain the single soliton solution[
q1[1]
q2[1]

]
= −ib1 sech(A1) C

[ d2
|d|

ei(B1−φ2)

d1
|d|

e−i(B1−φ1)

]
, C =

⎡⎣ c2eiϑ2
|c|

c1e−iϑ1
|c|

−
c1eiϑ1

|c|
c2e−iϑ2

|c|

⎤⎦ ,
ρ[1] = δ

(
1
2

−
b21

a21 + b21
sech2(A1)

)
,

x =
δ

2
y − b1 tanh(A1), t = −s,

(87)

where A1 = b1
(

s
2 +

δy
a21+b21

)
+ ln |d| − ln |c|, B1 = a1

(
s
2 −

δy
a21+b21

)
, |c| =

√
c21 + c22 , |d| =

√
d21 + d22. The dynamics of a single soliton

n Fig. 1 exhibits a beating effect [39]. The beating effect comes from the multi-component system with Hermitian symmetry, i.e. if
q1, q2) is the solution, then (q1, q2)H is also solution, for any Hermitian matrix H. It is easy to see that the matrix C is Hermitian. If
a1| > |b1|, the soliton is smooth; if |a1| = |b1|, the soliton is a cuspon-type; if |a1| < |b1|, the soliton is a loop-type. If t → ±∞, then
± b1 =

δ
2y. The center of soliton is located on the curve A1 = 0 which approaches the line (x±b1)

a21+b21
−

t
4 +

ln |d|−ln |c|
2b1

= 0 as t → ±∞.

Meanwhile, the velocity of the soliton tends to a21+b21
4 .

Now we consider the scattering data of above single soliton. As y → +∞, then the Darboux matrix (17) is

lim
y→+∞

T(y, s; λ) = T[+∞] = I4 −
λ1 − λ∗

1
2

[
cc†
λ−λ∗

1
+

σ2c∗cTσ
−1
2

λ−λ∗
1

0
]
, c =

[
c1eiϑ1
c2eiϑ2

]
;

|c| 0 0
14
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Fig. 1. SU(2) solitons. Parameters: c1 = c2 = 1, d1 = d2 = 1, a1 =
3
2 , b1 = −1, δ = 1, ϑ1 = ϑ2 = 0, φ1 = φ2 = 0.

orrespondingly, as y → −∞, the Darboux matrix (17) is

lim
y→−∞

T(y, s; λ) = T[−∞] = I4 −
λ1 − λ∗

1

|d|
2

[
0 0

0 dd†
λ−λ∗

1
+

σ2d∗dTσ−1
2

λ−λ∗
1

]
, d =

[
d1e−iφ1

d2e−iφ2

]
.

y the linear property of the Darboux matrix, we can rescale the Darboux matrix T[N]
= T(y, s; λ)T−1

[−∞]
. Taking the limit y → +∞, we

ave

a(λ) = I2 −
λ1 − λ∗

1

|c|2

(
cc†

λ− λ∗

1
+
σ2c∗cTσ−1

2

λ− λ∗

1

)
, d(λ)−1

= I2 −
λ1 − λ∗

1

|d|
2

(
dd†

λ− λ∗

1
+
σ2d∗dTσ−1

2

λ− λ∗

1

)
.

he determinant of a(λ) equals to λ−λ1
λ−λ∗

1

λ+λ∗
1

λ+λ1
. The eigenfunction at the point λ = λ1 can be easily constructed through the Darboux

atrix:

T(y, s; λ1)

⎡⎢⎢⎢⎣
c1e

i
(
λ1
4 s− δ

2λ1
y+ϑ1

)
c2e

i
(
λ1
4 s− δ

2λ1
y+ϑ2

)
0
0

⎤⎥⎥⎥⎦ = T(y, s; λ1)

⎡⎢⎢⎢⎣
0
0

−d1e
−i
(
λ1
4 s− δ

2λ1
y+φ1

)
−d2e

−i
(
λ1
4 s− δ

2λ1
y+φ2

)

⎤⎥⎥⎥⎦ ∈ [L2(R)]4. (88)

Similarly, we can construct other eigenfunctions at points λ = ±λ∗

1 and λ = −λ1.
We now turn to study the double geometric zeros of a(λ). In this case, the Darboux matrix can be constructed with the following

form:

T2(y, s; λ) = I4 − YM−1
2 (λI4 − D4)−1Y† (89)

where

Y =
[
Φ1,ΛΦ

∗

1 ,Φ2,ΛΦ
∗

2

]
, D4 = diag

(
λ∗

1,−λ1, λ
∗

1,−λ1
)
, M2 =

[
M11 M12
M21 M22

]
and

M11 =
Φ

†
1Φ1

λ1 − λ∗

1
I2, M22 =

Φ
†
2Φ2

λ1 − λ∗

1
I2, M12 =

⎡⎢⎣ Φ
†
1Φ2

λ1−λ∗
1

Φ
†
1ΛΦ

∗
2

−λ∗
1−λ∗

1

−
ΦT
1ΛΦ2
λ1+λ1

ΦT
1Φ

∗
2

−λ∗
1+λ1

⎤⎥⎦ , M21 =

⎡⎢⎣ Φ
†
2Φ1

λ1−λ∗
1

Φ
†
2ΛΦ

∗
1

−λ∗
1−λ∗

1

−
ΦT
2ΛΦ1
λ1+λ1

ΦT
2Φ

∗
1

−λ∗
1+λ1

⎤⎥⎦
ctually, this Darboux matrix can be viewed as the iteration of Darboux matrix (17). To obtain the solutions which are different from
bove single soliton solution, we choose

Φ1 =

⎡⎢⎢⎢⎢⎣
ei
(
λ1
4 s− δ

2λ1
y
)

0

d1,1e
−i
(
λ1
4 s− δ

2λ1
y+φ1,1

)
d2,1e

−i
(
λ1
4 s− δ

2λ1
y+φ2,1

)

⎤⎥⎥⎥⎥⎦ , Φ2 =

⎡⎢⎢⎢⎢⎣
0

ei
(
λ1
4 s− δ

2λ1
y
)

d1,2e
−i
(
λ1
4 s− δ

2λ1
y+φ1,2

)
d2,2e

−i
(
λ1
4 s− δ

2λ1
y+φ2,2

)

⎤⎥⎥⎥⎥⎦ ,
where di,j, φi,j, i, j = 1, 2, are real parameters. The corresponding solution from the formula (34) is a breather

q1[2] =
F1
D1
, q2[2] =

F2
D1
, ρ[2] =

δ

2
− 2 lnys(D1)

x =
δ
y − 2 lns(D1), t = −s,

(90)
2
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Fig. 2. Breather on a zero background. Parameters: a1 = 1, b1 = −
1
2 , δ = 1, d1,1 = 10, d1,2 = 2, d2,1 = −10, d2,2 = −1, φi,j = 0, i, j = 1, 2.

here

D1 =
Φ

†
1Φ1Φ

†
2Φ2 −Φ

†
2Φ1Φ

†
1Φ2

(λ1 − λ∗

1)2
−
Φ

†
2ΛΦ

∗

1Φ
T
1ΛΦ2

4|λ1|2
,

nd

Fj = Y3,1M12Y†
j,2 + Y3,2M21Y†

j,1 − (Y3,1M22Y†
j,1 + Y3,2M11Y†

j,2), j = 1, 2,

where Yj,1 represents the jth row and first two column of Y, Yj,2 represents the jth row and last two column of Y. If t → ±∞, then
x ± b1 =

δ
2y. The breather propagates along the curve s

2 −
δy

a21+b21
= const which approaches the line (x±2b1)

a21+b21
−

t
4 = const. The velocity

f the breather tends to a21+b21
4 . Fig. 2 displays the dynamics of one breather for two sets of parameters.

As shown in the simple zero case, the matrix functions a(λ), d(λ) can be obtained by taking the limit of the Darboux matrix as
y → +∞

a(λ) =
λ− λ1

λ− λ∗

1

λ+ λ∗

1

λ+ λ1
I2, d(λ) =

λ− λ∗

1

λ− λ1

λ+ λ1

λ+ λ∗

1
I2.

he corresponding two eigenfunctions at λ = λ1 are

T2(y, s; λ1)

⎡⎢⎢⎣ei
(
λ1
4 s− δ

2λ1
y
)

0
0
0

⎤⎥⎥⎦ , T2(y, s; λ1)

⎡⎢⎢⎣
0

ei
(
λ1
4 s− δ

2λ1
y
)

0
0

⎤⎥⎥⎦ .
.6. Multi-soliton solutions

In what follows, we consider the multi-soliton solutions. Among them, there is an interesting case – the double hump soliton –
hich corresponds to two solitons of the same speed. In the scalar case, two solitons with the same speed will resonate and thus

orm a breather. However, for the two component system, the nonlinear superposition of q1 = single soliton, q2 = 0 and q1 = 0,
2 = single soliton with the same speed, generates a double hump soliton. In the following, we discuss these three types of fundamental
oliton solutions in detail.
Suppose we have the following linear independent vectors:

Φi,ji =

⎡⎢⎣ ci,jie
i
(
λi,ji
4 s− δ

2λi,ji
y
)

di,jie
−i
(
λi,ji
4 s− δ

2λi,ji
y
)
⎤⎥⎦ (91)

here ci,j and di,j are constant column vectors, |λi,j1 | = |λi,j2 |, j1 ̸= j2, with at most two equal parameters among λi,ji , ji = 1, 2, . . . , ki.
nserting the vectors (91) into the formula (33), the multi-soliton solution can be derived through the formula (34).

The norm |λi,ji | determines the velocity of soliton. If two solitons propagate with the same speed, they will form a bound state.
hen the distance of the two solitons is large enough, the ‘‘breath" effect will be feeble. The choice of a set of linear independent

ector with |λi,1| = |λi,ji |, ji = 1, 2, . . . , ki will form a bound state. As mentioned above, in the multi-component system, in addition to
he breathers, there is an interesting double-hump soliton that can be obtained for a special choice of parameters. In what follows, we
ive its exact formula. Firstly, we choose the vectors

Φj =

[
cj

djeωj

]
, ωj = i

(
δ

λj
y −

λj

2
s
)
, j = 1, 2, |λ1| = |λ2|, λ1 ̸= λ2, (92)

where

c1 =

[
0
]
, c2 =

[
0
]
, d1 =

[
d1
]
, d2 =

[
0
]

1 1 0 d2
16



B.-F. Feng and L. Ling Physica D 437 (2022) 133332

d

P

a

T

a
p

3

Fig. 3. Double hump soliton on the zero background. Parameters: δ = 1, λ1 =
4
5 − i 35 , λ2 =

√
3
2 −

i
2 , d1 = 1, d2 = 0.91.

Fig. 4. Two-soliton solution with the elastic interaction on a zero background. Parameters: δ = 1, λ1 = 3 − i, λ2 = 2 − i, c1,1 = c1,2 = 0, c2,1 = c2,2 = 1,
1,1 = d1,2 = 1, d2,1 = −1, d2,2 = 1.

lugging the vectors (92) into (34) and simplifying it, we can obtain the double-hump soliton:

q1[2] =
F1
D2
, q2[2] =

F2
D2
, ρ[2] =

δ

2
− 2 lnys(D2)

x =
δ

2
y − 2 lns(D2), t = −s,

(93)

where

D2 =
(1 + |d1|2eω1+ω∗

1 )(1 + |d2|2eω2+ω∗
2 )

(λ1 − λ∗

1)(λ2 − λ∗

2)
+

|d1|2|d2|2eω1+ω2+ω∗
1+ω∗

2

|λ1 + λ2|
2 +

1
|λ2 − λ∗

1|
2 ,

nd

F1 = d∗

2e
ω∗
2

(
|d1|2eω1+ω∗

1

−λ∗

2 − λ∗

1
−

(1 + |d1|2eω1+ω∗
1 )

λ1 − λ∗

1
+

1
λ2 − λ∗

1

)
,

F2 = d1eω1

(
|d2|2eω

∗
2+ω2

λ1 + λ2
−

(1 + |d2|2eω2+ω∗
2 )

λ2 − λ∗

2
+

1
λ2 − λ∗

1

)
.

he shape of the double-hump soliton (Fig. 3) is determined by the parameters λ1, λ2 and |d1|, |d2|. The soliton velocity approaches
|λ1|

2

4 .
The dynamics of two-soliton are shown in Figs. 4 and 5, in which the elastic interaction between two solitons is shown in Fig. 4

nd the inelastic interaction between two soliton is shown in Fig. 5. The detailed analysis for the elastic or inelastic interaction can be
erformed by the asymptotic analysis as in Ref. [40].

.7. Higher order soliton solutions

To find the higher order soliton solution, the function ei
(
δ
λ
y− λ

2 s
)
is expanded at λ = λ1 by

ei
(
δ
λ
y− λ

2 s
)

= ei
(
δ
λ1

y− λ1
2 s
) ∞∑

En(y, s)(λ− λ1)n, En(y, s) =

(
−1
λ1

)n ∑ (iδyλ−1
1 )α1+α2+···+αn

α1!α2! · · ·αn!
+

(
−

is
2

)n
n!

, (94)

n=0 ∥α∥n=n

17
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d
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w

a

Fig. 5. Two-soliton solution with the in-elastic interaction on a zero background. Parameters: δ = 1, λ1 = 3 − i, λ2 = 2 − i, c1,1 = c1,2 = 0, c2,1 = c2,2 = 1,
1,1 = d1,2 = 1, d2,1 = 5, d2,2 = 0.

here ∥α∥n =
∑n

j=1 jαj. Correspondingly, the vector Φ1 can be expanded at λ = λ1:

Φ1(λ) =

[
c1

d1e
i
(
δ
λ
y− λ

2 s
)
]

=

∞∑
n=0

Φ
[n]
1 (λ− λ1)n, Φ

[n]
1 =

⎡⎢⎣ c[n]
1

ei
(
δ
λ1

y− λ1
2 s
) n∑

i=0

d[i]
1 En−i(y, s)

⎤⎥⎦ (95)

where

c1 =

∞∑
n=0

c[n]
1 (λ− λ1)n, d1 =

∞∑
n=0

d[n]
1 (λ− λ1)n.

Inserting the vectors (95) into the formula (40), the higher order soliton is obtained:

q1[N] =
det(M(1)

N )
det(MN )

, q2[N] =
det(M(2)

N )
det(MN )

,

ρ[N] =
δ

2
− lnys(MN ),

x =
δy
2

− lns(MN ) + const, t = −s,

(96)

here

MN = KNSNK†
N , M(i)

N =

[
MN Y(i)†

Y(3) 0

]
, (97)

nd

Y =

[
Φ

[0]
1 ,ΛΦ

[0]∗
1 , . . . ,Φ

[N−1]
1 ,ΛΦ

[N−1]∗
1

]
=

⎡⎢⎣Y(1)

Y(2)

Y(3)

Y(4)

⎤⎥⎦

KN =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ
[0]†
1 0 · · · 0 0

0 −Φ
[0]T
1 Λ · · · 0 0

...
... · · ·

...
...

Φ
[N−1]†
1 0 · · · Φ

[0]†
1 0

0 −Φ
[N−1]T
1 Λ · · · 0 −Φ

[0]T
1 Λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

SN =

⎛⎝⎡⎣(i+j−2
i−1

) (−1)j−1I4
(λ1−λ∗

1)
i+j−1

(i+j−2
i−1

)
I4

(−λ∗
1−λ∗

1)
i+j−1(i+j−2

i−1

) (−1)j−1+i−1I4
(λ1+λ1)i+j−1

(i+j−2
i−1

) (−1)i−1I4
(−λ∗

1+λ1)i+j−1

⎤⎦⎞⎠
1≤i,j≤N

.

In particular, by choosing the vectors

Φ
[0]
1 =

⎡⎢⎢⎢⎣
0
1

d1eA1+iB1

A1+iB1

⎤⎥⎥⎥⎦ , Φ
[1]
1 =

⎡⎢⎢⎢⎣
0
0

d1 (C1 + iD1) eA1+iB1

A1+iB1

⎤⎥⎥⎥⎦

d2e d2 (C2 + iD2) e

18
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Fig. 6. The second order soliton. Parameters: δ = 1, a1 =
4
5 , b1 = −

3
5 , d1 = d2 = 1, e1 = 2, e2 = 10, f1 = f2 = 0.

Fig. 7. The third order soliton. Parameters: δ = 1, λ1 = 1 −
i
5 , c1 = 0, c2 = 1, d1 = d2 = 1, d[1]

1 = 2, d[1]
2 = 10.

here λ1 = a1 + ib1, A1 = b1
(

δy
|λ1|2

+
s
2

)
, B1 = a1

(
δy

|λ1|2
−

s
2

)
, Ci = ei −

2a1b1δy
|λ1|4

, Di = fi −
(

(a21−b21)δy
|λ1|4

+
s
2

)
, i = 1, 2, ei, fi are arbitrary

eal constants, we have the second order soliton solution:

q1[2] =
d2F2eA1−iB1

4b13 (ib1 − a1) F1
, q2[2] =

d1F3eA1+iB1

4b13 (a1 + ib1) F1
,

ρ[2] =
δ

2
− 2 lnys(F1),

x =
δy
2

− 2 lns(F1), t = −s,

(98)

where

F1 =

[(
−4 d12

(
(C1 − C2)

2
+ (D1 − D2)

2) d22a12 − d4
)
b12 − a12d4

]
e4 A1

16b14
(
a12 + b12

)
−

[((
C1

2
+ D1

2) d12 + d22
(
C2

2
+ D2

2)) b12 + d2/2
]
e2 A1

4b14
−

1
16b14

,

F2 =
[(

−2 d12
(
(D1 − iC1) (C2 − iD2)+ iC1

2
+ iD1

2) a1 + (iC2 − 2D1 + D2) d12 + d22 (iC2 − D2)
)
b12
]
e2A1

+
[((
(−2iD1 + iD2 − C2) d12 − d22 (C2 + iD2)

)
a1 − d2

)
b1 − ia1d2

]
e2A1

+ (iC2 + D2) b12 + ((iD2 − C2) a1 − 1) b1 − ia1,

F3 = −
[(
2d22

(
(iC2 + D2) (C1 + iD1)− iC2

2
− iD2

2) a1 + (iC1 − D1 + 2D2) d22 + d12 (iC1 + D1)
)
b12
]
e2 A1

−
[((
(iD1 − 2iD2 + C1) d22 − d12 (iD1 − C1)

)
a1 + d2

)
b1 − ia1d2

]
e2 A1

−
[
(iC1 − D1) b12 + ((iD1 + C1) a1 + 1) b1 − ia1

]
,

nd d2 = d21 +d22. Figs. 6 and 7 display a second order soliton and a third order soliton, respectively, while Fig. 8 shows a superposition
f two second order solitons. It is seen that the two solitons in distinct components have different velocities.

. Modulational instability analysis and rogue waves

.1. Modulational instability analysis of the TCCD equation

In this section, we use the squared eigenfunctions method to derive the linear stability equation for the TCCD equations. Suppose
e have the following stationary zero curvature equation:

L (y, s; λ) = [U(y, s; λ), L(y, s; λ)] , L (y, s; λ) = [V(y, s; λ), L(y, s; λ)] (99)
y s
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Fig. 8. The second–second order soliton. Parameters: δ = 1, λ1 = 1 −
i
4 , λ2 = 2 −

i
2 , c2,1 = c2,2 = 1, d1,1 = d2,2 = 1, d1,2 = d2,1 = 0, d[1]

i,j = 0, i, j = 1, 2.

here

L(y, s; λ) =

[
A(y, s; λ) B(y, s; λ)
C(y, s; λ) D(y, s; λ)

]
hich can be rewritten as

As =
i
2
(κQ†C − BQ), Ds =

i
2
(QB − κCQ†),

Bs =
i
2
λB +

i
2
κ(Q†D − AQ†), Cs = −

i
2
λC +

i
2
(QA − DQ),

(100)

nd

λAy = − (κQ†
yC + BQy), λDy = QyB + κCQ†

y,

λBy = − 2iρB − κ(Q†
yD − AQ†

y), λCy = 2iρC + QyA − DQy.
(101)

aking the derivative of Eqs. (100) with respect to y, together with Eqs. (101), we obtain that

Asy =
i
2
(κQ†C − BQ)y, Dsy =

i
2
(QB − κCQ†)y,

Bsy =ρB +
i
2
κ(Q†Dy − AyQ†), Csy = ρC +

i
2
(QAy − DyQ),

(102)

hich are linear differential equation for the matrices A, B, C and D, which depend on Q, Q† and ρ and are independent of λ. Moreover,
f the matrices A, B, C and D satisfy the symmetry relations:

A = ih1(y, s)I2, D = ih2(y, s)I2, A − D = −
ih(y, s)

2
I2, B = −κC†, σ2C∗σ−1

2 = −C, (103)

here h1(y, s), h2(y, s) and h(y, s) are real functions, then (102) can be simplified into

hsy = −
κ

2
(q∗

1c1 + q1c∗

1 + q2c∗

2 + q∗

2c2)y,

c1,sy =ρc1 + q1hy, c2,sy = ρc2 + q2hy,
(104)

where

C(y, s) =

[
c1(y, s) c2(y, s)
c∗

2 (y, s) −c∗

1 (y, s)

]
.

Obviously (104) is the linearized version of (6). Therefore, the solution of (104) can be constructed from (99). In this way, we can avoid
solving the linearized equations (104) directly. The general solution for the linearized Eqs. (99)–(104) can be found by combining the
inverse scattering analysis [5].

Here, we only analyze the spectral stability of the plane wave solution for Eqs. (6):

qi =
αi

2
eθi , θi = i

(
βis
2

−
δy
βi

)
, ρ =

δ

2
. (105)

nserting the plane wave solution (105) into (5), we can solve the linear system:

Γi(y, s; λ) ≡ DVi(λ, ξ [i])e
i
4 ξ

[i]
(
s+ δξ [i]y

β1β2λ

)
−

iδ(κ|α|
2
+|β|

2
+λ2)y

4β1β2λ , |α|
2

= α2
1 + α2

2, |β|
2

= β2
1 + β2

2 , (106)

where i = 1, 2, 3, 4,

D = diag
(
e−

θ1−θ2
2 , e

θ1−θ2
2 , e

θ1+θ2
2 , e−

θ1+θ2
2

)
,

20
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f α1α2 ̸= 0, we have

Vi(λ, ξ [i]) =

⎡⎢⎢⎢⎣
κ(β1 − β2 − λ+ ξ [i])[(β1 + β2)2 − (λ+ ξ [i])2] + (α2

1 − α2
2)(β1 + β2) + |α|

2(λ+ ξ [i])
2α1α2(β1 + β2)

α1[|α|
2
+ κ(λ− β1)2 − κ(ξ [i]

− β2)2]

α2[|α|
2
+ κ(λ+ β2)2 − κ(ξ [i]

+ β1)2]

⎤⎥⎥⎥⎦ (107)

here ξ [i]s are the roots of the following characteristic equation:

det

⎛⎜⎝
⎡⎢⎣β1 − β2 + λ− ξ [i] 0 κα1 κα2

0 β2 − β1 + λ− ξ [i] κα2 −κα1
α1 α2 −β1 − β2 − λ− ξ [i] 0
α2 −α1 0 β1 + β2 − λ− ξ [i]

⎤⎥⎦
⎞⎟⎠ = 0; (108)

f α1 = 0 and α2 ̸= 0, we have

Vi(λ, ξ [i]) =

⎡⎢⎢⎢⎣
1
0
0
α2

λ+ξ [i]−β1−β2

⎤⎥⎥⎥⎦ , i = 1, 2, Vi(λ, ξ [i]) =

⎡⎢⎢⎢⎣
0
1
α2

λ+ξ [i]+β1+β2

0

⎤⎥⎥⎥⎦ , i = 3, 4 (109)

here ξ [i], i = 1, 2 satisfy the quadratic equation (β1 − β2 + λ − ξ [i])(β1 + β2 − λ − ξ [i]) − κα2
2 = 0, and ξ [i], i = 3, 4 satisfy the

uadratic equation (β2 − β1 + λ− ξ [i])(β1 + β2 + λ+ ξ [i]) + κα2
2 = 0. We assume that the roots ξ [i] are simple roots. Vector solutions

corresponding to the multiple roots can be obtained as coalescence of simple roots.
By the way, the solutions can be constructed through the Bäcklund transformation (34) and the vector solutions (106) and (109). Note

hat if we choose the combination of two or more vector solutions in (106), we can obtain breathers or resonant breathers solutions.
f we choose the combination of two or more vector solutions in (109), we can obtain bright-dark solutions, breather solutions or
ombination thereof. These solutions can be obtained by inserting the vector solutions (106) into formulas (34).
Next, we turn to analyze the modulational instability for the plane wave solution (105). Firstly, we construct the solutions L(y, s; λ)

n Eqs. (99). If the solution Φi(y, s; λ) satisfies the Lax pair (5) with the plane wave solution (105), then the solution Φ†
j (y, s; λ

∗)Σ
atisfies the following adjoint Lax pair

−Ψy = ΨU(y, s; λ),
−Ψs = ΨV(y, s; λ).

(110)

t follows that Li,j(y, s; λ) = Φi(y, s; λ)Φ
†
j (y, s; λ

∗)Σ satisfies the stationary zero curvature equation (99). In general, the solution
i,j(y, s; λ) does not satisfy the symmetry relation (103). Because the linear partial differential equations (102) are independent of λ,
inear combinations of Li,j(y, s; λ) with distinct λ still satisfy Eq. (102). Through the above analysis, we can construct the matrix function[

A(y, s) B(y, s)
C(y, s) D(y, s)

]
= Φi(y, s; λ)Φ

†
j (y, s; λ

∗)Σ +ΛΦ∗

j (y, s; λ
∗)ΦT

i (y, s; λ)Λ
−1Σ (111)

−Φj(y, s; λ∗)Φ†
i (y, s; λ)Σ −ΛΦ∗

i (y, s; λ)Φ
T
j (y, s; λ

∗)Λ−1Σ

atisfying the symmetry relation (103). Suppose the functions c1(y, s), c2(y, s), h(y, s) have the form:

h(y, s) = f eiη(y+µs) + f ∗e−iη∗(y+µ∗s),

ci(y, s) =

(
gieiη(y+µs) − g∗

−ie
−iη∗(y+µ∗s)

)
eiθi , i = 1, 2.

(112)

y choosing the solutions (106), we can determine f , gi, g−i, i = 1, 2 exactly. For convenience, we introduce the following notation

Vi(λ, ξ [i]) =

[
v(λ, ξ [i])
w(λ, ξ [i])

]
, v(λ, ξ [i]) =

[
v1(λ, ξ [i])
v2(λ, ξ [i])

]
, w(λ, ξ [i]) =

[
w1(λ, ξ [i])
w2(λ, ξ [i])

]
hich yields

A(y, s) =
(
v(λ, ξ [i])v†(λ∗, ξ [j]∗) − σ2v∗(λ∗, ξ [j]∗)vT(λ, ξ [i])σ2

)
e

i
4 (ξ

[i]
−ξ [j])

(
s+(ξ [i]

+ξ [j]) δy
β1β2λ

)
(113)

+
(
σ2v∗(λ, ξ [i])vT(λ∗, ξ [j]∗)σ2 − v(λ∗, ξ [j]∗)v†(λ, ξ [i])

)
e
−

i
4 (ξ

[i]∗
−ξ [j]∗)

(
s+(ξ [i]∗

+ξ [j]∗) δy
β1β2λ∗

)

=
(
v1(λ, ξ [i])v∗

1 (λ
∗, ξ [j]∗) + v2(λ, ξ [i])v∗

2 (λ
∗, ξ [j]∗)

)
I2e

i
4 (ξ

[i]
−ξ [j])

(
s+(ξ [i]

+ξ [j]) δy
β1β2λ

)

−
(
v∗

1 (λ, ξ
[i])v1(λ∗, ξ [j]∗) + v∗

2 (λ, ξ
[i])v2(λ∗, ξ [j]∗)

)
I2e

−
i
4 (ξ

[i]∗
−ξ [j]∗)

(
s+(ξ [i]∗

+ξ [j]∗) δy
β1β2λ∗

)

C(y, s) =
(
w(λ, ξ [i])v†(λ∗, ξ [j]∗) − σ2w∗(λ∗, ξ [j]∗)vT(λ, ξ [i])σ2

)
e

i
4 (ξ

[i]
−ξ [j])

(
s+(ξ [i]

+ξ [j]) δy
β1β2λ

)
(114)

+
(
σ2w∗(λ, ξ [i])vT(λ∗, ξ [j]∗)σ2 − w(λ∗, ξ [j]∗)v†(λ, ξ [i])

)
e
−

i
4 (ξ

[i]∗
−ξ [j]∗)

(
s+(ξ [i]∗

+ξ [j]∗) δy
β1β2λ∗

)

=

[ [
w1(λ, ξ [i])v∗

1 (λ
∗, ξ [j]∗) + w∗

2(λ
∗, ξ [j]∗)v2(λ, ξ [i])

]
eθ1

[
w1(λ, ξ [i])v∗

2 (λ
∗, ξ [j]∗) − w∗

2(λ
∗, ξ [j]∗)v1(λ, ξ [i])

]
eθ2[

[i] ∗ ∗ [j]∗ ∗ ∗ [j]∗ [i]
]

−θ2
[

[i] ∗ ∗ [j]∗ ∗ ∗ [j]∗ [i]
]

−θ1

]

w2(λ, ξ )v1 (λ , ξ ) − w1(λ , ξ )v2(λ, ξ ) e w2(λ, ξ )v2 (λ , ξ ) + w1(λ , ξ )v1(λ, ξ ) e
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i
4 (ξ

[i]
−ξ [j])

(
s+(ξ [i]

+ξ [j]) δy
β1β2λ

)

−

[ [
w∗

2(λ, ξ
[i])v2(λ∗, ξ [j]∗) + w1(λ∗, ξ [j]∗)v∗

1 (λ, ξ
[i])
]
eθ1

[
w1(λ∗, ξ [j]∗)v∗

2 (λ, ξ
[i]) − w∗

2(λ, ξ
[i])v1(λ∗, ξ [j]∗)

]
eθ2[

w2(λ∗, ξ [j]∗)v∗

1 (λ, ξ
[i]) − w∗

1(λ, ξ
[i])v2(λ∗, ξ [j]∗)

]
e−θ2

[
w∗

1(λ, ξ
[i])v1(λ∗, ξ [j]∗) + w2(λ∗, ξ [j]∗)v∗

2 (λ, ξ
[i])
]
e−θ1

]

e
−

i
4 (ξ

[i]∗
−ξ [j]∗)

(
s+(ξ [i]∗

+ξ [j]∗) δy
β1β2λ∗

)

D(y, s) = κ
(
w(λ, ξ [i])w†(λ∗, ξ [j]∗) − σ2w∗(λ∗, ξ [j]∗)wT(λ, ξ [i])σ2

)
e

i
4 (ξ

[i]
−ξ [j])

(
s+(ξ [i]

+ξ [j]) δy
β1β2λ

)
(115)

+ κ
(
σ2w∗(λ, ξ [i])wT(λ∗, ξ [j]∗)σ2 − w(λ∗, ξ [j]∗)w†(λ, ξ [i])

)
e
−

i
4 (ξ

[i]∗
−ξ [j]∗)

(
s+(ξ [i]∗

+ξ [j]∗) δy
β1β2λ∗

)

= κ
(
w1(λ, ξ [i])w∗

1(λ
∗, ξ [j]∗) + w2(λ, ξ [i])w∗

2(λ
∗, ξ [j]∗)

)
I2e

i
4 (ξ

[i]
−ξ [j])

(
s+(ξ [i]

+ξ [j]) δy
β1β2λ

)

− κ
(
w∗

1(λ, ξ
[i])w1(λ∗, ξ [j]∗) + w∗

2(λ, ξ
[i])w2(λ∗, ξ [j]∗)

)
I2e

−
i
4 (ξ

[i]∗
−ξ [j]∗)

(
s+(ξ [i]∗

+ξ [j]∗) δy
β1β2λ∗

)
nd B(y, s) = −κC†(y, s). Furthermore, we obtain

f =2i
[(
v1(λ, ξ [i])v∗

1 (λ
∗, ξ [j]∗) + v2(λ, ξ [i])v∗

2 (λ
∗, ξ [j]∗)

)
−κ

(
w1(λ, ξ [i])w∗

1(λ
∗, ξ [j]∗) + w2(λ, ξ [i])w∗

2(λ
∗, ξ [j]∗)

)]
,

g1 =
[
w1(λ, ξ [i])v∗

1 (λ
∗, ξ [j]∗) + w∗

2(λ
∗, ξ [j]∗)v2(λ, ξ [i])

]
,

g−1 =
[
w2(λ, ξ [i])v∗

2 (λ
∗, ξ [j]∗) + w∗

1(λ
∗, ξ [j]∗)v1(λ, ξ [i])

]
,

g2 =
[
w1(λ, ξ [i])v∗

2 (λ
∗, ξ [j]∗) − w∗

2(λ
∗, ξ [j]∗)v1(λ, ξ [i])

]
,

g−2 =
[
w∗

1(λ
∗, ξ [j]∗)v2(λ, ξ [i]) − w2(λ, ξ [i])v∗

1 (λ
∗, ξ [j]∗)

]
,

(116)

nd

η =
ξ [i]

− ξ [j]

4
, µ =

δ

β1β2λ

(
ξ [i]

+ ξ [j]) ,
where ξ [i] and ξ [j] satisfy the quartic equation (108). If we regard y as the direction of evolution, then the variable η should be real:
i.e. ξ [i], ξ [j] have the same imaginary part. If δ

β1β2λ

(
ξ [i]

+ ξ [j]
)
is also real, the Fourier mode is modulationally stable; if δ

β1β2λ

(
ξ [i]

+ ξ [j]
)

is not real, the Fourier mode is modulational unstable. If η → 0 and δ
β1β2λ

(
ξ [i]

+ ξ [j]
)
is not real, this corresponds to resonant or based-

and modulational instability. For the integrable partial differential equation, one can use the exact solution to describe the dynamics
f MI or resonant MI [27,41,42]. For the MI, the corresponding solutions are the so called Akhmediev breathers. For the base-band MI,
he corresponding solutions are rogue wave ones.

In what follows, we show how to construct the rogue waves of CCSP equations (1) which correspond to the base-band MI.
Firstly, we need to consider how to find roots which possess the same imaginary part, i.e. ξ [j]

= ξ [i]
+ a, where a is a real constant.

e rewrite Eq. (108) with a shift as

F (ξ + a) ≡ (ξ + a)4 − 2(κ|α|
2
+ |β|

2
+ λ2)(ξ + a)2 + 8β1β2λ(ξ + a) +∆(λ) = 0, (117)

here

∆(λ) = λ4 + 2(κ|α|
2
− |β|

2)λ2 + |α|
4
+ 2κ(α2

1 − α2
2)(β

2
1 − β2

2 ) + (β2
1 − β2

2 )
2.

o one has

G(ξ, a) ≡
F (ξ + a) − F (ξ )

a
≡ 4ξ 3 + 6aξ 2 + 4a2ξ + a3 − 2(κ|α|

2
+ |β|

2
+ λ2)(2ξ + a) + 8β1β2λ = 0. (118)

he quartic equation F (ξ ) = 0 and the cubic equation G(ξ, a) = 0 have one common root. It follows that the resultant of F (ξ ) and G(ξ )
hould be equal to zero:

Rest(F (ξ ),G(ξ, a)) = 0 (119)

hich is an eighth order equation with respect to λ. When a = 0, the resultant Rest(F (ξ ),G(ξ, 0)) is the discriminant of F (ξ ) = 0.
herefore, to seek the roots with ξ [i] and ξ [i]

+ a, we firstly solve the resultant equation (119) for a fixed a. Moreover, we can obtain
wo groups of roots of the form {±λi,±λ

∗

i }, i = 1, 2 if κ = 1; while for κ = −1 we can obtain a quadruple {±λ1,±λ
∗

1} and four other
eal roots which are not related to MI. Especially, when a = 0 and κ = 1, there are two groups of roots which correspond to two
ranches of MI, which are associated to two distinct rogue waves. For the defocusing case, when a = 0 and κ = −1, there is one group
f roots, corresponding to one branch of MI, which is associated with rogue wave solution. The MI spectrum is shown in the phase
iagram (Fig. 9).

.2. Rogue waves of focusing and defocusing CCSP equation

The case a = 0 corresponds to ξ [i]
= ξ [j]. In this case, the vector solutions are not involved in the expressions (106). We can seek the

ector solutions by formal series expansions. Since the vector solutions (106) involve the algebraic curve (108), by the Riemann–Hurwitz
ormula we deduce that the genus of the algebraic curve F (ξ ) = 0 is equal to g = −n + 1 + B/2 = 1, where n = 4, B = 8 is the
otal branching number. By the discriminant analysis, we know the discriminant equation of F (ξ ) = 0 does not possess multiple roots,
22
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Fig. 9. MI of focusing and defocusing type of CCSP equations. Parameters: δ = 1, α1 = α2 = 1, β1 = 1, β2 = 2; (a) The eight red points represent the spectral points
f the rogue waves. (b) The four red points located off the real axis represent the spectral points of the rogue waves.

o the characteristic equation (108) F (ξ ) = 0 just involves double roots. In the neighborhood of a branch point (ξ, λ) = (ξ1, λ1), the
lgebraic curve could have the following expansion:

ξ = ξ1 +

∞∑
i=1

ξ
[i]
1 ϵ

i, λ = λ1 + ϵ2. (120)

nserting above formal series into the characteristic equation (108) F (ξ ) = 0, we can solve for the coefficients ξ [i]
1 recursively.

Following the steps given in [33], we can obtain the vector solutions with rational expression at the branch point:

Φ1(y, s; λ1) = D
[
θ1, χ1, φ1, ψ1

]T e i
4 ξ1

(
s+ δξ1y

β1β2λ1
+k1

)
−

iδ(κ|α|
2
+|β|

2
+λ21)y

4β1β2λ1 (121)

where k1 is a complex parameter,

θ1 =
i
4

(
s +

2δξ1y
β1β2λ1

+ k1

)
l1 + l0,

χ1 =
i
4

(
s +

2δξ1y
β1β2λ1

+ k1

)
α1α2l2,

φ1 = α1

[
i
4

(
s +

2δξ1y
β1β2λ1

+ k1

)
l3 + 2κ(β2 − ξ1)

]
,

ψ1 = α2

[
i
4

(
s +

2δξ1y
β1β2λ1

+ k1

)
l4 − 2κ(β1 + ξ1)

]
,

nd
l0(λ1, ξ1) =κ

[
(β2 + λ1)2 − (β1 + ξ1)2

]
+ 2κ(β1 + ξ1)(β1 + β2 − λ1 − ξ1) + |α|

2,

l1(λ1, ξ1) =κ(β1 − β2 − λ1 + ξ1)
[
(β1 + β2)2 − (λ1 + ξ1)2

]
+ (α2

1 − α2
2)(β1 + β2) + |α|

2(λ1 + ξ1),

l2 =2(β1 + β2), l3(λ1, ξ1) = |α|
2
+ κ(λ1 − β1)2 − κ(ξ1 − β2)2,

l4(λ1, ξ1) =|α|
2
+ κ(λ1 + β2)2 − κ(ξ1 + β1)2.

Then by the Darboux transformation (18), the rogue wave solutions for the CCSP equations (1) are

q1[1] =

[
α1

2
− (λ1 − λ∗

1)
φ1θ

∗

1 + ψ∗

1χ1

|θ1|
2
+ |χ1|

2
+ κ|φ1|

2
+ κ|ψ1|

2

]
eθ1 ,

q2[1] =

[
α2

2
− (λ1 − λ∗

1)
φ1χ

∗

1 − ψ∗

1 θ1

|θ1|
2
+ |χ1|

2
+ κ|φ1|

2
+ κ|ψ1|

2

]
eθ2 ,

ρ[1] =
δ

2
− 2 lny,s

(
|θ1|

2
+ |χ1|

2
+ κ|φ1|

2
+ κ|ψ1|

2

λ1 − λ∗

1

)
,

x =
δ

2
y −

κ

8
(α2

1 + α2
2)s − 2 lns

(
|θ1|

2
+ |χ1|

2
+ κ|φ1|

2
+ κ|ψ1|

2

λ1 − λ∗

1

)
, t = −s.

(122)

Under the condition ρ[1] > 0, the regular rogue wave can be obtained. Figs. 10 and 12 display the regular rogue wave solutions for
he focusing and defocusing CCSP equations respectively. If min(ρ[1]) = 0, the cuspon rogue wave will be formed. If min(ρ[1]) < 0,
he parameter setting will correspond to the loop rogue wave. Fig. 11 displays the loop rogue wave for the focusing CCSP equations.
owever, it is difficult to get a closed form condition to discriminate these three types of rogue waves since an algebraic equation with
ighth order cannot be solved in a closed form in general. For the case min(ρ[1]) ≤ 0, the singularity occurs and we have cuspon or
oop-type rogue wave solutions in parameter form. However, these solutions are not expected occurring as actual physical phenomena.
23
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Fig. 10. The regular rogue waves of the focusing CCSP equation. Parameters: δ = 1, α1 = α2 = 1, β1 = 1, β2 = 2, λ1 ≈ −1.772 − 1.172i, ξ1 ≈ −0.960 − 0.116i.

Fig. 11. The loop rogue waves of the focusing CCSP equation. Parameters: δ = 1, α1 = α2 = 1, β1 = 1, β2 = 2, λ1 ≈ −1.146 − 1.040i, ξ1 ≈ 2.262 − 0.152i.

Fig. 12. The regular rogue waves of the de-focusing CCSP equation. Parameters: Parameters: δ = 1, α1 = α2 = 1, β1 = 1, β2 = 2, λ1 ≈ 1.705 + 0.115i,
ξ1 ≈ 1.465 + 0.597i.

4.3. Other localized wave solutions on a plane wave background

Finally, we outline how one can construct additional exact solutions from the Darboux transformation.

(1): α1 = 0, α2 ̸= 0, κ = 1 Degenerate breather solutions, bright-dark solitons, degenerate rogue wave solutions and their combina-
tions. For degenerate solutions we mean that solutions can be seen as the solutions of the scalar complex short-pulse equation.
Combination means the nonlinear superpositions of different types of solutions. Choosing the special combinations of solutions
in (109) with the form:

Φ1(y, s; λ1) = Γ1(y, s; λ1) + γ1Γ2(y, s; λ1), (123)

and inserting the vector solutions (123) into formulas (18), we obtain that the solution q1 is still a zero solution and q2 is a
breather solution. Especially, if λ1 = β2 + iα2 with the special limit technique as in [33], then q2 can be shown to be the rogue
wave solution.

Choosing the special combinations of solutions in (109) in the form:

Φ1(y, s; λ1) = Γ1(y, s; λ1) + γ1Γ3(y, s; λ1), (124)

and inserting the vector solutions (123) into formulas (18), we obtain that the solution q1 is a bright-soliton solution, and q2 is
a dark-soliton solution (Fig. 13). The multi-ones and higher order-ones can be constructed through the general formulas (40).
24
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(

Fig. 13. A bright-dark soliton of the focusing CCSP equation. Parameters: α1 = 0, α2 = 1, β1 = 1, β2 = −1, δ = 1, λ1 = −
3
4 +

3i
4 , ξ1 =

1
4 −

i
4 , ξ3 = −1 −

3
√
7

4 +
i
√
7

4 ,
1 = 1.

Fig. 14. A bright-dark soliton of the de-focusing CCSP equation. Parameters: α1 = 0, α2 = 1, β1 = 1, β2 = −1, δ = 1, λ1 = −
1
4 +

i
4 , ξ1 =

3
4 −

3i
4 ,

3 = −1 +

√√
41+4
4 −

i
√√

41−4
4 , γ1 = 1.

(2): α1 = 0, α2 ̸= 0, κ = −1 Degenerate dark solitons and bright-dark solitons and combinations thereof. Choosing the special combi-
nations of solutions in (109) with the form:

Φ1(y, s; λ1) = Γ1(y, s; λ1) + γ1Γ3(y, s; λ1), (125)

and inserting the vector solutions (123) into formulas (18), we obtain that the solution q1 is a bright-soliton solution, and q2 is a
dark-soliton solution (Fig. 14). The bright-dark solitons and their interactions were given by the Hirota bilinear method in [43].

The degenerate dark soliton can be constructed as shown in Eq. (21):

q1[1] = 0, q2[1] =
α2

2

[
1 +

ξ1 − ξ ∗

1

λ1 + ξ ∗

1 − β1 − β2

E
∆

]
eθ2 ,

ρ[1] =
δ

2
− 2 lny,s (∆) ≥ 0,

x =
δ

2
y +

α2
2

8
s − 2 lns (∆) , t = −s,

∆ = (E + 1), E = e
i
4 ξ1

(
s+ δξ1y

β1β2λ1

)
−

i
4 ξ

∗
1

(
s+

δξ∗1 y
β1β2λ1

)
+γ1

(126)

where γ1 is a real constant, ξ1 = β1 + i
√
α2
2 − (β2 − λ1)2, |β2 − λ1| < α2.

3): α1α2 ̸= 0, κ = 1 Breather solutions, rogue wave solution and combinations thereof. Choosing the special solutions (107):

Φ1(y, s; λ1) = Γk(y, s; λ1) + γ1Γj(y, s; λ1), k ̸= j, (127)

and inserting the vector solutions (127) into formulas (18), we obtain the breather solutions (Fig. 15). If we choose three or more
vectors, resonant breathers are obtained. The rogue waves are given in the previous subsection. The higher order rogue waves
can be obtained through a similar procedure as in [22].

4): α1α2 ̸= 0, κ = −1 Breather solutions, dark–dark solitons [44], rogue wave solutions and combinations thereof. In the defocusing
case, the breather solutions (Fig. 16) can be obtained by inserting the vector solutions (127) into formulas (18). But the imaginary
25
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γ

Fig. 15. Breathers of the focusing CCSP equation. Parameters: α1 = 1, α2 = 2, β1 = 1, β2 = 8, δ = 1, λ1 = 1 + i, ξ1 ≈ 8.423 − 0.162i, ξ2 ≈ −6.090 + 0.876i, γ1 = 1.

Fig. 16. Breathers of the defocusing CCSP equation. Parameters: α1 = 1, α2 = 2, β1 = 1, β2 = 8, δ = 1, λ1 = 1 + i, ξ1 ≈ 7.772 + 1.452i, ξ2 ≈ −5.929 + 1.1599i,
1 = 1.

part of the roots ξ [k]
1 and ξ [l]

1 should have the same sign to keep the Darboux matrix positive or negative definite. If λ1 ∈ R, and
there is a pair of complex roots ξ [1]

1 = ξ
[2]∗
1 ≡ ξ1 in the characteristic equation (117),

lim
λ→λ1

Γ
†
1 (y, s; λ1)Σ3Γ1(y, s; λ)

λ− λ1
=

2
(
|V1,1(λ1, ξ1)|2 + |V1,2(λ1, ξ1)|2

)
ξ1 − ξ ∗

1
e

i
4 (ξ1−ξ∗

1 )
(
s+

δ(ξ1+ξ∗1 )y
β1β2λ1

)
(128)

then the dark soliton can be constructed as shown in Eq. (21):

q1[1] =

[
α1

2
−

(V1,3V ∗

1,1 + V ∗

1,4V1,2)E
∆

]
eθ1 , q2[1] =

[
α2

2
−

(V1,3V ∗

1,2 − V ∗

1,4V1,1)E
∆

]
eθ2 ,

ρ[1] =
δ

2
− 2 lny,s (∆) ≥ 0,

x =
δ

2
y +

1
8
(α2

1 + α2
2)s − 2 lns (∆) , t = −s,

∆ =

2
(⏐⏐V1,1

⏐⏐2 +
⏐⏐V1,2

⏐⏐2) (E + 1)

ξ1 − ξ ∗

1
, E = e

i
4 (ξ1−ξ∗

1 )
(
s+

δ(ξ1+ξ∗1 )y
β1β2λ1

)
+γ1

(129)

where γ1 is a real constant, V1,i represents the ith component of V1 (107). We plot the solution in Fig. 17 for a special choice of
the parameters.

5. Discussions and conclusions

We have constructed various localized wave solutions to the CCSP equation (1) by the Darboux transformation. For the focusing
CCSP equation under VBC, by the scattering and inverse scattering analysis, the soliton solutions are characterized from the viewpoint
of spectrum. The elementary solitons are classified into three types: bright soliton, SU(2) soliton, the breather and double-hump soliton.
Moreover, higher order soliton solutions are constructed. Under NVBC, we have developed a new method to analyze the modulational
instability. In this way, we firstly explain the mechanism for the formation of rogue waves of two-component complex coupled
dispersionless (TCCD) equation. We find that for the focusing TCCD equation, there exist two types of rogue waves which correspond to
two distinct branches of MI; for the defocusing TCCD equation, there exists a type of rogue wave. This is similar to the cases of focusing
26
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Fig. 17. A dark–dark soliton of the defocusing CCSP equation. Parameters: α1 = 1, α2 = 2, β1 = 1, β2 = 8, δ = 1, λ1 = 1, ξ1 ≈ 7.937 + 1.008i, γ1 = 0.

nd defocusing NLS equation [27,41]. Since the rogue waves of the TCCD equation tend to a plane wave solution when y, s → ±∞, rogue
aves of the CCSP equation tend to a plane wave solution when x, t → ±∞ by virtue of the inverse hodograph transformation. Then
he CCSP equation exhibits three types of rogue waves: the regular, the cuspon and the loop ones. Since the parameters of the rogue
aves depend on the roots of an eighth order and fourth order algebraic equation, the exact conditions for distinguishing three types
f rogue waves can be only obtained numerically. For the mixed CCSP equation, the soliton and rogue wave solutions were constructed
y the Hirota bilinear method [45]. The long time asymptotics for CSP equation can be performed by the Deift–Zhou method [46–48].
t is a further topic to perform the long time asymptotics for the CCSP equation.
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