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1. Introduction

The nonlinear Schrodinger (NLS) equation plays a crucial role in nonlinear waves since it can be used to describe the evolution of
slowly varying packets of quasi-monochromatic waves in weakly nonlinear dispersive media. Since the NLS equation is an integrable
equation, various exact solutions can be derived through some well-known methods such as the inverse scattering transform, Hirota’s
bilinear method and Darboux transformation method. In case of the vanishing boundary condition (VBC), the NLS equation admits
multi-bright [1], breather, higher order soliton [2] and infinite order type solitonic solutions [3-7]. In the framework of the inverse
scattering transform, the long time asymptotic behavior of solutions can be analyzed by the nonlinear steepest descent method, or
the so-called Deift-Zhou method, [8,9] or D-bar method [10]. In other words, for arbitrary initial data in suitable functional space
without the appearance of spectral singularity [11], the solutions will evolve into multi-solitons and the additional dispersive waves
(the breather and higher order soliton solutions are asymptotic unstable), i.e. the soliton resolution conjecture [12]. For non-vanishing
boundary condition (NVBC), the NLS equation admits breather [ 13-16], rogue wave solutions [17] in the focusing case and dark soliton
solution in the defocusing case. The rogue wave and Akhmediev breather in the focusing case are related to the modulational instability
(MI) [18,19]. For the defocusing case with NVBC, the plane wave is modulational stable, so the defocusing NLS equation does not admit
rogue wave or Akhmediev breather solutions.

The coupled NLS (CNLS) equation also known as Manakov system [20], can be used as a model in nonlinear birefringent optics
and for two modes of Bose-Einstein condensate [2]. The localized wave solutions in the coupled NLS equation are more complicated
and richer than the scalar one [21-24]. There are some differences when compared with the scalar one. In the focusing case of VBC, in
addition to the bright solitons, there exists double-hump soliton solution [25,26]. If one component has a VBC and the other component
possesses NVBC, there exist bright-dark soliton, rogue wave, breather solutions and the combinations thereof. When both components
have NVBCs, there are two distinct cases. If they share the same wave-number, the plane wave background can be removed by a
Galilean shift and in this case the breather, rogue wave and their superposition, all degenerate into solutions of the scalar NLS equation.
The other case is that the two plane waves have distinct wave-numbers, in which there exist genuinely coupled breather and rogue
wave solutions. In regard to the modulational instability, there exist two different branches which correspond to two different types
of Akhmediev breather or rogue wave solutions. In addition to the dark-dark and bright-dark solitons, the defocusing coupled NLS

* Corresponding author.
E-mail addresses: baofeng.feng@utrgv.edu (B.-F. Feng), linglm@scut.edu.cn (L. Ling).

https://doi.org/10.1016/j.physd.2022.133332
0167-2789/© 2022 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.physd.2022.133332
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2022.133332&domain=pdf
mailto:baofeng.feng@utrgv.edu
mailto:linglm@scut.edu.cn
https://doi.org/10.1016/j.physd.2022.133332

B.-F. Feng and L. Ling Physica D 437 (2022) 133332

also admits Akhmediev breather and rogue wave solutions for special choices of the wave-number and frequency, and in this case the
background is modulationally unstable because of the effect of cross-phase modulation [27]. However the MI has only one branch.

In the regime of ultra-short pulses where the width of the optical pulse is of the order of femtoseconds (10~!%s), the propagation
of ultra-short wave packets can be described by the complex short pulse (CSP) equation, which was proposed for the focusing and
defocusing case [28,29]. A coupled complex short pulse (CCSP) equation

K
Qixe + 41+ 5((|q1|2 + 1g21%)g1.4)x =0,
(1)
K
Qoxt + Q2 + 5((|q1|2 + 1g21*)g2.1)x =0,

was also proposed to describe the propagation of ultra short pulses in the birefringent fibers, where the symbol x = +1 corresponds
to the focusing or defocusing case respectively. In the original paper [28], the author only considered the focusing case. The defocusing
case can be naturally derived following the way in [29]. As for the derivation of short pulse equation without reductions from the
integrability, the readers could refer to the Refs [30,31]. As far as we know, the study of the CCSP equation has only a few. Most
recently, an inverse scattering analysis is done for the CCSP equation with only the vanishing boundary condition [32]. Therefore, there
is no systematic analysis for various soliton solutions for the CCSP equation, which motivates the present study.

The CCSP equation (1) admits the following Lax pair

. i
B X(x £ M), X(x, £ A) = 1 [—1112 _.KQxil, _ [Ch(x,t) Ga(x, t) }

AL Qy il, g x 1) —qilx,t)

—ian, + %QQf  —£Qf + LQTQQI )
¥, =T, t; ), Tx, t;A)=| 2 2 2 2% ,

—5Q-550Q1Q, ;AL —35QQ

where I, denotes the 2 x 2 identity matrix. Eq. (1) has an alternative form in conservation law

_ K _
(07 + 5 (i +1a2P)p7"), = 0. (3)
where p~1 = \/1 + k|q1.x|* 4 «]ga.x|%. Thus we can define a hodograph transformation
K
dy = p~'dx — 5/)_1(|q1|2 +1g2*)dt,  ds = —dt, (4)
which converts the Lax pair (2) into @(y, s) = ¥(x, t):
, S 1
@, =U@y,s; AP, Uy,s; 1) = —ip(y )23 — =23V,
i g i g ®)
& =V(y,s; 1)0, V(y,s; 1) = &t EVo,
where
0 «Qf .S .S
¥ = diag(1, 1, -1, —1), VOZ[ Q]’ Q= [ql(y ) fhiy )]
Q 0 v.s) —qiv.s)

The compatibility condition gives a two-component coupled complex dispersionless (TCCD) equation:

Qiys = P4i, i=12

K (6)
Ps = _5(|Ql|2 + |q2|2)y-
Conversely, by the third equation of (6), we define the following inverse hodograph transformation:
K
dx = pdy — §(|q1|2 +lq2*)ds,  dt = —ds, ()

which converts the Lax pair (5) and Eqs. (6) into Lax pair (1) and Eqgs. (2) respectively. Thus the CCSP equation (1) is equivalent to the
TCCD equation (6) through the hodograph transformation (4) and (7), provided that p > 0.

We illustrate below how to derive the hodograph transformation (4) by the formal scattering and inverse scattering analysis. From
the Lax pair (2), we can suppose the matrix solutions of Lax pair (2) possess the following form:

W(x, £ A) = m(x, t; A)e UM 5023 (8)
where m(x, t; A) is an invertible analytic matrix solution with respect to A in the neighborhood of co and 0, i.e.,

m(x, t; A) = myo(x, t) + m_q(x, )L~ + 0(172), A — oo,
and

m(x, t; A) = mg(x, t) + my(x, t)» + 0(A%), A — 0.

Inserting the ansatz (8) into the Lax pair (2) and expanding at A = 0, we obtain

_i ey
_ifx23 =[m0(x’ t)]_] [ Qlllz :]CIZQX] mO(Xv t)’
i « |- —«QfeQ ©)
—ifi X3 =~ E[mo(X, t)] 0010, iQ'Q my(x, t).
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Taking the determinant of previous two Egs. (9), we have

2
K
fE=1+klal? + a2, f2= Z(|QI|2 PP [14 .(q1xl* + 1g2.41)] (10)

which shows that the function f(x, t) is consistent with y in (7), i.e. f(x, t) = y. Thus we know that the hodograph transformation (4)
is necessary in the procedure of solving the CCSP equation (1). On the other hand, the solution of Eq. (1) can be represented as the
solutions of Egs. (6) and the inverse hodograph transformation (7):

(v.5) P
X = f Y5y = Sl S+ g2y, s)P)ds', ¢ = —s.

(Y0,50)

If |g1(y, $)1> + 1g2(y, S)> — %(a% + a%) and p(y, s) — % as y — =oo0, then the above curvilinear integration can be simplified as:

8 K, 5 5 / Y [ , 8:| ,
X=zy— —(a7 +a3)s+ ply,s)— = |dy, t=—s. (11)
2 8 oo 2

Localized wave solutions can be constructed by using vector solutions of the Lax pair. By choosing different vector solutions, we
can obtain different localized wave solutions. The key is to analyze the structure of localized wave solutions and their mechanism
of formation. Thus, for the focusing CCSP equation (1) on a zero background, we firstly use the scattering and inverse scatterings to
analyze the spectral problem (5). On one hand, by using the ansatz of the Darboux matrix, we are able to obtain compact formulas for
the soliton solutions. On the other hand, the inverse scattering method provides a complete spectral classification of the solutions.

For NVBC, since the spectral problem is 4 x 4 which involves genus one algebraic curve, it is difficult to perform the scattering/inverse
scattering analysis. Thus, we only construct the localized wave solutions. Especially, we establish a relation between rogue wave solution
and modulational instability. Moreover, we apply a method to conduct the linear stability analysis based on the squared eigenfunctions
and vector solutions of Lax pair. This analysis reveals the connection between the existence of the rogue waves and the modulational
instability.

This paper is organized as follows. In Section 2, the Darboux transformation [33] and Bdcklund transformation for the system (5) are
constructed through the loop group method. In Section 3, we firstly analyze the Lax pair (5) by the Riemann-Hilbert approach. Exact
solutions are constructed both by means of the Riemann-Hilbert approach, and Darboux transformation, which include the single
soliton, SU(2) soliton, double-hump, breather, multi-soliton and high order soliton solutions. In Section 4, a modulational instability
analysis method based on the squared eigenfunctions is applied for Eq. (6). Rogue wave solutions are constructed exactly by the Darboux
transformation, and their formation is elucidated by the MI analysis. Besides the rogue waves, other types of localized wave solution
are also constructed by the Darboux transformation. Section 5 is devoted to concluding remarks.

2. Darboux Transformation

Firstly, we need to understand the structure of the Lax pair (5), which is the first negative flow for the matrix nonlinear Schrodinger
hierarchy. To this end, we review the relevant theory in the literature [34]. Let

sl(4)s; = {y € sl(4, C)| [¥5,y] = 0},
sl(4)5, = {y € sl(4, Q)ltr(zy) = 0 for all z € sl(4)s, } .
denote the centralizer of X3 and its orthogonal complement in sl(4, C). Furthermore, we consider the reality condition. It is easy to see

that the Lax pair (5) satisfies the symmetry conditions su(4)-reality condition ([A(A*)]" + A(A) = 0 for all A € C) or su(2, 2)-reality
condition ([A(A*)]T + X3A(L)X3 = 0 for all A € C) for choosing different sign, where A(L) = Zkfno Ai2%. Then we consider the su(4)

or su(2, 2)-reality condition twisted by o : [A(—A*)]* — A[A(=A*)]* AL, i.e. o([A(—A*)]*) = A(L). In other words, the matrices U())
and V() in the system (5) satisfy the following symmetry conditions:

(U, s; 9] + 20, s; M) =0, [V(y,s; AN+ ZV(y,s; A)X =0,
AUy, s; =2 A = U, s 4) =0,  A[V(y,s; —A5)]* A7 = V(y,s; 1) = 0,

where

(12)

Y =diag(1,1,«,«), A =diag(oy,03), o3 = |:_01 (1):| :

Suppose we have a fundamental matrix solution @(y, s; A) which is normalized at the point (y, s) = (0, 0) by taking &(0,0; 1) =1
By the symmetry conditions (12), we have the following symmetry conditions for the fundamental solution matrix
@1y, s: A7 = 2Oy, 5:1)F,  AD(y,s;2)A7 = D¥(y, 5, —1%),

respectively. Meanwhile, the symmetry for the vector solutions is helpful to construct the Darboux matrix. If @4(y, s; A1) is a vector
solution for the Lax pair at A = A1, s0 is ADJ(y, s; A1) at A = —A].

Suppose there exists a Darboux matrix T(y, s; ) which converts the wave function ®(y, s; 1) into a new wave function ®!M(y, s; 1) =
T(y, s; )@ (y, s; A)T~1(0, 0; A) which is normalized at (y, s) = (0, 0) to the identity matrix. Through the symmetry relation (12) and the
existence and uniqueness theorem for ordinary differential equations, we have

[0 (y.5: 2] ' = zol(y.s:)5, Aoy, s; )47 = oy, s; —1*),
which induce the following symmetry relations for the Darboux matrix:
[T'(y, 527" = Ty, ; 2)%, ATy, s 2)A7 =T(y, 55 —1"). (13)
3
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The first symmetry relation in (13) follows from the su(4) or su(2, 2)-reality condition, and the second one is from the twisted symmetry
o. By the loop group construction of Darboux transformation theory [34] and the first symmetry in (13), the elementary Darboux matrix
can be represented by

+
T(y, s; A) = Iy — [@1, D] M~ 'diag(h — A%, A — A5) ! [‘pl] ) (14)
where @; = &(y, s; A;)v; (i = 1, 2) are vector solutions for the Lax pair (5) at A = A;, and

oize; ofze,
P R e

M=1 T
olze;, olze,
)»1—)»; )»2—)»;

The above Darboux matrix (14) is uniquely determined by the kernel conditions

T(y, s; )@y, s; Aj)vi =0 (15)
and residue conditions

Res (T(y, s; M)@(y, s; )X Xw;) =0 (16)

)»:)L?‘

where vl.T Yw; = 0 and rank(v;) = 1, rank(w;) = 3, i = 1, 2. We can observe that the residue conditions are determined by the su(4)
or su(2, 2) symmetry.

To keep the second symmetry in Eq. (13), we merely need to set @, = A®](y, s; A1) with A, = —A7. Thus the kernel conditions for
the Darboux matrix are: Ker(T(s, y; A1)) = span{®1} and Ker(T(s, y; —A})) = span{A®}}.

Recall that L o(GL(n, C)) is the group of holomorphic maps from C\ {0} to GL(n, C), L_ o(GL(n, C)) is the group of holomorphic maps
h from Oy U Og to GL(n, C) such that h(co) = I, L(GL(n, C)) is the group of holomorphic maps from $! = {z € C : |z| = 1} to GL(n, C),
where O, and Op represent the neighborhood of oo and 0 on the compact Riemann surface $? = C U {oo} respectively. We know that
&(y,s; 1) € L o(SU(4)) [or @(y, s; ) € L o(SU(2, 2))] and T(y, s; A) € L o(SU(4)) [or T(y, s; 1) € Ly o(SU(2, 2))].

For the linear system (5), the above results for the Darboux matrix can be summarized in the following theorem:

Theorem 1. Let ®(y, s; 1) be a holomorphic matrix function for A € 82 \ {0, oo} with &(0, 0; 1) = I. The Darboux matrix

-1
P/ 2P P
Ty, s; 1) =1— [P, AD? 1 L ID>3 17
.52 =1 [ J(M_ﬁ) o (17)
T M
where @1 = &4(y,s) = 31 = @(y, s; A1)V is a special solution for the linear system (5) at A = A1, and vy is a constant vector independent
1

of y and s, converts the Lax pair (5) into a new one by replacing the old potential function Q with the new one:

-1
oI xd
Qi=Q- [ =" (tpl@f - UZW]*@]T(IZ) :
A1 — AL
oI T,
N=p—-2In,| ——], 18
pl1] 1Y y,s(kl_X;) (18)
oIz,
g1 (112 + |@2[111% = 1@1* + g2 + 4x Ings | ——— ] .
A — AL
Remark 1. When A; € R and k = —1, we obtain
A=A .
(‘PI(y, $; M) Z3Pi(y, 8 A))y = ®](y.5: 1) (i0(y. $)Ia + Vo ) @iy, 51 1),
1

| (19)
1
(205 A)Zs0y.5: ) =200 = M)@]. 51 1), 5: 1),

where ®;(y, s; 1) = Vi(y, s; 1)) &,(0) = £¥(X), n2(A) = ni(A), (A € R;i = 1,2), Vi(y, s; 1) are bounded vector functions. Thus
(‘DI()’, $; M) Z3Pi(y, s; M))y = (‘p;r(y, $; A1) Z3i(y, s; )\1))3 =0,

which implies
DIy, 5 1) Z3Pi(y. 51 ) =0, DY, 8 A) T3y, 5: A1) = k(h), (20)

where k(A1) is a parameter merely depending on A;. The Darboux matrix given in Theorem 1 should be modified in the following form:

o! %,
« A=A
Ty, s; A) =1 — [P1, AD]] (p;A a0 (21)
1 )
e
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where
ol s AN D3 [y, s A) + T(h — A1) Dy, 55 A)]
24(y,s) = lim
A=A (A —X1)
= @Iy, 5; A1) T3P}y, $; A1) + Th (A1)
= @]y, 5 1) Z30(y, 5; M )WV1 + 21(0,0), £21(0,0) = vi T3V, + tic(r1).

Here the prime denotes the derivative with respect to A at A = A4, T is an appropriate parameter to keep the non-singularity of §2(y, ),
and £21(y, s)* = —£24(y, s). Meanwhile, the matrix §2(y, s) can also be derived by the equations:

. q};f(y, $; A1) X3P1(y, s; A)
)Llll‘al P
—A1 — Aq
0s) (22)
Z/ Z‘DI(Y’, s 2@y, s’ Aq)ds + A;Z(p;r(y/’ s's A1) (ip(y’, s, + VO,y’) @4(y,s"s A)dy'.
(¥0-50)
Recently, Rybkin considered the binary Darboux transformation for the KdV equation to remove or add the discrete spectrum in the
framework of Riemann-Hilbert representation [35].

Remark 2. Let C be a contour in the complex plane that satisfies the Schwartz symmetry (for instance [5], C = (—o0, —1r)U{z : |z] =
r} U (r, 00)) and suppose ®(y, s; 1) is an analytic matrix on 52 \ ({0} U {oo} U C), which satisfies the jump condition @ (y,s; A) =
@_(y, s; A)V(A) across the contour C. The derivative of @(y, s; A) with respect to y and the one with respect to s satisfies the same
jump condition as @, so %(D(y, s; )@ (y,s; A) and % (v, s; )@ 1(y, s; A) are holomorphic functions on $? \ {0, co}. Thus, from the
proof of Theorem 1, we can see that the normalized condition for the wave function ®(y, s; A) with &(0, 0; A) = T is not necessary. It
is also an obvious fact from the viewpoint of Riemann-Hilbert problems.

For the Darboux matrix, we have the following proposition:

Proposition 1.

(k)R

= 0 N0AA)

e Suppose the Darboux matrix is expanded in the neighborhood of infinity as: T(y,s; A) = 1 + Ty(y, s)A~! 4+ O(A~2); then we have
Tr(T1(y, 5)) = 2(A7 — A4).

o The determinant of Darboux matrix is det(T(y, s; 1))

Next, we consider the multi-fold Darboux matrix and the higher order Darboux matrix, which are iterations of the elementary
Darboux matrix in Theorem 1. Suppose there are N different vector solutions @;(y,s) = @(y, s; A;)v; and A;, the multi-fold Darboux
matrix can be constructed as follows:

TINI(y, s; &) = Tn(y, s: A TN (¥, s A) - - - Ti(y, 53 A) (23)
where
ofi— 1)izegi— 1\ | A5
- L L - il — ill — A*Af
Ti(y, S, )\.) =1 [¢1[l 1]: A¢1[l 1] ] ( )\i _ )V;k > _@,‘[i—l]TA
AN

and
&ili — 1(y, s; A1) = Tima(y, $; A)Tia(y, $; Ad) - - - Ta(y, 85 L)@y, 55 M), 1> 2,
@4[0](y, s; A1) = @41(y, 5). The Darboux matrix T[N](y, s; A) can be decomposed in the following form:

N

TINIy. s 2) =Y

i=1

1
A — A7 2mi

T[N](y, s; A)dr +

y)»;‘

— TINI(y, s; A)d 24
PRl o [NI(y, s; ) (24)

where Yars V=1 denote a small circle around the point A} and —A; respectively, with anti-clockwise orientation. The residue can be
given explicitly:

TIN]1(y, s; A)dx

2ri Yir
i ) ) . (25)
—(\F — A\ * D *¢1[1_1]©'[l_1] : Y.L *
—()Li )w)TN()Li )TN—l()\,' ) Tz—H(ki )<P,-[i — 1]T2©i[i — 1]T1—1()Li ) Tl()\i )
and
L f TINI(Y, 5; A)dA
2ni J, .
i (26)

AD[i — 11*®[i — 1]TAX
=(Ai = AIN(=Ai)In—1(=Ai) - - Tiga(—Ai) q)[[ll. — 1]]T2[<lb-[i_] 1 Tioa(=Ai) -+ - Ta(=2),

5




B.-F. Feng and L. Ling Physica D 437 (2022) 133332

both of which have rank one. Then the multi-fold Darboux matrix T[N](y, s; A) can be rewritten in the following form:

N

[X2i—1) (Vaic1l | |X2i) Va2l

TINI(y, s; 1) =14 — ( -+ ) x. (27)
; PREPY. Py

The inverse Darboux matrix can be rewritten as

N

_ [Vaic1) (21| ya2i) (X2l
TINT \(y, s; A) = ZTINT (y, s; A )X =1y — X, 28
INI7'(y, 5: ) = ZTINT (., 5; 1) 4§< n T (28)

where [y)t = (yi] and |x)T = (x¢], k=1,2, ..., 2N. Since T[N](y, s; A)T[N]"!(y, s; 1) = I4, we know that
1

5 P TINIY. s: MTINT (v, s: A)dA = TIN(Y. 5 Ai)[y2iz1) (Xaio1| Z =0,

Vi (29)

1
ﬁf TINI(y, s; AMTINT (v, s; A)dA = TIN1(y, s; —Af)|yai) (x2i| 2 = 0.
V¥

It is easy to show
TINI(, s; Ai)lyai-1) =0,  TINI(, s; =A{)ly2i) =0, i=1,2,...,N. (30)

On the other hand, we know the kernel of the multi-Darboux matrix is such that Ker(T(s, y; A;)) = span{®;} and Ker(T(s, y; —1})) =
span{A®;}. Thus the vectors |y,i—1) and |y;) can be chosen as @; and A®;" respectively. By using Eq. (30), one obtains

-1
[1X1), 1X2), - .., Xan—1), 1Xon) ] = [4’1, ADT, ..., Dy, Ad’f\k]] M, ", (31)
where My is the block matrix
ol so; <1>ITA£4>;‘
hi—AF —AF A
_ T Jjo
My = —ol Az a; ol zox : (32)
AjtAi —A;‘-H, 1<ij<N

Finally, the N-fold Darboux matrix T[N](y, s; A) is given by the following theorem:

Theorem 2. The N-fold Darboux matrix
TINI(y, 53 ) = Ly — YM ' (Aloy — Do)~ 'Y' 2 (33)
converts the system (5) into the system with new potential functions p[N](y, s) and Q[N], where

Y=[®1, 405, ..., Dy, AD)] = Bﬂ . Doy =diag (A}, —A1, ... Ay, —An).

Y; and Y; are 2 x (2N) matrices, the matrix My is given in (32). The Bdcklund transformation between old potential functions and new ones
is given by
QNI = Q- Y:M 'Y},
pIN]T = p —Iny s (det(My)), (34)
¢1[N11” + 1q2[N11” = 1g11* + 1q21* + 2« Ings (det(My)) .
Proof. The multi-fold Darboux matrix T[N](y, s; ) can be derived from the theory of standard Darboux transformation. Here we just
prove the Backlund transformation (34). By the theory of the Darboux matrix, we know that
T[N], + T[NJU = U[NIT[N], T[N]s + T[N]V = V[N]T[N].
If we expand the multi-fold Darboux matrix T[N](y, s; A) in the neighborhood of oo
TIN] = L4 + TINI"(y, )2~ + 00.72),  TINI"(y, s) = —YM'Y' 5,
we then have
QNI = Q- M 'Y},

35
pINI = p+i (TIVIY)) . (%)

where T[N ][1”1 represents the (1, 1) element of the matrix T[N]"!. Actually, from the symmetry relation 03Y1M§]Yia3 = Y1M[,1YI and
—0YiMy Yo, = YiMR'Y], where o3 = diag(1, —1), it follows that —Y;M,'Y! = T[N]llfjlﬂz. Suppose there exists a matrix solution,
which can be expanded in the deleted neighborhood of co on S

BR(EIRER
i=1
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Substituting (36) into (5), one obtains

(Qve ™) =Qwve '+ %Ucmz + 1g2/*) — %QTW@” - iEK(QW@”)%
which yields the following expansion

Qo =(g:1> + g1 LA " +0(2).

From the Lax pair (5), we have

4 2
Inserting the asymptotic expansion

(o]
0= (112 +y @[i]ki) eath
i=1

in (36) into Eq. (37), one arrives at

i i
05 = (—Mz + —(q11” + g2 A" + O(A*Z)) . (37)

ix
Tl + e = [0l1n]

where @1[1{ represents the (1, 1) element of matrix @', If we apply the multi-fold Darboux matrix on the matrix solution (36), a similar
result can be obtained:

i
SUaNIE + NP = [ (TVY + o) | -
Thus we have

lg(m][N]F +1GINI)I,

ik
S0 + 1021 + TN |

The next step is to prove that the expression T[N][fy]1 can be rewritten in a compact form. Due to the fact that
Bis = V(.5 1), —B], T = O] TV, 5 47),

we have

q>,-2q>jT :
4 = & XT3/,
N

Ai— A

Together with Proposition 1, we have
1 1 _ _ .
[T[N][f}]]s - [2mnil - 2T[N][;]3]S = RARE KYZMNW;]S = ilng det(My).
Similarly, we can derive
[TINIE ] = iny, dec(my),
Ty

which completes the proof. O

Prior to considering the higher order Darboux matrix and the general one, we rewrite the matrix My (32) in the following form

My = KySyK}, (38)
where
»/ 0 00 0 0
0 —(DlTA 0 0 0 0 b)) b
)Lj—)ul?k —)L]’.k—)u;*
Ky = : Do e : s Sv= z z
0 0 00 - ® 0 ) sijen
0 0 00 -+ 0 -—-oiA
Suppose we have the following expansion
o0
=Y o), k=121 (39)

i=0
through the standard limit technique for the multi-fold Darboux matrix [33], the general Darboux matrix can be obtained:
TINI(y, s; 2) = Ty — YMy 'DonY' %, (40)

where

Y=Yy vl = [zj R [<1>,[‘”, A", o, AQ>,£$"]*], (41)

7
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and
[ = 0 0 0 ]
k
1
0 e 0 0
Doy =diag (D1, Dy, ...,D), Dy= ,
1 1
oo 0 @ 0
(—1)°%k 1
|0 e AR =il
My = KySyK],. (42)
Here ZL:] sk =N, and
Ky 0 --- 0
. 0 K, --- 0
Ky=1|. . S = (S’?f)lsi,jsl’
o 0 --- K
Col o -
[oJT
0 - A
Ky = . )
@IEsk*]]T 0 . ¢]£O]T 0
[s—11T [o]T
L O —-@ A - 0 -, A
M o = 0z si—1\ (~1) " 's si—1 = 7
(o) N (0) —KF AT o (jo ) (=) (}0 )(_)\J%f_,\f)sj
0z 0y s—1\ (=) 'z si—1 b
(O) AjtAi (0) —Af+)»,‘ (JO ) ()‘j+)‘i)sj (JO )(_)"j*'")‘i)sj
Sij=
si—1 b)) si—1 ) o sitsi—2y (-1 'y Si+si—2 )
(s;—])(kjf)blf‘)si (s;—l)(—kffx;‘)si ( s,-i] )()Lj—)»?)siﬂjfl ( Si—Jl )(7);7)\?)5,-“]-—1
(s,-—l) (—1i-ly (s,-—l) (' (si+sj72) ity (si+sj72) (—1i~ly
si—1 ()Lj+)hi)s" si—1 (7)‘7‘“%)51. si—1 ()Lj+)¥i)si+sj71 si—1 (—)»f‘F}»i)SiHFI

The Backlund transformation has the same form as in (34) with new matrices Yy, Y, and My given in (41) and (42).

For the nonsingular finite gap solution [36], there exists an analytic matrix solution @(y, s; A) normalized &(0, 0; 1) = 14 by the
Proposition 2.1 [5]. So we can construct the localized wave solutions on the background of finite gap solutions. In this work, we merely
consider the background of zero and plane wave solutions.

Therefore, through the above theorems and analysis, the regular solutions of the CCSP equation (1) can be represented as

QINT = Q- YoM, 'Y,

Nl=o—1 det(M 0,
pIN]I=p (ys)ny,s( et(My)) > (43)
’ / J 7 K / / / / /
x=/ p(y', sy — 5(|q1(y,s)|2 + 1200/, s)*)ds’ — Ing (det(My)), t = —s,
(Yo50)

where Y; (i = 1, 2) and My are given in (41) and (42), respectively.

3. Soliton solution under vanishing boundary condition

In this section, we consider how to derive the soliton solution under VBC. Since the exact solution is singular in the defocusing case,
we only consider the focusing case « = 1. Exact solutions can be constructed directly by the Darboux transformation, and the soliton
interaction can be analyzed directly from the multi-soliton solution. In order to get a better understanding for the solutions from a
spectral viewpoint, we give a simple inverse scattering analysis for this problem [1].

3.1. Scattering and inverse scattering analysis

Consider the spectral problem

—i —of
¢y _ 1 [ 101, . Qy] @, (44)
A Qy 1ol
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with the boundary condition p — % > 0,Q — 0 as y — =£o00. Suppose the potential functions satisfy the following conditions

I

Performing a simple transformation @ = mexp [—i%&y] into the spectral problem (44), we obtain

5
p—z‘dy<oo, /(\q1,y}+\qz,y|)dy<oo. (45)
R

is 1 —i(p — Iy —qQ
m, = —— (¥3m—mX;) + —AUm, AU(y) = (o =3 . Qg , (46)
2 A Q i(p — )
which yields the following integral equations
1 y i / i /
mi(y; )\,) =14+ X / e%(y —Y)Z3Au(y/)mi(y/; )\)e_%(}’ —y)E:«}dy/. (47)
+o0

By the standard Neumann series method, m*? = (m; _, m, ) is analytic in the upper half plane C*; m" = (m;_,, m, _) is analytic
in the lower half plane C~, where m. ;, m. , are the first two and last two columns of the matrices m_. respectively. ¢, and ¢_ are
fundamental solutions of the linear system of differential equations (44), and therefore we can define the scattering matrix S(A):

8
Dy(y,5:4) = P_(y,5: M)S(A),  Px(y, s A) = m(y; A)exp [—in23Y] . (48)

which yields det(S(A)) = 1.
The symmetry relations for the solution ®@.(x, t; A) can be obtained by the symmetries of the solutions &... Since

DLy, 5 M)PLY, 5 47) = L, (49)
and

ADL(y, 5; ) A7 = DL(y,s; —1") (50)
the scattering matrix satisfies

S(ST(A*) = Ly, (51)
and

AS(M) AT = S*(—A%). (52)

The above symmetry relations (51) and (52) allow us to write

A A _ N f(a*)  bf(r*
s = | o) ;EA))] s 1(A>—s*m=[§§k*§ dTEA*ﬁ] (53)
where
fa;(0)  —at(—2%) bi(A) —=b*(—1*)
) = 0,03 a*;f—x*)] "(”:[bim btf—x*)]’ 4
[ci(h)  —ci(=A%) di(h)  —di(=r%)
W= 50 c;*z(—x*)] “(“=[d§(x) d*;?—x*)]'

Next, we derive the jump condition and the scattering data. To this end, we assume that the determinant det(a()) on the real line is
nonzero. If the determinant det(a())) is zero somewhere on the real line, the corresponding point is called a spectral singularity [9].
Thus, the purpose of this assumption is to avoid spectral singularities.

Taking the limit x — —oo0 in (48), we obtain that

a(A) = lim myq4(y,s;4), d(A)= lim my;(y,s;4) (55)
y—>—00 y—>—00

where my 1 1(y, s; A) denotes the first two rows of m; (y, s; 1), my 2 +(y, s; ) denotes the last two rows of m; ;. (y, s; A). Then Eq. (55)
shows that a(}) is analytic in the lower half plane, and d(}) is analytic in the upper half plane. We then normalize the analytic matrices
m“? or m" with unimodular:

i
m = m* = m*diag (I, [d()] ") = (m; _, m, ) []g oI e “Hz] , hect (56)
2
and
— w q: 1 I, 0 —
m=m" =m"diag ([a(x)] ™", 1) = (m; _, m; ) [b(k)[a(x)]leiim ]Iz] , LecC . (57)

Thus, the jump condition on the real line is
-1 —%yl[
- m Lo N Ne B
—b(1)[a(A)] 'er™ 1, — b(A)[a(W)] " e(A)[d(A)] !
9

(58)
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Moreover, due to the symmetry relation ST(A*)S(A) = L, we obtain af(A*)c(A) + bT(A*)d(A) = 0, which implies c¢(A)d~ (1) =
—(b(x*)a~1(1*)). Thus the jump condition can be simplified as

8i

I rf(A)e T2

m"=m" 2& (*) ,  AER, (59)
r(M)er2 I, + r(A)rf(L)

where

l‘(k) = _b()\')a—l()\) — [r]()\‘) —rz(—)\‘):| )

r(A) (=)

Here r(1) is called the matrix reflection coefficient.
3.2, Scattering data and scattering map

To proceed to the case of the discrete spectrum, we assume the elements of scattering matrix a(A) and d()1) can be analytically
extended to the corresponding complex plane. Since

det(S(1)) = det(ad)det (I, — ba~'ed™") = det(a(1)a(1*)) det (I, + r(A)rf(1*)),

from the fact of S(A) = 1, one has |a(A)]* = [det (I + r(A)rf(1*))]~!, where (1) = det(a(1)).

In what follows, we consider the discrete scattering data following the ideas in [37]. Since the scattering matrix a(A) is 2 x 2, there
are two different cases: one is single zeros of «(1); the other one is double zeros of «(A). Firstly we consider the single zeros of det(a())).
Assume that the determinant of det(a(1)) has the simple zeros A; and —A] located in the lower half plane, since

o= ) A

det ([¢1,+(y, $;A) P2, (¥, s; k)]) =a(d)= ma(l),

the eigenfunctions satisfy the relation

. ai(s;m)] . o3(s; A1)
D11y, 85 M) |:a2(s; )\1)i| =@, _(¥,5s; A1) |:oz4(s; )»1)] , .
Br (.5 —10) —a5(s; A1)] By (7.5 —2) —otz(s; Aq)
1,+ Y, S 1 O[T(S; )\,1) - 2,— Y, S; 1 a;k(s, )\’1) 5

where «;, i = 1, 2, 3, 4 are the coefficients of proportionality. In order to get a closed form, we need another linear relation which

comes from the degenerate property of the matrix a(1). We consider the meromorphic function

D14y, s; Madj(a(r))
det(a(}))

D (y, 85 1) = [ s D2 (Y, S5 A)]

which can be expanded by
(K 1.5), 0]

A=A
Since det(®~(y, s; A)) = 1, we have

O7(y.5: 1) = + [0 5, K. 9)] + [k, 9, 10, 9)] =2 + -

1
det ([Kl;”(y, s), Kg‘”(y,s)]) = Res (W) det ([@1.4(y. 51 1), P2.(v. 5; A1)]) det (adj(a(r1)))
B (61)
= Res | —— ] det (a(r1)) det (adj(a(rq))) = O,
a=r \ a(A)
which implies that [l([]_”(y, s), K[Zo](y, s)| has a second order zero at the point A = A;. The second order zero is a consequence of the
matrix a(1) being degenerate. The corresponding linear relations are

1] Bi1(r1)| _
K 0.9 |:ﬂ2()hl):| =0,

k0.9 (a0 [ 107 ) = k0 [0

ai(Aq)
az(A1)

and

where the nonzero property of vector a(iq) |: :| # 0 can be derived from the asymptotic behavior of @ ,(y, s; A). We have a

similar relation at the point A = —A].
Secondly, we consider the double zeros of «(1), i.e.
(= 2P+ 15 ——
aM) = ————a()).
(A + 21122 — 27

10
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The matrix function a(1) can be decomposed in the following form

O =) A M)
™= o an ™

where a(A) is a non-degenerate matrix in the lower half plane. In this case, there are two eigenfunctions at A = Ay, which satisfy the
following relations

aq(S; Aq) as(s; A1)
@ LS5 A =&, _(y,8; A ,
105t 2) [az(s; ay| = P s [om(s;xl)
B1(s; A1) Ba(s; A1)
2, (y,s;k)[ =@ (¥, M) ,
e ! Ba(s; A1) 2 ! Ba(s; A1) )
oriys—ap |2 L g, s ap[ e
LT aj(sirr) | 2-055 ~H ai(ssh) |’
—B5(s; A1) —B(s; A1)
P14y 5; —A*)[ X =&, (.5 =] o, :
. EHCYO N UL B )
where «;, B, i = 1,2,3,4 are the coefficients of proportionality, and the vectors (o1, aa, a3, 0g) and (B1, B2, B3, B4) are linear

independent. To find a closed form, we need another linear relation which comes from the degeneracy of the matrix a(A). In this
case, we consider the meromorphic function

_ —~—1 (A +A1)(A —AT) ]
D (y,5;A)=|D ,SM)ah) —m——————, D (Y, 55 A

(.51 4) [ 15t 00— @i )
which can be expanded by

(K. 5), 0]
A—Aq
Since det(®~(y, s; A)) = 1, one has

det ([K[{”(y, s), l(gol(y, s)])

O (7,55 1) = + [0, 9. 1600, 5)| + [K, 9, )0, 9] = 20+ -

20 — A7)
M

(det (a0 )))_1 det ([@14(y, 5: A1), @5 (3, 5: A1)])
(63)

which implies that [’K[I]](y, s), l(go](y, s)] still possesses a second order zero at the point A = A;. The double zero point is a consequence
of the degeneracy of the matrix a()). The corresponding linear relations between them are

MAA — [1(x) ] _ o a3(s; M)
Tt — A 09 (a(xl)[az(h)]) =109 [om(s;xl)]
and
MAAM — [ B | _ o Bs(s; A1)
22(A — )J{)Kl -) (a(m [ﬂz(M)]) =K0.s) [/34(5; M)]'

Similar relations exist at the point A = —Aj}, which are omitted here.
To establish the symmetry relation, we rewrite the relation of scattering matrix in the following form to find the discrete spectrum:

)
[05(y. 5] @F(y.s; 1) =Ly, dE(y,5:2) = mE(y, s; A exp [_lzx23y] : (64)

By the way, we obtain the determinant relation det(d(A)) = det(a’(1*)). At the points A = A%, —Aq, there are coefficients of
proportionality between &; _ and @, .. It is easy to see that the meromorphic solution @*(y,s; 1) in the upper half plane can be

determined from the symmetry relation [@~(y, s; k*)]f Dy, s;0) =Ty, ;M) [P, s )\*)]Jr = II4. The matrix functions ®@*(y, s; 1)
and [®(y.s; )ﬁ*)]T can be expanded at the singular point A = A; by
. I
2y, 5 1) = [Pg (v, 5: A7) + (1, 8 A1) — A7) + - - - ] diag (112, A_ZA>
] ! (65)
[0~ (v.5:2%)]" =diag (ﬁ 112> [[cba(y, ssan)] [T s an] (=D + - ]
- M
which implies
* — T — *
&y, 520 [0 0,5 00)]" = [@5 .53 20)]T @ (1,55 4%) =0,
BF 1.5 A [@7 (s )]+ D (.54 [@ (v 51 )] (66)
= [@5 (v, 5:1)] @ (v, A7) + [@7 (v 51 20)] @5 (v 5 4)) = I,
1
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From (66), we have

Im ([(Do’(y, s; M)]T) = Ker (&g (y,s: A7),  Ker <[¢>O’(y, s; Al)]f) =1Im (P4 (v.5;17)) . (67)
Similarly, we obtain
Im (@4 (v, 5; A})) = Ker ([cDo*(y, s; Al)]T) . Ker(®5(y,s: A1) =Im ([(DJ(y, s; AT)]T> . (68)

We conclude that Ker (@, (y.s;A1)) L Ker(@g(y,s:A})). Actually, for arbitrary vectors u € Ker (@, (y,s:41)) and v €
Ker (@J(y, s; X]“)), on account of Eq. (67), we obtain viu = wT(DO’(y, s; A1)u = 0. On the other hand

(Im (2 (7, 5 21)))
=dim (Ker (®, (v, s; 11))) + dim (l < o (v, 55 01)] ) (69)
=dim (Ker (®, (v, s; A1 )) + dim (Ker (@, (y. 5: A7) =

which implies

dim (Ker (@, (v, s; A1))) + dim

Ker (®, (v, s: A1) @ Ker (7 (v, s; A7) = C*. (70)
The spaces Ker (®, (v, s; 21)) and Ker (& (v, s; A})) represent the discrete scattering data.
Before the discussion of multiple zeros case, we introduce the generalized eigenfunctions. For i = 1,...,n, functions ¢; € L*(R)
satisfying the equations
(L—21)p =0,
L—A =9,
( o1 =¢ (71)

(L= 21)¢n = P

are called generalized eigenfunctions. Actually, it is obvious to see that generalized eigenfunctions can be obtained by taking derivatives
of an eigenfunction ¢ with respect to 2, i.e.

dl
b= s, € P(R) (72)

In general, under the assumption

oy o= Ak A
a(r) = 1;[ O+ A — k;,k)ki

), ki=vi+T

the generalized eigenfunctions can be determined by the following relations:

diP1,1(v,5:2) [an(s; 1) | A0y (1.5 4) [as(s: 2) |
l dai a(s; A) [ a=n T l. di oa(s; M) | 1r=ni )
o058 s ]| Ao 0.5 1) [A(s )]

dal Ba(s; A) | 1r=ni dal Ba(s; 1) | 1a=np°

wherej; =1,2,...,vi—1;; =1,2,..., 55—1; a,(s; Ai), Bo(s; A;) and their derivative with respect to A, v = 1, 2, 3, 4 are the coefficients
of proportionality. The relations (73) imply that the functions
d“®@ 1(y,5; 1) d“®, (y.s:1)
dak ’A:)»,—’ dak ’A:A,—
tend to zero as y — =o00. So they are generalized eigenfunctions. The other generalized eigenfunctions can be defined by the symmetry

relationships (49) and (50).
Thus, in the absence of the spectral singularities, the scattering map can be represented as

A=xri" dpli
i=1,2,...,n1=1,2,3,4,;=0,1,...,vi—1,=0,1,...,5; — 1.

di di
(01, 0), g2(y, 0)) — {l'(?»), A € R; £A;, £17, waz(o Al — B0 A1, ;. } (74)

3.3. Evolution of scattering data

We consider the evolution of scattering data. Suppose we have the Jost functions @.(y, s; 1) for each s and the potential function
Q decaying to zero when y — =00, then W.(y,s; 1) = @.(y,s; A)exp( AsE;) satisfies the Lax pair (5). Actually, since @.(y, s; 1)
satisfies the spectral problem (44), we can write Wx(y, s; 1) = ®L(y, s; A)Ci(s A). Inserting W_(y, s; A) into evolution part of the
Lax pair (5), we obtain CX(s; A) = i)»EgCi(s; 1) by the decay properties of the potential functions Q, which implies that C*(s; 1) =
exp (£123s) to keep the normalization at oco. Thus

d i
gda(y, S;A) = —Zwi(y, s;A) X3 +V(y, 5 )DL(y, 55 A),

12
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which yields the evolution of the scattering matrix

d

) .
S50 = - (0105 )P4y, 5:0) = ix (55, 5(s: 1))

ie. a(s; A) = a(0; A), d(s; A) = d(0; 1), b(s; ) = exp(——ks][z)b(O; A) and c(s; A) = exp(%)\sﬂz)c(s; A). So the reflection coefficients
r(s; \) = exp(——ks]lz) (0; 1) and the zeros of determinants a(1) and d()) are invariant since the matrix a()) and d(A) can be analytically

extended in the lower/upper half plane respectively.
Now we consider the evolution of the coefficients of proportionality. Firstly, we have

d i
— @ (Y, 550) = _Z)\qjl,+(y, $;A)+ V(. 8 A)@1 1. (y, 55 A),

ds
and
d i
&cbz,f(y, ;M) = ZM’z,f(y, SiA)+V(y, s; )Pz (¥, 55 A).
Taking the derivative of (60) with respect to s, we have
d fay(s; ) d [as(s; 1i) i Tas(s; &)
— ’ — —_ ’ = ——A; ? 7
ds [012(5: Ai) 0, ds | oua(s; A) 2)” aa(s; A [° (75)
ie.
ai(s; Ai) | _ [ (05 i) as(ss ) | _ o [ @3(05 A1) (76)
aa(s; Ai) aa(0; 00) |7 | aals; &) as(0; 2) |

In general, we obtain the evolution of generalized scattering data:

did1 (v, 5 1) [a1(0; 1) _dio, _ (v, 5: A)e™ 2 [ars(0; A)
T Mg |)\ Y |A Aj

dai az(0; A) dai a4(0; A)
i (77)
didy (v, ;1) [B1(0; 1) _ iy _(y.5:A)e”2" TB5(0; 1) |
dali B2(0; 1) | 1r=hi dali Ba(0; 1) | Ia=2s’
where j; = 1,2,...,vi—1; ; = 1,2,.. — 1; ,(0; A), B,(0; ;) and their derivative with respect to A, v = 1, 2, 3, 4 are the

coefficients of proportionality.
3.4. Inverse scattering

Now we consider the inverse scattering transform to obtain the solutions of Egs. (6). Firstly, we represent the above well-defined
meromorphic function m(y, s; 1) in Egs. (56) and (57) together with the evolved scattering data as a Riemann-Hilbert problem [38]:

Riemann-Hilbert Problem 1. Let (y,s) € R? be arbitrary parameters. The meromorphic function m(y, s; 1) possesses the following
properties:

Analyticity The meromorphic function m(y, s; A) = (my(y, s; 1), my(y, s; A)) is analyticin A for A € C\ (IR U{r, £2fi=1,2,..., n});
Poles The principal part of ml(y, s; A) in the lower half plane can be represented as

[k] [k] *
y,s; A1) | my(y,s; —A]) o
my(y, s; 1) Z Z ( A — Akl + Ot A;“)k+1l +myg(y, S; A); (78)
i=1 k=i
and the principal part of my(y, s; A) in the upper half plane can be represented as
n_ i [k] * [k] .
(.8 47) | my(y, 85 —A) L
20y, 53 1) ZZ ( h— ATyl + Ot At +my(y, S A); (79)
i=1 k=l

where j; = max{yv;, t;}, my; and my, are the analytic part of m; and m, respectively; the principal part of m; and m; are linked
by Egs. (77) and their symmetric equations with the aid of Egs. (49) and (50).
Jump condition The jump conditions on the real line
I rf(1)e -5
, A ER, (80)

m(y,s; 1) =m (y,s; AV, 5 1), V(Y. S A) = s s
r(2)el@ =2 1, 4+ r(rt(n)

Normalization The normalization condition m(y, s; A) — 14, as A — oo.

The above Riemann-Hilbert problem can be solved by the following algebraic-integral equations

i ((mlys20.0) (miys—ano) (omflysa) (0.mil.s i)
+ ,21 e (A — Ay)kt? + (A + ATt + (o — Aryer + R
f m-(y,s; )(V(y, s; £) — Tq)dC
+7. ,
2mi =X\

13
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the algebraic equations are given in Eqs. (77) and their symmetry equations is given in the Riemann-Hilbert Problem 1. Insert the
expansion

m(y, s; ) = Ty + My(y, A" + 0(2™2) (82)

into Eq. (46), the potential function can be recovered as

—ip-5L  —Q | _d
[ Q (o — S, —dyMl(y,S). (83)

In general, the algebraic-integral equations (81) do not have a closed form. However, in a special case, i.e. the reflectionless case
r(A) = 0, the potential functions can be obtained explicitly from Eqs. (77) and their symmetric equations.

To solve the linear system, we use the ansatz from the Darboux transformation given in Section 2. Since the reflection coefficient
r(A) = 0, the jump condition on the line is the identity matrix. The meromorphic function m(y, s; A) is an analytic function with poles
located at the points +A; and £A], i = 1,2, ..., n. From Egs. (81), we see that the first two columns of the matrix m(y, s; A) are
different from the last two columns of matrix m(y, s; A). Thus, we redefine a new analytic matrix

m(y, s; ) = m(y, s; A)diag (a(3), I) (84)

which is analytic in the lower half plane and has the poles in the upper half plane. Actually, the new analytic matrix m(y, s; A) is
consistent with the general Darboux matrix T[N](y, s; A) (40) with the seed solution q; = g, = 0. In the following, we give the exact
solutions and their dynamics.

3.5. Single soliton solutions

As shown in previous analysis, there are two different types of eigenvalues: simple zero of det(a(A)); and double zeros of det(a(1)).
Indeed, each simple zero corresponds to a su(2)-type soliton, and each double zero corresponds to a breather solution.

To find single soliton solution through the formula (18), we need to give a special solution ¢; of the Lax pair at A, = A; = a; + ibq,
by <0andq; =¢q, =0, p=6/2:

(M )
o el(TS— ﬁy—k—ﬂ])

01 A
i Czel(%sfﬁyﬂ?z)
(D] = = s 5 . (85)
1 d efl(%sfmywh)
Y1

aal

e G
For the sake of convenience, we rewrite the Bdcklund transformation in the following form:
$107 + ¥ x1

10112] + x11? + o11% + [y
1x; — Vio

qi[11 =q1 — (A — A7)

Gal1] = @2 — (h — 23) 7 .
Clon P+ xal? + 11 + v (86)
0112 2 2 2
,0[1]=,0—21ny5 I 1| +|X1| +|¢1| +|W1| ]
A —Af
Inserting (85) into (86), we obtain the single soliton solution
da qi(B1—¢2) a2 cre”i
alll i i € ] G
I:CIZ[” = ~ibs sech(4)€ 41 o~i(B1—¢1) |’ c= et et |7
i T T
1 b? (87)
pl1]1=146 <5 T sech?(A )) ,

)
= 5y — bitanh(A;), t = —s,

where A; = by ( + 2+b2) + In|d| — In|c|, B = a4 (— - 2+b2) lc] = c1 + cz, |d| = ,/dz + d2 The dynamics of a single soliton
in Fig. 1 exhibits a beatlng effect [39]. The beating effect comes from the multi-component system with Hermitian symmetry, i.e. if
(g1, q2) is the solution, then (qq, g2)H is also solution, for any Hermitian matrix H. It is easy to see that the matrix C is Hermitian. If

laq| > |b1| the soliton is smooth; if |a;| = |bq|, the soliton is a cuspon-type; if |a;| < |bq|, the soliton is a loop-type. If t — =00, then
xxb; = 2y The center of soliton is located on the curve A; = 0 which approaches the line Xzibblz) i+ l"‘dz‘b el — g ast — +oo.

b2
Meanwhile, the velocity of the soliton tends to 4 :

Now we consider the scattering data of above smgle soliton. As y — +o00, then the Darboux matrix (17) is
-1
Ay — a* | et oycclo, it
lim T(y, ;M) = T[+oo] =14 — ! 1 A=A% =23 0 , €= 1 w, |3
y=boo |cf? 0 0 et

14
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Fig. 1. SU(2) solitons. Parameters: c; =c; =1,di=d, =1, a1 = % bi=-1,8=1,0=0,=0, ¢p1 =¢, =0.

Correspondingly, as y — —oo, the Darboux matrix (17) is

A — A% 0 0 die—i%1
lim T A =T =1y — ——1 oddlo;l |, d= = .
yig‘oo . 5 2) [=oa] 4 |d|2 |:0 )Ld_d;»{ + ‘Zd):)ﬁlsz d2€71¢2

By the linear property of the Darboux matrix, we can rescale the Darboux matrix TN = T(y, s; A)T[__loo]. Taking the limit y — +o0, we

have
Ay — A cct oac*c'o; ! . k= adf opd*d’o; !
aA) =1, — , dA)T =1, — .
M=t-"0m (k—xﬁ e NPT P e

The determinant of a()\) equals to ;:;l iii} The eigenfunction at the point A = Ay can be easily constructed through the Darboux
1
matrix:
Clei(%57%y+§]) 8
(P18
T 20) | e (475072 | S qgs00) |y i) | € IR (88)
0 1 (- vren)
0 —dye \AT TR
Similarly, we can construct other eigenfunctions at points A = £A] and A = —14.

We now turn to study the double geometric zeros of a()). In this case, the Darboux matrix can be constructed with the following
form:

To(y, 5; ) = Iy — YM, '(All; — Dg)~'Y! (89)

where

Y =[P1, AP}, &2, ADS], Dy =diag (A}, —A1, A, —11), My = [M“ M“}

M;; My
and
T i T i
; ; olo, LTy e ®] Ad*
DDy D, D, PREES —AEE AT —AF=AF
My = ———, Mxp = -1, Mp = T Taw | s M21= T Tox
A — A7 A1 —A] _P[Ad,  B1P; _ PIAB; B]0}
A+rq AR r+rq =M+

Actually, this Darboux matrix can be viewed as the iteration of Darboux matrix (17). To obtain the solutions which are different from
above single soliton solution, we choose

(e o 0

(=)

e\ 4 Ozh ei(%s_%y)

& = d: 1e—i(%5—%y+¢1,1) , O, = d: Ze_i(%s—%yﬂau) ,

(M s (M s
d, 1e*1(75* mY+¢2,1) d, Ze*I(TS* m)“r@,z)

where d;;, ¢;, i, j = 1, 2, are real parameters. The corresponding solution from the formula (34) is a breather

Fi F, 8
q1[2] =D’ Q[2] = D pl2] = i 21ny5(Dy)
1 1 (90)

)
x =5y = 2In(Dy), t=-s,

15
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Fig. 2. Breather on a zero background. Parameters: a; = 1, by = 7%, 8§=1,d;1=10,d1p =2,dy1 =-10,drp =1, ¢;; =0,1i,j=1,2.

where

.l o ol i
p, - 2101902 = 0]0:10[0; I AT DT AD,
(A1 — A7) 4n P

and
F = Y3,1M12Y;_2 +Y3.2M21Y;1 - (Y3.1M22Y;1 + Y3,2M11Y};2)’ =12
where Y;j ; represents the jth row and first two column of Y, Y;, represents the jth row and last two column of Y. If t — oo, then

xX+b = %y. The breather propagates along the curve 5 — az‘i’bz = const which approaches the line (ij? — % = const. The velocity
1 1 1 1

2ip? . . .
of the breather tends to %. Fig. 2 displays the dynamics of one breather for two sets of parameters.

As shown in the simple zero case, the matrix functions a(A), d(A) can be obtained by taking the limit of the Darboux matrix as
y —> +00

A=A A+ AT A=A A+ A
a) = 22Ty, gy = T2y
LY A— A1 A+ Ad
The corresponding two eigenfunctions at A = A, are
e 5
el(Tlme) 4(A1 0 ) )
il s—5=y
Ta(y, s; A1) 0 , Dy.sa) et ™
0 0
0 0

3.6. Multi-soliton solutions

In what follows, we consider the multi-soliton solutions. Among them, there is an interesting case — the double hump soliton -
which corresponds to two solitons of the same speed. In the scalar case, two solitons with the same speed will resonate and thus
form a breather. However, for the two component system, the nonlinear superposition of g; = single soliton, g = 0 and q; = 0,
q> = single soliton with the same speed, generates a double hump soliton. In the following, we discuss these three types of fundamental
soliton solutions in detail.

Suppose we have the following linear independent vectors:

A Hidi 5
Cij el<757 Zij;”
L.Ji

Pij = .(‘Ai,jf 5 ) o1)
—i| Zts—5y
dije b
where ¢;j and d;; are constant column vectors, [A;j, | = |Aij, |, j1 # j2, with at most two equal parameters among A, ji = 1,2, ..., k;.

Inserting the vectors (91) into the formula (33), the multi-soliton solution can be derived through the formula (34).

The norm |A; ;| determines the velocity of soliton. If two solitons propagate with the same speed, they will form a bound state.
When the distance of the two solitons is large enough, the “breath” effect will be feeble. The choice of a set of linear independent
vector with [A; 1] = |A;;],Ji = 1, 2, ..., k; will form a bound state. As mentioned above, in the multi-component system, in addition to
the breathers, there is an interesting double-hump soliton that can be obtained for a special choice of parameters. In what follows, we
give its exact formula. Firstly, we choose the vectors

G (8 Aj ‘
?j = [dje’wj], wf:l(xjy_zjs)’ J=12, Pl =1kl 2 # 22, (92)
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Fig. 3. Double hump soliton on the zero background. Parameters: § = 1, Ay = g —iz,
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Fig. 4. Two-soliton solution with the elastic interaction on a zero background. Parameters: § = 1, Ay = 3 —i, A, =2 —i, 11 =¢c12 =0, 1 = 22 = 1,

dig=dip=1dy1=-1,dyp =1

Plugging the vectors (92) into (34) and simplifying it, we can obtain the double-hump soliton:

F. )
g,pm=5—ﬂwwﬂ
) (93)

1)
X=2y- 2Ing(Dy), t=—s,

Py 2] =
qi1[ ]—D—Z, (2] =

where
b (-l + |d1|26w1+w’1‘)(1 + |d2|2ew2+w§) |d.l|2|dz|2ew1+a)2+(u’1k+(u’2k N 1
) = ,
(A = AD(A2 — A3) A1+ Azl o — A%
and
B e [P (At ldiPert)
1=0U0 * PR * * ?
—A5 = A A — A Ay — A
P L A L o K catic) BN
S A+ Ao g — A Ay — AT

The2 shape of the double-hump soliton (Fig. 3) is determined by the parameters Ay, A, and |d;], |d2|. The soliton velocity approaches
2117

4

The dynamics of two-soliton are shown in Figs. 4 and 5, in which the elastic interaction between two solitons is shown in Fig. 4
and the inelastic interaction between two soliton is shown in Fig. 5. The detailed analysis for the elastic or inelastic interaction can be
performed by the asymptotic analysis as in Ref. [40].

3.7. Higher order soliton solutions

Sy %
To find the higher order soliton solution, the function e'(iy 25) is expanded at A = A by

) . e _1\" i —yaq+ap+-4an _is)"
8 = 29 Sy 910, awﬁy=(‘l> e WA 1 (94)
n=0

1 Ol1!0lz!---0[n! n!
lleelln=n

17
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Fig. 5. Two-soliton solution with the in-elastic interaction on a zero background. Parameters: § = 1, Ay =3 —i, A, =2 —i, 11 =¢C2 =0, 01 =02 =1,
din=di2=1dy1=5,d2=0.

where ||, = 2}721 Jjaj. Correspondingly, the vector @; can be expanded at A = A;:

[n]

Cq (o] c]
?1(0) = 4 =Y oM -, M= (o, h) N 95
1(A) |:d1el(§y_;5):| nX:(; 1 ( 1) 1 el(lly Zs)zd[;]En—i(y,S) (95)
i=0
where

o0 [o¢]
= Zc[lnl(k —-A), dy = Zd[ln]()» — )
n=0 n=0

Inserting the vectors (95) into the formula (40), the higher order soliton is obtained:

_ det(M})) _ det(My)
NINT =4 My’ 2[N] det(My)
5
pINT =3 — Inys(My), (96)

8
X :?y — Ing(My) + const, t = —s,

where
t @ _ [Myv YO
My = KySyKy, My = v e (97)
and
y()
(2)
— (0] [0] [N—-1] [N=1] [ __ Y
\{_[qb1 LA oV Al *]_ ¥
y(4)
Mol 0 0 0
[0]T
0 -4 ... 0
Ky = : : : : ,
Pl 0 el 0
L o -4 ... 0 —ol%a]
(i+j—2) (—1y 11y (i+j—2) Iy
i=1 ) (p -2kt i1 J(—p3—a3)+-1
Sn = i o\ (_1)y—1+i—1 e i1
(I-H 2)( 1y Iy (1+} 2) (—1)" 1y
=1 i O R AL VAR
In particular, by choosing the vectors
0 0
ol% = v ol = 0 i
! dyetr i | ! dy (Cy +iDy) e B
dzeAﬁ—iB] d, (C2+iD2) eA1+iBy
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Fig. 6. The second order soliton. Parameters: § = 1, a; = ‘5—‘, by = —%, di=dy=1¢e,=2,e,=10,f; =f, =0.
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Fig. 7. The third order soliton. Parameters: § =1, A =1— 1, ¢, =0, ¢, =1, d; =d, = 1, d{'' = 2, &'’ = 10.

_ 2a1b18y
A%

(a2 —b%)sy
=i (A

ot %) i=1,2, e, f; are arbitrary
1

where }\.1 =a + ib],A] = b1 (Msﬁ + %), B] = (% — %), C;‘ = €

real constants, we have the second order soliton solution:

szzeAl—iBl d1F3eA1+iB1
Q2= 2=
4bq (1b1 —a) F 4by” (a1 + 1b1) Fy
8
pI2] = — 2Iny(Fy), (98)
)
X =?y — 2Ing(F7), t=—s,
where
F [(—4 d12 ((Cl — C2)2 + (D1 — Dz)z) d22012 — d4) b]z — a12d4] et
b 16b14 ((112 + b]z)
[((Qz +D12) di? + dy? (C22 +D22)) by? +d2/2] eM 1
4b,* 16b;*
E = [(—2 di? ((Dl —iCy) (G — iDy) +iCi% + iD12) a; + (iC; — 2D; + Dy) di? + do? (iC, — Dz)) b12] e
+[(((=2iD; 4 iD; — Gy) di* — d5® (C3 + iD2)) a1 — d*) by — iazd*] e
+ (iC; + D) by? + ((iD; — G) a; — 1) by — iay,
F3 = —[(2d2* ((iC; + Dy) (C; 4 iDq) — iCo* — iDy?) ay + (iCy — Dy + 2Dy) dy” + dy? (iCy + Dy)) by*] e

— [(((@Dy = 2iD; + C1) dy* — di* (iDy — C1)) a1 + d°) by — iayd*] e*™

—[(iC1 = D1) by* 4 ((iDy + Cy) @y + 1) by —iaq]
and d*> = d% +d§. Figs. 6 and 7 display a second order soliton and a third order soliton, respectively, while Fig. 8 shows a superposition
of two second order solitons. It is seen that the two solitons in distinct components have different velocities.

4. Modulational instability analysis and rogue waves

4.1. Modulational instability analysis of the TCCD equation
In this section, we use the squared eigenfunctions method to derive the linear stability equation for the TCCD equations. Suppose
we have the following stationary zero curvature equation:

Ly(y,s; A) =[U(y,s; A), Ly, s; M), Ls(y. s; &) = [V(y, s; 1), L(y, 55 A)]
19
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Fig. 8. The second-second order soliton. Parameters: § =1, Ay = 1 — %, A =2— % 1=0C=1,di1=dy,=1di,=dy1 =0, dl[}] =0,i,j=1,2.

where

oy _ |ALss ) By, s; A)
L, 52 = [C(y, 54) D.s; x)}

which can be rewritten as

i i
A; =-(xQ'C—BQ), D;= —(QB—«CQ),
2 2
i i i i (100)
B, =—AB+ —«(Q'D — AQ'), C,=—-AC+ —(QA—DQ),
2 2 2 2
and
M, = — (kQ/C+BQ,), D, =QB+«CQ], (101)
AB, = —2ipB — k(Q}D — AQ}). AC, =2ipC+ QA —DQ,.
Taking the derivative of Eqs. (100) with respect to y, together with Eqgs. (101), we obtain that
i i
Asy 25(KQTC - BQ)yy Dsy = E(QB - KCQT)yy
(102)

i i
By =pB + EK(QTDy - AyQT)’ Cy = pC+ E(QAy - D,Q),

which are linear differential equation for the matrices A, B, C and D, which depend on Q, Q" and p and are independent of A. Moreover,
if the matrices A, B, C and D satisfy the symmetry relations:

ih(y, s)
2

A=ih(y,s)l,, D=ihy(y,s),, A—D=— I, B=—«C', o,C'0; ' =—C, (103)

where hy(y, s), ha(y, s) and h(y, s) are real functions, then (102) can be simplified into

K
hy = — E(q’{c] +qic] + @265 + g502),, (104)

C1,sy =PC1 + qlhy, Casy = PC2 + Q2h s

where

60,8 o.s)
v, s)= [c%(y, 5 il s)] :

Obviously (104) is the linearized version of (6). Therefore, the solution of (104) can be constructed from (99). In this way, we can avoid
solving the linearized equations (104) directly. The general solution for the linearized Eqs. (99)-(104) can be found by combining the
inverse scattering analysis [5].

Here, we only analyze the spectral stability of the plane wave solution for Egs. (6):

o 4 . Bis 8 )
gi = e, Oi:1<ﬂ7’_%), p= (105)

5 .
Inserting the plane wave solution (105) into (5), we can solve the linear system:

_is(elal?+1812+22)y

o bl (s 260y
520 = DV, gt (A ) B jof? =i +a3, 1BI® =B + B3, (106)

wherei =1, 2, 3, 4,

01=bp  61-6 91;02 e_91;92)
s s

D=diag<e‘ 2 ,e 2 ,e
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if oy # 0, we have

K(B1— Bo — A+ EM(B1 + B2)* — (A + EWP] + (aF — 02)(B1 + B2) + o> (h + £1T)
. 2010 +
Vi()\v g__[l]) — , 1 Z(ﬂlz /32) i , (107)
arllal” +«(h — B1)" — k(" — B2)7]
aallo)? + k(h + B2)* — k(ET + By )]
where £lUs are the roots of the following characteristic equation:
B1— By + A — &M 0 ' Koy Koy
0 Bo— B1+ A — &M Ko —Kaq .
det o a —B1— po — A — & 0 , =0 (108)
) —0 0 B1+ o — 1 — &N
if &y = 0 and o, # 0, we have
1 0
[i] 0 ; [il 1 i
Vi(A, M) = 0 , i=1,2, V(A &M= o , 1=3,4 (109)
+El4B1+6
o)
AtEll—pg1—py 0

where £l1) i = 1, 2 satisfy the quadratic equation (81 — B + A — EUYBy + B, — A — €Y — ka2 = 0, and £, i = 3, 4 satisfy the
quadratic equation (B, — B1 + A — EV)(B1 + B2 + A + E1) + ka3 = 0. We assume that the roots &' are simple roots. Vector solutions
corresponding to the multiple roots can be obtained as coalescence of simple roots.

By the way, the solutions can be constructed through the Backlund transformation (34) and the vector solutions (106) and (109). Note
that if we choose the combination of two or more vector solutions in (106), we can obtain breathers or resonant breathers solutions.
If we choose the combination of two or more vector solutions in (109), we can obtain bright-dark solutions, breather solutions or
combination thereof. These solutions can be obtained by inserting the vector solutions (106) into formulas (34).

Next, we turn to analyze the modulational instability for the plane wave solution (105). Firstly, we construct the solutions L(y, s; 1)
in Egs. (99). If the solution ®;(y, s; 1) satisfies the Lax pair (5) with the plane wave solution (105), then the solution q§;(y, S;A) XY
satisfies the following adjoint Lax pair

—¥y = Uy, s; A),

11
-, = w\(y,s; A). (110)

It follows that Lij(y,s; 1) = ®i(y,s; k)(DjT(y, s; A*)X satisfies the stationary zero curvature equation (99). In general, the solution
Li;(y, s; 1) does not satisfy the symmetry relation (103). Because the linear partial differential equations (102) are independent of A,
linear combinations of L; j(y, s; A) with distinct A still satisfy Eq. (102). Through the above analysis, we can construct the matrix function

A(y,s) B(y,s)
Cly,s) D(y.s)

—®i(y, 5; A7) (v, 5: )T — AD}(y, 5 )P (v, 5: A)AT' T

} = @i(y, s; A)<1>f(y, 51 A)E + ADH(y, 5 0D (v, 51 1)AT' X (111)

satisfying the symmetry relation (103). Suppose the functions c;(y, s), c2(y, s), h(y, s) have the form:
h(y, S) :fein(er/u) +f*efjﬂ*(y+u*3)’
: e\ i (112)
c(y,s) = (gfe“"”“s’ —gre e ”) el i=1,2.

By choosing the solutions (106), we can determine f, g;, g_;, i = 1, 2 exactly. For convenience, we introduce the following notation

, [i ' [ ‘ G
Vi(r, £ = [V‘:f();\”ilﬂ))} . v, gl = |:vl(17 g[iJ)] o wi, ) = |:w1(k,.§ ):|

vo(A, €M) wy(A, E1)
which yields
. . . . icglil _glil [ 4 glily_ 8y
Ay, s) = (Vh, EWHR*, £0%) — v (a”, E0 T, £0)or,) @46 e+ e i) (113)
(61— (s (g e 2 )

. . . . i glil _glil [ 4 £lily_ 8y
— U1(A,$[II)UT()~*,SU]*)+Uz(l,é[l])v;(l*,ém*)) ]Ize4($ 13 )(S‘F(E +& ))3“32)\)

(g1l (4611514 2 )

(

+ (UZV*()"a EU])VT()\'*ﬁ SU]*)UZ - V(}\,*, EUJ*)VT()\” EU])) e71
(
(

Uk, EMYr (%, £0%) 4 w30, £ Yug(a%, £UM)) Tpe 4

. . . . iceelil _glf] [il glily_ 8y
C.s) = (Wh ETWIA", E09) — w3, T, £l)0) @4 61— (o6 ) (114)

Je 61—l (s (gl ey 2 )

+ (oW (2, EMWG5, £, — w(nt, €V I, 51
| [ EMi O, V) w3 (0, E5up(, €M) e [un(h, 673 (0%, €57) — wi(h*, 0wy (1, §1)] e
| [walr, EMi 0, EUF) — wi(ar, €V Yup(n, ET)] %2 [ws(h, E1u3 (A%, E1) + wi(aF, E0)uy (1, £10)] e~
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A e (sl o )
| [w3sCh £Mua(ax, €9 + wa(hF, E5)(h 1] e [wa(A%, 60)u3 (0, 61) — wi(, §Mui (37, 0] e
[wa(r*, ET)ui(n, M) — wi(h, EMuy (1%, €M) ] e~ [wi(h, EMy (A%, EV7) + wy(1*, )3 (, £11)] e~
— 10—l (s gl gy B )

D(y.s) = «k (wW(x, Mwl(, &) — ouw* (0%, eMwi(a, &), )e‘ (e1—g)(s+(¢10-+£00) 7 ) (115)
i (oW, EWIA, £0)0, — WO, £ i, ) e 7€ —) (sre e )
— i (w1, £, £+ s, £, 60 et € D)
— ke (wiCh, £y (0, E7%) 4+ wi(n, 0wy (1*, £07%)) Hzef%(s”‘*—sm*>(s+<s“1*+s[ﬂ*)ﬁlggﬂ)
and B(y, s) = —«C'(y, s). Furthermore, we obtain

f=2i[(v1(n, e, £07) + vy(0, M3 (1%, £U))
—i (wi(x, EMwi(A*, €07) + wy(r, €Mws (a7, 0M))],

g = [wi( &Ml €7 + wi(hr, €7 )ua(n, €M), (116)
g1 = [wa(n, EMus(a*, V%) + wia®, £y (a, 1)),
g2 = [wi(x, EM3 (0%, £U7) — wi(a*, €)1, €M),
g2 =[wi, EM )uy(h, €M) — wy(n, EM (A", EVM)]
and
nzé“;é“l’ = ﬂlﬂzk(sm £y,

where £ and £07 satisfy the quartic equation (108). If we regard y as the direction of evolution, then the variable 5 should be real:
i.e. €1l £l have the same imaginary part. If 7 g — (61 + &) is also real the Fourier mode is modulationally stable; if 55— 5 — (61 + &)
is not real, the Fourier mode is modulational unstable. If  — 0 and ﬂz (5['] + S[’]) is not real, this corresponds to resonant or based-
band modulational instability. For the integrable partial differential equatlon one can use the exact solution to describe the dynamics
of MI or resonant MI [27,41,42]. For the MI, the corresponding solutions are the so called Akhmediev breathers. For the base-band MI,
the corresponding solutions are rogue wave ones.

In what follows, we show how to construct the rogue waves of CCSP equations (1) which correspond to the base-band MI.

Firstly, we need to consider how to find roots which possess the same imaginary part, i.e. £/l = £[{l 4 g, where a is a real constant.
We rewrite Eq. (108) with a shift as

F(€ +a)= (£ +a)* — 2«xlal® + B + A*)(& + a)* + 8B12A(§ +a) + A(L) =0, (117)
where

A =2+ 2clarl® — [BIPA2 + ol + 2c(af — e3)(BT — B2) + (BT — B3)%.
So one has

G(&,a) = FE +a)—F(§) =483 + 6at? + 40%¢ + a® — 2(k|a|* + |B)? + A2)(2E + a) + 8B1524 = 0. (118)

a
The quartic equation F(£) = 0 and the cubic equation G(&¢, a) = 0 have one common root. It follows that the resultant of F(§) and G(&)
should be equal to zero:

Rest(F(£),G(§,a)) =0 (119)

which is an eighth order equation with respect to A. When a = 0, the resultant Rest(F(&), G(&, 0)) is the discriminant of F(¢§) = 0.
Therefore, to seek the roots with £l and &l 4 g, we firstly solve the resultant equation (119) for a fixed a. Moreover, we can obtain
two groups of roots of the form {£A;, £A]},i =1, 2 if x = 1; while for kx = —1 we can obtain a quadruple {+A;, £A7} and four other
real roots which are not related to MI. Especially, when a = 0 and « = 1, there are two groups of roots which correspond to two
branches of MI, which are associated to two distinct rogue waves. For the defocusing case, when a = 0 and x = —1, there is one group
of roots, corresponding to one branch of MI, which is associated with rogue wave solution. The MI spectrum is shown in the phase
diagram (Fig. 9).

4.2. Rogue waves of focusing and defocusing CCSP equation

The case a = 0 corresponds to £[1 = £U], In this case, the vector solutions are not involved in the expressions (106). We can seek the
vector solutions by formal series expansions. Since the vector solutions (106) involve the algebraic curve (108), by the Riemann-Hurwitz
formula we deduce that the genus of the algebraic curve F(§) = Oisequaltog = —n+ 1+ B/2 = 1, where n = 4, B = 8 is the
total branching number. By the discriminant analysis, we know the discriminant equation of F(§) = 0 does not possess multiple roots,
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Fig. 9. MI of focusing and defocusing type of CCSP equations. Parameters: § = 1, «; =, = 1, B = 1, B2 = 2; (a) The eight red points represent the spectral points
of the rogue waves. (b) The four red points located off the real axis represent the spectral points of the rogue waves.

so the characteristic equation (108) F(§) = 0 just involves double roots. In the neighborhood of a branch point (&£, 1) = (&1, A1), the
algebraic curve could have the following expansion:

o0
=&+ &l A=r+e (120)
i=1

Inserting above formal series into the characteristic equation (108) F(§) = 0, we can solve for the coefficients 51[” recursively.
Following the steps given in [33], we can obtain the vector solutions with rational expression at the branch point:

i6(klo 2 +1812+33)y

i 51y _
®D1(y,s5;A)=D [6’1, X1,  ®1, \/fl]Te“El (Hﬂﬂ?zh +k1) 4F1P21 (121)

where k; is a complex parameter,

i 251y
61 = - ki)l lo,
! 4<s+51,32)»1 +<1) 1
i 2881y
= - ! b,
X1 2 (5+ B P + <1)0510l2 2

i 2sEy
! <s+ o, kl) s + 2(Bs — sn} ,

V= [; <s+ ;‘Zﬁ + kl) ls — 2(By +sl>} ,

and
lo(1, &) =k [(Ba + M) — (B + & )] + 2c(B1 + E)(Br + Ba — M — &) + o,
L, &) =c(Br — Ba — 2 +E) [(B1 + B2)> — (M1 + & )] + (@] — a2)(B1 + B2) + la* (k1 + &),
b =21+ B2), (A1, &) =lal* +k(h — B1)* — k(&1 — B2 ),
ls(M1, &) =la® + k(A + o) — k(&1 + B1)
Then by the Darboux transformation (18), the rogue wave solutions for the CCSP equations (1) are

« G107 + Ui x
ql[u:[i—(m—m — 117 1A z}e(’l,

2 16117 + 11 > + iclps 2 + | |

« . dix;— V30
qz[1]=[2—(m—k1) 1 z}e‘b

2 10117 + 1 x11° + k|11 + k1]

(122)

1611 + 1x11* + «l¢n +K|¢1|2>

8
11=--21
pl1] ny,s( o

2

1) K 0] 2 + 1 2 +« 1 2 +« 1 2
x:iy—g(af—i-oz%)s—Zlns(' | |X|M—|K¢T| WI), t=—s.
Under the condition p[1] > 0, the regular rogue wave can be obtained. Figs. 10 and 12 display the regular rogue wave solutions for
the focusing and defocusing CCSP equations respectively. If min(p[1]) = 0, the cuspon rogue wave will be formed. If min(p[1]) < 0,
the parameter setting will correspond to the loop rogue wave. Fig. 11 displays the loop rogue wave for the focusing CCSP equations.
However, it is difficult to get a closed form condition to discriminate these three types of rogue waves since an algebraic equation with
eighth order cannot be solved in a closed form in general. For the case min(p[1]) < 0, the singularity occurs and we have cuspon or
loop-type rogue wave solutions in parameter form. However, these solutions are not expected occurring as actual physical phenomena.
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Fig. 10. The regular rogue waves of the focusing CCSP equation. Parameters: § = 1, a1 =2 =1, 1 =1, B2 =2, A1 = —1.772 — 1.172i, & ~ —0.960 — 0.116i.
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Fig. 11. The loop rogue waves of the focusing CCSP equation. Parameters: § =1, oy =ay =1, 1 =1, B = 2, A1 & —1.146 — 1.040i, & ~ 2.262 — 0.152i.
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Fig. 12. The regular rogue waves of the de-focusing CCSP equation. Parameters: Parameters: § = 1, oy = a3 = 1, By = 1, B2 = 2, Ay & 1.705 + 0.115i,
&) ~ 1.465 + 0.597i.

4.3. Other localized wave solutions on a plane wave background
Finally, we outline how one can construct additional exact solutions from the Darboux transformation.

(1): 1 =0, a3 # 0, k = 1 Degenerate breather solutions, bright-dark solitons, degenerate rogue wave solutions and their combina-
tions. For degenerate solutions we mean that solutions can be seen as the solutions of the scalar complex short-pulse equation.
Combination means the nonlinear superpositions of different types of solutions. Choosing the special combinations of solutions
in (109) with the form:

D1(y, s A1) = Ty, $; M) + 1120y, 55 M), (123)

and inserting the vector solutions (123) into formulas (18), we obtain that the solution q; is still a zero solution and g, is a

breather solution. Especially, if A; = 8, + iy with the special limit technique as in [33], then g, can be shown to be the rogue
wave solution.

Choosing the special combinations of solutions in (109) in the form:
D1y, s; A1) = 1Y, 85 A1) + i3y, 85 A1), (124)

and inserting the vector solutions (123) into formulas (18), we obtain that the solution q; is a bright-soliton solution, and g, is
a dark-soliton solution (Fig. 13). The multi-ones and higher order-ones can be constructed through the general formulas (40).
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Fig. 13. A bright-dark soliton of the focusing CCSP equation. Parameters: a1 =0, 02 =1, f1=1, fp=—-1,6 =1L 0 =-3+ I g =1 -1 & =—1- %7 + %.
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Fig. 14. A bright-dark soliton of the de-focusing CCSP equation. Parameters: oy = 0, a; = 1, 87 = 1, g = =1, 6 = 1, &y = —}1 + %. & = % - %.
= -1+ AT W
(2): ¢ =0, a3 # 0, k = —1 Degenerate dark solitons and bright-dark solitons and combinations thereof. Choosing the special combi-
nations of solutions in (109) with the form:
@1y, 85 A1) = 1Y, 85 M) + w30, 85 4q), (125)

and inserting the vector solutions (123) into formulas (18), we obtain that the solution q; is a bright-soliton solution, and g, is a
dark-soliton solution (Fig. 14). The bright-dark solitons and their interactions were given by the Hirota bilinear method in [43].

The degenerate dark soliton can be constructed as shown in Eq. (21):

51_5;‘ E]g
[11=0, [1l=— [1+*—— e?,
(h 12 MAE —B—H A
3
pl1] = = — 21, (4) > 0,
2 ) (126)
x—§ +a—25—21n(A) t=-—s
—2y 3 s , =5,

i 5k 384
=(E+1), E= o0+ )4 (*ﬂ]ﬁzlJ”‘
where y; is a real constant, & = 81 +1i oz% — (B2 — M2 B2 — Ml < .

(3): @13 # 0, k = 1 Breather solutions, rogue wave solution and combinations thereof. Choosing the special solutions (107):
¢1(y,5;)»1)=rk(y73§ )\1)+)/11_}(ys5;)»1), k#ja (]27)

and inserting the vector solutions (127) into formulas (18), we obtain the breather solutions (Fig. 15). If we choose three or more
vectors, resonant breathers are obtained. The rogue waves are given in the previous subsection. The higher order rogue waves
can be obtained through a similar procedure as in [22].

(4): 12 # 0, k = —1 Breather solutions, dark-dark solitons [44], rogue wave solutions and combinations thereof. In the defocusing
case, the breather solutions (Fig. 16) can be obtained by inserting the vector solutions (127) into formulas (18). But the imaginary
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Fig. 16. Breathers of the defocusing CCSP equation. Parameters: oy = 1, a3 =2, 1 =1, o =8, 8 =1, Ay = 1 +1, & ~ 7.772 + 1.452i, & ~ —5.929 + 1.1599i,

=1

part of the roots 5]”‘] and “;‘1”] should have the same sign to keep the Darboux matrix positive or negative definite. If 1; € R, and

there is a pair of complex roots /') = £/* = &, in the characteristic equation (117),
; of . MEHED)
i Iy, s ) 2300y, 53 1) _ 2 (IVi,1(h, €)1 + Vi 2(M, 51)|2)ez(51*51)<5+ ﬂféfﬁ) (128)
A=A A— )\1 51 — Eik
then the dark soliton can be constructed as shown in Eq. (21):
* * * %
al =% - Vi3V + ViVin)E ¢ ] = a  (VigVi, = ViViaE e,
2 A 2 A
1)
pll] = 3~ 2Iny 5 (4) > 0,
B 1, (129)
x=§y+§(al+oe2)s—21ns(A), t=-s,
2 2 . 861 +£%)
A 2 <|V1,1| + |V1,2| )(E + 1), _ ez(%’]—g;‘)(s+ ﬁ:/:zg1y>+ 1
§1— &

where y; is a real constant, V; ; represents the ith component of V; (107). We plot the solution in Fig. 17 for a special choice of

the parameters.

5. Discussions and conclusions

We have constructed various localized wave solutions to the CCSP equation (1) by the Darboux transformation. For the focusing
CCSP equation under VBC, by the scattering and inverse scattering analysis, the soliton solutions are characterized from the viewpoint
of spectrum. The elementary solitons are classified into three types: bright soliton, SU(2) soliton, the breather and double-hump soliton.
Moreover, higher order soliton solutions are constructed. Under NVBC, we have developed a new method to analyze the modulational
instability. In this way, we firstly explain the mechanism for the formation of rogue waves of two-component complex coupled
dispersionless (TCCD) equation. We find that for the focusing TCCD equation, there exist two types of rogue waves which correspond to
two distinct branches of MI; for the defocusing TCCD equation, there exists a type of rogue wave. This is similar to the cases of focusing
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Fig. 17. A dark-dark soliton of the defocusing CCSP equation. Parameters: a1 =1, 00 =2, 81 =1, 5, =8, =1, ;1 = 1, § ~ 7.937 4+ 1.008i, y; = 0.

and defocusing NLS equation [27,41]. Since the rogue waves of the TCCD equation tend to a plane wave solution when y, s — +o00, rogue
waves of the CCSP equation tend to a plane wave solution when x, t — o0 by virtue of the inverse hodograph transformation. Then
the CCSP equation exhibits three types of rogue waves: the regular, the cuspon and the loop ones. Since the parameters of the rogue
waves depend on the roots of an eighth order and fourth order algebraic equation, the exact conditions for distinguishing three types
of rogue waves can be only obtained numerically. For the mixed CCSP equation, the soliton and rogue wave solutions were constructed
by the Hirota bilinear method [45]. The long time asymptotics for CSP equation can be performed by the Deift-Zhou method [46-48].
It is a further topic to perform the long time asymptotics for the CCSP equation.
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