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a b s t r a c t

In this paper, we are concerned with one of the integrable equations proposed
by Hone et al. (2018). We firstly show that it can be derived from the Tzitzeica
equation through hodograph or reciprocal transformations and it is linked to the
short wave limits of the DP and Novikov equations, respectively, through Miura
transformations. Based on the semi-discrete analogue of CKP-Toda hierarchy, we
construct the integrable semi-discretization of what we call the modified short wave
equation and provide its multi-soliton solution.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, Hone et al. proposed two new integrable equations [1]

utx = u − 1
2uux − 2uu2

x − u2uxx , (1)

utx = 3u − uuxx − 1
4u2

x . (2)

he first equation can be rewritten as

mt + u2mx + 2uuxm = 0, m = (1 − 2ux)1/3(1 + ux)2/3 . (3)

hile the second one can be recast into

mt + umx + 3
2uxm = 0, m = 2 − uxx . (4)

by differentiating with respect to x on both sides. Eq. (4) can be viewed as a short wave limit of the Novikov
equation [2,3], while another equation among the list in [1]

mt + umx + 3uxm = 0, m = 1 − uxx , (5)
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an be viewed as the short wave limit of the Depasperis–Procesi equation [4]. As shown in subsequent section,
here is a Miura transformation between the solution of Eq. (3) and the ones of Eqs. (5) and (4). Therefore,

we name Eq. (3) as modified short wave (mSW) equation similar to the relation between the KdV equation
and modified KdV equation.

Discrete integrable systems are more fundamental and universal than continuous integrable systems,
recently, much attention has been paid to the study of discrete integrable systems [5] . The main purpose of
the present paper is to construct integrable semi-discretization of the mSW equation (3). In Section 2, we
show that the mSW equation can be derived from the Tzitzeica equation through hodograph or reciprocal
transformations and it is linked to the short wave limits of the DP and Novikov equations through Miura
transformations. In Section 3, based on a semi-discrete analogue of a set of bilinear equations originated
from the period 3 reduction of the C-type two-dimensional Toda lattice, we derive an integrable semi-discrete
analogue of the mSW equation (4) and provide its N -soliton solution in the form of determinant. We conclude
the paper in Section 4 by some remarks and comments.

2. Derivation of the modified short wave solution

The bilinear equations of the two-dimensional Toda lattice (2DTL) [6,7] may be written as(
1
2Dx1Dx−1 − 1

)
τn · τn = −τn−1τn+1 . (6)

here D is the Hirota D-operator defined by [8]

Dn
s Dm

y f · g =
(

∂

∂s
− ∂

∂s′

)n(
∂

∂y
− ∂

∂y′

)m

f(y, s)g(y′, s′)|y=y′,s=s′ .

As shown in [9], through a two-step reductions: C-type and period 3 reductions, the tau-function sequence
becomes a cycle of 3 with the pattern {τ0, τ1, τ1} such that we end up with only a pair of bilinear equations(

1
2DsDy − 1

)
G · G = −F 2 ,

(
1
2DsDy − 1

)
F · F = −FG . (7)

y defining τ0 = G, τ1 = F and x1 = y, x−1 = s. In addition, by defining r = G/F , above two bilinear
quations are equivalent to the following Tzitzeica equation [10]

(ln r)ys = r − r−2 , (8)

hich was originally derived in the context of geometry. About seventy years later, it was rediscovered in
he context of soliton theory [11].

The solution of the Tzitzeica equation, or the tau-function of period 3 reduction of CKP-Toda hierarchy
s given by the following determinant with even order

τn =
⏐⏐⏐Cij + 1

pi + pj

(
− pi

pj

)n

eξi+ξj

⏐⏐⏐
1≤i,j≤2N

, (9)

where

Cij = δj,2N+1−ici, c2N+1−i = ci , ξi = piy + 1
pi

s + ξ0 , p3
2N+1−i + p3

i = 0 , (1 ≤ i ≤ N) . (10)

t is noted that Cij = Cji. Furthermore, it is shown in [9,12] that the tau function F = τ1 in 2DTL can be
expressed as a square of a pfaffian, i.e.,

F = cf2 , (11)
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here

c =
(2N∏

i=1
2pi

)−1

, f = Pf (1, 2, . . . , 2N)

ith
(i, j) = δj,2N+1−i2ci

p2
2N+1−i

pi
+ pi − pj

pi + pj
eξi+ξj .

It is also shown in [12] that G and f satisfy the following bilinear equation

D2
1,2,sG · f = 0 (12)

where Dm,n,s is the generalized Hirota D-operator defined by

Dj
m,n,sf(s) · g(s) = ∂j

∂xj
f(s + mx)g(s − nx)

⏐⏐⏐⏐
x=0

.

Based on the results listed above, we could derive the SW equation (3), which is given by the following
theorem.

Theorem 2.1. The mSW equation (3) is derived from a set of bilinear equations (7) and (12) through the
ependent variable transformation

u =
(

ln G

F

)
s

, (13)

nd a hodograph (reciprocal) transformation

x = 3y − (ln GF 2)s, t = s . (14)

Furthermore, the multi-soliton solution is given by the tau-function G = τ0 and F = τ1 where τn is given in
9) with constraints given by (10)

roof. The pair of bilinear equations (7) can be rewritten as

(ln F )sy = 1 − G

F
, (ln G)sy = 1 − F 2

G2 . (15)

ubtracting above two equations, one obtains exactly the Tzitzeica equation (8). Notice that Eq. (12) is
equivalent to

4fssG − 4fsgs + fGss = 0, (16)

which can be rewritten as
4fss

f
− 4fs

f

Gs

G
+ Gss

G
= 0, (17)

y dividing Gf on both sides. From the hodograph (reciprocal) transformation (14), we have

∂x

∂y
= 3 − (ln GF 2)sy = 2r + r−2 = ρ−1, (18)

uch that ∂x = ρ∂y. From the transformation (13), the Tzitzeica equation actually implies

uy = r − r−2. (19)

liminating r from Eqs. (18) and (19) by a little bit tricky, one obtains

ρ3 = 1 (1 − 2ρuy)(1 + ρuy)2 = 1 (1 − 2ux)(1 + ux)2. (20)
27 27
3
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∂s by inserting Eq. (17)

∂x

∂s
= −(ln GF 2)ss = −

(
Gss

G
− G2

s

G2

)
− 4

(
fss

f
− f2

s

f2

)
= G2

s

G2 − 4fs

f

Gs

G
+ 4f2

s

f2 = ((ln G)s − (ln F )s)2 = u2 .

(21)
t follows

∂s = ∂t + u2∂x. (22)

he compatibility condition ∂
∂s

∂x
∂y = ∂

∂y
∂x
∂s gives

(ρ−1)s = (u2)y, (23)

y referring to (18) and (21). Eq. (23) can be written

(ln ρ)s = −2ρuuy = −2uux. (24)

n the last, by defining m = (1 − 2ux)1/3(1 + ux)2/3 and using (20) and (22), Eq. (24) is converted into

(∂t + u2∂x) ln m = −2uux, (25)

hich is nothing but the mSW equation (3). □

Remark 2.2. We should point out here that the bilinear equation (12) implies a Miura transformation
hich links the solution of the mSW equation (3) to the solutions for the short wave limits of the DP
quation (5) and the Novikov equation (4), respectively. In addition, the multi-soliton solution given here
grees with the one given by Matsuno [13].

Lemma 2.3. The generalized bilinear equation (12) implies the Miura transformation

uSW DP = 1
3(u2 + us), uSW NK = 1

3(u2 − 2us) , (26)

here uSW NK and uSW DP represent the solutions to Eqs. (4) and (5) respectively, which are given by

uSW DP = −(ln F )ss, uSW NK = −(ln G)ss. (27)

roof.
u =

(
ln G

F

)
s

= (ln G − 2 ln f)s = Gs

G
− 2fs

f
. (28)

y using the relation (17), it is easy to show that

−u2 − us = 6(ln f)ss = 3(ln F )ss, (29)
− u2 + 2us = 3(ln G)ss, (30)

which gives the Miura transformation (27). □

3. Integrable semi-discretization of the mSW equation

In [14], we have constructed a semi-discrete analogue of bilinear equations (7) and (11) for the period 3
reduction of the CKP-Toda (BKP-Toda) hierarchy, which is of the form

(D − 2b)G · G = −2bF 2 , (31)
s l+1 l l

4
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(Ds − b)fl+1 · fl = −bc′Gl+1 , (32)
f2

l = c′Fl , (33)

nder the constraint
p3

i (1 − b2p2
2N+1−i) + p3

2N+1−i(1 − b2p2
i ) = 0 . (34)

ere b is a real constant and c′ is a real constant. Gl and Fl are two 2N × 2N Gram-type determinants
efined by

Gl =
⏐⏐⏐mij(l)

⏐⏐⏐
1≤i,j≤2N

, Fl =
⏐⏐⏐m′

ij(l)
⏐⏐⏐
1≤i,j≤2N

, (35)

here
mij(l) = Cij + 1

pi + pj
φ

(0)
i (l)φ(0)

j (l), m′
ij(l) = Cij − pj

pi

1
pi + pj

1 + bpi

1 − bpj
φ

(0)
i (l)φ(0)

j (l),

with
Cij = δj,2N+1−ici, c2N+1−i = ci , φ

(n)
i (l) = pn

i

(
1 + bpi

1 − bpi

)l

eξi , ξi = p−1
i s + ξi0.

fl is a pfaffian defined by fl = Pf(1, 2, . . . , 2N)l whose elements are

Pf(i, j)l = cij + pi − pj

pi + pj
φ

(0)
i (l)φ(0)

j (l).

It is shown in [14] that Cij = Cji and cij = −cji. It should be pointed out that, by fixing l, the following
bilinear equation

D2
1,2,sGl · fl = 0 (36)

holds same as Eq. (12). Based on above results, we can construct integrable semi-discretization for the mSW
equation, which is given by the following theorem.

Theorem 3.1. The semi-discrete analogue of the modifed short wave equation (3)⎧⎪⎨⎪⎩
dml

ds
= ml

3

(
ul+1 − ul − 2

u2
l+1 − u2

1
δl

−
u2

l − u2
1−1

δl−1

)
,

d δl

ds
= u2

l+1 − u2
l ,

(37)

s determined from the bilinear equations (31)–(33) through discrete hodograph transformation

xl = 6lb − (ln GlF
2
l )s , t = s (38)

nd a dependent variable transformation
ul = (ln Gl

Fl
)s . (39)

ere
δl = xl+1 − xl , ∆ul = ul+1 − ul

2b
, (40)

ml =
(

Gl+1

Gl

fl

fl+1
(1 + ρl∆ul)(1 + ρl−1∆ul−1)(1 − 2ρl∆ul)

) 1
3

. (41)

oreover, the multi-soliton solution is given by the determinants Gl and Fl given in (35).

roof. First, we rewrite Eqs. (31) and (32) into(
ln Gl+1

)
− 2b = −2b

F 2
l , (42)
Gl s Gl+1Gl

5
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nd (
ln fl+1

fl

)
s

− b = −bc′ Gl+1

fl+1fl
, (43)

espectively. Eq. (43) can also be rewritten as(
ln Fl+1

Fl

)
s

− 2b = −2bc′ Gl+1

fl+1fl
. (44)

t follows from (38) and (40) that the nonuniform mesh δl is

δl = 6b −
(

ln
Gl+1F 2

l+1
GlF 2

l

)
s

= 2b
F 2

l

Gl+1Gl
+ 4bc′ Gl+1

fl+1fl
(45)

ith the use of (42) and (44).
Introducing an auxiliary variable rl = Gl/Fl, Eq. (45) becomes

δl

2b
= 2fl+1

fl
rl+1 + f2

l

f2
l+1

1
rlrl+1

. (46)

ifferentiating Eq. (45) with respect to s, one obtains

dδl

ds
= −

(
ln

Gl+1F 2
l+1

GlF 2
l

)
ss

= u2
l+1 − u2

l (47)

by referring to (36) similar to the continuous case.
Subtracting (44) from (42), we get(

ln Gl+1Fl

GlFl+1

)
s

= 2bc′ Gl+1

fl+1fl
− 2b

F 2
l

Gl+1Gl
, (48)

hich is (
ln rl+1

rl

)
s

= 2b

(
fl+1

fl
rl+1 − f2

l

f2
l+1

1
rlrl+1

)
. (49)

y using the variable transformation (39), the above equation is actually

∆ul = ul+1 − ul

2b
= fl+1

fl
rl+1 − f2

l

f2
l+1

1
rlrl+1

. (50)

ombining (46) with (50), we obtain

rl+1 = 1
3

fl

fl+1

(
δl

2b
+ ∆ul

)
. (51)

efining ρ−1
l = δl

2b and substituting Eq. (51) and its alternative form by shifting from l+1 to l into Eq. (46),
ne obtains

ρ2
l ρl−1 = 1

27
fl+1fl−1

f2
l

(1 + ρl∆ul)(1 + ρl−1∆ul−1)(1 − 2ρl∆ul), (52)

or
m3

l = 216b3

δ2
l δl−1

rl+1

rl
. (53)

aking the logarithmic derivative on both sides of (53), we have

dml

ds
= ml

3 ((ln rl+1)s − (ln rl)s − 2(ln δl)s − (ln δl−1)s) = ml

3

(
ul+1 − ul − 2

u2
l+1 − u2

1
δl

−
u2

l − u2
l−1

δl−1

)
.

(54)
qs. (47) and (54) constitute the semi-discrete analogue of the mSW equation. □
6
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Finally, let us consider the continuous limit as b → 0. The dependent variable u is a function of l and s.
eanwhile, we regard it as a function of x and t, where x is the space coordinate at l-th lattice point and t

is the time, defined by x = x0 +
∑l−1

j=0 δj , t = s. Then in the continuous limit, b → 0 (δl → 0), we have

ul+1 − ul → 0 ,
u2

l+1 − u2
l

δl
→ (u2)x ,

u2
l − u2

l−1
δl−1

→ (u2)x,

m3
l = Gl+1

Gl

fl

fl+1
(1 + ρl∆ul)(1 + ρl−1∆ul−1)(1 − 2ρl∆ul) → (1 + ux)2(1 − 2ux).

On the other hand, since

∂x

∂s
= ∂x0

∂s
+

l−1∑
j=0

∂δj

∂s
= ∂x0

∂s
+

l−1∑
j=0

(u2
j+1 − u2

j ) → u2,

it then follows
∂s = ∂t + ∂x

∂s
∂x → ∂t + u2∂x.

onsequently, Eq. (54) converges to

(∂t + u2∂x)m = m

3 (−3(u2)x) = −2uuxm (55)

hich is exactly the mSW equation (3).

. Concluding remarks

In this paper, we have shown the reciprocal link between a modified short wave equation and the Tzitzeica
quation. We also show that the multi-soliton solutions of the short wave limits of the DP and Novikov
quations are connected to the solution of the mSW equation by Miura transformations. Based on the
emi-discrete analogue of period 3 reduction of C-type KP-Toda lattice, we have constructed an integrable
emi-discretization of the mSW equation. Meanwhile, its N -soliton solution in terms of determinant is
lso provided. We should point out that, most recently, an integrable semi-discrete analogue of the short
ave limit of the Novikov equation has been constructed by the same authors [15]. Similar to our previous

esults [16–18], the semi-discrete analogue of the mSW equation can be served as an integrable numerical
cheme, the so-called self-adaptive moving mesh method, for numerical simulations.
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