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1. Introduction

Recently, Hone et al. proposed two new integrable equations [1]

1
Uty = U — iuum - 2uu925 — Uy, (1)

1
Uty = U — Ulgy — Zui . (2)

The first equation can be rewritten as
me + uPmg + 2uugm =0, m = (1 — 2uy)/3(1 + uy)?/?. (3)
while the second one can be recast into
mt+umz+guzm:0, m=2— Uz . (4)

by differentiating with respect to = on both sides. Eq. (4) can be viewed as a short wave limit of the Novikov
equation [2,3], while another equation among the list in [1]

my +umg +3u;m =0, m=1—uy,, (5)
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can be viewed as the short wave limit of the Depasperis—Procesi equation [4]. As shown in subsequent section,
there is a Miura transformation between the solution of Eq. (3) and the ones of Egs. (5) and (4). Therefore,
we name Eq. (3) as modified short wave (mSW) equation similar to the relation between the KAV equation
and modified KdV equation.

Discrete integrable systems are more fundamental and universal than continuous integrable systems,
recently, much attention has been paid to the study of discrete integrable systems [5] . The main purpose of
the present paper is to construct integrable semi-discretization of the mSW equation (3). In Section 2, we
show that the mSW equation can be derived from the Tzitzeica equation through hodograph or reciprocal
transformations and it is linked to the short wave limits of the DP and Novikov equations through Miura
transformations. In Section 3, based on a semi-discrete analogue of a set of bilinear equations originated
from the period 3 reduction of the C-type two-dimensional Toda lattice, we derive an integrable semi-discrete
analogue of the mSW equation (4) and provide its N-soliton solution in the form of determinant. We conclude
the paper in Section 4 by some remarks and comments.

2. Derivation of the modified short wave solution

The bilinear equations of the two-dimensional Toda lattice (2DTL) [6,7] may be written as

1
(2D;EID3,,_1 — 1) Tn Tn = —Tn-1Tnil - (6)

where D is the Hirota D-operator defined by [8]

wpmp. g (090N (0 9\ Iy
DsDyf g_<68 88/) (ay ay/> f(yas)g(yas)|y:y’,s:s’-

As shown in [9], through a two-step reductions: C-type and period 3 reductions, the tau-function sequence
becomes a cycle of 3 with the pattern {7y, 71,71} such that we end up with only a pair of bilinear equations

<;D5Dy—1> G-G=-F?, (;DsDy—1>F-F:—FG. (7)

by defining 0 = G, 7, = F and ;1 = y, x_; = s. In addition, by defining r = G/F, above two bilinear
equations are equivalent to the following Tzitzeica equation [10]

(Inr)ys =7r— r2, (8)

which was originally derived in the context of geometry. About seventy years later, it was rediscovered in
the context of soliton theory [11].

The solution of the Tzitzeica equation, or the tau-function of period 3 reduction of CKP-Toda hierarchy
is given by the following determinant with even order

1 A\
Tn = Cij + <—pl> eSites R (9)
Di +Dj Dj 1<i,j<2N

where
1 .
Cij = 0joN+1—iCi, CoN+1—i = Ci, & =Dy + 173 +&, Pinvyi_itpi=0, (1<i<N). (10)
3

It is noted that C;; = Cj;. Furthermore, it is shown in [9,12] that the tau function F' = 7y in 2DTL can be
expressed as a square of a pfaffian, i.e.,
F =cf?, (11)

2
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where

2N -1
C<H2pi> . f=Pf(1,2,...,2N)
=1

with

2
QCip2N+lfi 4 PP gt
Di Di +Dj
It is also shown in [12] that G and f satisfy the following bilinear equation

(1,5) = 0j2N+1-i

D}, G- f=0 (12)
where D,, ,, s is the generalized Hirota D-operator defined by

o7

Dgn,n,sf(s) : g(S) = @

(s + mzx)g(s — nx)

=0

Based on the results listed above, we could derive the SW equation (3), which is given by the following
theorem.

Theorem 2.1. The mSW equation (3) is derived from a set of bilinear equations (7) and (12) through the
dependent variable transformation
G
=(Iln—= 13
B ( " F) S , ( )

r=3y— (InGF?),, t=s. (14)

and a hodograph (reciprocal) transformation

Furthermore, the multi-soliton solution is given by the tau-function G = 19 and F = 17, where T, is given in
(9) with constraints given by (10)

Proof. The pair of bilinear equations (7) can be rewritten as

G F?

Subtracting above two equations, one obtains exactly the Tzitzeica equation (8). Notice that Eq. (12) is

(InF),, =1-

equivalent to
4fsG —4fsgs + fGss = 0, (16)

which can be rewritten as

fSS fS GS GSS
AT T+

by dividing G f on both sides. From the hodograph (reciprocal) transformation (14), we have

g—z =3-(InGF?) =2r+r2=p", (18)

) (17)

such that 0x = pdy. From the transformation (13), the Tzitzeica equation actually implies
uy =71 —1"2 (19)

Eliminating r from Egs. (18) and (19) by a little bit tricky, one obtains

3 1

= 5 (1= 2pu,) (1 + puy)? = %(1 — 2u, ) (1 + ug)?. (20)

3

p
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Next let us calculate % by inserting Eq. (17)

s G G2 For) e T G Ty

It follows
83 = at + u28x~ (22)

1. s7e ops 0 Ox _ O Ox .
The compatibility condition 550y = Dy 0s 8lVes

(P15 = (u?)y, (23)
by referring to (18) and (21). Eq. (23) can be written
(Inp)s = —2puuy, = —2uu,. (24)
In the last, by defining m = (1 — 2u,)"/?(1 4 u,)?/ and using (20) and (22), Eq. (24) is converted into
(0y +u?0y) Inm = —2uu,, (25)

which is nothing but the mSW equation (3). O

Remark 2.2. We should point out here that the bilinear equation (12) implies a Miura transformation
which links the solution of the mSW equation (3) to the solutions for the short wave limits of the DP
equation (5) and the Novikov equation (4), respectively. In addition, the multi-soliton solution given here
agrees with the one given by Matsuno [13].

Lemma 2.3. The generalized bilinear equation (12) implies the Miura transformation

1

1
USWDP = §(u2 + us), USWNK = g(UQ — 2uy) , (26)

where usw Nk and usw pp represent the solutions to Eqs. (4) and (5) respectively, which are given by

uswpp = —(In Fss, uswnig = —(InG)ss. (27)
Proof. G G
u:(lnF>S:(lnG—2lnf)S:Gs—2j;s. (28)
By using the relation (17), it is easy to show that
—u? —ug = 6(In f)ss = 3(In F)s, (29)
—u? + 2uy; = 3(In Q) (30)

which gives the Miura transformation (27). O

3. Integrable semi-discretization of the mSW equation

In [14], we have constructed a semi-discrete analogue of bilinear equations (7) and (11) for the period 3
reduction of the CKP-Toda (BKP-Toda) hierarchy, which is of the form

(Ds — 2b)Gyy1 - Gy = —2bF7 (31)

4



Y. Zhang, R. Ma, N. Xiong et al. Applied Mathematics Letters 125 (2022) 107739

(Ds = b) fig1 - f1 = =bc'Grya (32)
ff=dF, (33)

under the constraint
pi(l— b2p§N+1—i) +PgNH—i(l —b*p}) =0. (34)

Here b is a real constant and ¢’ is a real constant. G; and F) are two 2N x 2N Gram-type determinants
defined by

— .. F = ‘ ' ‘
Gl ’m” (l)’lgi,jSZN’ b= Jmi; (1) 1<i,j<2N (35)
where
mig(l) = Gy + —— WO, miy(1) = €y — L ZEPL0 gy 0
Di + Dj Di i +pj 1 — bp;
with

!
n n 1+b 7 . —
Cij = djaN+1-iCi, CoaN+1—i = Ci, %(‘ (1) = p (1 bﬁ) i, & =p; s+ o
— bp;

/1 is a pfaffian defined by f; = Pf(1,2,...,2N); whose elements are
.. Pi —Pj (0) (0)

Pi(i,5) = cij + ——2L¢; ' (D (1).

(6,51 = ¢ij P (D) (1)

It is shown in [14] that C;; = Cj; and ¢;; = —c¢;;. It should be pointed out that, by fixing [, the following
bilinear equation
D}, Gi-fi=0 (36)

holds same as Eq. (12). Based on above results, we can construct integrable semi-discretization for the mSW
equation, which is given by the following theorem.

Theorem 3.1. The semi-discrete analogue of the modifed short wave equation (3)

dm; — my ( ui —ui uf - U%—1)
— = | w1 —u — 2 - )
ds 3 ] 011 (37)
do — 02— 2
dS 1+1 1>
is determined from the bilinear equations (31)—(33) through discrete hodograph transformation
x; =6lb— (InGF?),, t=s (38)
and a dependent variable transformation
u = (In ﬁ) (39)
= E s -
Here
Uil — U
O =x41 —x, Auy= %7 (40)
1
G 3
my = < Ll i(1 + prAu) (1 + pr—1 Aug—1)(1 — 2plAul)) . (41)
Gi fim
Moreover, the multi-soliton solution is given by the determinants G; and F; given in (35).
Proof. First, we rewrite Egs. (31) and (32) into
Gl+1 ) F12
In B — A , 42
( G ), Gi1Gi (42)

5
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and

fz+1> , G
In——) —b=-bc , 43
( fi /s Jivrfi (43)
respectively. Eq. (43) can also be rewritten as
Fz+1> ) Gin
In— | —2b=—2bc ——. 44
( F ), Jirihfi (44)

It follows from (38) and (40) that the nonuniform mesh ¢; is

G F? 1> F? Gt
0 =6b— (In——LrL ) —op L 4 4pc/ " 45
: ( GiF? ), GG Jirihfi (43)
with the use of (42) and (44).
Introducing an auxiliary variable r; = G/ Fy, Eq. (45) becomes
o _ ,fin 1
— =2 i1+ . 46
S A EA (46)
Differentiating Eq. (45) with respect to s, one obtains
dé; Gl+1FlZ+1 2 2
E - <1n GZEQ ss N ul+1 o (47)
by referring to (36) similar to the continuous case.
Subtracting (44) from (42), we get
Gl+1Fl> , Gy F?
In = 2bc —2b , 48
( GiFi1 ) fisih GGy (48)
which is >
(nrl"rl> 2b<fl+17"l+l -];l > (49)
) fi Jiimiri
By using the variable transformation (39), the above equation is actually
U1 —w fip 21
Ay = = T4l — —5— . 50
: 2b it fAriri (50)
Combining (46) with (50), we obtain
L fi (&
=T (2 Ay ). 51
i+ = 3 it (2b + Ay (51)
Defining p; ! = g—é and substituting Eq. (51) and its alternative form by shifting from {+1 to [ into Eq. (46),
one obtains | frrf
pipi1 = 2—7%0 + prAw) (1 + pror Aug_y)(1 - 201 Awy), (52)
I
o 216b°
3 Tl+1
m; = —_—. 53
! 612&,1 Tl ( )
Taking the logarithmic derivative on both sides of (53), we have
dm;  my my up, —ui o uf —up
e _ Mg s — (In7)s — 2(I06)s — (Indy_1)s) = 2 —w—2 - .
= (). (). = 20008~ (o)) = 5 (g = - 22 -
(54)

Eqgs. (47) and (54) constitute the semi-discrete analogue of the mSW equation. [
6
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Finally, let us consider the continuous limit as b — 0. The dependent variable u is a function of [ and s.
Meanwhile, we regard it as a function of x and ¢, where x is the space coordinate at [-th lattice point and ¢
is the time, defined by = = ¢ + Z;;B d;, t =s. Then in the continuous limit, b — 0 (6; — 0), we have

w2 . — 2 u? — u2_
Uppr —u — 0, l+167ll - (uQ)z, % - (UQ)z,
G
mj = 5;1 %(1 + i Awg) (1 + pr_1 Aug_ 1) (1 = 2p1 Awg) — (1 + ug)?(1 — 2uy).
+

On the other hand, since

-1 -1
ox 81‘0 (9(% 32130 2 2 2
%:aer ds _ Os —|—Z(uj+1—uj)—>u,
j=0 Jj=0
it then follows

ox

O0s =0+ —0, — Oy + uzc?z.
0s
Consequently, Eq. (54) converges to
(0 + u20,)m = %(73(u2)m) = —2uu,m (55)

which is exactly the mSW equation (3).

4. Concluding remarks

In this paper, we have shown the reciprocal link between a modified short wave equation and the Tzitzeica
equation. We also show that the multi-soliton solutions of the short wave limits of the DP and Novikov
equations are connected to the solution of the mSW equation by Miura transformations. Based on the
semi-discrete analogue of period 3 reduction of C-type KP-Toda lattice, we have constructed an integrable
semi-discretization of the mSW equation. Meanwhile, its N-soliton solution in terms of determinant is
also provided. We should point out that, most recently, an integrable semi-discrete analogue of the short
wave limit of the Novikov equation has been constructed by the same authors [15]. Similar to our previous
results [16-18], the semi-discrete analogue of the mSW equation can be served as an integrable numerical
scheme, the so-called self-adaptive moving mesh method, for numerical simulations.
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