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Abstract

We study spin-dependent direct and Hall conductivities in the threshold region

of Fermi energy, εF = 2J , where J is the exchange integral between the con-

duction electron spins and the skyrmion spin texture. For εF at the threshold

value and above the spin-down electrons are allowed to exist. We find the two

in the direct and four narrow peaks in the Hall conductivities for Fermi energies

slightly below the threshold value. The found effects are dramatic because the

electric current changes by approximately eight times in the narrow range of

gate voltages (∼ 4 meV). The values of the peaks strongly depend on skyrmion

size. For small and very large skyrmion sizes the peak amplitudes are small

compared to the conductivity absolute values. At the skyrmion radius a = 6

nm and very light conduction electrons, m∗ ∼ 10−2me, the extrema are the

most pronounced. The temperature evolution reveals the strong smearing ef-

fect where the peak-wise behavior completely disappears at room temperatures.

Spin transistor could be considered for possible applications where in the narrow

region of gate voltage the sharp conductivity change occurs.

1. Introduction

Topological spin Hall effect (TSHE) can be determined because of the inter-

action of free electrons with topological magnetic textures, skyrmions. [1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] The presence of spin-orbit coupling in such

systems is crucial because this interaction is in charge of Dzyaloshinskii-Moriya
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interaction, and therefore, skyrmions.[1, 10] To calculate the TSHE there are a

few methodologies for weak conduction electron - skyrmion interaction [15, 16],

the tight-binding approximation, [17, 18] the Berry phase[14, 19] or the emer-

gent field approach.[20, 21, 22] For the spin current calculations we employ the

nonequilibrium Boltzmann equation. [1, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]

Two-dimensional free electron gas interacting with skyrmions in a ferromag-

netic environment is a very interesting system to study a TSHE. In this work

we study only electron-skyrmion scattering. The effect of electron-impurity

scattering is not considered in order to elucidate pure nonlinear effects due to

the electron-skyrmion interaction. For interaction between the localized mag-

netic moments (the skyrmions) and conduction electron spins we use the s-d

Hamiltonian:[34]

H =

(

~
2k2

2m
1̂− Jσ̂z + J 1̂

)

− Jδn(r) · σ̂ = Ĥ0 + V̂ . (1)

Here the first term represents the kinetic energy of conduction electrons, the

second term describes the splitting due to the interaction between conduction

electron and ferromagnetic moment, the third term is introduced for the con-

venience representing the constant energy shift. The last term is exchange

interaction between the conduction electrons and localized magnetic textures

(skyrmions) δn(r).

In Refs. [32, 33, 35] the TSHE and spin Seebeck and Nernst effects[36]

were studied in the case where the Fermi energy was large enough to fill up

both lower and upper bands by the conduction electrons. The spin-up and

spin-down bands are shown in Fig. 1. As soon as the Fermi energy is higher

than the threshold value, εF = 2J , we expect nonlinear behaviors in direct

and Hall currents for both spin projections. However, the TSHE has not been

investigated at εF < 2J in tho whole range of skyrmion sizes. As shown in Ref.

[37] for large skyrmions the direct and Hall currents do not exhibit dramatic

effects in the threshold region. However, for smaller and intermediate skyrmions

and light conduction electrons the behavior of the TSHE could be dramatic. To

fill up this gap, we study direct and Hall currents for the Fermi energies close
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to the threshold value, and anticipate dramatic behaviors in the direct and Hall

currents for the spin-up components. The spin-down components of current are

also investigated.

Figure 1: Band structure for the spin-up (lower) and spin-down (upper) electrons. The
splitting between the bands is equal to 2J . The positions of εF are shown by blue and red
lines.

2. Calculation details

The direct and Hall conductivities for the spin-up and spin-down components

are studied in the semiclassical approximation based on the Boltzmann equation

(2).[38]

∂f0
∂ε

eE · vs =
∑

s′

∑

k′

(

W ss′

kk′fs′

1 (k′)−W s′s
k′k

fs
1 (k)

)

. (2)

Here W ss′

kk′ is the probability rate from the electron state with wavevector k′

and spin s′ to the electron state with wavevector k and spin s. f0 denotes the

equilibrium Fermi distribution function, and fs
1 (k) is a nonequlibrium distri-

bution function correction. The applied electric field E is directed along the
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x-axis. For the scattering mechanism in Eq. (2) we only consider the electron-

skyrmion scattering. Then the probability rate can be determined in terms of

the transition matrix T ss′

kk′ :[39]

W ss′

kk′ =
2π

~
nsk

∣

∣

∣T ss′

kk′

∣

∣

∣

2

δ(ε− ε′). (3)

Here nsk is a skyrmion density. Electric currents and, therefore, conductivities

are inversely proportional to nsk. The transition matrix is determined from the

Lippmann-Schwinger equation:[39]

T̂ = V̂ + V̂ Ĝ0T̂ . (4)

Here Ĝ0 denotes a retarded free electron Green’s function determined as follows:[40]

Ĝ0(ε) = lim
δ→+0

[

ε1̂− Ĥ0 + iδ1̂
]−1

= lim
δ→+0

[(

ε−
~
2k2

2m

)

1̂+ Jσ̂z + iδ1̂

]−1

.

(5)

The interaction potential energy operator, V̂ (r), (see Eq. (1)) for a single

skyrmion distribution is given by the matrix:

V̂ (r) = −J





δnz(r) δnx(r)− iδny(r)

δnx(r) + iδny(r) −δnz(r)



 . (6)

For the skyrmion magnetic moment distribution we choose the following

analytic form: [41]

δnz(r) =











4
(

r
a

)2
− 2, r ≤ a/2,

−4
(

1− r
a

)2
, a/2 < r ≤ a,

0, r > a,

δnx(r) =

√

1− (δnz(r) + 1)
2
cosα,

δny(r) =

√

1− (δnz(r) + 1)
2
sinα,

(7)

where a is a skyrmion radius, r and α are polar coordinates in a frame with the

center of the skyrmion located at r = 0.
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The spin-dependent direct and Hall components of the current (the conduc-

tivity) are found using the following equations:[38]

jsx,y = σxx,yxEx = e

∫

vx,yf
s
1 (k)dkxdky. (8)

Here vx,y is an electron velocity, and fs
1 (k) is the nonequilibrium distribution

function correction. It can be found from the Boltzmann equation (2).

The solutions of Lippmann-Schwinger (4) and Boltzmann (2) equations are

found numerically writing the original codes. The computational details are

given in Refs. [36, 37]

3. Results and discussion

Inasmuch as we are interested in the behavior of the electric conductivity

in the threshold region of εF , we have calculated εF -dependencies of the direct

and Hall conductivities for the the spin-up and spin-down components. The

results of the calculations are presented in Figs. 2a - 2d. The most dramatic

behavior is observed for the spin-up components of the conductivity. Indeed,

the spin-up direct conductivity (see Fig. 2a) exhibits the different dependencies

for the various skyrmion sizes in the threshold region. For the smallest skyrmion

size (the red line) the peaks are small with respect to the conductivity absolute

value, while the sharp maximum and minimum are found for a = 6 nm. At the

larger skyrmion size (the black line) there is no extremum behavior. The Hall

component, σ↑
yx, shown in Fig. 2b, exhibits some similarities and at the same

time some differences compared to σ↑
xx. Indeed, the most pronounced effect is

found for the skyrmion size a = 6 nm. For smaller and larger skyrmion sizes

the peak-wise dependencies are less pronounced. The main difference between

the σ↑
xx and σ↑

yx conductivities is in the number of the extrema. For σ↑
xx in

the narrow range of εF , we observe one minimum and one maximum while

for σ↑
yx there are two minima and two maxima at the Fermi energies that are

slightly below the threshold value εF = 2J . It is important to note that for

small skyrmions (a = 1.5 nm, 3.0 nm), σ↑
xx � |σ↑

yx|. Indeed, the forward

scattering dominates because of the small size of the scatterers. For the larger
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skyrmion sizes (a = 6.0 nm, a = 30 nm) σ↑
xx and |σ↑

yx| are of the same order of

magnitude. The spin-down direct and Hall conductivities are shown in Figs. 2c

and 2d, respectively. σ↓
xx and |σ↓

yx| vanish for εF < 2J because of the absence

of spin-down carriers. If εF > 2J , the sharp increase for the direct conductivity

is found. The absolute values of σ↓
yx are also the growing functions. However,

for the large skyrmion size (a = 30 nm) σyx > 0, whereas σyx are negative for

smaller sizes.

Figure 2: Direct ((a) and (c)) and Hall ((b) and (d)) conductivities for spin-up ((a) and (b))
and spin-down ((c) and (d)) components for the various skyrmion sizes a = 1.5 nm (the red
line), a = 3.0 nm (the green line), a = 6.0 nm (the blue line), and a = 30 nm (the black line)
with respect to εF at zero temperature.

It is important to understand how the temperature smears the extrema

shown in Fig. 2 where the sharpest dependencies in the conductivities occur

at a = 6.0 nm. For this size we present the direct (see Figs. 3a and 3c) and

Hall (Figs. 3b and 3d) conductivities for the spin-up (see Figs. 3a and 3b)

and spin-down (see Figs. 3c and 3d) conduction electrons for the three different
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temperatures. As expected, the sharpest behaviors of σ↑
xx and σ↑

yx occur at

kBT = 0 eV. As temperature increases, the peaks are smeared and completely

disappear at the room temperature (kBT = 0.025 eV). The absolute values of

the spin-down direct and Hall conductivities are still the growing functions (as

shown in Figs. 3c and 3d). At the room temperature, there is the nonvanish-

ing spin-down conductivities for εF < 2J . It happens because of the nonzero

electron density above the threshold due to the temperature excitations.

Figure 3: Direct ((a) and (c)) and Hall ((b) and (d)) conductivities for spin-up ((a) and (b))
and spin-down ((c) and (d)) components for the various temperatures, kBT = 0 eV (the blue
line), kBT = 0.002 eV (the red line), and kBT = 0.025 eV (the green line) with respect to εF

for the skyrmion size a = 6.0 nm.

In Figs. 4a and 4c we present the temperature evolution of the direct con-

ductivity. As shown in Fig. 4a, the distinct maximum and minimum positions in

σ↑
xx occur at temperatures kBT < 0.005 eV (T ≈ 60 K). At higher temperatures

the peaks disappear. The temperature dependencies of the Hall conductivities

are shown in Figs. 4b and 4d. The blue and red lines correspond to the peaks in
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Fig. 3b, while the green line denotes the minimum. The maxima and minimum

converge (i. e., the extrema disappear) for kBT = 0.002 eV (T ≈ 23 K) that

is two and a half times lower than that of the direct conductivity. For σ↓
xx and

σ↓
yx (see Figs. 4c and 4d), the curves are close to each other in the whole region

of temperatures because of the absence of the extrema (see Figs. 3c and 3d).

Figure 4: Temperature evolution of the direct conductivity ((a) and (c)) at εF = 0.0952 eV
(the blue line) and εF = 0.0952 eV (the red line), the minimum and maximum positions in
Fig. 3a, and Hall ((b) and (d)) conductivities at εF = 0.0952 eV (the blue line), εF = 0.0972
eV (the green line), εF = 0.0952 eV (the red line), the minimum and maxima positions in
Fig. 3b, for the spin-up ((a), (b)) and the spin-down ((c), (d)) components with respect to
temperature. The skyrmion size is a = 6.0 nm.

4. Conclusions

In this research we study electron-skyrmion scattering where we disregard

the interaction of conduction electrons with impurities in order to elucidate the

dramatic effects due to the electron-skyrmion interaction. We have found the

peak-wise behaviors in spin-up direct and Hall conductivities (see Figs. 2 - 3)
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with Fermi energy. Previously we studied the topological Hall effect in the whole

range of εF for large skyrmion sizes and heavy conduction electrons.[37] The

calculations for different skyrmion sizes and conduction electron masses reveal

that the most dramatic behavior occurs for a = 6.0 nm. For this skyrmion size

the spin-up direct conductivity, σ↑
xx, exhibits one minimum and one maximum

below the threshold value εF = 2J . The spin-up Hall conductivity, σ↑
yx, has

two minima and two maxima for εF < 2J . The temperature smearing of these

extrema for the spin-up direct and Hall conductivities takes place. We have

found that the most pronounced effect occurs at lower temperatures, while the

peak-wise behavior disappears at the room temperature as shown in Figs. 3a

and 3b. For the spin-down conductivities (Figs. 3c and 3d), the nonvanishing

value of the conductivity takes place for εF below the threshold value. The peak-

wise structure disappears with temperature in the spin-up direct conductivity at

kBT > 0.005 eV (see Fig. 4a). For the spin-up Hall conductivity the peak-wise

behavior disappears for kBT > 0.002 eV that is two and a half times lower than

that of the direct conductivity.

The threshold effects could be applied to spin transistors where the ampli-

tude of the spin-up current changes about one order of magnitude in the very

narrow range of gate voltages, about 4 meV. For the practical use it is impor-

tant to understand that the effects studied in this research disappears at T > 60

K. The materials can be chosen in a broad range of exchange integrals, J . For

example, the value of J = 0.3 eV was experimentally found[42] and theoreti-

cally calculated[43] for 3D EuO crystals. For 2D materials a good candidate

is Cr2Ge2Te6 where J = 0.02 eV,[44] which is close to the value used in this

work (J = 0.05 eV). In addition, 2D Cr2Ge2Te6 material exhibits a skyrmion

structure that is close to the physical model studied in this research.[45]
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