Identifying Risks for Collaborative Systems during
Requirements Engineering: An Ontology-Based Approach

Kirthy Kolluri, Robert Ahn, Julie Rauer, Lawrence Chung
Department of Computer Science
The University of Texas at Dallas
Richardson, TX, USA
{kirthy kolluri, robert.sungsoo.ahn, julie.rauer,
chung} @utdallas.edu

Abstract- A risk is an undesirable event that can result in mis-
haps if not identified early on during requirements engineering
adequately. However, identifying risks can be challenging, and
requirements engineers may not always be aware if risks are
ignored. In this paper, we present Murphy — a framework for
performing risk analysis. Murphy adopts the Reference Model,
in which requirements are supposed to be met not by the pro-
jected software system behavior alone but through collabora-
tion between the system and events occurring in its environ-
ment, hence the term Collaborative System. Murphy provides
risk analysis facilities that include an activity-oriented ontolo-
gy for carrying out risk analysis by systematically identifying
risky activities in the system and in the environment, thereby
obtaining a Risk Analysis Graph (RAG) and towards devising
risk mitigation strategies later. In order to see both the
strengths and weaknesses of Murphy, we experimented on de-
veloping a smartphone app involving a group of Ph.D. and
senior-level graduate students — one group using Murphy and
the other not using Murphy. Our observation, we feel, shows
that the risks identified by the group using Murphy were able
to identify more critical risks and those risks were comprehen-
sive and relevant as. well. The results also showed that incor-
porating risk mitigation strategies for the risks identified can
indeed help avoid them to some extent.

Keywords- Risk, Risk Identification, Ontology, Collaborative
systems, Requirements Engineering, Reference Model (WRSPM
Model)

1. INTRODUCTION

Risk is a situation or event where humans themselves can
be put at stake [13], is a phenomenon faced or caused by erro-
neous functionality/behavior of software, hardware, or hu-
man(s). Collaborative systems emphasize that requirements
are satisfied by the collaboration between the user and the
events in its environment. For example, in building our
smartphone app, Theia’, for helping blind people navigate in-
doors, it may not be too evident for the requirements engineer

DOI reference number: 10.18293/SEKE2022-169
! Theia is the Greek goddess of sight

Tom Hill

Fellows Consulting Group
Dallas, TX, USA
{tom} @fellowsconsultinggroup.com

to identify that the “blind person may not be able to walk in a
straight line.” It can be challenging to determine the possibility
of the smartphone app giving wrong instruction to the blind
person, the camera not turning on even when the smartphone
application is turned on, etc. Based on these examples, it is ev-
ident that risks may arise due to certain environmental events
(domain) or erroneous system behavior.

When considering collaborative systems such as Theia, an
agent (e.g., person, software, or hardware) must perform a set
of activities to fulfill the requirement. Every action performed
by the agent, or the software system is associated with one or
more risks. What-if the smartphone app indicates the blind
person to turn earlier or later after walking ten steps? Or what
if the user ignores the instructions and fails to turn at the right
spot? The requirements engineers and software developers
should address these kinds of risks before developing the actu-
al application. This practice would help plan risk minimization
and mitigation strategies.

Some attempts have been made to perform risk analysis and
mitigation during requirements analysis [1]. The idea here is to
identify risks systematically, devise risk mitigation strategies
and implement those strategies to help avoid some risks. But
how do we systematically identify these risks without omis-
sions and commissions and develop risk mitigation strategies?

This paper proposes Murphy, a framework for performing
risk identification and analysis using an activity-oriented and
ontology-based approach for collaborative systems. Our pre-
vious work [19], which extends the Reference Model [6, 7]
with risks to obtain the Augmented Reference Model, is ex-
tended by adding more rules for systematic risk identification.
We also introduce a highly activity-oriented ontology, a do-
main-specific ontology, and constraints on agent’s actions
which can be used to come up with risks when violated.

We carried out experimentation in two phases — Phase [in-
volved using the Theia app developed without using Murphy
before its development. Phase 2 involved using Theia app de-
veloped using Murphy framework. Through this experimenta-
tion, we have observed that significant risks, such as walking
in a straight line, the user’s finger being slippery to tap the
screen, background noise, etc., can be overlooked. We also
observed that the devising and developing risk mitigation
strategies can indeed help avoid the occurrence of the risk to
some extent.

Environment
Non-User

Person

T e
|

hurt
..

performgd on

'
described by |

belongs to
“ S.D~R Requirement
Domain satisty | |Requirement (R) (en, €w, 54)
(= in (D) (€. €v: Su)—l«a..u >> |

System (€, Sp, Si)

| Machine (C)
tisfy
o=} »—I

i P.C=S
| | The Reference Model (WRSPM Model)

Specification (e,,, s,)

Program (P)

;

Legend:

| Class >

Figure 1: High-Level domain independent ontology of Murphy for risk identification and analysis

The main contributions of this paper are: proposing a risk

analysis framework for capturing risks for various activit-
-ies performed by the Agent (Person, Software and Hardware)
using multiple levels of ontologies during the requirement en-
gineering phase. The framework suggests that risk mitigation
strategies that must be implemented during the development of
the application.

A scenario using the indoor navigation application, Theia,
for helping blind people navigate indoors is used as the run-
ning example all through this paper, to evaluate the strengths
and weaknesses of Murphy. Stevie is a blind student who
wants to attend a class in room 3.415. He uses the smartphone
application, Theia, to navigate from his current location to his
class. He uses voice instruction to provide his destination to
Theia.

Section II describes the related work. Section III describes
Murphy framework using an ontology-based approach for risk
identification. Section IV describes the experimentation and
the observations, the discussion, and threats to validity. In the
end, a summary of the paper is described, along with some fu-
ture work in Section V.

II. RELATED WORK

The distinctives of this paper include performing risk analy-
sis for Collaborative systems in terms of the Augmented Ref-
erence Model, Risk Analysis Graph, and an Ontology-based
approach, during requirements engineering.

Concerning risk analysis for collaborative systems, the
CORAS framework [8], goal-risk framework [1, 10] and the
Obstacle analysis technique [4, 5, 9, 11] are considered. All
these frameworks consider non-functional requirements
(goals) as their starting point and risks are eventually identi-
fied using different approaches, but we consider functional-
requirements, specification, and domain assumptions as the
starting point to perform risk identification and analysis.

In CORAS [8], risks are modeled and analyzed by asking
questions, which are evaluated and treatments to those risks
are identified. In the goal-risk framework [1, 10] goals, events
and treatments are modeled in three layers, and they provide
multi-object optimization; hence more queries related to risk
are obtained qualitatively. Using the technique of obstacle

analysis [4, 5, 9, 11], goals are decomposed into sub-goals,
providing a set of rules including negation to identify the
probability of risk occurrence quantitatively. Though our work
has some similarities with [8, 1, 10, 4, 5, 9, 11] with regards to
the approach of decomposing/refinements, and performing
qualitative risk analysis, we complement the approaches used
in [8, 4, 5,9, 11] by performing systematic risk identification
using an activity- oriented ontology. We also perform qualita-
tive risk as discussed in [1] but we complement the analysis
performed by using the Risk Analysis Graph, which provides a
set of rules, using which the user can obtain and identify risks,
prioritize them, and devise the corresponding risk mitigation
strategies.

The Reference Model [6] emphasizes that the user re-
quirements are satisfied not by the system alone but also by
the system’s collaboration with the events in its environment.
Hence, we use the term Collaborative system for all the sys-
tems to which the Reference model is applicable. We adopt
work involving the Reference Model [6, 7] and transform it in-
to Augmented Reference Model [19].

In Requirements Engineering, a Fishbone diagram has been
used to identify possible causes for a problem/risk [16]. This
technique helps list out all the potential causes for a prob-
lem/risk. Fault Tree Analysis (FTA) is a top-down, deductive
analysis that visually shows a failure path from top to bottom
[17]. A Problem Inter-Dependency Graph (PIG) uses a
(soft)problem technique to represent user’s problem against
the user’s goals [18]. We build on the idea of finding the prob-
lems from Fishbone diagram [16], to use a top-down approach
from FTA [17] and making refinements to identify risks from
[18], but we also complement these techniques by proposing
the use of a Risk Analysis Graph (RAQG), that refines require-
ments, specification and domain using AND/OR refinements,
and systematically generate risks using rules and using an ac-
tivity-oriented ontology to identify the essential/critical risks.

The ontology of risk discussed in [12] explains its relation-
ship with value. The ontology discussed in Requirements
Modelling Language (RML) [14] address Requirements,
Agent, action, etc. as the most important concepts. We adopt
those basic building blocks from RML [14] and build the most
essential part of our work - Risk, on top of it and tie the con-

| Environment

ACTERRene] Smartphone T e—
device
Battery |- TR «.n Frenaes
a
Screen —i
Sensors ‘! may hurt

<<instance ob> i <<instance of>> iz<instance of=%

A

<<instancel

<<instance of>>
face
Agent cause

et

perform
is performed on
<<|n stance of>> !'=| =|n:|lnoe of>>
1

rence Model (WRSPM
Domain (D) (€, €v)

Domain

H ‘ i

Mechanism

<<instance of>> Risk Mitigation

<(Instinc= of>>

Vibrate

I

i<<instance of>>

! <<instar\=e ofs>

T

System (Sn, Su)
Specification (€., 5.) <)
s < Program (P)

Phone vibrating for

:
2
i
g
§

Hand movement as Screen tapping for
confirmation step count

Figure 2: Domain specific activity-oriented ontology for smartphone application (Theia) domain

cept of Risk to Action and Agent. We also complement the
approach discussed in [9, 12] by linking the ontology to ac-
tions and the risks that the user may face or cause.

III. MURPHY: AN ONTOLOGY-BASED FRAMEWORK FOR RISK
IDENTIFICATION

The aim of our framework is to use an ontology-based ap-
proach to generate a Risk Analysis Graph using rules to identi-
fy risks, prioritize them and to find the appropriate risk mitiga-
tion techniques.

Ontology is the categories of essential individual concepts,
relationship between the individual concepts and constraints
on individual concepts and on the relationships between indi-
vidual concepts. In this work, we present both high-level do-
main independent ontology and the domain specific class-level
ontology with its diagrammatic convention as shown in Fig. 1,
Fig. 2. We adopted several models and tightly integrated them
into the ontology. Concepts for requirements engineering such
as Requirement, Specification and Domain are adopted from
Reference Model [6, 7] and the concepts such as Action (ac-
tivities), Agent (entities) and Associations (assertions) from
RML [14]. We further extend it by adding risk as shown in
Fig. 1, which is one of the most essential concepts for this
work alongside activities. Each concept is assigned a color and
the same color is used for those concepts through the paper for
traceability.

In detail, different types of Agents related to the domain
such as Person, Software and Hardware are captured, the Ac-
tions pertaining to the agents such as Person action, Software
action and Hardware action and the different types of Risks
such as risks caused and faced by the person, risks caused by
the software and risks caused by the hardware are captured.
Capturing agents, their actions and the risks is vital because
each agent performs a set of activities, and each activity is as-
sociated with a group of risks. In collaborative systems, agents
interact and collaborate among themselves to fulfill the re-
quirements. In addition, since the focus is on collaboration and
collaborative approach, we capture all the critical concepts of
the Reference Model [5] namely Requirement, Specification,

Domain, Program and Machine in the ontology. Mechanism is
captured to provide risk mitigation techniques for the risks
discovered during risk identification and analysis process. In-
stances of the ontological concepts are represented in fig. 2
which is specific to Theia domain.

A. Omissions and Commissions: Using an ontology is one of
the best ways to help ensure the completeness and comprehen-
siveness of the risk identification and analysis process. Identi-
fying the most relevant and critical risks related to a domain
help guarantee completeness, while identifying different kinds
of risks is about comprehensiveness. Ontology helps avoid
omissions and commissions of the most important/critical
risks while performing risk analysis. Omissions are ignoring
the most essential risks while commissions are identifying ir-
relevant or inconsistent risks. For e.g.,

R: When the person indicates a room number as the destina-
tion, the smartphone app shall ask the user to perform

an action

By instantiating R using the class-level ontology shown in Fig.
2, it will be

71: When Stevie indicates his destination as room 3.415, Theia
shall instruct Stevie to fly

The actions related to the agent (Person) as shown in Fig. 2 are
walk, turn, stop, sit, speak out but we do not see fly as one of
the actions related to Theia domain. Hence, this is an example
of commission. Similarly, another instance for R can be:

ry: When Stevie indicates room 3.415 as his destination, Theia
shall instruct Stevie to walk 10 steps forward.

Stevie walking 10 steps forward can have so many risks asso-
ciated with it. He may not walk forward at all but backwards,
or he may not walk in a straight line but in a zig-zag pattern,
or does not hold the camera facing forward but downwards,
etc. All these are omission of substantial risks in relation to
Theia domain. Stevie not hitting the brakes, Stevie not chang-

Domain (D)

D: When the microphone receives a voice input
(1), the speaker gets enabled to give an
instruction (t)

A

v
D,: the microphone receives|
a voice input (1)

D<: the speaker gets enabled
to give an instruction (t)

Requirement (R)

R: When the user indicates the destination as room 3.415 (1),
the navigation app shall ask the user to walk 10 steps forward (t)

Ry: The user indicates the
destination as room 3.415 (1)

Ry: The navigation app shall ask
the user to walk 10 steps (<)

Specification (S)

S: When the microphone receives a voice input signal (1),
the navigation app notifies using the speaker with a
voice instruction to walk 10 steps forward (then)

Sy: The microphone receives a

7L : the speaker with a voice instruction
voice input signal (1)

to walk 10 steps forward (t)

‘ $1: The navigation app notifies using

Anti-Risk
Mechanism (AR) AR-1: Confirm destination
with the user before

(Bl B g providing the rout

AR-2:Check the microphone with
a sample voice input to
ensure that the microphon
is working.

Break/ Hurt - -

= &

<" 7AR-3: Ask the user to tap the £
screen if there is no activity AR-4 :Check the mapping regularly A &’
from user for 30 seconds with every revised version,

Risk 1: Applying the rule -1 A T to Specific
S, is false;
— (microphone receives a voice instruction)
=(microphone not receiving a voice instruction due t
malfunction) V' p
(microphone receiving multiple instructions at the)
same time) z

Sy isTrue;
the navigation app notifies using the speaker with
voice instruction to walk 10 steps forward

Risk Cases for =t A T2
1. microphone not ing a voice instructiofdue to
malfunction, the navigation app notifies using the

‘destination as room 3.415)

&
indicate the destination) ¥ &
S

3
&

1. The user does not indicate the destination as room 3.415, the
navigation app shall ask the user to walk 10 steps forward

2. The user indicates the wrong destination, the navigation app shall

ask the user to walk 10 steps forward

Risk 3: Applying the rule 1 A — t fgr Specification
Syistrue;
(the microphone receives a voicg input) ot a risk],
Sy is false;
- the navigation app notifies, usige the
10 .

eaker with a voice instruction to walk
steps forward) S
= (the navigation app does not’notify to walk 10 steps forward) v/

(the navigation app notifies to walk > 10 steps forward) V.

(the navigation app notifies to walk < 10 steps forward) V ...
Risk Cases for 1 A —1:
1. The user indicates the destination as room 3.415, the navigation app does

not notify to walk 10 steps forward

2. the user indicates the destination as room 3.415, the navigation app

6,
4, %,

speaker with a voice instruction to walk 10 steps
forward
(and many more)

(and many more)

notifies to walk > 10 stedaps forward
(and many more)

Figure 3: An example showing Risk Analysis Graph for smartphone application domain (Theia)

ing lanes, etc. are also risks but are not omissions related to
Theia domain.

B. Identifying risks using Constraints: Constraints are some
restrictions that are placed on the ontological concepts and the
relationships between them. Since, the ontology is highly ac-
tivity-oriented, we place constraints and violation of these
constraints is nothing but a risk. The constraints are specific to
the domain and are related to the actions that the agent per-
form in the domain. For e.g., if we consider a constraint that
the blind person must walk in a straight line when using Theia.
The blind person walking in a zig-zag pattern can violate this
constraint, which results in a risk.

C. Generation of Risk Analysis Graph: In this paper, we gen-
erate Risk Analysis Graph, shown in Fig. 3, by the systematic
generation of risks. For this, we use the Augmented Reference
Model from our previous work [19] and extend it by adding
multiple rules for extensive risk generation and devising risk
mitigation strategies for the risks identified. As a part of the
risk analysis process, we follow these steps to generate the
RAG:

1) acquiring the requirement, specification, and domain,

2) decomposing the requirement, specification, and domain

3) applying rules to the decomposed requirement, specifica-
tion, and domain to systematically obtain risks

4) prioritize the most important risks using ontology

5) devise risk mitigation strategies to the risks prioritized

Step 1 and 2: For this work, we assume that the requirement,
specification, and domain are of the form 1 = 7. We use the
antecedent (1) part and the consequent (t) part to identify risks
by applying rules for systematic risk generation. We use a part
of the initial process (Steps 1 and 2) discussed in our previous
work [19] for generation of RAG.

Step 3: We have discussed some rules in our previous work
[19], and we extend them by adding more rules for systematic
risk generation. Rules are applied to the decomposed require-

ment, specification and domain that are obtained using the
augmentation process explained in our previous work [19].

a) Rule 1: ~(1 — 1) whichis 1t N —1

b) Rule 2: ~1 N 1. We consider the antecedent and the
negation of the consequent joined by a logical AND

¢) Rule 3: Negation of Contrapositive: Contrapositive is
the reversal and negation of both i and t in 1 — 7. It is read as
if not t then not i. We consider negation of the
contrapositive [15], represented as —~(—t — —1)

In fig. 3, the first two red boxes show rule 2 in action and the
last red box (towards right) shows rule 1 in action. We will
discuss only rule 1 here (the last red box in fig 3) due to space
limitation. Let us consider the specification S,

S: When the hardware receives a signal, the software notifies
using the hardware to perform an action

To generate RAG, we perform step 1, i.e., acquiring s. We in-
stantiate this S, using the ontology. By instantiating this speci-
fication S, we acquire:

s: When the microphone receives a voice input signal, Theia
notifies using the speaker to walk 10 steps forward

We then perform step 2, i.e., decomposing s since we have an
implies relation between 1 and t. After decomposing s, we ob-
tain s, and s;.

S,: the microphone receives a voice input signal

s;: Theia notifies using the speaker to walk 10 steps forward

Now, we apply rule I, 1 A — 1, to s, and s,. When rule 1 is ap-
plied to s, the consequent, s;, is negated since the consequent
in 1 A — 1 has the negation.

The antecedent remains the same, and the relation between
them is AND. By negating s,, we obtain:

(8,): = (Theia notifies using the speaker to walk 10 steps for-
ward)

There can be multiple risk cases associated with this negation.
(Theia does not notify to walk forward) OR

(Theia notifies to walk > 10 steps forward) OR

(Theia notifies to walk < 10 steps forward) OR

(Theia notifies to walk 10 steps forward and turn left) OR
(Theia notifies to walk < 10 steps forward and turn left)

When Theia must deliver a notification using the speaker, af-
ter calculating the route, there may be a set of risks that can be
associated with a simple statement. To calculate the route and
give an instruction, there is an action that the agents Theia
(software) and speaker (hardware) must perform. As discussed
earlier, each action that an agent performs, can be associated
with one or more risks. Hence, the resulting risks could be
Theia does not calculate the route and no instruction is given,
or Theia calculates wrong route, etc. Alternatively, the route
calculation by Theia may be perfect but the speaker may not
give out the instruction. We identify templates using rules,
implement these templates in our tool, to generate risks when
a requirement, specification or domain statement is provided.

Step 4: Risks obtained from step 3 are prioritized using the on-
tology. All the risks are compared against the set of risks listed
in the domain specific, class-level ontology. The risks listed in
the ontology are prioritized and the risks that are irrelevant
(commissions) are ignored.

Step 5: Risk-mitigation techniques are devised based on the
risks prioritized in step 4 which are shown in purple in fig 3.
The break/hurt arrow represents that a risk mitigation tech-
nique hurts the risk, and it prevents that risk from happening.
For e.g., if we prioritize the risk — the speaker may not give
out the instruction since the speaker does not work, the risk
mitigation technique that may help avoid that risk is to include
a test voice/music clip which can be played by the user to
make sure that the speaker is working before indicating the
destination, etc.

D. Murphy Assistant tool: Murphy Assistant is a semi-
automated Risk Analysis tool, where the user of the applica-
tion has to setup the ontology before performing risk identifi-
cation and analysis. For this process, we developed a windows
application using the .NET framework. For storing all ontolog-
ical concepts entered by the user, a Microsoft SQL Server Lo-
cal Database is used. Murphy Assistant is a prototype tool
which supports the concepts of Murphy framework. The re-
finement rules are provided as templates to this tool, and these
templates are semantically bound. The underlying code can
and the snapshots of the tool in action can be found at
https://github.com/indoornavigation0/Murphy.git

IV. EXPERIMENTATION

To validate our risk analysis and to identify the strengths
and weaknesses of Murphy, we design an experiment to de-
velop a smartphone app from the results obtained by perform-
ing risk analysis using Murphy.

A. Experimental Setup: Murphy is intended to be used by
requirements engineers and developers to perform risk analy-
sis during the software development life cycle before the de-
velopment of the application. We have conducted experi-
ments, to validate Murphy with the help of a group of 25 PhD
and 25 senior-level graduate students. All the students majored
in computer science. Every student was provided with a ver-
sion of Murphy installed on their computer. The students were
given the requirement that we used as the running example,
and tested many different requirements of their choice, chose
the branches for which risk analysis should be performed,
chose the rules to be applied to requirement, specification, or
domain and when to stop the risk analysis (depth). After using
Murphy, the students provided us with the list of risks and
their feedback regarding the ease of use, accuracy of the au-
tomation and its usability, along with a list of risks identified.

A version of Theia has been developed using the list of risks
and risk mitigation strategies provided by the students. One
such mechanism has been implemented in Theia. We have
conducted experimentation using Theia with 25 students.

m I I
R . [| [-

Total risks
identified

Common risks Uncommon Important risks Unimportant Critical risks
identified risks identified identified risks identified ignored

= Ph.D. Stdents Senior-level graduate students

Figure 4: Different categories of risks identified using Murphy

B. Analysis of the result: Performing risk analysis is a vital
step before the development. Exclusion of RAG, as per our
observation, we feel, shows that some risks are omitted. All
the students were able to find common risks related to agents
malfunctioning. We have observed various kinds of risks
where the system did not behave the way it was supposed to.
We also identified some risks where the system’s functionality
was aberrant. There were some risks which were not very rel-
evant to the domain.

Students identified risks such as missing route, walking in
the wrong direction, etc., critical risks such as falling, bump-
ing into people, colliding against walls, etc., uncommon risks
such as oil on the floor, banana peel on the way, water puddle
on the floor, etc., unimportant risks such as warnings which
ask the user to increase the volume, increase screen brightness,
etc. The students have ignored some critical risks such as low
battery indication, faulty voice input due to background noise,
walking in a zig-zag fashion in a straight corridor, the blind
person walking into a busy intersection, the user walking
wrong number of steps, etc. These results are discussed in fig.
4, a bar graph which shows the number of risks in different
categories identified by both the Ph.D. and Graduate-level stu-
dents. Fig. 5 shows a bar graph, which compares the results of
the risks faced/ignored while using the version of Theia devel-
oped without Murphy versus the version of Theia developed
with Murphy.

In the version of Theia developed using results from
Murphy, the system counts the step as the user walks, to help
ensure safety of the user and to keep track of the steps walked
by the user. This is the biggest difference between the app
developed by using results from the Murphy versus not using
the results from Murphy. Based on our observation, we feel
that the students who used Theia (developed using Murphy’s
results) were able to walk very confidently since Theia was
counting steps for them while navigating. Most of the students
were able to make an accurate turn at the right spot, were able
to keep track of their steps and were able to enjoy the process
of navigation with ease. Overall, we feel that the results
observed from these experiments show us that performing
risk analysis during requirements engineering can help the
end user avoid risks to some extent.

Risks faced Critical risks Common risks Uncommon Important risks Unimportant Critical risks
while selecting identified identified risks Identified identified risks identified ignored
features to be

used

9
8
7
6
5
4
3
2
1
0

M Theia developed without using Murphy framework and risk mitigation technique

Theia developed using Murphy framework and risk mitigation techniques are included

Figure 5: Results observed while using Theia developed without using
Murphy vs using Murphy framework

C. Threats to Validity: We feel that our experiments have
shown that there is a need to improve existing smartphone
apps and devices for blind people, especially with features that
ensure that the blind person is comfortable while navigating
using the smartphone app, by building a tool for identifying
risks systematically, devising anti-risk mechanisms and incor-
porating those results into the system before development. The
Murphy Assistant tool needs improvements with more rules
and templates to identify more complicated and uncommon
risks. Since both Murphy Assistant and Theia are tested by
students, and since the knowledge of the students is limited,
the results may vary greatly compared to the app being tested
by requirements engineers. The risks identified also varied
greatly from what we anticipated since the use of the tool is
based on individual knowledge and the way of performing
analysis varies from person to person, therefore our results
suffered. We are yet to test our Theia app with real blind peo-
ple as we are yet to receive our IRB approval. We feel that
testing with real blind people may give us an edge over blind-
folded people, especially with identifying a variety of risks
they face.

V. CONCLUSION

In this paper, we presented Murphy - a framework for per-
forming risk identification and analysis using Augmented Ref-
erence Model - The Reference Model augmented with risks
that was extended drawing to our previous work [19]. In this
paper, we presented: 1. An activity-oriented ontology to per-
form risk analysis, 2. Risk Analysis Graph - for identifying
and prioritizing and to devising risk mitigation techniques, 4.
A tool, Murphy Assistant developed as a proof of concept, to

generate RAGs for different requirements, specifications, and
domains. 5. A reference application Theia is used to evaluate
the strengths and weaknesses of Murphy. Based on the feed-
back from the students who used Murphy, we feel that its use
during requirements engineering can indeed help increase the
confidence of the engineers and developers in identifying
some critical risks.

As future work, we plan to apply our approach to a wide
variety of domains (e.g., autonomous vehicles domain) for
performing risk analysis and providing risk mitigation strate-
gies. We are developing a set of rules which aid in risk identi-
fication and analysis which goes beyond logic (simple nega-
tion). Experimentation of Theia with real blind subjects will be
performed once we obtain the IRB approval. A step-by-step
approach for engineers to develop and design their own graph-
ically oriented Risk Analysis Graph’s (RAGs) and identifying
risks is underway as well. Finally, we plan to include safety
and timeliness as a softgoal and extend our work using a goal-
oriented approach.

REFERENCES

[1] Asnar, Y., Giorgini, P. Mylopoulos, J. Goal-driven risk assessment in requirement
engineering. Requirements Eng 16, 101-116 (2011).
https://doi.org/10.1007/s00766-010-0112-x

[2] Murphy’s Law, https:/en.wikipedia.org/wiki/Murphy’s law
Last accessed 2 February 2022

[3] Sharma, K., Kumar, P.V.. (2014). A method to risk analysis in requirement eng
neering through optimized goal selection tropos goal layer. Journal of Theoretical
and Applied Information Technology. 61. 270- 280.

[4] Cailliau, A. Lamsweerde, A. V.. "A probabilistic framework for goal-oriented risk
analysis,"(2012). 20th IEEE International Requirements Engineering Conference
(RE). Chicago, IL, 2012, pp. 201-210. doi: 10.1109/RE.2012.6345805.

[5] Lamsweerde, A. V.. “Risk-driven Engineering of Requirements for Dependable

[6] Gunter, C. A., Gunter, E. L., Jackson, M. Zave, P."A reference model Systems.” En
gineering Dependable Software Systems for requirements and specifications," in
IEEE Software, vol. 17, no. 3, pp. 37-43, May-June 2000, doi: 10.1109/52.896248.

[7]1 Zave, P., Jackson, M.. (1997). Four dark corners of requirements engineering.

ACM Trans. Softw. Eng. Methodol. 6, 1 (Jan. 1997), 1-30.
DOL:https://doi.org/10.1145/237432.237434

[8] Vraalsen F., den Braber F., Lund M.S., Stelen K. (2005) The CORAS Tool for
Security Risk Analysis. In: Herrmann P., Issarny V., Shiu S (eds) Trust Manage
ment. iTrust 2005. Lecture Notes in Computer Science, vol 3477. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/11429760_30

[9] Lamsweerde, A.V.. (2013). Risk-driven engineering of requirements for
dependable systems. 10.3233/978-1-61499-207-3-207.

[10] Mylopoulos, J. Castro, J..“Tropos: A Framework for Requirements- Driven
Software Development,” (2000).INFORMATION SYSTEMS
ENGINEERING: STATE OF THE ART AND RESEARCH THEMES,
pp. 261-273.

[11] Cailliau, A., van Lamsweerde, A. Assessing requirements-related risks
through probabilistic goals and obstacles. Requirements Eng 18, 129—

146 (2013). https://doi.org/10.1007/s00766-013-0168-5

[12] Sales T.P., Baido F., Guizzardi G., Almeida J.P.A., Guarino N., Mylopoulos
(2018) The Common Ontology of Value and Risk. In: Trujil.lo J. et al. (eds)
Conceptual Modeling. ER 2018. Lecture Notes in Computer Science, vol 11157.
Springer, Cham. https://doi.org/10.1007/978-030-00847-5_11

[13] Rosa, E.. “Metatheoretical foundations for post-normal risk.” Journal of Risk
Research 1 (1998): 15-44.

[14] Greenspan, S., Mylopoulos, J. Borgida, A.. 1994. On formal
Requirements modeling languages: RML revisited. In Proceedings of
the 16th international conference on Software engineering (ICSE *94). IEEE Com.
puter SocietyPress, Washington, DC, USA, 135-147.

[15] Contrapositive, https:/en.wikipedia.org/wiki/Contraposition".

Last accessed 29 September 2021

Ishikawa, K.: Introduction to quality control. Productivity Press (1990)

Vesely, B.: Fault tree analysis (fta): Concepts and applications. NASA HQ(2002)

Supakkul, S., Chung, L.: Extending problem frames to deal with stake Holder

problems: An agent-and goal-oriented approach. In: Proceedings of the 2009 ACM

symposium on Applied Computing. (2009) 389-394

[19] K. Kolluri, R. Ahn, T. Hill, L. Chung, “ Risk Analysis for Collaborative
Systems during Requirements Engineering”, “ Proc., International
Conference on Software Engineering & Knowledge Engineering
(SEKE 2021). 2021, pp. 297-302.]

[16
[7
[s

