
Identifying Risks for Collaborative Systems during
Requirements Engineering: An Ontology-Based Approach

Kirthy Kolluri, Robert Ahn, Julie Rauer, Lawrence Chung
Department of Computer Science
The University of Texas at Dallas

Richardson, TX, USA
{kirthy.kolluri, robert.sungsoo.ahn, julie.rauer,

chung}@utdallas.edu

Tom Hill
Fellows Consulting Group

Dallas, TX, USA
{tom}@fellowsconsultinggroup.com

Abstract- A risk is an undesirable event that can result in mis-
haps if not identified early on during requirements engineering
adequately. However, identifying risks can be challenging, and
requirements engineers may not always be aware if risks are
ignored. In this paper, we present Murphy – a framework for
performing risk analysis. Murphy adopts the Reference Model,
in which requirements are supposed to be met not by the pro-
jected software system behavior alone but through collabora-
tion between the system and events occurring in its environ-
ment, hence the term Collaborative System. Murphy provides
risk analysis facilities that include an activity-oriented ontolo-
gy for carrying out risk analysis by systematically identifying
risky activities in the system and in the environment, thereby
obtaining a Risk Analysis Graph (RAG) and towards devising
risk mitigation strategies later. In order to see both the
strengths and weaknesses of Murphy, we experimented on de-
veloping a smartphone app involving a group of Ph.D. and
senior-level graduate students – one group using Murphy and
the other not using Murphy. Our observation, we feel, shows
that the risks identified by the group using Murphy were able
to identify more critical risks and those risks were comprehen-
sive and relevant as. well. The results also showed that incor-
porating risk mitigation strategies for the risks identified can
indeed help avoid them to some extent.

Keywords- Risk, Risk Identification, Ontology, Collaborative
systems, Requirements Engineering, Reference Model (WRSPM
Model)

I. INTRODUCTION
Risk is a situation or event where humans themselves can

be put at stake [13], is a phenomenon faced or caused by erro-
neous functionality/behavior of software, hardware, or hu-
man(s). Collaborative systems emphasize that requirements
are satisfied by the collaboration between the user and the
events in its environment. For example, in building our
smartphone app, Theia

1
, for helping blind people navigate in-

doors, it may not be too evident for the requirements engineer

DOI reference number: 10.18293/SEKE2022-169
1 Theia is the Greek goddess of sight

to identify that the “blind person may not be able to walk in a
straight line.” It can be challenging to determine the possibility
of the smartphone app giving wrong instruction to the blind
person, the camera not turning on even when the smartphone
application is turned on, etc. Based on these examples, it is ev-
ident that risks may arise due to certain environmental events
(domain) or erroneous system behavior.

When considering collaborative systems such as Theia, an
agent (e.g., person, software, or hardware) must perform a set
of activities to fulfill the requirement. Every action performed
by the agent, or the software system is associated with one or
more risks. What-if the smartphone app indicates the blind
person to turn earlier or later after walking ten steps? Or what
if the user ignores the instructions and fails to turn at the right
spot? The requirements engineers and software developers
should address these kinds of risks before developing the actu-
al application. This practice would help plan risk minimization
and mitigation strategies.

Some attempts have been made to perform risk analysis and
mitigation during requirements analysis [1]. The idea here is to
identify risks systematically, devise risk mitigation strategies
and implement those strategies to help avoid some risks. But
how do we systematically identify these risks without omis-
sions and commissions and develop risk mitigation strategies?

This paper proposes Murphy, a framework for performing
risk identification and analysis using an activity-oriented and
ontology-based approach for collaborative systems. Our pre-
vious work [19], which extends the Reference Model [6, 7]
with risks to obtain the Augmented Reference Model, is ex-
tended by adding more rules for systematic risk identification.
We also introduce a highly activity-oriented ontology, a do-
main-specific ontology, and constraints on agent’s actions
which can be used to come up with risks when violated.

We carried out experimentation in two phases – Phase 1 in-
volved using the Theia app developed without using Murphy
before its development. Phase 2 involved using Theia app de-
veloped using Murphy framework. Through this experimenta-
tion, we have observed that significant risks, such as walking
in a straight line, the user’s finger being slippery to tap the
screen, background noise, etc., can be overlooked. We also
observed that the devising and developing risk mitigation
strategies can indeed help avoid the occurrence of the risk to
some extent.

ing lanes, etc. are also risks but are not omissions related to
Theia domain.

B. Identifying risks using Constraints: Constraints are some
restrictions that are placed on the ontological concepts and the
relationships between them. Since, the ontology is highly ac-
tivity-oriented, we place constraints and violation of these
constraints is nothing but a risk. The constraints are specific to
the domain and are related to the actions that the agent per-
form in the domain. For e.g., if we consider a constraint that
the blind person must walk in a straight line when using Theia.
The blind person walking in a zig-zag pattern can violate this
constraint, which results in a risk.

C. Generation of Risk Analysis Graph: In this paper, we gen-
erate Risk Analysis Graph, shown in Fig. 3, by the systematic
generation of risks. For this, we use the Augmented Reference
Model from our previous work [19] and extend it by adding
multiple rules for extensive risk generation and devising risk
mitigation strategies for the risks identified. As a part of the
risk analysis process, we follow these steps to generate the
RAG:
1) acquiring the requirement, specification, and domain,

2) decomposing the requirement, specification, and domain

3) applying rules to the decomposed requirement, specifica-

tion, and domain to systematically obtain risks

4) prioritize the most important risks using ontology

5) devise risk mitigation strategies to the risks prioritized

Step 1 and 2: For this work, we assume that the requirement,
specification, and domain are of the form i → t. We use the
antecedent (i) part and the consequent (t) part to identify risks
by applying rules for systematic risk generation. We use a part
of the initial process (Steps 1 and 2) discussed in our previous
work [19] for generation of RAG.

Step 3: We have discussed some rules in our previous work
[19], and we extend them by adding more rules for systematic
risk generation. Rules are applied to the decomposed require-

ment, specification and domain that are obtained using the
augmentation process explained in our previous work [19].

a) Rule 1: ¬(i →	t) which is i ∧ ¬t

b) Rule 2: ¬i ∧ t: We consider the antecedent and the

negation of the consequent joined by a logical AND

c) Rule 3: Negation of Contrapositive: Contrapositive is

the reversal and negation of both i and t in i → t. It is read as

if not t then not i. We consider negation of the

contrapositive [15], represented as ¬(¬t → ¬i)

In fig. 3, the first two red boxes show rule 2 in action and the
last red box (towards right) shows rule 1 in action. We will
discuss only rule 1 here (the last red box in fig 3) due to space
limitation. Let us consider the specification S,

S: When the hardware receives a signal, the software notifies

using the hardware to perform an action

To generate RAG, we perform step 1, i.e., acquiring s. We in-
stantiate this S, using the ontology. By instantiating this speci-
fication S, we acquire:

s: When the microphone receives a voice input signal, Theia

notifies using the speaker to walk 10 steps forward

We then perform step 2, i.e., decomposing s since we have an
implies relation between i and t. After decomposing s, we ob-
tain &#	'()	&$.
&#: the microphone receives a voice input signal

&$: Theia notifies using the speaker to walk 10 steps forward

Now, we apply rule 1, i ∧ ¬ t, to &# and &$. When rule 1 is ap-
plied to s, the consequent, &$, is negated since the consequent
in i ∧ ¬ t has the negation.
The antecedent remains the same, and the relation between
them is AND. By negating &$, we obtain:
 (&$): ¬ (Theia notifies using the speaker to walk 10 steps for-

ward)

Figure 3: An example showing Risk Analysis Graph for smartphone application domain (Theia)

There can be multiple risk cases associated with this negation.
(Theia does not notify to walk forward) OR

(Theia notifies to walk > 10 steps forward) OR

(Theia notifies to walk < 10 steps forward) OR

(Theia notifies to walk 10 steps forward and turn left) OR

(Theia notifies to walk < 10 steps forward and turn left)

 When Theia must deliver a notification using the speaker, af-
ter calculating the route, there may be a set of risks that can be
associated with a simple statement. To calculate the route and
give an instruction, there is an action that the agents Theia
(software) and speaker (hardware) must perform. As discussed
earlier, each action that an agent performs, can be associated
with one or more risks. Hence, the resulting risks could be
Theia does not calculate the route and no instruction is given,
or Theia calculates wrong route, etc. Alternatively, the route
calculation by Theia may be perfect but the speaker may not
give out the instruction. We identify templates using rules,
implement these templates in our tool, to generate risks when
a requirement, specification or domain statement is provided.

Step 4: Risks obtained from step 3 are prioritized using the on-
tology. All the risks are compared against the set of risks listed
in the domain specific, class-level ontology. The risks listed in
the ontology are prioritized and the risks that are irrelevant
(commissions) are ignored.

Step 5: Risk-mitigation techniques are devised based on the
risks prioritized in step 4 which are shown in purple in fig 3.
The break/hurt arrow represents that a risk mitigation tech-
nique hurts the risk, and it prevents that risk from happening.
For e.g., if we prioritize the risk – the speaker may not give
out the instruction since the speaker does not work, the risk
mitigation technique that may help avoid that risk is to include
a test voice/music clip which can be played by the user to
make sure that the speaker is working before indicating the
destination, etc.

D. Murphy Assistant tool: Murphy Assistant is a semi-
automated Risk Analysis tool, where the user of the applica-
tion has to setup the ontology before performing risk identifi-
cation and analysis. For this process, we developed a windows
application using the .NET framework. For storing all ontolog-
ical concepts entered by the user, a Microsoft SQL Server Lo-
cal Database is used. Murphy Assistant is a prototype tool
which supports the concepts of Murphy framework. The re-
finement rules are provided as templates to this tool, and these
templates are semantically bound. The underlying code can
and the snapshots of the tool in action can be found at
https://github.com/indoornavigation0/Murphy.git

IV. EXPERIMENTATION
To validate our risk analysis and to identify the strengths

and weaknesses of Murphy, we design an experiment to de-
velop a smartphone app from the results obtained by perform-
ing risk analysis using Murphy.

A. Experimental Setup: Murphy is intended to be used by

requirements engineers and developers to perform risk analy-
sis during the software development life cycle before the de-
velopment of the application. We have conducted experi-
ments, to validate Murphy with the help of a group of 25 PhD
and 25 senior-level graduate students. All the students majored
in computer science. Every student was provided with a ver-
sion of Murphy installed on their computer. The students were
given the requirement that we used as the running example,
and tested many different requirements of their choice, chose
the branches for which risk analysis should be performed,
chose the rules to be applied to requirement, specification, or
domain and when to stop the risk analysis (depth). After using
Murphy, the students provided us with the list of risks and
their feedback regarding the ease of use, accuracy of the au-
tomation and its usability, along with a list of risks identified.
 A version of Theia has been developed using the list of risks
and risk mitigation strategies provided by the students. One
such mechanism has been implemented in Theia. We have
conducted experimentation using Theia with 25 students.

Figure 4: Different categories of risks identified using Murphy

B. Analysis of the result: Performing risk analysis is a vital
step before the development. Exclusion of RAG, as per our
observation, we feel, shows that some risks are omitted. All
the students were able to find common risks related to agents
malfunctioning. We have observed various kinds of risks
where the system did not behave the way it was supposed to.
We also identified some risks where the system’s functionality
was aberrant. There were some risks which were not very rel-
evant to the domain.
 Students identified risks such as missing route, walking in
the wrong direction, etc., critical risks such as falling, bump-
ing into people, colliding against walls, etc., uncommon risks
such as oil on the floor, banana peel on the way, water puddle
on the floor, etc., unimportant risks such as warnings which
ask the user to increase the volume, increase screen brightness,
etc. The students have ignored some critical risks such as low
battery indication, faulty voice input due to background noise,
walking in a zig-zag fashion in a straight corridor, the blind
person walking into a busy intersection, the user walking
wrong number of steps, etc. These results are discussed in fig.
4, a bar graph which shows the number of risks in different
categories identified by both the Ph.D. and Graduate-level stu-
dents. Fig. 5 shows a bar graph, which compares the results of
the risks faced/ignored while using the version of Theia devel-
oped without Murphy versus the version of Theia developed
with Murphy.

0

5

10

15

20

25

Total risks
identified

Common risks
identified

Uncommon
risks identified

Important risks
identified

Unimportant
risks identified

Critical risks
ignored

Ph.D. Stdents Senior-level graduate students

 In the version of Theia developed using results from
Murphy, the system counts the step as the user walks, to help
ensure safety of the user and to keep track of the steps walked
by the user. This is the biggest difference between the app
developed by using results from the Murphy versus not using
the results from Murphy. Based on our observation, we feel
that the students who used Theia (developed using Murphy’s
results) were able to walk very confidently since Theia was
counting steps for them while navigating. Most of the students
were able to make an accurate turn at the right spot, were able
to keep track of their steps and were able to enjoy the process
of navigation with ease. Overall, we feel that the results
observed from these experiments show us that performing
risk analysis during requirements engineering can help the
end user avoid risks to some extent.

Figure 5: Results observed while using Theia developed without using

Murphy vs using Murphy framework

C. Threats to Validity: We feel that our experiments have
shown that there is a need to improve existing smartphone
apps and devices for blind people, especially with features that
ensure that the blind person is comfortable while navigating
using the smartphone app, by building a tool for identifying
risks systematically, devising anti-risk mechanisms and incor-
porating those results into the system before development. The
Murphy Assistant tool needs improvements with more rules
and templates to identify more complicated and uncommon
risks. Since both Murphy Assistant and Theia are tested by
students, and since the knowledge of the students is limited,
the results may vary greatly compared to the app being tested
by requirements engineers. The risks identified also varied
greatly from what we anticipated since the use of the tool is
based on individual knowledge and the way of performing
analysis varies from person to person, therefore our results
suffered. We are yet to test our Theia app with real blind peo-
ple as we are yet to receive our IRB approval. We feel that
testing with real blind people may give us an edge over blind-
folded people, especially with identifying a variety of risks
they face.

V. CONCLUSION
In this paper, we presented Murphy - a framework for per-

forming risk identification and analysis using Augmented Ref-
erence Model - The Reference Model augmented with risks
that was extended drawing to our previous work [19]. In this
paper, we presented: 1. An activity-oriented ontology to per-
form risk analysis, 2. Risk Analysis Graph - for identifying
and prioritizing and to devising risk mitigation techniques, 4.
A tool, Murphy Assistant developed as a proof of concept, to

generate RAGs for different requirements, specifications, and
domains. 5. A reference application Theia is used to evaluate
the strengths and weaknesses of Murphy. Based on the feed-
back from the students who used Murphy, we feel that its use
during requirements engineering can indeed help increase the
confidence of the engineers and developers in identifying
some critical risks.

As future work, we plan to apply our approach to a wide
variety of domains (e.g., autonomous vehicles domain) for
performing risk analysis and providing risk mitigation strate-
gies. We are developing a set of rules which aid in risk identi-
fication and analysis which goes beyond logic (simple nega-
tion). Experimentation of Theia with real blind subjects will be
performed once we obtain the IRB approval. A step-by-step
approach for engineers to develop and design their own graph-
ically oriented Risk Analysis Graph’s (RAGs) and identifying
risks is underway as well. Finally, we plan to include safety
and timeliness as a softgoal and extend our work using a goal-
oriented approach.

REFERENCES
[1] Asnar, Y., Giorgini, P. Mylopoulos, J. Goal-driven risk assessment in requirement

engineering. Requirements Eng 16, 101–116 (2011).
https://doi.org/10.1007/s00766-010-0112-x

[2] Murphy’s Law, https://en.wikipedia.org/wiki/Murphy’s_law ,
 Last accessed 2 February 2022
[3] Sharma, K., Kumar, P.V.. (2014). A method to risk analysis in requirement eng
 neering through optimized goal selection tropos goal layer. Journal of Theoretical
 and Applied Information Technology. 61. 270- 280.
[4] Cailliau, A. Lamsweerde, A. V.. "A probabilistic framework for goal-oriented risk
 analysis,"(2012). 20th IEEE International Requirements Engineering Conference
 (RE). Chicago, IL, 2012, pp. 201-210. doi: 10.1109/RE.2012.6345805.
[5] Lamsweerde, A. V.. “Risk-driven Engineering of Requirements for Dependable
[6] Gunter, C. A., Gunter, E. L., Jackson, M. Zave, P."A reference model Systems.” En
 gineering Dependable Software Systems for requirements and specifications," in
 IEEE Software, vol. 17, no. 3, pp. 37-43, May-June 2000, doi: 10.1109/52.896248.
[7] Zave, P., Jackson, M.. (1997). Four dark corners of requirements engineering.
 ACM Trans. Softw. Eng. Methodol. 6, 1 (Jan. 1997), 1–30.
 DOI:https://doi.org/10.1145/237432.237434
[8] Vraalsen F., den Braber F., Lund M.S., Stølen K. (2005) The CORAS Tool for
 Security Risk Analysis. In: Herrmann P., Issarny V., Shiu S (eds) Trust Manage
 ment. iTrust 2005. Lecture Notes in Computer Science, vol 3477. Springer,
 Berlin, Heidelberg. https://doi.org/10.1007/11429760_30
[9] Lamsweerde, A.V.. (2013). Risk-driven engineering of requirements for
 dependable systems. 10.3233/978-1-61499-207-3-207.
[10] Mylopoulos, J. Castro, J..“Tropos: A Framework for Requirements- Driven
 Software Development,” (2000).INFORMATION SYSTEMS
 ENGINEERING: STATE OF THE ART AND RESEARCH THEMES,
 pp. 261-273.
[11] Cailliau, A., van Lamsweerde, A. Assessing requirements-related risks
 through probabilistic goals and obstacles. Requirements Eng 18, 129–
 146 (2013). https://doi.org/10.1007/s00766-013-0168-5
[12] Sales T.P., Baião F., Guizzardi G., Almeida J.P.A., Guarino N., Mylopoulos
 (2018) The Common Ontology of Value and Risk. In: Trujil.lo J. et al. (eds)
 Conceptual Modeling. ER 2018. Lecture Notes in Computer Science, vol 11157.
 Springer, Cham. https://doi.org/10.1007/978-030-00847-5_11
[13] Rosa, E.. “Metatheoretical foundations for post-normal risk.” Journal of Risk
 Research 1 (1998): 15-44.
[14] Greenspan, S., Mylopoulos, J. Borgida, A.. 1994. On formal
 Requirements modeling languages: RML revisited. In Proceedings of
 the 16th international conference on Software engineering (ICSE ’94). IEEE Com.
 puter SocietyPress, Washington, DC, USA, 135–147.
[15] Contrapositive, https://en.wikipedia.org/wiki/Contraposition".
 Last accessed 29 September 2021
[16] Ishikawa, K.: Introduction to quality control. Productivity Press (1990)
[17] Vesely, B.: Fault tree analysis (fta): Concepts and applications. NASA HQ(2002)
[18] Supakkul, S., Chung, L.: Extending problem frames to deal with stake Holder
 problems: An agent-and goal-oriented approach. In: Proceedings of the 2009 ACM
 symposium on Applied Computing. (2009) 389-394
[19] K. Kolluri, R. Ahn, T. Hill, L. Chung, “ Risk Analysis for Collaborative
 Systems during Requirements Engineering”, “ Proc., International
 Conference on Software Engineering & Knowledge Engineering
 (SEKE 2021). 2021, pp. 297-302.]

0
1
2
3
4
5
6
7
8
9

Risks faced
while selecting
features to be

used

Critical risks
identified

Common risks
identified

Uncommon
risks Identified

Important risks
identified

Unimportant
risks identified

Critical risks
ignored

Theia developed without using Murphy framework and risk mitigation technique

Theia developed using Murphy framework and risk mitigation techniques are included

